WorldWideScience

Sample records for jupiter-mass exoplanet transiting

  1. WASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system

    Smalley, B; Cameron, A Collier; Hellier, C; Lendl, M; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%.

  2. WASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system

    Smalley, B.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Maxted, P. F. L.; Queloz, D.; Triaud, A. H. M. J.; West, R. G.; Bentley, S. J.; Enoch, B.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; Wheatley, P. J.; Wood, P. L.; Bento, J.

    2011-02-01

    We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038±0.012). We find a planetary mass of 0.59±0.01 MJup and radius of 1.22-0.08+0.11 RJup. There is a linear trend in the radial velocities of 55±4 m s-1 y-1 indicating the presence of a long-period third body in the system with a mass ⪆0.45 MJup at a distance of ⪆1.2 AU from the host star. This third-body is either a low-mass star, a white dwarf, or another planet. The transit depth ((RP/Rstar)2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only 80%. Radial velocity and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A130

  3. WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    Smalley, B; Collier-Cameron, A; Doyle, A P; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet.

  4. WASP-78b and WASP-79b: two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    Smalley, B.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, , C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2012-11-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V = 12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V = 10.1 host star (CD-30 1812) every 3.662 days. Planetary parameters have been determined using a simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements. For WASP-78b a planetary mass of 0.89 ± 0.08 MJup and a radius of 1.70 ± 0.11 RJup is found. The planetary equilibrium temperature of TP = 2350 ± 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. WASP-79b its found to have a planetary mass of 0.90 ± 0.08 MJup, but with a somewhat uncertain radius due to lack of sufficient TRAPPIST photometry. The planetary radius is at least 1.70 ± 0.11 RJup, but could be as large as 2.09 ± 0.14 RJup, which would make WASP-79b the largest known exoplanet. Photometric data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A61Table 1 is available in electronic form at http://www.aanda.org

  5. Transiting Exoplanets with JWST

    Seager, S; Valenti, J A

    2008-01-01

    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet m...

  6. Light Scattering in Exoplanet Transits

    Robinson, Tyler D.; Fortney, Jonathan J.

    2016-10-01

    Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major

  7. KOI-183b: a half-Jupiter mass planet transiting a very old solar-like star

    Gandolfi, D; Deeg, H J; Lanza, A F; Fridlund, M; Moroni, P G Prada; Alonso, R; Augusteijn, T; Cabrera, J; Evans, T; Geier, S; Hatzes, A P; Holczer, T; Hoyer, S; Kangas, T; Mazeh, T; Pagano, I; Tal-Or, L; Tingley, B

    2014-01-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183b (also known as KOI-183.01), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with $M_\\star=0.85\\pm0.04$ M$_\\rm{Sun}$, $R_\\star=0.95\\pm0.04$ R$_\\rm{Sun}$, $T_\\mathrm{eff}=5560\\pm...

  8. Saturn as a Transiting Exoplanet

    Dalba, Paul A.; Muirhead, Philip S.; Fortney, Jonathan J.; Hedman, Matthew M.; Nicholson, Philip D.; Veyette, Mark J.

    2015-11-01

    Previous investigations of exoplanet atmospheres have not targeted those resembling the gas giant planets in our solar system. These types of exoplanets are too cold to be directly imaged or observed in emission, and their low transit probabilities and frequencies make characterization via transmission spectroscopy a challenging endeavor. However, studies of cold giant exoplanets would be highly valuable to our understanding of planet formation and migration and could place the gas giant members of our own solar system in a greater context. Here, we use solar occultations observed by the Visual and Infrared Mapping Spectrometer aboard the Cassini Spacecraft to extract the 1 to 5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption features from several molecules despite the presence of ammonia clouds. Self-consistent exoplanet atmosphere models show good agreement with Saturn's transmission spectrum but fail to reproduce the largest feature in the spectrum. We also find that atmospheric refraction determines the minimum altitude that could be probed during mid-transit of a Saturn-twin exoplanet around a Sun-like star. These results suggest that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories.

  9. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  10. Transiting Exoplanet Survey Satellite (TESS)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  11. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  12. Comparative Habitability of Transiting Exoplanets

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  13. GATE (Gaia Transiting Exoplanets): Detecting Transiting Exoplanets with Gaia

    Zucker, Shay; Eyer, Laurent; Hodgkin, Simon; Clementini, Gisella

    2016-10-01

    Gaia will have a revolutionary impact on most fields of astronomy. However, its scanning law is too sparse for traditional transit detection approaches (de Bruijne 2012). Practically, only stars brighter than 16th magnitude are relevant for follow-up of transiting exoplanets. For those stars, Gaia's precision is of the order of 1 mmag (Eyer et al. 2015). On average, Gaia will have sampled each target 70 times, but certain stars may be observed as many as 200 times (Voss et al. 2013). Hipparcos scanning law was similar, but its precision much worse. Nevertheless the transit of HD209458 could be seen, aposteriori, in Hipparcos' data (Söderhelm 1999). This inspired our GATE initiative.

  14. Detecting non-transiting exoplanets

    Placek, Ben; Richards, Zachary; Knuth, Kevin H.

    2013-08-01

    Currently, the most popular way of detecting Extra-solar planets (exoplanets) is via the Transit Method. This method is limited only to planets with orbits such that we observe them transiting their host star. In this work in progress, we propose to identify non-transiting exoplanets in the data currently being collected by the Kepler Space Telescope by detecting orbital phase reflected light variations. Since such variations are due to light from the host star reflected by the planet, we expect this method to work best on closely orbitting large planets. Using the Metropolis-Hastings Monte Carlo and Nested Sampling algorithms, we will determine the presence or absence of nontransiting planets and estimate their orbital parameters such as, orbital inclination, semi-major axis, period, and eccentricity. Our estimates indicate that the development of this technique has the potential to double the number of detectable planets in the Kepler data sets. Here we demonstrate feasibility using portions of data from one of the first transiting planets detected by Kepler, HAT-P-7b.

  15. Comparative Habitability of Transiting Exoplanets

    Barnes, Rory; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiti...

  16. Young Exoplanet Transit Initiative (YETI)

    Neuhäuser, R; Berndt, A; Maciejewski, G; Takahashi, H; Chen, W P; Dimitrov, D P; Pribulla, T; Nikogossian, E H; Jensen, E L N; Marschall, L; Wu, Z -Y; Kellerer, A; Walter, F M; Briceño, C; Chini, R; Fernandez, M; Raetz, St; Torres, G; Latham, D W; Quinn, S N; Niedzielski, A; Bukowiecki, Ł; Nowak, G; Tomov, T; Tachihara, K; Hu, S C -L; Hung, L W; Radeva, D P Kjurkchieva \\and V S; Mihov, B M; Slavcheva-Mihova, L; Bozhinova, I N; Budaj, J; Vaňko, M; Kundra, E; Hambálek, Ľ; Krushevska, V; Movsessian, T; Harutyunyan, H; Downes, J J; Hernandez, J; Hoffmeister, V H; Cohen, D H; Abel, I; Ahmad, R; Chapman, S; Eckert, S; Goodman, J; Guerard, A; Kim, H M; Koontharana, A; Sokol, J; Trinh, J; Wang, Y; Zhou, X; Redmer, R; Kramm, U; Nettelmann, N; Mugrauer, M; Schmidt, J; Moualla, M; Ginski, C; Marka, C; Adam, C; Seeliger, M; Baar, S; Roell, T; Schmidt, T O B; Trepl, L; Eisenbei\\ss, T; Fiedler, S; Tetzlaff, N; Schmidt, E; Hohle, M M; Kitze, M; Chakrova, N; Gräfe, C; Schreyer, K; Hambaryan, V V; Broeg, C H; Koppenhoefer, J; Pandey, A K

    2011-01-01

    We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6m telescopes around the world to monitor continuously young (< 100 Myr), nearby (< 1 kpc) stellar clusters mainly to detect young transiting planets (and to study other variability phenomena on time-scales from minutes to years). The telescope network enables us to observe the targets continuously for several days in order not to miss any transit. The runs are typically one to two weeks long, about three runs per year per cluster in two or three subsequent years for about ten clusters. There are thousands of stars detectable in each field with several hundred known cluster members, e.g. in the first cluster observed, Tr-37, a typical cluster for the YETI survey, there are at least 469 known young stars detected in YETI data down to R=16.5 mag with sufficient precision of 50 milli-mag rms (5 mmag rms down to R=14.5 mag) to detect transits, so that we can expect at least about one young transiting object in this cl...

  17. The Transiting Exoplanet Survey Satellite

    Ricker, George R; Vanderspek, Roland; Latham, David W; Bakos, Gaspar A; Bean, Jacob L; Berta-Thompson, Zachory K; Brown, Timothy M; Buchhave, Lars; Butler, Nathaniel R; Butler, R Paul; Chaplin, William J; Charbonneau, David; Christensen-Dalsgaard, Jorgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, E W; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J; Howard, Andrew W; Ida, Shigeru; Jenkins, Jon; Jernigan, Garrett; Johnson, John Asher; Kaltenegger, Lisa; Kawai, Nobuyuki; Kjeldsen, Hans; Laughlin, Gregory; Levine, Alan M; Lin, Douglas; Lissauer, Jack J; MacQueen, Phillip; Marcy, Geoffrey; McCullough, P R; Morton, Timothy D; Narita, Norio; Paegert, Martin; Palle, Enric; Pepe, Francesco; Pepper, Joshua; Quirrenbach, Andreas; Rinehart, S A; Sasselov, Dimitar; Sato, Bun'ei; Seager, Sara; Sozzetti, Alessandro; Stassun, Keivan G; Sullivan, Peter; Szentgyorgyi, Andrew; Torres, Guillermo; Udry, Stephane; Villasenor, Joel

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I<13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler missio...

  18. Nightside Pollution of Exoplanet Transit Depths

    Kipping, David M

    2009-01-01

    Out of the known transiting extrasolar planets, the majority are gas giants orbiting their host star at close proximity. Both theoretical and observational studies support the hypothesis that such bodies emit significant amounts of flux, especially at mid-infrared wavelengths. For the dayside of the exoplanet, this phenomenon typically permits detectable secondary eclipses at such wavelengths, which may be used to infer atmospheric composition. In this paper, we explore the effects of emission from the nightside of the exoplanet on the primary transit lightcurve. Allowing for nightside emission, an exoplanet's transit depth is no longer exclusively a function of the ratio-of-radii. The nightside of an exoplanet is emitting flux and the contrast to the star's emission is of the order of ~10^(-3) for hot-Jupiters. Consequently, we show that the transit depth in the mid-infrared will be attenuated due to flux contribution from the nightside emission by ~10^(-4). We show how this effect can be compensated for in ...

  19. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    Van Eylen, Vincent

    2015-01-01

    Are we alone in the Universe? So far, the question remains unanswered, but a significant leap forward was achieved two decades ago, with the discovery of the first planets orbiting stars other than our Sun. Almost 2000 exoplanets have now been detected. They are diverse in radius, mass and orbital......, in this thesis I make use of the transit method, which is based on the observed brightness drop of a star as a planet crosses in front of it. This thesis consists of two parts. The first part focuses on the discovery of new planets and the understanding of exoplanet properties. I report the discovery...... results of this study, constraining the masses and bulk compositions of three planets. The second part of this thesis focuses on dynamics of exoplanets. All the solar system planets orbit in nearly the same plane, and that plane is also aligned with the equatorial plane of the Sun. That is not true...

  20. CoRoT pictures transiting exoplanets

    Moutou, Claire

    2015-01-01

    The detection and characterization of exoplanets have made huge progresses since the first discoveries in the late nineties. In particular, the independent measurement of the mass and radius of planets, by combining the transit and radial-velociy techniques, allowed exploring their density and hence, their internal structure. With CoRoT (2007-2012), the pioneering CNES space-based mission in this investigation, about thirty new planets were characterized. CoRoT has enhanced the diversity of giant exoplanets and discovered the first telluric exoplanet. Following CoRoT, the NASA Kepler mission has extended our knowledge to small-size planets, multiple systems and planets orbiting binaries. Exploring these new worlds will continue with the NASA/TESS (2017) and ESA/PLATO (2024) missions.

  1. Direct Spectroscopy of Non-Transiting Exoplanets

    Bender, Chad F.; Carr, J. S.

    2008-09-01

    We are using ground-based infrared spectroscopy to directly characterize the atmospheric properties of the close-in exoplanet population. These planets, discovered through indirect means such as precision radial velocity surveys, are strongly irradiated by their parent stars, resulting in exotic atmospheric conditions. Recent direct measurements of transiting exoplanets using space-based facilities have provided information about a variety of atmospheric processes, including energy transfer from the day-side to the night-side, atmospheric structure and temperature at depth, and cloud cover. However, the sample of transiting planets that can be measured with these techniques is very small; to understand the close-in planets as a population, measurements of non-transiting planets are necessary. The temperature of a close-in exoplanet atmosphere determines whether CH4 or CO is the dominant carbon bearing species, so the measurement of either species probes the equilibrium temperature of the atmosphere. We are observing close-in exoplanet systems with the NIRSPEC spectrometer on the Keck II telescope, obtaining blended star-planet spectra at the 3.3 micron CH4 fundamental and at the 4.6 micron CO fundamental. Our observations achieve a signal-to-noise of several thousand with a spectral resolution of R 25000. We use a correlation analysis to search for the contribution from the planet, with a predicted planet-star flux of one part in 104 - 105. Here, we will present preliminary results from our search for CH4 absorption from the exoplanet 55Cnc b, using spectra obtained in December 2007 and March 2008. We will also describe the techniques that are yielding high signal-to-noise spectra in the thermal infrared, and our detailed terrestrial absorption correction using line-by-line atmospheric synthesis of the transmission function. CB is supported by an NRC Research Associateship at NRL; basic research in infrared astronomy at NRL is supported by 6.1 base funding.

  2. WASP-26b: A 1-Jupiter-mass planet around an early-G-type star

    Smalley, B; Cameron, A Collier; Gillon, M; Hellier, C; Lister, T A; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Pepe, F; Pollacco, D L; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy.

  3. Searching for transit timing variations in transiting exoplanet systems

    Hrudková, Marie; Benn, Chris; Pollacco, Don; Gibson, Neale; Joshi, Yogesh; Harmanec, Petr; Tulloch, Simon

    2008-01-01

    Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were observed with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.

  4. Optical & Infrared Spectroscopy of Transiting Exoplanets

    Griffith, C. A.; Tinetti, G.

    2010-10-01

    Two types of spectra can be measured from transiting extrasolar planets. The primary eclipse provides a transmission spectra of the exoplanet's limb as the planet passes in front of the star. These data probe the gas and particle composition of the atmosphere, as well as the atmospheric scale height. The secondary eclipse measures the emission of mainly the planet's dayside atmosphere from the planet plus star's emission minus the emission of star alone, when it eclipses the planet. These data probe the temperature and composition structure of the exoplanet. Only in the past 3 years, have infrared transmission and emission spectroscopy revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra. Transmission spectra, while less sensitive to the atmospheric temperatures, are difficult to interpret because the composition derived depends delicately on the assumed radius at a specified pressure level. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. The physical implications of these correlations are assessed in order to determine the temperature and composition structure of extrasolar planets, and their significance with respect to the exoplanet's chemistry and dynamics.

  5. The WASP-South search for transiting exoplanets

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  6. The WASP-South search for transiting exoplanets

    Hellier, Coel; Cameron, A Collier; Gillon, M; Lendl, M; Lister, T A; Maxted, P F L; Pollacco, D; Queloz, D; Smalley, B; Triaud, A H M J; West, R G

    2010-01-01

    Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9--13. We present a status report for this ongoing survey.

  7. Hubble Case Studies of Transiting Giant Exoplanets

    Wilkins, Ashlee N.; Deming, Drake; Barker, Adrian; Benneke, Björn; Delrez, Laetitia; Gillon, Michaël; Hamilton, Douglas P.; Jehin, Emmanuel; Knutson, Heather; Lewis, Nikole K.; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter R.; Wakeford, Hannah R.

    2017-01-01

    The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond mere detection, which only yields bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, which allow us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, habitability and presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. This dissertation talk will focus on transiting exoplanet case studies with the Hubble Space Telescope’ Wide-Field Camera-3 (WFC-3) as a tool of exoplanet characterization in a near-infrared band dominated by strong water features. I will first present a characterization the WFC-3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals, and then a study of four transiting giant planets (HATS-7b, HAT-p-3b, HD 149026b, and WASP-18b) in transmission, and two (WASP-18b and CoRoT-2b) in eclipse. Finally, I will discuss the role of transit timing monitoring of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, massive planet. The five planets range from Neptune-class to Super-Jupiter-class in size/mass. Though these planets may be relatively rare, their observability represents a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. These observations also yield insights into aerosols (i.e. clouds/hazes) in the atmosphere; clouds and/or hazes should significantly impact atmospheric chemistry and observational signatures, and we as a community must get a better handle on the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST

  8. Characterization of Transiting Exoplanets by Way of Differential Photometry

    Cowley, Michael; Hughes, Stephen

    2014-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including size, orbital radius and…

  9. Five kepler target stars that show multiple transiting exoplanet candidates

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.;

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets...

  10. Exoplanets

    Seager, S.

    2010-12-01

    This is a unique time in human history - for the first time, we are on the technological brink of being able to answer questions that have been around for thousands of years: Are there other planets like Earth? Are they common? Do any have signs of life? The field of exoplanets is rapidly moving toward answering these questions with the discovery of hundreds of exoplanets now pushing toward lower and lower masses; the Kepler Space Telescope with its yield of small planets; plans to use the James Webb Space Telescope (launch date 2014) to study atmospheres of a subset of super Earths; and ongoing development for technology to directly image true Earth analogs. Theoretical studies in dynamics, planet formation, and physical characteristics provide the needed framework for prediction and interpretation. People working outside of exoplanets often ask if the field of exoplanets is like a dot.com bubble that will burst, deflating excitement and progress. In my opinion, exciting discoveries and theoretical advances will continue indefinitely in the years ahead, albeit at a slower pace than in the first decade. The reason is that observations uncover new kinds and new populations of exoplanets -- and these observations rely on technological development that usually takes over a decade to mature. For example, in the early 2000s all but one exoplanet was discovered by the radial velocity technique. At that time, many groups around the world were working on wide-field transit surveys. But it was not until recently, a decade into the twenty-first century, that the transit technique is responsible for almost one-quarter of known exoplanets. The planet discovery techniques astrometry (as yet to find a planet) and direct imaging have not yet matured; when they do, they will uncover planets within a new parameter space of planet mass and orbital characteristics. In addition, people are working hard to improve the precision for existing planet discovery techniques to detect lower

  11. Modeling and Fitting Exoplanet Transit Light Curves

    Millholland, Sarah; Ruch, G. T.

    2013-01-01

    We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the

  12. KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Kuhn, Rudolf B; Collins, Karen A; Lund, Michael B; Siverd, Robert J; Colón, Knicole D; Pepper, Joshua; Stassun, Keivan G; Cargile, Phillip A; James, David J; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T G; Curtis, Ivan A; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B Scott; Myers, Gordon; Beatty, Thomas G; Eastman, Jason D; Reichart, Daniel E; Haislip, Joshua B; Kielkopf, John; Bieryla, Allyson; Latham, David W; Jensen, Eric L N; Oberst, Thomas E; Stevens, Daniel J

    2015-01-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright $V = 10.7$ star (TYC 8378-64-1), with T$_{eff}$ = $5948\\pm74$ K, $\\log{g}$ = $4.319_{-0.030}^{+0.020}$ and [Fe/H] = $0.09_{-0.10}^{+0.11}$, an inferred mass M$_{*}$ = $1.112_{-0.061}^{+0.055}$ M$_{\\odot}$ and radius R$_{*}$ = $1.209_{-0.035}^{+0.047}$ R$_{\\odot}$. The planet has a radius R$_{P}$ = $1.399_{-0.049}^{+0.069}$ R$_{J}$ and mass M$_{P}$ = $0.679_{-0.038}^{+0.039}$ M$_{J}$. The planet has an eccentricity consistent with zero and a semi-major axis $a$ = $0.05250_{-0.00097}^{+0.00086}$ AU. The best fitting linear ephemeris is $T_{0}$ = 2457066.72045$\\pm$0.00027 BJD$_{TDB}$ and P = 4.1662739$\\pm$0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively ...

  13. The observation of exoplanet transit events in China

    Fang X.-S.

    2011-07-01

    Full Text Available We have carried out a research project on the exoplanet transit events at Yunnan Observatory. By using CCD cameras attached to 1m telescope of Yunnan Observatory and 85cm telescope of Xinglong station, NAOC, a group of exoplanet systems with transit events have been observed photometrically. By means of MCMC method, the preliminary results of the systems WASP-11 and XO-2 are derived. Finally, we give out the future plan on this research topic in China.

  14. Characterizing transiting exoplanet atmospheres with JWST

    Greene, Thomas P; Montero, Cezar; Fortney, Jonathan J; Lustig-Yeager, Jacob; Luther, Kyle

    2015-01-01

    We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\\lambda = 1 - 11$ $\\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\\lambda = 1 - 2.5$ $\\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong t...

  15. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Brogi, M; Birkby, J L; Schwarz, H; Snellen, I A G

    2014-01-01

    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, ...

  16. The population of long-period transiting exoplanets

    Foreman-Mackey, Daniel; Hogg, David W; Agol, Eric; Schölkopf, Bernhard

    2016-01-01

    The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $\\sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, ...

  17. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  18. Transiting exoplanets: From planet statistics to their physical nature

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  19. WASP-26b: a 1-Jupiter-mass planet around an early-G-type star

    Smalley, B.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Triaud, A. H. M. J.; West, R. G.; Bentley, S. J.; Enoch, B.; Pepe, F.; Pollacco, D. L.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; Wheatley, P. J.; Wood, P. L.; Bento, J.

    2010-09-01

    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M⊙ and a radius of 1.34 ± 0.06 R⊙ and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy. RV and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A56

  20. Transiting Exoplanet Simulations with the James Webb Space Telescope

    Batalha, Natasha; Lunine, Jonathan; Clampin, Mark; Lindler, Don

    2015-01-01

    In this white paper, we assess the potential for JWST to characterize the atmospheres of super-Earth exoplanets, by simulating a range of transiting spectra with different masses and temperatures. Our results are based on a JWST simulator tuned to the expected performance of the workhorse spectroscopic instrument NIRSpec, and is based on the latest exoplanet transit models by Howe & Burrows (2012). This study is especially timely since the observing modes for the science instruments on JWST are finalized (Clampin 2010) and because NASA has selected the TESS mission as an upcoming Explorer. TESS is expected to identify more than 1000 transiting exoplanet candidates, including a sample of about 100 nearby (<50 pc) super- Earths (Ricker et al. 2010).

  1. Characterization of transiting exoplanets by way of differential photometry

    Cowley, Michael

    2015-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.

  2. KELT-1b: A Strongly Irradiated, Highly Inflated, Short Period, 27 Jupiter-mass Companion Transiting a mid-F Star

    Siverd, Robert J; Pepper, Joshua; Eastman, Jason D; Collins, Karen; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Crepp, Justin R; Street, Rachel; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; DePoy, D L; Esquerdo, Gilbert A; Fulton, Benjamin J; Furesz, Gabor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M; van Saders, Jennifer L

    2012-01-01

    We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) survey. The V=10.7 primary is a mildly evolved, solar-metallicity, mid-F star. The companion is a low-mass brown dwarf or super-massive planet with mass of 27.23+/-0.50 MJ and radius of 1.110+0.037-0.024 RJ, on a very short period (P=1.21750007) circular orbit. KELT-1b receives a large amount of stellar insolation, with an equilibrium temperature assuming zero albedo and perfect redistribution of 2422 K. Upper limits on the secondary eclipse depth indicate that either the companion must have a non-zero albedo, or it must experience some energy redistribution. Comparison with standard evolutionary models for brown dwarfs suggests that the radius of KELT-1b is significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1, which is consistent with an M dwarf if bound. The projected spin-orbit alignment angle is consistent with ...

  3. PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON

    Parviainen, Hannu

    2015-07-01

    We present a fast and user friendly exoplanet transit light-curve modelling package PYTRANSIT, implementing optimized versions of the Giménez and Mandel & Agol transit models. The package offers an object-oriented PYTHON interface to access the two models implemented natively in FORTRAN with OpenMP parallelization. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PYTRANSIT is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific analyses.

  4. Five Kepler target stars that show multiple transiting exoplanet candidates

    Steffen, Jason H; Borucki, William J; Buchhave, Lars A; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fabrycky, Daniel C; Fressin, François; Ford, Eric B; Fortney, Jonathan J; Haas, Michael J; Holman, Matthew J; Isaacson, Howard; Jenkins, Jon M; Koch, David; Latham, David W; Lissauer, Jack J; Moorhead, Althea V; Morehead, Robert C; Marcy, Geoffrey; MacQueen, Phillip J; Quinn, Samuel N; Ragozzine, Darin; Rowe, Jason F; Sasselov, Dimitar D; Seager, Sara; Torres, Guillermo; Welsh, William F

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compos...

  5. A Theory of Exoplanet Transits with Light Scattering

    Robinson, Tyler D.

    2017-02-01

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope. However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  6. KELT-10b: the first transiting exoplanet from the KELT-South survey - a hot sub-Jupiter transiting a V = 10.7 early G-star

    Kuhn, Rudolf B.; Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Siverd, Robert J.; Colón, Knicole D.; Pepper, Joshua; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T. G.; Curtis, Ivan A.; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Dhital, Saurav; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B. Scott; Myers, Gordon; Beatty, Thomas G.; Eastman, Jason D.; Reichart, Daniel E.; Haislip, Joshua B.; Kielkopf, John; Bieryla, Allyson; Latham, David W.; Jensen, Eric L. N.; Oberst, Thomas E.; Stevens, Daniel J.

    2016-07-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with Teff = 5948 ± 74 K, log g = 4.319_{-0.030}^{+0.020} and [Fe/H] = 0.09_{-0.10}^{+0.11}, an inferred mass M* = 1.112_{-0.061}^{+0.055} M⊙ and radius R* = 1.209_{-0.035}^{+0.047} R⊙. The planet has a radius Rp = 1.399_{-0.049}^{+0.069} RJ and mass Mp = 0.679_{-0.038}^{+0.039} MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.052 50_{-0.000 97}^{+0.000 86} au. The best-fitting linear ephemeris is T0 = 2457 066.720 45 ± 0.000 27 BJDTDB and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of Teq = 1377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817_{-0.054}^{+0.068} × 109 erg s-1 cm-2, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.

  7. Transiting planets with LSST. I. Potential for LSST exoplanet detection

    Lund, Michael B.; Pepper, Joshua; Stassun, Keivan G., E-mail: michael.b.lund@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is designed to meet several scientific objectives over a 10 year synoptic sky survey. Beyond its primary goals, the large amount of LSST data can be exploited for additional scientific purposes. We show that LSST data are sufficient to detect the transits of exoplanets, including planets orbiting stars that are members of stellar populations that have so far been largely unexplored. Using simulated LSST light curves, we find that existing transit detection algorithms can identify the signatures of Hot Jupiters around solar-type stars, Hot Neptunes around K-dwarfs, and (in favorable cases) Super-Earths in habitable-zone orbits of M-dwarfs. We also find that LSST may identify Hot Jupiters orbiting stars in the Large Magellanic Cloud—a remarkable possibility that would advance exoplanet science into the extragalactic regime.

  8. The ACCESS Transiting Exoplanets Spectroscopy Survey and the Impact of Heterogeneous Stellar Atmospheres on Transit Spectroscopy

    Apai, Daniel; Rackham, Benjamin V.; Lopez-Morales, Mercedes; Espinoza, Nestor; Jordan, Andres; Osip, David; Lewis, Nikole K.; Rodler, Florian; Fraine, Jonathan; Morley, Caroline; Fortney, Jonathan J.; Bixel, Alex; ACCESS Team; Earths in Other Solar Systems Team

    2017-01-01

    We present results from the ACCESS survey, a large optical transmission spectroscopy survey of transiting planets. With over 40 transits observed using the IMACS multi-object spectrograph on Magellan, ACCESS is building up the most comprehensive spectral database for transiting exoplanets. The goals of ACCESS are to probe the composition of exoplanet atmospheres as a function planet mass and insolation and stellar properties.We will present a brief overview of the survey and highlight results on multiple targets, including hot jupiters and the sub-nepture GJ1214. I will also report on our study of how stellar heterogeneity impact the transmission spectrum of transiting exoplanets and discuss approaches to correct for this important effect to improve the diagnostic power of transit spectroscopcy.

  9. Five Kepler Target Stars That Show Multiple Transiting Exoplanet Candidates

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Fabrycky, Daniel C.; Fressin, François; Ford, Eric B.; Fortney, Jonathan J.; Haas, Michael J.; Holman, Matthew J.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Koch, David; Latham, David W.; Lissauer, Jack J.; Moorhead, Althea V.; Morehead, Robert C.; Marcy, Geoffrey; MacQueen, Phillip J.; Quinn, Samuel N.; Ragozzine, Darin; Rowe, Jason F.; Sasselov, Dimitar D.; Seager, Sara; Torres, Guillermo; Welsh, William F.

    2010-12-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities—two near 2:1 and one just outside 5:2. We discuss the implications that multi-transiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories, as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTVs) due to gravitational interactions, though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  10. Five Kepler target stars that show multiple transiting exoplanet candidates

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  11. Transit Timing Variations for Eccentric and Inclined Exoplanets

    Nesvorný, David

    2009-08-01

    The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorný & Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.

  12. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    von Paris, P; Bordé, P; Leconte, J; Selsis, F

    2016-01-01

    Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. We present a conceptually simple technique to detect inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals compared to a standard symmetric model. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b and HD209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well-suited for this method since it allows for a very high time resolution. We do not find any statistical...

  13. Dynamics and Transit Variations of Resonant Exoplanets

    Nesvorny, D

    2016-01-01

    The Transit Timing Variations (TTVs) are deviations of the measured mid-transit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M_*)^(-2/3), where m and M_* are the planetary and stellar masses. For m=10^(-4) M_*, for example, the TTV period exceeds the orbital period by ~2 orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two ...

  14. Mission Status for the Transiting Exoplanet Survey Satellite (TESS)

    Ricker, George R.; TESS Science Team

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. TESS will monitor ~ 200,000 pre-selected bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30 — 100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. In total, more than 30 million stars and galaxies brighter than magnitude I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade.The baselined long duration survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets, as well as commensal survey candidates from the FFI. A NASA Guest Investigator program is planned for TESS. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets

  15. New tools and improvements in the Exoplanet Transit Database

    Pejcha O.

    2011-02-01

    Full Text Available Comprehensive collection of the available light curves, prediction possibilities and the online model fitting procedure, that are available via Exoplanet Transit Database became very popular in the community. In this paper we summarized the changes, that we made in the ETD during last year (including the Kepler candidates into the prediction section, modeling of an unknown planet in the model-fit section and some other small improvements. All this new tools cannot be found in the main ETD paper.

  16. Dynamics and Transit Variations of Resonant Exoplanets

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)-2/3, where m and M * are the planetary and stellar masses. For m = 10-4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  17. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of datapoints, and of multi-passband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific, analyses.

  18. Optical Observations of the Transiting Exoplanet GJ 1214b

    Teske, Johanna K; Mueller, Matthias; Griffith, Caitlin A

    2013-01-01

    We observed nine primary transits of the super-Earth exoplanet GJ 1214b in several optical photometric bands from March to August 2012, with the goal of constraining the short-wavelength slope of the spectrum of GJ 1214b. Our observations were conducted on the Kuiper 1.55 m telescope in Arizona and the STELLA-I robotic 1.2 m telescope in Tenerife, Spain. From the derived light curves we extracted transit depths in R (0.65 {\\mu}m), V (0.55 {\\mu}m), and g' (0.475 {\\mu}m) bands. Most previous observations of this exoplanet suggest a flat spectrum varying little with wavelength from the near-infrared to the optical, corresponding to a low-scale-height, high-molecular-weight atmosphere. However, a handful of observations around Ks band (~2.15 {\\mu}m) and g-band (~0.46 {\\mu}m) are inconsistent with this scenario and suggest a variation on a hydrogen- or water-dominated atmosphere that also contains a haze layer of small particles. In particular, the g-band observations of de Mooij et al. (2012), consistent with Ray...

  19. Transiting Planets with LSST I: Potential for LSST Exoplanet Detection

    Lund, Michael B; Stassun, Keivan G

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) has been designed in order to satisfy several different scientific objectives that can be addressed by a ten-year synoptic sky survey. However, LSST will also provide a large amount of data that can then be exploited for additional science beyond its primary goals. We demonstrate the potential of using LSST data to search for transiting exoplanets, and in particular to find planets orbiting host stars that are members of stellar populations that have been less thoroughly probed by current exoplanet surveys. We find that existing algorithms can detect in simulated LSST light curves the transits of Hot Jupiters around solar-type stars, Hot Neptunes around K dwarfs, and planets orbiting stars in the Large Magellanic Cloud. We also show that LSST would have the sensitivity to potentially detect Super-Earths orbiting red dwarfs, including those in habitable zone orbits, if they are present in some fields that LSST will observe. From these results, we make the case that LS...

  20. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    von Paris, P.; Gratier, P.; Bordé, P.; Leconte, J.; Selsis, F.

    2016-05-01

    Context. Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. Aims: We present a conceptually simple technique for detecting inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals that are different from standard symmetric models. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. Methods: We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b, and HD 209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well suited for this method since it allows for a very high time resolution. Results: We do not find any statistically sound cloud signature in the data of the considered planets. For HAT-P-7b, a tentative detection of an asymmetric cloud cover is found, consistent with analysis of the optical phase curve. Based on Bayesian probability arguments, a symmetric model with an offset in the transit ephemeris is still the most viable model. This work demonstrates that for suitable targets, namely low-gravity planets around bright stars, the method can be used to constrain cloud cover characteristics and is thus a helpful additional tool for the study of exoplanetary atmospheres.

  1. ExTrA: Exoplanets in Transit and their Atmospheres

    Bonfils, X; Jocou, L; Wunsche, A; Kern, P; Delboulbé, A; Delfosse, X; Feautrier, P; Forveille, T; Gluck, L; Lafrasse, S; Magnard, Y; Maurel, D; Moulin, T; Murgas, F; Rabou, P; Rochat, S; Roux, A; Stadler, E

    2015-01-01

    The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall enable the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.

  2. Toward the detection of exoplanet transits with polarimetry

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  3. Transiting exoplanets from the CoRoT space mission: XIII. CoRoT-14b: an unusually dense very hot Jupiter

    Tingley, B; Gazzano, J -C; Alonso, R; Mazeh, T; Jorda, L; Aigrain, S; Almenara, J -M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Csizmadia, Sz; Deleuil, M; Deeg, H J; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Hébrard, G; Léger, A; Llebaria, A; Lammer, H; Lovis, C; MacQueen, P J; Moutou, C; Ollivier, M; Ofir, A; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Wuchterl, G

    2011-01-01

    In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of $7.6 \\pm 0.6$ Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known exoplanet with a higher mass orbits with a shorter period.

  4. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  5. Simulating Exoplanet Transit and Eclipse Observations with JWST

    Greene, Tom

    2011-01-01

    The James Webb Space Telescope (JWST) will be a nearly ideal machine for acquiring the transmission and emission spectra of transiting exoplanets over its large wavelength range 0.7 - 28 microns. The NIRSpec, NIRCam, nTFI, and MIRI instruments will have spectroscopic capabilities that span spectral resolutions from 20 - 3000 and can cover up to 2 - 3 octaves in wavelength simultaneously. This will allow observing multiple molecular features at once, facilitating the separation of atmospheric temperature and abundance effects on spectra. Many transiting planets will also be able to be observed with both transmission and eclipse spectroscopy, providing further insights and constraints on planetary thermal structures and energy transport. Simulated JWST spectra of planets ranging from mini-Neptunes to gas giants will be presented. These simulations include planets ranging from mini-Neptunes to gas giants will be presented. These simulations include current best estimates of actual instrument throughput, resolution, spectral range, systematic noise, and random noise terms. They show that JWST will be able to determine the atmospheric parameters of a wide variety of planets, often when observing only one or a few transit or eclipse event sequences. The thermal emissions of rocky super-Earths will also be quickly detectable via mid-IR eclipse observations if such planets are found around nearby M star hosts beforehand.

  6. Characterizing K2 Exoplanets with NIR Transit Photometry from the 3.5m WIYN Telescope

    Colon, Knicole D.; Barclay, Thomas; Thompson, Susan E.; Coughlin, Jeffrey; Barentsen, Geert; Quintana, Elisa V.

    2017-01-01

    The NASA K2 mission has discovered over 400 transiting exoplanets as of October 2016 and continues to produce new discoveries on a regular basis. Expected to launch in late 2017, the Transiting Exoplanet Survey Satellite (TESS) will continue the era of exoplanet discovery by performing an all-sky search for transiting exoplanets. Given the ever increasing number of known exoplanets, it is critical that we optimize follow-up observations now in order to characterize the many interesting systems discovered by these missions. For example, K2 is finding (and TESS will find even more) small, super-Earth-size planets around cool, nearby stars. I will present results from our program for near-infrared (NIR) transit photometry of K2 exoplanet candidates conducted using the 3.5m WIYN telescope at Kitt Peak National Observatory. NIR transit photometry with the high spatial resolution WHIRC imager installed on the WIYN telescope allows us to confirm the transit host, to verify that the transit is achromatic, and to constrain the planet radius by minimizing effects of stellar limb darkening. Furthermore, the high-precision and high-cadence photometry from WIYN+WHIRC allows us to track and constrain the transit ephemeris, which is crucial for future follow-up efforts with other facilities like the upcoming James Webb Space Telescope (JWST). Ultimately, this program will vet K2 exoplanet candidates and identify prime targets for detailed characterization with JWST. This program complements K2 follow-up being done with the Spitzer Space Telescope and demonstrates the capabilities of a ground-based facility that can be used to characterize small planets from K2 and TESS for years to come.This work was supported by the NASA-NSF Exoplanet Observational Research (NN-EXPLORE) program.

  7. A search for photometric variability towards M71 with the Near-Infrared Transiting ExoplanetS Telescope

    McCormac, J.; Skillen, I.; Pollacco, D.; Faedi, F.; Ramsay, G.; Dhillon, V. S.; Todd, I.; Gonzalez, A.

    2014-03-01

    We present the results of a high-cadence photometric survey of an 11 arcmin × 11 arcmin field centred on the globular cluster M71, with the Near-Infrared Transiting ExoplanetS Telescope. The aim of our survey is to search for stellar variability and giant transiting exoplanets. This survey differs from previous photometric surveys of M71 in that it is more sensitive to lower amplitude (ΔM ≤ 0.02 mag) and longer period (P > 2 d) variability than previous work on this cluster. We have discovered 17 new variable stars towards M71 and confirm the nature of 13 previously known objects, for which the orbital periods of 7 are refined or newly determined. Given the photometric precision of our high-cadence survey on the horizontal branch of M71, we confirm that the cluster is devoid of RR Lyrae variable stars within the area surveyed. We present new B- and V-band photometry of the stars in our sample from which we estimate spectral types of the variable objects. We also search our survey data for transiting hot Jupiters and present simulations of the expected number of detections. Approximately 1000 stars were observed on the main sequence of M71 with sufficient photometric accuracy to detect a transiting hot Jupiter; however, none were found.

  8. A Search for Photometric Variability Towards M71 with the Near-Infrared Transiting ExoplanetS Telescope

    McCormac, J; Pollacco, D; Faedi, F; Ramsay, G; Dhillon, V S; Todd, I; Gonzalez, A

    2013-01-01

    We present the results of a high-cadence photometric survey of an $11'\\times11'$ field centred on the globular cluster M71, with the Near-Infrared Transiting ExoplanetS Telescope. The aim of our survey is to search for stellar variability and transiting giant exoplanets. This survey differs from previous photometric surveys of M71 in that it is more sensitive to lower amplitude ($\\Delta M\\leq0.02$ mag) and longer period ($P>2$ d) variability than previous work on this cluster. We have discovered $17$ new variable stars towards M71 and confirm the nature of $13$ previously known objects, for which the orbital periods of $7$ are refined or newly determined. Given the photometric precision of our high-cadence survey on the horizontal branch of M71, we confirm the cluster is devoid of RR Lyrae variable stars within the area surveyed. We present new $B$ and $V$ band photometry of the stars in our sample from which we estimate spectral types of the variable objects. We also search our survey data for transiting hot...

  9. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  10. Trajectory Design for the Transiting Exoplanet Survey Satellite

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  11. Exoplanet HAT-P-11b Secondary Transit Observations

    Barry, Richard K., Jr.

    2010-01-01

    We have conducted secondary eclipse observations of exoplanet HAT--11b, recently discovered by proposal G. Bakos and his colleagues. HAT-P-11b is the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We have observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Once the secondary eclipse is located through analysis of the data, we will make a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-1lb has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi major axis 0.053 AU. Measurements of the secondary eclipse will clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  12. The GTC exoplanet transit spectroscopy survey. IV.: No asymmetries in the transit of Corot-29b

    Palle, E; Alonso, R; Nowak, G; Deeg, H; Cabrera, J; Murgas, F; Parviainen, H; Nortmann, L; Hoyer, S; Prieto-Arranz, J; Nespral, D; Lavers, A Cabrera; Iro, N

    2016-01-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims. Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods. Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric di?erential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results. After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 3...

  13. The Third Transit of Snow-Line Exoplanet Kepler-421b

    Dalba, Paul A.; Muirhead, Philip Steven

    2016-10-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit from the cold outer reaches of their systems, despite their low transit probabilities. The atmospheres of these cold gas giant exoplanets are amenable to transit transmission spectroscopy enabling tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-421b, a Neptune-sized exoplanet with a 704-day orbital period residing near the snow-line. Since the Kepler Spacecraft only observed two transits of Kepler-421b, the transit ephemeris is relatively uncertain. We observed Kepler-421 during the anticipated third transit of Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Barring significant TTVs, our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope (DCT) were designed to capture pre-transit baseline and the partial transit of Kepler-421b. We find strong evidence in favor of transit models with no TTVs, suggesting that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the combined Kepler and DCT observations, we calculate the timing of future transits and discuss the unique opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy.

  14. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B; Bean, Jacob L; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M; Krick, J E; Lothringer, Joshua D; Mandell, Avi M; Valenti, Jeff A; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K; Birkmann, Stephan M; Burrows, Adam; Cowan, Nicolas B; Crouzet, Nicolas; Cubillos, Patricio E; Curry, S M; Dalba, Paul A; de Wit, Julien; Deming, Drake; Desert, Jean-Michel; Doyon, Rene; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J; Munoz, Antonio Garcia; Gibson, Neale P; Gizis, John E; Greene, Thomas P; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M -R; Knutson, Heather; Kreidberg, Laura; Lafreniere, David; Lagage, Pierre-Olivier; Line, Michael R; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L; Shporer, Avi; Sing, David K; Todorov, Kamen O; Tucker, Gregory S; Wakeford, Hannah R

    2016-01-01

    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions...

  15. The Kilodegree Extremely Little Telescope: Searching for Transiting Exoplanets in the Northern and Southern Sky

    Soutter, Jack; Pepper, Joshua

    2016-01-01

    The Kilodegree Extremely Little Telescope (KELT) survey is a ground-based program designed to search for transiting exoplanets orbiting relatively bright stars. To achieve this, the KELT Science Team operates two planets facilities - KELT-North, at Winer Observatory, Arizona, and KELT-South, at the South African Astronomical Observatory. The telescopes used at these observatories have particularly wide fields of view, allowing KELT to study a large number of potential exoplanet host stars. One of the major advantages of targeting bright stars is that the exoplanet candidates detected can be easily followed up by small, ground-based observatories distributed around the world. This paper will provide a brief overview of the KELT-North and the KELT-South surveys, the follow-up observations preformed by the KELT Follow-up Collaboration, and exoplanet discoveries confirmed thus far, before concluding with a brief discussion of the future for the KELT program.

  16. C/O Ratios of Stars with Transiting Hot Jupiter Exoplanets

    Teske, Johanna K; Smith, Verne V; Schuler, Simon C; Griffith, Caitlin A

    2014-01-01

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] 6300 {\\AA} line and NLTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously-measured exoplanet host star...

  17. On the characterization of transiting exoplanets and magnetic spots with optical interferometry

    Ligi, R; Lagrange, A -M; Perraut, K; Chiavassa, A

    2014-01-01

    Stellar activity causes difficulties in the characterization of transiting exoplanets. Studies have been performed to quantify its impact on infrared interferometry, but not in the visible domain, which however allows reaching better angular resolution and is also the one mostly used for spectroscopic and photometric measurements. We use a textbook case to make a complete analysis of the impact of an exoplanet and a spot on interferometric observables and relate it to current instruments capabilities, taking into account realistic achievable precisions. We have built a numerical code called COMETS using analytical formulae to perform a simple comparison of exoplanets and spots' signals. We explore instrumental specificities needed to detect them, like the baseline length required, the accuracy and SNR. We also discuss the impact of exoplanets and spot's parameters on squared visibility and phase. We find that the main improvement to bring is the sensitivity of instruments. The accuracy on squared visibilities...

  18. Search for transiting exoplanets and variable stars in the open cluster NGC 7243

    Garai, Z; Hambálek, L; Errmann, R; Adam, Ch; Buder, S; Butterley, T; Dhillon, V S; Dincel, B; Gilbert, H; Ginski, Ch; Hardy, L K; Kellerer, A; Kitze, M; Kundra, E; Littlefair, S P; Mugrauer, M; Nedoroščík, J; Neuhäuser, R; Pannicke, A; Raetz, S; Schmidt, J G; Schmidt, T O B; Seeliger, M; Vaňko, M; Wilson, R W

    2016-01-01

    We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets, and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550.6+495611. Furthermore, we detected and analysed 37 new eclipsing binary stars in the studied region. The best fit parameters and light curves of all systems are given. Finally, we detected and analysed 26 new, presumably pulsating variable stars in the studied region. The follow-up investigation of these objects, including spectroscopic measurements of the exoplanet candidate, is currently planned.

  19. The Diversity of Low-mass Exoplanets Characterized via Transit Timing

    Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack. J.; Fabrycky, Daniel C.

    2016-10-01

    Transit timing variations (TTV) in multi-transiting systems enables precise characterizations of low-mass planets and their orbits. The range of orbital periods and incident fluxes with detailed TTV constraints complements the radial velocity sample for low-mass planets, pushing exoplanet characterization to the regime sub-Earth size planets and out to Mercury-like distances. This has revealed an astonishing diversity in the density of super-Earth mass planets. We summarize these and other contributions to exoplanet science from TTVs.

  20. The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b

    Fernandez, Jose M; Winn, Joshua N; Torres, Guillermo; Shporer, Avi; Mazeh, Tsevi; Esquerdo, Gilbert A; Everett, Mark E

    2009-01-01

    We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.

  1. On the Detection of Non-Transiting Exoplanets with Dusty Tails

    DeVore, John; Sanchis-Ojeda, Roberto; Hoffman, Kelsey; Rowe, Jason

    2016-01-01

    We present a way of searching for non-transiting exoplanets with dusty tails. In the transiting case, the extinction by dust during the transit removes more light from the beam than is scattered into it. Thus, the forward scattering component of the light is best seen either just prior to ingress, or just after egress, but with reduced amplitude over the larger peak that is obscured by the transit. This picture suggests that it should be equally productive to search for positive-going peaks in the flux from non-transiting exoplanets with dusty tails. We discuss what amplitudes are expected for different orbital inclination angles. The signature of such objects should be distinct from normal transits, starspots, and most - but not all - types of stellar pulsations.

  2. Project PANOPTES: a citizen-scientist exoplanet transit survey using commercial digital cameras

    Gee, Wilfred T.; Guyon, Olivier; Walawender, Josh; Jovanovic, Nemanja; Boucher, Luc

    2016-08-01

    Project PANOPTES (http://www.projectpanoptes.org) is aimed at establishing a collaboration between professional astronomers, citizen scientists and schools to discover a large number of exoplanets with the transit technique. We have developed digital camera based imaging units to cover large parts of the sky and look for exoplanet transits. Each unit costs approximately $5000 USD and runs automatically every night. By using low-cost, commercial digital single-lens reflex (DSLR) cameras, we have developed a uniquely cost-efficient system for wide field astronomical imaging, offering approximately two orders of magnitude better etendue per unit of cost than professional wide-field surveys. Both science and outreach, our vision is to have thousands of these units built by schools and citizen scientists gathering data, making this project the most productive exoplanet discovery machine in the world.

  3. Hubble/WFC3 Spectroscopy of the Transiting Exoplanets WASP-19b and WASP-17b

    Mandell, A.; Haynes, K.; Sinukoff, E.; Deming, D.; Wlikins, A.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Gilliland, R.; Knutson, H.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Measurements of transiting exoplanets that target extremes in parameter space offer the best chance to disentangle the structure and composition of the atmospheres of hot Jupiters. WASP-19b is one of the hottest exoplanets discovered to date, while WASP-17b has a much lower equilibrium temperature but has one of the largest atmospheric radii of known transiting planets. We discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. We compare our integrated-light transit depths to previous IR transit photometry, and derive the 1.4-micron water absorption spectrum. We discuss implications for the atmospheric composition and structure of these hot Jupiters, and outline future observations that will further expand on these results.

  4. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  5. Exoplanet Atmospheres

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  6. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B.; "Enabling Transiting Exoplanet Science with JWST" workshop attendees

    2016-10-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science; however, it is unclear precisely how well it will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. We will describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We will also present a list of "community targets" that are well suited to achieving these goals. Since most of the community targets do not have well-characterized atmospheres, we have initiated a preparatory HST + Spitzer observing program to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. We will present preliminary results from this preparatory observing program and discuss their implications on the pending JWST ERS proposal deadline in mid-2017.

  7. Influence of stellar variability on the determination of the radius during a transit of an exoplanet

    Désert J.-M.; Lecavelier des Etangs A.; Parmentier V.; Sing D.

    2011-01-01

    Stellar variability can affect the estimate of an exoplanet radius measured during a transit. We developed a transit light curve model which includes stellar spots. It appears that, if spectro-photometric technique is used, spots and faculae have to be considered to conclude on atmospheric detection and characterization. When using a model including spots, characterization of Hot-Jupiter atmosphere around active stars is possible with this technique, provided a signal to noise ratio up to 105...

  8. Transit timing, depth, and duration variation in exoplanet TrES-2?

    Vaňko M.

    2011-02-01

    Full Text Available We report on our ongoing search for timing, duration, and depth variations in the exoplanet TrES-2. In Raetz et al. (2009 we already presented ten different transits obtained at the University Observatory Jena. Between November 2008 and August 2010 twelve additional transits could be observed. The timing, depth and duration of each individual event was analyzed and is presented here.

  9. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey

  10. The Transit Light Curve (TLC) Project. I. Four Consecutive Transits of the Exoplanet XO-1b

    Holman, M J; Latham, D W; O'Donovan, F T; Charbonneau, D; Bakos, G A; Esquerdo, G A; Hergenrother, C; Everett, M E; Pal, A; Holman, Matthew J.; Winn, Joshua N.; Latham, David W.; Donovan, Francis T. O'; Charbonneau, David; Bakos, Gaspar A.; Esquerdo, Gilbert A.; Hergenrother, Carl; Everett, Mark E.; Pal, Andras

    2006-01-01

    We present RIz photometry of four consecutive transits of the newly discovered exoplanet XO-1b. We improve upon the estimates of the transit parameters, finding the planetary radius to be R_P = 1.184 +0.028/-0.018 R_Jupiter and the stellar radius to be R_S = 0.928 +0.018/-0.013 R_Sun, assuming a stellar mass of M_S = 1.00 +/- 0.03 M_Sun. The uncertainties in the planetary and stellar radii are dominated by the uncertainty in the stellar mass. These uncertainties increase by a factor of 2-3 if a more conservative uncertainty of 0.10 M_Sun is assumed for the stellar mass. Our estimate of the planetary radius is smaller than that reported by McCullough et al. (2006) and yields a mean density that is comparable to that of TrES-1 and HD 189733b. The timings of the transits have an accuracy ranging from 0.2 to 2.5 minutes, and are marginally consistent with a uniform period.

  11. Transit Analysis Package: An IDL Graphical User Interface for Exoplanet Transit Photometry

    J. Zachary Gazak

    2012-01-01

    Full Text Available We present an IDL graphical user-interface-driven software package designed for the analysis of exoplanet transit light curves. The Transit Analysis Package (TAP software uses Markov Chain Monte Carlo (MCMC techniques to fit light curves using the analytic model of Mandal and Agol (2002. The package incorporates a wavelet-based likelihood function developed by Carter and Winn (2009, which allows the MCMC to assess parameter uncertainties more robustly than classic χ2 methods by parameterizing uncorrelated “white” and correlated “red” noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc.. The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user’s specific data set and has been thoroughly tested on ground-based and Kepler photometry. This paper describes the software release and provides applications to new and existing data. Reanalysis of ground-based observations of TrES-1b, WASP-4b, and WASP-10b (Winn et al., 2007, 2009; Johnson et al., 2009; resp. and space-based Kepler 4b–8b (Kipping and Bakos 2010 show good agreement between TAP and those publications. We also present new multi-filter light curves of WASP-10b and we find excellent agreement with previously published values for a smaller radius.

  12. Maps and Masses of Transiting Exoplanets: Towards New Insights into Atmospheric and Interior Properties of Planets

    de Wit, Julien

    2015-01-01

    With over 1800 planets discovered outside of the Solar System in the past two decades, the field of exoplanetology has broadened our perspective on planetary systems. Research priorities are now moving from planet detection to planet characterization. In this context, transiting exoplanets are of special interest due to the wealth of data made available by their orbital configuration. Here, I introduce two methods to gain new insights into the atmospheric and interior properties of exoplanets. The first method aims to map an exoplanet's atmosphere based on the scanning obtained while it is occulted by its host star. I introduce the basics of eclipse mapping, its caveats, and a framework to mitigate their effects via global analyses including transits, phase curves, and radial velocity measurements. I use this method to create the first 2D map and the first cloud map of an exoplanet for the hot-Jupiters HD189733b and Kepler-7b, respectively. Ultimately temperature, composition, and circulation patterns could b...

  13. Thermal phase curves of non-transiting terrestrial exoplanets 1. Characterizing atmospheres

    Selsis, Franck; Forget, François

    2011-01-01

    Although transit spectroscopy is a powerful method for studying the composition, thermal properties and dynamics of exoplanet atmospheres, only a few transiting terrestrial exoplanets will be close enough to allow significant transit spectroscopy. Thermal phase curves (variations of the apparent infrared emission of the planet with its orbital phase) have been observed for hot Jupiters in both transiting and non-transiting configurations, and could be observed for hot terrestrial exoplanets. We study the wavelength and phase changes of the thermal emission of a tidally-locked terrestrial planet as atmospheric pressure increases, and address the observability of these multiband phase-curves and the ability to use them to detect atmospheric constituents. We used a 3D climate model (GCM) to simulate the CO2 atmosphere of a terrestrial planet on an 8-day orbit around a M3 dwarf and its apparent infrared emission as a function of its orbital phase. We estimated the signal to photon-noise ratio in narrow bands betw...

  14. Using near infra-red spectroscopy for characterization of transiting exoplanets

    Aronson, Erik; Piskunov, Nikolai

    2015-01-01

    We propose a method for observing transiting exoplanets with near-infrared high-resolution spectrometers. We aim to create a robust data analysis method for recovering atmospheric transmission spectra from transiting exoplanets over a wide wavelength range in the near infrared. By using an inverse method approach, combined with stellar models and telluric transmission spectra, the method recovers the transiting exoplanet's atmospheric transmittance at high precision over a wide wavelength range. We describe our method and have tested it by simulating observations. This method is capable of recovering transmission spectra of high enough accuracy to identify absorption features from molecules such as O2, CH4, CO2, and H2O. This accuracy is achievable for Jupiter-size exoplanetsat S/N that can be reached for 8m class telescopes using high-resolution spectrometers (R>20 000) during a single transit, and for Earth-size planets and super-Earths transiting late K or M dwarf stars at S/N reachable during observations...

  15. Improving Transit Predictions of Known Exoplanets with TERMS

    Mahadevan S.

    2011-02-01

    Full Text Available Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.

  16. The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves

    Mislis, D; Alsubai, K A; Tsvetanov, Z I; Vilchez, N P E

    2016-01-01

    We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional "differential photometry" technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducted on a sample of 9500 light curves from the Qatar Exoplanet Survey reveal that DOHA-corrected light curves show an RMS improvement of a factor of 2, compared to the raw light curves. In addition, we show that the transit detection probability in our sample can increase considerably, even up to a factor of 7, after applying DOHA.

  17. The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves

    Mislis, D.; Pyrzas, S.; Alsubai, K. A.; Tsvetanov, Z. I.; Vilchez, N. P. E.

    2017-03-01

    We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional 'differential photometry' technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducted on a sample of ∼9500 light curves from the Qatar Exoplanet Survey reveal that DOHA-corrected light curves show an rms improvement of a factor of ∼2, compared to the raw light curves. In addition, we show that the transit detection probability in our sample can increase considerably, even up to a factor of 7, after applying DOHA.

  18. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  19. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles A.; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Greene, Thomas P.; Line, Michael R.; Wakeford, Hanna R.

    2016-01-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed community targets'') that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  20. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Crouzet, Nicolas; Cubillos, Patricio E.; Curry, S. M.; Dalba, Paul A.; de Wit, Julien; Deming, Drake; Désert, Jean-Michel; Doyon, René; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J.; García Muñoz, Antonio; Gibson, Neale P.; Gizis, John E.; Greene, Thomas P.; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M.-R.; Knutson, Heather; Kreidberg, Laura; Lafrenière, David; Lagage, Pierre-Olivier; Line, Michael R.; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V.; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L.; Shporer, Avi; Sing, David K.; Todorov, Kamen O.; Tucker, Gregory S.; Wakeford, Hannah R.

    2016-09-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  1. A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    Enya, K; Takeuchi, S; Kotani, T; Yamamuro, T

    2011-01-01

    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-s...

  2. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-10-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the box-least-squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically generated transit fits and assorted diagnostic tests to inform the vetting. We detect 145 single-planet system candidates and 5 multi-planet systems, independently recovering the previously published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  3. Influence of stellar variability on the determination of the radius during a transit of an exoplanet

    Désert J.-M.

    2011-07-01

    Full Text Available Stellar variability can affect the estimate of an exoplanet radius measured during a transit. We developed a transit light curve model which includes stellar spots. It appears that, if spectro-photometric technique is used, spots and faculae have to be considered to conclude on atmospheric detection and characterization. When using a model including spots, characterization of Hot-Jupiter atmosphere around active stars is possible with this technique, provided a signal to noise ratio up to 105. For Earth-size planets a long-term parallel photometric follow up monitoring the stellar activity is required to compensate the error due to the stellar variability.

  4. A Method to Identify the Boundary Between Rocky and Gaseous Exoplanets from Tidal Theory and Transit Durations

    Barnes, Rory

    2013-01-01

    The determination of an exoplanet as rocky is critical for the assessment of planetary habitability. Observationally, the number of small-radius, transiting planets with accompanying mass measurements is insufficient for a robust determination of the transitional mass or radius. Theoretically, models predict that rocky planets can grow large enough to become gas giants when they reach ~10 Earth-masses, but the transitional mass remains unknown. Here I show how transit data, interpreted in the context of tidal theory, can reveal the critical radius that separates rocky and gaseous exoplanets. Standard tidal models predict that rocky exoplanets' orbits are tidally circularized much more rapidly than gaseous bodies', suggesting the former will tend to be found on circular orbits at larger semi-major axes than the latter. Well-sampled transits can provide a minimum eccentricity of the orbit, allowing a measurement of this differential circularization. I show that this effect should be present in the data from the...

  5. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  6. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing

    Jontof-Hutter, Daniel; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-01-01

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star once per orbit, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favorable cases, the departures from Keplerian orbits implied by the observed transit times permit planetary masses to be measured, which is key to determining bulk densities. Characterizing rocky planets is particularly difficult, since they are generally smaller and less massive than gaseous planets. Thus, few exoplanets near Earth's size have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We measure the mass of the Mars-sized inner planet based on on the transit times of its neighbour and thereby provide the first density measuremen...

  7. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Pope, Benjamin J S; Aigrain, Suzanne

    2016-01-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian Process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the Box Least Squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically-generated transit fits and assorted diagnostic tests to inform the vetting. We detect 147 single-planet system candidates and 5 multi-planet systems, independently recovering the previously-published hot~Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spec...

  8. Exoplanet Transit Variability: Bow Shocks and Winds Around HD 189733b

    Llama, J; Jardine, M; Wood, K; Fares, R; Gombosi, T I

    2013-01-01

    By analogy with the solar system, it is believed that stellar winds will form bow shocks around exoplanets. For hot Jupiters the bow shock will not form directly between the planet and the star, causing an asymmetric distribution of mass around the exoplanet and hence an asymmetric transit. As the planet orbits thorough varying wind conditions, the strength and geometry of its bow shock will change, thus producing transits of varying shape. We model this process using magnetic maps of HD 189733 taken one year apart, coupled with a 3D stellar wind model, to determine the local stellar wind conditions throughout the orbital path of the planet. We predict the time-varying geometry and density of the bow shock that forms around the magnetosphere of the planet and simulate transit light curves. Depending on the nature of the stellar magnetic field, and hence its wind, we find that both the transit duration and ingress time can vary when compared to optical light curves. We conclude that consecutive near-UV transit...

  9. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Burdanov, Artem Y; Krushinsky, Vadim V; Popov, Alexander A; Sokov, Evgenii N; Sokova, Iraida A; Rusov, Sergei A; Lyashenko, Artem Yu; Ivanov, Kirill I; Moiseev, Alexei V; Rastegaev, Denis A; Dyachenko, Vladimir V; Balega, Yuri Yu; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-01-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the $R_c$ magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size $2\\times2$ deg$^2$ during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of ...

  10. Hubble Space Telescope search for the transit of the Earth-mass exoplanet Alpha Centauri Bb

    Demory, Brice-Olivier; Queloz, Didier; Seager, Sara; Gilliland, Ronald; Chaplin, William J; Proffitt, Charles; Gillon, Michael; Guenther, Maximilian N; Benneke, Bjoern; Dumusque, Xavier; Lovis, Christophe; Pepe, Francesco; Segransan, Damien; Triaud, Amaury; Udry, Stephane

    2015-01-01

    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, hi...

  11. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Burdanov, Artem Y.; Benni, Paul; Krushinsky, Vadim V.; Popov, Alexander A.; Sokov, Evgenii N.; Sokova, Iraida A.; Rusov, Sergei A.; Lyashenko, Artem Yu.; Ivanov, Kirill I.; Moiseev, Alexei V.; Rastegaev, Denis A.; Dyachenko, Vladimir V.; Balega, Yuri Yu.; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-10-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the Rc magnitude range of 11-14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2 × 2 deg2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39 000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.

  12. Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L-dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T- and L-dwarfs, I derive the time dependent polarization ...

  13. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Hedelt, P; Brown, T; Vera, M Collados; Rauer, H; Schleicher, H; Schmidt, W; Schreier, F; Titz, R

    2011-01-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.

  14. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  15. Defocused Observations of Selected Exoplanet Transits with T100 in TUBITAK National Observatory of Turkey (TUG)

    Basturk, Ozgur; Ozavci, Ibrahim; Yorukoglu, Onur; Selam, Selim O

    2015-01-01

    It is crucial to determine masses and radii of extrasolar planets with high precision to have constraints on their chemical composition, internal structure and thereby their formation and evolution. In order to achieve this goal, we apply the defocus technique in the observations of selected planetary systems with the 1 m Turkish telescope T100 in TUBITAK National Observatory (TUG). With this contribution, we aim to present preliminary analyses of transit light curves of the selected exoplanets KELT-3b, HAT-P-10b/WASP-11b, HAT-P-20b, and HAT-P-22b, observed with this technique using T100.

  16. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  17. Bayesian mass and age estimates for transiting exoplanet host stars

    Maxted, P F L; Southworth, J

    2014-01-01

    The mean density of a star transited by a planet, brown dwarf or low mass star can be accurately measured from its light curve. This measurement can be combined with other observations to estimate its mass and age by comparison with stellar models. Our aim is to calculate the posterior probability distributions for the mass and age of a star given its density, effective temperature, metallicity and luminosity. We computed a large grid of stellar models that densely sample the appropriate mass and metallicity range. The posterior probability distributions are calculated using a Markov-chain Monte-Carlo method. The method has been validated by comparison to the results of other stellar models and by applying the method to stars in eclipsing binary systems with accurately measured masses and radii. We have explored the sensitivity of our results to the assumed values of the mixing-length parameter, $\\alpha_{\\rm MLT}$, and initial helium mass fraction, Y. For a star with a mass of 0.9 solar masses and an age of 4...

  18. No Timing Variations Observed in Third Transit of Snow-Line Exoplanet Kepler-421b

    Dalba, Paul A

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kepler-421b leaving the planet's transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characteriz...

  19. Discovering Exoplanets with Microlensing: Transition to the Next Generation

    Gould, Andrew

    We propose to continue our successful program of planet discovery using the gravitaional microlensing technique. Our work will specifically focus on so-called "high- magnification events", which are exceptionally sensitive to planets, and which allow us to extract exceptionally detailed information about each planetary system. These results will be of high scientific interest in their own right, but will also play a key role in the transition to "next-generation" surveys that will discover many times more planets in "low-magnification events". We will continue to operate and build our network of approximately 30 amateur+professional astronomers (about half each) on 6 continents plus Oceania, which enables the 24 hour coverage that is crucial to extracting planetary science from microlensing events. In particular, by engaging the amateurs at a high scientific level, we will both improve the quantity and quality of amateur data and utilize their role as a "transmission belt" to the broader public. Over the past few years, high-mag events have enabled the first detection of a Jupiter- Saturn analog system, the first census of ice and gas giants beyond the snow line, the recognition that "cold Neptunes" are extremely common, and the detection of 3 very massive, super-Jupiter planets orbiting M dwarfs (which may challenge the standard "core-accretion" paradigm). Analysis of these events has also led to key theoretical insights, including the fact that planet orbital motion can be detected in microlensing events and that careful effort is required to disentangle this from "parallax effects" (due to the Earth's own orbital motion). The direct impact of our proposed work will be to increase the still small statistics of high-mag planet detections (due to the intrinsic rarity of high-mag events) and to exploit the sensitivity of these events to higher-order effects (including parallax, planet orbital motion, and multiple planets) to gain deeper knowledge of detected systems

  20. Exoplanet transits enable high-resolution spectroscopy across spatially resolved stellar surfaces

    Dravins, Dainis; Dahlén, Erik; Pazira, Hiva

    2016-01-01

    Observations of stellar surfaces - except for the Sun - are hampered by their tiny angular extent, while observed spectral lines are smeared by averaging over the stellar surface, and by stellar rotation. Exoplanet transits can be used to analyze stellar atmospheric structure, yielding high-resolution spectra across spatially highly resolved stellar surfaces, free from effects of spatial smearing and the rotational wavelength broadening present in full-disk spectra. During a transit, stellar surface portions successively become hidden, and differential spectroscopy between various transit phases provides spectra of those surface segments then hidden behind the planet. The small area subtended by even a large planet (about 1% of a main-sequence star) offers high spatial resolution but demands very precise observations. We demonstrate the reconstruction of photospheric FeI line profiles at a spectral resolution R=80,000 across the surface of the solar-type star HD209458. Any detailed understanding of stellar at...

  1. Astrophysical false positives in exoplanet transit surveys: why do we need bright stars ?

    Santerne, A; Almenara, J -M; Lethuillier, A; Deleuil, M; Moutou, C

    2013-01-01

    Astrophysical false positives that mimic planetary transit are one of the main limitation to exoplanet transit surveys. In this proceeding, we review the issue of the false positive in transit survey and the possible complementary observations to constrain their presence. We also review the false-positive rate of both Kepler and CoRoT missions and present the basics of the planet-validation technique. Finally, we discuss the interest of observing bright stars, as PLATO 2.0 and TESS will do, in the context of the false positives. According to simulations with the Besan\\c{c}on galactic model, we find that PLATO 2.0 is expected to have less background false positives than Kepler, and thus an even lower false-positive rate.

  2. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  3. The Transit Light Curve (TLC) Project. II. Two Transits of the Exoplanet OGLE-TR-111b

    Winn, J N; Fuentes, C I; Winn, Joshua N.; Holman, Matthew J.; Fuentes, Cesar I.

    2006-01-01

    As part of our ongoing effort to measure exoplanet sizes and transit times with greater accuracy, we present I band observations of two transits of OGLE-TR-111b. The photometry has an accuracy of 0.15-0.20% and a cadence of 1-2 minutes. We derive a planetary radius of 1.067 +/- 0.054 Jupiter radii and a stellar radius of 0.831 +/- 0.031 solar radii. The uncertainties are dominated by errors in the photometry, rather than by systematic errors arising from uncertainties in the limb darkening function or the stellar mass. Both the stellar radius and the planetary radius are in agreement with theoretical expectations. The transit times are accurate to within 30 seconds, and allow us to refine the estimate of the mean orbital period: 4.0144479 +/- 0.0000041 days.

  4. The refined physical parameters of transiting exoplanet system HAT-P-24

    Xiao-Bin Wang; Sheng-Hong Gu; Andrew Collier Cameron; Hong-Bo Tan; Ho-Keung Hui; Chi-Tai Kwok; Bill Yeung

    2013-01-01

    The transiting exoplanet system HAT-P-24 was observed by using CCD cameras at Yunnan Observatory and Hokoon Astronomical Centre,China in 2010 and 2012.In order to enhance the signal to noise ratio of transit events,the observed data are corrected for systematic errors according to Collier Cameron et al.'s coarse decorrelation and Tamuz et al.'s SYSREM algorithms.Three new complete transit light curves are analyzed by means of the Markov chain Monte Carlo technique,and the new physical parameters of the system are derived.They are consistent with the old ones from the discovered paper except for a new larger radius RP =1.364 RJ of HAT-P-24b,which confirms its inflated nature.By combining the five available epochs of mid-transit derived from complete transit light curves,the orbital period of HAT-P-24b is refined to P =3.3552479 d and no obvious transit timing variation signal can be found from these five transit events during 2010-2012.

  5. First Evidence of a Retrograde Orbit of Transiting Exoplanet HAT-P-7b

    Narita, Norio; Hirano, Teruyuki; Tamura, Motohide

    2009-01-01

    We present the first evidence of a retrograde orbit of the transiting exoplanet HAT-P-7b. The discovery is based on a measurement of the Rossiter-McLaughlin effect with the Subaru HDS during a transit of HAT-P-7b, occured on UT 2008 May 30. Our model shows that the spin-orbit alignment angle of this planet is $\\lambda = -132.6^{\\circ} (+12.6^{\\circ}, -21.5^{\\circ})$. The existence of such a retrograde planet had been predicted by recent planetary migration models considering planet-planet scattering processes or the Kozai migration. Our finding provides an important milestone that supports such dynamic migration theories.

  6. Thermal phase curves of non-transiting terrestrial exoplanets 2. Characterizing airless planets

    Maurin, A S; Hersant, F; Belu, A

    2011-01-01

    Context. The photometric signal we receive from a star hosting a planet is modulated by the variation of the planet signal with its orbital phase. Such phase variations are observed for transiting hot Jupiters with current instrumentation, and have also been measured for one transiting terrestrial planet (Kepler 10 b) and one non-transiting gas giant (Ups A b). Future telescopes (JWST and EChO) will have the capability to measure thermal phase curves of exoplanets including hot rocky planets in transiting and non-transiting configurations, and at different wavelengths. Short-period planets with a mass below 10 R_EARTH are indeed frequent and nearby targets (within 10 pc) are already known and more are to be found. Aims. To test the possibility to use multi-wavelengths infrared phase curves to constrain the radius, the albedo and the orbital inclination of a non-transiting planet with no atmosphere and on a 1:1 spin orbit resonance. Methods. We model the thermal emission of a synchronous rocky planet with no a...

  7. A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars

    Maxted, P F L; Southworth, J

    2015-01-01

    Previous studies suggest that tidal interactions may be responsible for discrepancies between the ages of exoplanet host stars estimated using stellar models (isochronal ages) and age estimates based on the stars' rotation periods (gyrochronological ages). We have compiled a sample of 28 transiting exoplanet host stars with measured rotation periods. We use a Bayesian Markov chain Monte Carlo method to determine the joint posterior distribution for the mass and age of each star in the sample, and extend this method to include a calculation of the posterior distribution of the gyrochronological age. The gyrochronological age ($\\tau_{\\rm gyro}$) is significantly less than the isochronal age for about half of the stars in our sample. Tidal interactions between the star and planet are a reasonable explanation for this discrepancy in some cases, but not all. The distribution of $\\tau_{\\rm gyro}$ values is evenly spread from very young ages up to a maximum value of a few Gyr. There is no clear correlation between $...

  8. Transmission spectrum of Earth as a transiting exoplanet - from the ultraviolet to the near-infrared

    Betremieux, Y

    2013-01-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering and refraction from 115 to 1000nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200nm, ultraviolet(UV) O_2 absorption increases the effective planetary radius by about 180km, versus 27km at 760.3nm, and 14km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the ultraviolet is an interesting wavelength range for future space mi...

  9. TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED

    Betremieux, Y. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, L., E-mail: betremieux@mpia.de, E-mail: kaltenegger@mpia.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge MA 02138 (United States)

    2013-08-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering, and refraction from 115 to 1000 nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200 nm, ultraviolet (UV) O{sub 2} absorption increases the effective planetary radius by about 180 km, versus 27 km at 760.3 nm, and 14 km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the UV is an interesting wavelength range for future space missions.

  10. Directly Imaged L-T Transition Exoplanets in the Mid-Infrared

    Skemer, Andrew J; Hinz, Philip M; Morzinski, Katie M; Skrutskie, Michael F; Leisenring, Jarron M; Close, Laird M; Saumon, Didier; Bailey, Vanessa P; Briguglio, Runa; Defrere, Denis; Esposito, Simone; Follette, Katherine B; Hill, John M; Males, Jared R; Puglisi, Alfio; Rodigas, Timothy J; Xompero, Marco

    2013-01-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared ($\\gtrsim$3$\\mu \\rm m$), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L and M-band atmospheric windows (3-5$\\mu \\rm m$), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT AO images of the HR 8799 planetary system in six narrow-band filters from 3-4$\\mu \\rm m$, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3$\\mu \\rm m$ band. These systems encompass the five known exoplanets with luminosities consistent with L$\\rightarrow$T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature. For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing ...

  11. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    Maciejewski, G; Fernández, M; Sota, A; Nowak, G; Ohlert, J; Nikolov, G; Bukowiecki, Ł; Hinse, T C; Pallé, E; Tingley, B; Kjurkchieva, D; Lee, J W; Lee, C -U

    2016-01-01

    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predicti...

  12. Recent Transits of the Super-Earth Exoplanet GJ 1214B

    Sada, Pedro V.; Deming, Drake; Jackson, Brian; Jennings, Donald E.; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; OGorman, Eamon; Lundsford, Alan

    2001-01-01

    We report recent ground-based photometry of the transiting super-Earth exoplanet GJ1214b at several wavelengths, including the infrared near 1.25 microns (J-band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1-meter telescope on Kitt Peak, and we observed several optical transits using a 0.5-meter telescope on Kitt Peak and the 0.36-meter Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M-dwarf host star at this infrared wavelength as compared to the optical, as well as being significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61 +0.30 / -0.11 Earth radii) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P=1.5804043 +/- 0.0000005 days, and T0=2454964.94390 +/- 0.00006 BJD.

  13. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.;

    2011-01-01

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science...

  14. Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)

    Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  15. Colour-magnitude diagrams of transiting Exoplanets - II. A larger sample from photometric distances

    Triaud, Amaury H M J; Smalley, Barry; Gillon, Michael

    2014-01-01

    Colour-magnitude diagrams form a traditional way of presenting luminous objects in the Universe and compare them to each others. Here, we estimate the photometric distance of 44 transiting exoplanetary systems. Parallaxes for seven systems confirm our methodology. Combining those measurements with fluxes obtained while planets were occulted by their host stars, we compose colour-magnitude diagrams in the near and mid-infrared. When possible, planets are plotted alongside very low-mass stars and field brown dwarfs, who often share similar sizes and equilibrium temperatures. They offer a natural, empirical, comparison sample. We also include directly imaged exoplanets and the expected loci of pure blackbodies. Irradiated planets do not match blackbodies; their emission spectra are not featureless. For a given luminosity, hot Jupiters' daysides show a larger variety in colour than brown dwarfs do and display an increasing diversity in colour with decreasing intrinsic luminosity. The presence of an extra absorben...

  16. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  17. Recent Transits of the Super-Earth Exoplanet GJ 1214b

    Sada, Pedro V; Jackson, Brian; Jennings, Donald E; Peterson, Steven W; Haase, Flynn; Bays, Kevin; O'Gorman, Eamon; Lundsford, Alan

    2010-01-01

    We report recent ground-based photometry of the transiting super-Earth exoplanet GJ1214b at several wavelengths, including the infrared near 1.25 microns (J-band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1-meter telescope on Kitt Peak, and we observed several optical transits using a 0.5-meter telescope on Kitt Peak and the 0.36-meter Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M-dwarf host star at this infrared wavelength as compared to the optical, as well as being significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61^+0.30_-0.11 Earth radii) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our ...

  18. The Transiting Exoplanet Survey Satellite: Simulations of planet detections and astrophysical false positives

    Sullivan, Peter W; Berta-Thompson, Zachory K; Charbonneau, David; Deming, Drake; Dressing, Courtney D; Latham, David W; Levine, Alan M; McCullough, Peter R; Morton, Timothy; Ricker, George R; Vanderspek, Roland; Woods, Deborah

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 200,000 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R < 2 R_Earth planets will have host stars brighter than K = 9. Approximately 48 of the planets with R < 2 R_Earth lie within or near the habitable zone (0.2 < S/S_Earth < 2), and between...

  19. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.

  20. The 2012 Transit of Venus for Cytherean Atmospheric Studies and as an Exoplanet Analog

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Reardon, K. P.; Widemann, T.; Tanga, P.; Dantowitz, R.; Willson, R.; Kopp, G.; Yurchyshyn, V.; Sterling, A.; Scherrer, P.; Schou, J.; Golub, L.; Reeves, K.

    2012-10-01

    We worked to assemble as complete a dataset as possible for the Cytherean atmosphere in collaboration with Venus Express in situ and to provide an analog of spectral and total irradiance exoplanet measurements. From Haleakala, the whole transit was visible in coronal skies; our B images showed the evolution of the visibility of Venus's atmosphere and of the black-drop effect, as part of the Venus Twilight Experiment's 9 coronagraphs distributed worldwide with BVRI. We imaged the Cytherean atmosphere over two minutes before first contact, with subarcsecond resolution, with the coronagraph and a separate refractor. The IBIS imaging spectrometer at Sacramento Peak Observatory at H-alpha and carbon-dioxide also provided us high-resolution imaging. The NST of Big Bear Solar Observatory also provided high-resolution vacuum observations of the Cytherean atmosphere and black drop evolution. Our liaison with UH's Mees Solar Observatory scientists provided magneto-optical imaging at calcium and potassium. Spaceborne observations included the Solar Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance measurements with ACRIMSAT and SORCE/TIM, to characterize the event as an exoplanet-transit analog. Our expedition was sponsored by the Committee for Research and Exploration/National Geographic Society. Some of the funds for the carbon-dioxide filter for IBIS were provided by NASA through AAS's Small Research Grant Program. We thank Rob Lucas, Aram Friedman, and Eric Pilger '82 for assistance with Haleakala observing, Rob Ratkowski of Haleakala Amateur Astronomers for assistance with equipment and with the site, Stan Truitt for the loan of his Paramount ME, and Steve Bisque/Software Bisque for TheSky X controller. We thank Joseph Gangestad '06 of Aerospace Corp., a veteran of our 2004 expedition, for assistance at Big Bear. We thank the Lockheed Martin Solar and Astrophysics Laboratory and

  1. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  2. The Exoplanet Orbit Database

    Wright, Jason T; Marcy, Geoffrey W; Han, Eunkyu; Feng, Ying; Johnson, John Asher; Howard, Andrew W; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai

    2010-01-01

    We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 421 planets orbiting 357 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biase...

  3. Spatially Resolved Spectroscopy Across HD189733 (K1V) Using Exoplanet Transits

    Gustavsson, Martin; Dravins, Dainis; Ludwig, Hans-Günter

    2016-06-01

    For testing 3-dimensional models of stellar atmospheres, spectroscopy across spatially resolved stellar surfaces would be desired with a spectral resolution of(R = 100,000) or more. Hydrodynamic models predict variations in line profile shapes, strengths, wavelength positions and asymmetries. These variations vary systematically between disk center and limb and as a function of line strength, excitation potential and wavelength region. However, except for a few supergiants and the Sun, current telescopes are not yet capable of resolving any stellar surfaces. One alternative method to resolve distant stellar surfaces, feasible already now, is differential spectroscopy of transiting exoplanet systems. By subtracting in-transit spectra from the spectrum outside of transit, the spectra from stellar surface portions temporarily hidden behind the planet can be disentangled. Since transiting planets cover only a small portion of the stellar surface, the method requires a very high signal-to-noise ratio, obtainable by averaging numerous similar spectral lines. We apply such differential spectroscopy on the 7.7 mag K1V star HD 189733 ('Alopex'*); its transiting planet covers ˜ 3% of its host star's surface, which is the deepest known transit among the brighter systems. Archival data from the ESO HARPS spectrometerare used to construct averaged profiles of photospheric Fe I lines, with the aim of comparing spatially resolved profiles to analogous synthetic line profiles computed from the 3-dimensional hydrodynamic CO5BOLD model. * We refer to HD 189733 as 'Alopex' (from the Greek 'αλɛπού'), denoting a fox related to the one that gave name to its constellation of Vulpecula.

  4. Characterization of transiting exoplanets: analyzing the impact of the host star on the planet parameters

    Bruno, Giovanni

    2016-01-01

    In this PhD dissertation, I discuss issues of the Radial Velocities (RV) and transit methods. These techniques allow us to derive the mass and radius of an exoplanet, necessary to model its bulk structure and to have insight on its formation. To do this, however, also the same parameters of its host star are needed. By using spectroscopy, I participated in TRANSITS, an RV follow-up program of Kepler Objects of Interest. I determined the parameters of nine host stars, enabling the characterization of their companions. With the same method, I participated in two studies which aim at exploring the mass-radius relationship of low-mass stars and at improving the statistics of star-planet interactions. I also inspected the behavior of SOPHIE/OHP spectra for instrumental effects which can affect the measure of the stellar parameters. From a different perspective, I studied Kepler-117, a multi-planetary system which presents Transit Timing Variations (TTV). A specific approach was developed in order to realize a simu...

  5. Limb-darkening and exoplanets II: Choosing the Best Law for Optimal Retrieval of Transit Parameters

    Espinoza, Néstor

    2016-01-01

    Very precise measurements of exoplanet transit lightcurves both from ground and space based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such lightcurves such as the planetary radius. However, studies of the effect of limb darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit lightcurves, both in terms of bias and precision, for a wide range...

  6. Near-infrared transit photometry of the exoplanet HD 149026b

    Carter, Joshua A; Gilliland, Ronald; Holman, Matthew J

    2009-01-01

    The transiting exoplanet HD 149026b is an important case for theories of planet formation and planetary structure, because the planet's relatively small size has been interpreted as evidence for a highly metal-enriched composition. We present observations of 4 transits with the Near Infrared Camera and Multi-Object Spectrometer on the Hubble Space Telescope, within a wavelength range of 1.1--2.0 $\\mu$m. Analysis of the light curve gives the most precise estimate yet of the stellar mean density, $\\rho_\\star = 0.497^{+0.042}_{-0.057}$ g cm$^{-3}$. By requiring agreement between the observed stellar properties (including $\\rho_\\star$) and stellar evolutionary models, we refine the estimate of the stellar radius: $R_\\star = 1.541^{+0.046}_{-0.042}$ $R_\\sun$. We also find a deeper transit than has been measured at optical and mid-infrared wavelengths. Taken together, these findings imply a planetary radius of $R_p = 0.813^{+0.027}_{-0.025}$ $R_{\\rm Jup}$, which is larger than earlier estimates. Models of the plane...

  7. Eight years of accurate photometric follow-up of transiting giant exoplanets

    Mancini, Luigi

    2016-01-01

    Since 2008 we have run an observational program to accurately measure the characteristics of known exoplanet systems hosting close-in transiting giant planets, i.e. hot Jupiters. Our study is based on high-quality photometric follow-up observations of transit events with an array of medium-class telescopes, which are located in both the northern and the southern hemispheres. A high photometric precision is achieved through the telescope-defocussing technique. The data are then reduced and analysed in a homogeneous way for estimating the orbital and physical parameters of both the planets and their parent stars. We also make use of multi-band imaging cameras for probing planetary atmospheres via the transmission-photometry technique. In some cases we adopt a two-site observational strategy for collecting simultaneous light curves of individual transits, which is the only completely reliable method for truly distinguishing a real astrophysical signal from systematic noise. In this contribution we review the mai...

  8. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Winn, Joshua N; Johnson, John Asher; Marcy, Geoffrey W; Gazak, J Zachary; Starkey, Donn; Ford, Eric B; Colon, Knicole D; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F; Kadakia, Shimonee; Vanderbei, Robert J; Adams, Elisabeth R; Lockhart, Matthew; Crossfield, Ian J; Valenti, Jeff A; Dantowitz, Ronald; Carter, Joshua A

    2009-01-01

    We present the results of a pan-American campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting ...

  9. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    Turner, Jake D; Arras, Phil; Johnson, Robert E; Schmidt, Carl

    2016-01-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1-D slabs of gas in coronal equilibrium with varying densities ($10^{4}-10^{8} \\, {\\rm cm^{-3}}$) and temperatures ($2000-10^{6} \\ {\\rm K}$) illuminated by a solar spectrum. For slabs at coronal temperatures ($10^{6} \\ {\\rm K}$) and densities even orders of magnitude larger than expected for the compressed stellar wind ($10^{4}-10^{5} \\, {\\rm cm^{-3}}$), we find optical depths orders of magnitude too small ($> 3\\times10^{-7}$) to explain the $\\sim3\\%$ UV transit depths seen with Hubble. Using this result and our modeling of slabs with lower temperatures ($2000-10^4 {\\rm K}$), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originatin...

  10. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  11. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    Turner, Jake D.; Christie, Duncan; Arras, Phil; Johnson, Robert E.; Schmidt, Carl

    2016-06-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1D slabs of gas in coronal equilibrium with varying densities (104-108 cm-3) and temperatures (2000-106 K) illuminated by a solar spectrum. For slabs at coronal temperatures (106 K) and densities even orders of magnitude larger than expected for the compressed stellar wind (104-105 cm-3), we find optical depths orders of magnitude too small (>3 × 10-7) to explain the ˜3 per cent UV transit depths seen with Hubble. Using this result and our modelling of slabs with lower temperatures (2000-104K), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originating in the planet, as the stellar wind is too highly ionized. A corollary of this result is that transport of neutral atoms from the denser planetary atmosphere outward must be a primary consideration when constructing physical models. In the second part of this paper, additional calculations using CLOUDY are carried out to model a slab of planetary gas in radiative and thermal equilibrium with the stellar radiation field. Promising sources of opacity from the X-ray to radio wavelengths are discussed, some of which are not yet observed.

  12. Infrared Secondary Eclipse Photometry of the Transiting Exoplanet HAT-P-1b

    Todorov, Kamen; Deming, D.; Harrington, J.; Stevenson, K.; Bowman, W.; Nymeyer, S.; Fortney, J.; Bakos, G.

    2009-09-01

    We examine the secondary eclipse of the exoplanet HAT-P-1b using the IRAC instrument on board the Spitzer Space Telescope. This planet is close to the boundary between the pM and pL classes of hot Jupiters, which makes it an important test case for theoretical models of temperature inversions in the atmospheres of this type of gas giants. Our analysis shows secondary eclipse depths for HAT-P-1b, as a fraction of the stellar flux, to be: 0.075% +/- 0.008% (3.6 micron), 0.128% +/- 0.022% (4.5 micron), 0.183% +/- 0.031% (5.8 micron) and 0.230% +/- 0.034% (8.0 micron). These values can be produced, within errors, by a 1500K black body, or alternatively by a hot Jupiter with a small temperature inversion in its atmosphere. In both cases, the planet must radiate a significant amount of the energy received from the star through its day side, which suggests that little energy is redistributed through atmospheric circulation to be emitted through the night side of the planet. It has been suggested that this planet is inflated through tidal dissipation, based on its large radius and non-zero eccentricity allowed by the radial velocity data. By timing the secondary transit, we are able to determine that the orbit is very close to circular. The leading author was funded by the NASA Astrobiology Institute SUIA program.

  13. A new look at Spitzer primary transit observations of the exoplanet HD189733b

    Morello, Giuseppe; Tinetti, Giovanna; Peres, Giovanni; Micela, Giuseppina; Howarth, Ian D

    2014-01-01

    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor $1.6$. This is a worthwhile t...

  14. ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    Crouzet, Nicolas; Agabi, Karim; Rivet, Jean-Pierre; Bondoux, Erick; Challita, Zalpha; Fanteï-Caujolle, Yan; Fressin, François; Mékarnia, Djamel; Schmider, François-Xavier; Valbousquet, Franck; Blazit, Alain; Bonhomme, Serge; Abe, Lyu; Daban, Jean-Baptiste; Gouvret, Carole; Fruth, Thomas; Rauer, Heike; Erikson, Anders; Barbieri, Mauro; Aigrain, Suzanne; Pont, Frédéric

    2009-01-01

    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008...

  15. Tolerancing, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assembly

    Primeau, Brian; Balonek, Gregory; MacDonald, Robert; Chrisp, Michael; Chesbrough, Christian; Andre, James; Clark, Kristin

    2016-09-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband seven-element refractive f/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the tolerancing, assembly and alignment methods developed during the build of the TESS Risk Reduction Unit optical system. Lens assembly tolerances were derived from a sensitivity analysis using an image quality metric customized for mission performance. The optomechanical design consists of a two-stage lens housing that provides access for active alignment of each lens using a Trioptics OptiCentric measurement system. Thermal stresses and alignment shifts are mitigated by mounting the optics with cast RTV silicone spacers into individually aligned bezels, and custom fixtures were developed to aid in RTV bonding with reduced alignment error. The lens assembly was tested interferometrically over the field of view at room temperature and results were used to successfully predict lens performance and compensator adjustments and detector shim thickness for the -75C operational temperature and pressure.

  16. The Mid-infrared Spectrum of the Transiting Exoplanet HD 209458b

    Swain, M. R.; Bouwman, J.; Akeson, R. L.; Lawler, S.; Beichman, C. A.

    2008-01-01

    We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 micrometers. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 m, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broadband eclipse depth to be 0:00315 +/- 0:000315, implying significant redistribution of heat from the dayside to the nightside. This work required the development of improved methods for Spitzer IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.

  17. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12

    Maciejewski, G.; Dimitrov, D.; Fernández, M.; Sota, A.; Nowak, G.; Ohlert, J.; Nikolov, G.; Bukowiecki, Ł.; Hinse, T. C.; Pallé, E.; Tingley, B.; Kjurkchieva, D.; Lee, J. W.; Lee, C.-U.

    2016-04-01

    Aims: Most hot Jupiters are expected to spiral in toward their host stars because the angular momentum of the orbital motion is transferred to the stellar spin. Their orbits can also precess as a result of planet-star interactions. Calculations show that both effects might be detected for the very-hot exoplanet WASP-12 b using the method of precise transit-timing over a time span of about 10 yr. Methods: We acquired new precise light curves for 29 transits of WASP-12 b, spannning four observing seasons from November 2012 to February 2016. New mid-transit times, together with those from the literature, were used to refine the transit ephemeris and analyze the timing residuals. Results: We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5σ confidence level. They may be approximated with a quadratic ephemeris that gives a change rate in the orbital period of (-2.56 ± 0.40) × 10-2 s yr-1. The tidal quality parameter of the host star was found to be equal to 2.5 × 105, which is similar to theoretical predictions for Sun-like stars. We also considered a model in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay. Partly based on (1) data collected with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, (2) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and (3) data collected with telescopes at the Rozhen National Astronomical Observatory.The light curves are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/L

  18. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  19. How do sharp transmission boundaries change the effective radius of a transiting exoplanet?

    Betremieux, Yan; Swain, Mark R.

    2016-10-01

    Most radiative transfer codes for exoplanet transmission spectroscopy either use or are validated against the formalism of Lecavelier des Etangs et al. (2008). Although extremely useful to understand what shapes transmission spectra, this formalism does not consider the effects of sharp boundaries below which an exoplanet's limb transmission suddenly decreases. However, with recent advances on the effects of refraction in transmission spectroscopy (Bétrémieux & Kaltenegger 2014, Bétrémieux 2016), it turns out that all exoplanets possess one such boundary in the form of either a surface, optically-thick clouds, or in the form of a refractive boundary. We have deriveda first-order analytical expression for an exoplanet's effective radius, which can be used to further validate or improve radiative transfer codes, which accounts for the presence of these boundaries, and discuss their effects on exoplanetary transmission spectra.

  20. Ground-based near-UV observations of 15 transiting exoplanets: Constraints on their atmospheres and no evidence for asymmetrical transits

    Turner, Jake D.; Pearson, Kyle A.; Biddle, Lauren I.; Smart, Brianna M.; Zellem, Robert T.; Teske, Johanna K.; Hardegree-Ullman, Kevin K.; Griffith, Caitlin C.; Leiter, Robin M.; Cates, Ian T.; Nieberding, Megan N.; Smith, Carter-Thaxton W.; Thompson, Robert M.; Hofmann, Ryan; Berube, Michael P.

    2016-01-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependen...

  1. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J. [University of Bristol, School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Teanby, Nick A. [University of Bristol, School of Earth Sciences, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2016-03-20

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.

  2. Lessons learnt and results from the first survey of transiting exoplanet atmospheres using a multi-object spectrograph

    Desert, Jean-Michel

    2015-12-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our three-year survey focused on nine close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. In total, about 40 transits (200 hours) have been secured, with each exoplanet observed on average during four transits. This approach allows for a high spectrophotometric precision (200-500 ppm / 10 nm) and for a unique and reliable estimate of systematic uncertainties. We present the main results from this survey, the challenges faced by such an experiment, and the lessons learnt for future MOS observations and instrument designs. We show that the precision achieved by this survey permits us to distinguish hazy atmospheres from cloud-free scenarios. We lay out the challenges that are in front of us whilst preparing future atmospheric reconnaissance of habitable worlds with multi-object spectrographs.

  3. The Transiting Exoplanet Survey Satellite (TESS): Discovering New Earths and Super-Earths in the Solar Neighborhood

    Ricker, George R.

    2015-12-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes or less. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. These objects will include more than 1 million stars and bright galaxies observed during sessions of several weeks. In total, more than 30 million objects brighter than I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade, with data rates in excess of 100 Mbits/s.An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets, as well as commensal survey candidates from the FFI. A NASA Guest

  4. KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Pepper, Joshua; Collins, Karen A; Johnson, John Asher; Fulton, Benjamin J; Howard, Andrew W; Beatty, Thomas; Stassun, Keivan G; Isaacson, Howard; Colón, Knicole d; Lund, Michael B; Kuhn, Rudolf B; Siverd, Robert J; Gaudi, B Scott; Tan, T G; Curtis, Ivan; Stockdale, Christopher; Mawet, Dimitri; Bottom, Michael; James, David; Zhou, George; Bayliss, Daniel; Cargile, Phillip; Bieryla, Allyson; Penev, Kaloyan; Latham, David W; Labadie-Bartz, Jonathan; Kielkopf, John; Eastman, Jason D; Oberst, Thomas E; Jensen, Eric L N; Nelson, Peter; Sliski, David H; Wittenmyer, Robert A; McCrady, Nate; Wright, Jason T; Relles, Howard M

    2016-01-01

    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{\\rm eff} = 5370\\pm51$ K, $M_{*} = 1.438_{-0.052}^{+0.061} M_{\\odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{\\odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180\\pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529\\pm0.00006$ day orbit, with $M_{P} = 0.195\\pm0.018 M_J$, $R_{P}= 1.37_{-0.12}^{+0.15} R_J$, $\\rho_{P} = 0.093_{-0.024}^{+0.028}$ g cm$^{-3}$, surface gravity log ${g_{P}} = 2.407_{-0.086}^{+0.080}$, and equilibrium temperature $T_{eq} = 1712_{-46}^{+51}$ K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric trans...

  5. The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b

    Winn, Joshua N; Bakos, Gaspar A; Pal, Andras; Johnson, John Asher; Williams, Peter K G; Shporer, Avi; Mazeh, Tsevi; Fernandez, Jose; Latham, David W

    2007-01-01

    We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiter's properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2.7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.

  6. Ground-based near-UV observations of 15 transiting exoplanets: Constraints on their atmospheres and no evidence for asymmetrical transits

    Turner, Jake D; Biddle, Lauren I; Smart, Brianna M; Zellem, Robert T; Teske, Johanna K; Hardegree-Ullman, Kevin K; Griffith, Caitlin C; Leiter, Robin M; Cates, Ian T; Nieberding, Megan N; Smith, Carter-Thaxton W; Thompson, Robert M; Hofmann, Ryan; Berube, Michael P; Nguyen, Chi H; Small, Lindsay C; Guvenen, Blythe C; Richardson, Logan; McGraw, Allison; Raphael, Brandon; Crawford, Benjamin E; Robertson, Amy N; Tombleson, Ryan; Carleton, Timothy M; Towner, Allison P M; Walker-LaFollette, Amanda M; Hume, Jeffrey R; Watson, Zachary T; Jones, Christen K; Lichtenberger, Matthew J; Hoglund, Shelby R; Cook, Kendall L; Crossen, Cory A; Jorgensen, Curtis R; Thompson, James M Romine Alejandro R; Villegas, Christian F; Wilson, Ashley A; Sanford, Brent; Taylor, Joanna M

    2016-01-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multi-wavele...

  7. Hiding in the Shadows II: Collisional Dust as Exoplanet Markers

    Dobinson, Jack; Lines, Stefan; Carter, Philip J; Dodson-Robinson, Sarah E; Teanby, Nick A

    2016-01-01

    Observations of the youngest planets ($\\sim$1-10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake even in ideal circumstances. Therefore, we propose the determination of a set of markers that can pre-select promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 $\\mu$m for a low eccentricity planet, whereas a high eccentricity planet would produce a ch...

  8. Constraining the atmosphere of exoplanet WASP-34b

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio; Garland, Justin; Foster, Andrew S. D.; Blecic, Jasmina; Foster, Austin James; Smalley, Barry

    2016-01-01

    WASP-34b is a short-period exoplanet with a mass of 0.59 +/- 0.01 Jupiter masses orbiting a G5 star with a period of 4.3177 days and an eccentricity of 0.038 +/- 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 micron channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to present eclipse-depth measurements, estimates of infrared brightness temperatures, and a refined orbit. With our Bayesian Atmospheric Radiative Transfer (BART) code, we characterized the atmosphere's temperature and pressure profile, and molecular abundances. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.

  9. Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST), Publications of the Astronomical Society of the Pacific (PASP), December 2014

    Beichman, Charles; Knutson, Heather; Smith, Roger; Dressing, Courtney; Latham, David; Deming, Drake; Lunine, Jonathan; Lagage, Pierre-Olivier; Sozzetti, Alessandro; Beichman, Charles; Sing, David; Kempton, Eliza; Ricker, George; Bean, Jacob; Kreidberg, Laura; Bouwman, Jeroen; Crossfield, Ian; Christiansen, Jessie; Ciardi, David; Fortney, Jonathan; Albert, Loïc; Doyon, René; Rieke, Marcia; Rieke, George; Clampin, Mark; Greenhouse, Matt; Goudfrooij, Paul; Hines, Dean; Keyes, Tony; Lee, Janice; McCullough, Peter; Robberto, Massimo; Stansberry, John; Valenti, Jeff; Deroo, Pieter D; Mandell, Avi; Ressler, Michael E; Shporer, Avi; Swain, Mark; Vasisht, Gautam; Carey, Sean; Krick, Jessica; Birkmann, Stephan; Ferruit, Pierre; Giardino, Giovanna; Greene, Tom; Howell, Steve

    2014-01-01

    This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST's unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.

  10. A Search and Exploration of Multi-Exoplanet Systems Via Transit Timing Variation (TTV) Algorithms for the K2 Mission

    Dholakia, Shishir; Dholakia, Shashank; Cody, Ann Marie

    2017-01-01

    We use the K2 mission to search for and analyze multi-planet systems with the goal of performing a scalable search for multi-planet systems using the transit timing variation (TTV) method. We developed an algorithm in Python to perform a search for synodic TTVs from multi-planet systems. The algorithm analyzes images taken by the K2 mission, creates light curves, and searches for TTVs on the order of a few minutes for every star in the images. We detected 4 potential TTV signals of which 3 are possible new discoveries. One of the systems has known multiple transiting planets and exhibits TTVs consistent with theoretical and previously published TTVs from n-body simulations. Another exoplanet system exhibits possible TTVs consistent with at least two giant planets. Our results demonstrate that a search for TTVs with the K2 mission is possible, though difficult.

  11. Infrared Spectroscopy of the Transiting Exoplanets HD189733b and XO-1 Using Hubble WFC3 in Spatial Scan Mode

    Deming, Drake; Wilkins, A.; McCullough, P.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.; Gilliland, R.; Knutson, H.; Mandell, A.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Infrared transmission spectroscopy of the exoplanets HD189733b and XO-1 has been previously reported by Swain et al. and Tinetti et al. based on observations using the NICMOS instrument on the Hubble Space Telescope. The robustness of those results has been questioned, because derivation of the exoplanetary spectrum required decorrelating strong instrumental systematic effects in the NICMOS data. We here discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. WFC3 instrumental signatures are smaller in both amplitude and complexity as compared to NICMOS. Moreover, we use a new spatial scan mode to trail the stars perpendicular to the dispersion direction during WFC3 exposures, and this increases the efficiency of the observations and reduces persistence effects in the detector. We derive the 1.4-micron water absorption spectrum of these planets during transit, discuss implications for these exoplanetary atmospheres, and compare our results to the NICMOS spectroscopy.

  12. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  13. An Exoplanet Spinning Up Its Star

    Kohler, Susanna

    2016-11-01

    , for transiting planets with orbital periods shorter than 2 days and masses greater than 0.1 Jupiter masses. HATS-18b is denoted by the red star. [Penev et al. 2016]Tidal InteractionsWhat happens when a massive planet orbits this close to its star? Tidal interactions between the star and the planet cause tidal dissipation in the star, resulting in decay of the planets orbit. But there may be an additional effect of this interaction in the case of HATS-18b, the authors claim: the planet may be transferring some of its angular momentum to the star.As stars age, they should gradually spin slower as they lose angular momentum viastellar winds. But Penev and collaborators note that this exoplanets host star, HATS-18, spins roughly three times as fast asits inferred age suggests it should. The authors conclude that the angular momentum lost by the planet as its orbit shrinks is deposited in the star, causing the star to spin up.HATS-18 is an excellent laboratory for studying how very short-period planets interact with their stars in fact, Penev and collaborators have already used their observations of the system to constrain models of tidal dissipation from Sun-like stars. Additional observations of HATS-18 and other short-period systems should allow us to further test models of how planetary systems form and evolve.CitationK. Penev et al 2016 AJ 152 127. doi:10.3847/0004-6256/152/5/127

  14. A Study of the Effects of Underlying Assumptions in the Reduction of Multi-Object Photometry of Transiting Exoplanets

    Fitzpatrick, M. Ryleigh; Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Zellem, Robert Thomas; AzGOE

    2016-10-01

    The analysis of ground-based photometric observations of planetary transits must treat the effects of the Earth's atmosphere, which exceed the signal of the extrasolar planet. Generally, this is achieved by dividing the signal of the host star and planet from that of nearby field stars to reveal the lightcurve. The lightcurve is then fit to a model of the planet's orbit and physical characteristics, also taking into account the characteristics of the star. The fit to the in and out-of-transit data establish the depth of the lightcurve. The question arises, what is the best way to select and treat reference stars to best characterize and remove the shared atmospheric systematics that plague our transit signal. To explore these questions we examine the effects of several assumptions that underline the calculation of the light curve depth. Our study involves repeated photometric observations of hot Jupiter primary transits in the U and B filters. Data were taken with the University of Arizona's Kuiper 1.55m telescope/Mont4K CCD. Each exoplanet observed offers a unique field with stars of various brightness, spectral types and angular distance from the host star. While these observations are part of a larger study of the Rayleigh scattering signature of hot Jupiter exoplanets, here we study the effects of various choices during reduction, specifically the treatment of reference stars and atmospheric systematics.We calculate the lightcurve for all permutations of reference stars, considering several out-of-transit assumptions (e.g. linear, quadratic or exponential). We assess the sensitivity of the transit depths based on the spread of values. In addition we look for characteristics that minimize the scatter in the reduced lightcurve and analyze the effects of the treatment of individual variables on the resultant lightcurve model. Here we present the results of an in depth statistical analysis that classifies the effect of various parameters and choices involved in

  15. The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Pallé, Enric

    2015-01-01

    The atmospheres of exoplanets are commonly studied by observing the transit of the planet passing in front of its parent star. The obscuration of part of the stellar disk during a transit will reveal aspects of its surface structure resulting from general centre-to-limb variations (CLVs). These become apparent when forming the ratio between the stellar light in and out of transit. These phenomena can be seen particularly clearly during the progress of a penumbral lunar eclipse, where the Earth transits the solar disk and masks different regions of the solar disk as the eclipse progresses. When inferring the properties of the planetary atmosphere, it is essential that this effect originating at the star is properly accounted for. Using the data observed from the 2014-April-15 lunar eclipse with the ESPaDOnS spectrograph mounted on the Canada France Hawaii Telescope (CFHT), we have obtained for the first time a time sequence of the penumbral spectra. These penumbral spectra enable us to study the centre-to-limb...

  16. Thermal Design of the Instrument for the Transiting Exoplanet Survey Satellite

    Allen, Gregory D.

    2016-01-01

    TESS observatory is a two year NASA Explorer mission which will use a set of four cameras to discover exoplanets. It will be placed in a high-earth orbit with a period of 13.7 days and will be unaffected by temperature disturbances caused by environmental heating from the Earth. The cameras use their stray-light baffles to passively cool the cameras and in turn the CCD's in order to maintain operational temperatures. The design has been well thought out and analyzed to maximize temperature stability. The analysis shows that the design keeps the cameras and their components within their temperature ranges which will help make it a successful mission. It will also meet its survival requirement of sustaining exposure to a five hour eclipse. Official validation and verification planning is underway and will be performed as the system is built up. It is slated for launch in 2017.

  17. The NASA Exoplanet Archive

    Akeson, Rachel L.; Christiansen, Jessie; Ciardi, David R.; Ramirez, Solange; Schlieder, Joshua; Van Eyken, Julian C.; NASA Exoplanet Archive Team

    2017-01-01

    The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service providing confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. We present the current data contents and functionality of the archive including: interactive tables of confirmed and candidate planetary and stellar properties; Kepler planet candidates, threshold-crossing events, data validation and occurrence rate products; light curves from Kepler, CoRoT, SuperWASP, KELT and other ground-based projects; and spectra and radial velocity data from the literature. Tools provided include a transit ephemeris predictor, light curve viewing utilities, a periodogram service and user-configurable interactive tables. The NASA Exoplanet Archive is funded by NASA’s Exoplanet Exploration Program.

  18. The Architecture of Exoplanets

    Hatzes, Artie P.

    2016-05-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets ( ≈ 20-25 %) that tend to be more massive ( M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large ( a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range

  19. The Architecture of Exoplanets

    Hatzes, Artie P.

    2016-12-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets (≈ 20-25 %) that tend to be more massive (M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large (a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range of

  20. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    Tingley, B; Gandolfi, D; Deeg, H J; Pallé, E; Rodriguez, P Montañés; Murgas, F; Alonso, R; Bruntt, H; Fridlund, M

    2014-01-01

    We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 Mjup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~4...

  1. On the heat redistribution of the hot transiting exoplanet WASP-18b

    Iro, Nicolas

    2013-01-01

    The energy deposition and redistribution in hot Jupiter atmospheres is not well understood currently, but is a major factor for their evolution and survival. We present a time dependent radiative transfer model for the atmosphere of WASP-18b which is a massive (10 MJup) hot Jupiter (Teq ~ 2400 K) exoplanet orbiting an F6V star with an orbital period of only 0.94 days. Our model includes a simplified parametrisation of the day-to-night energy redistribution by a modulation of the stellar heating mimicking a solid body rotation of the atmosphere. We present the cases with either no rotation at all with respect to the synchronously rotating reference frame or a fast differential rotation. The results of the model are compared to previous observations of secondary eclipses of Nymeyer et al. (2011) with the Spitzer Space Telescope. Their observed planetary flux suggests that the efficiency of heat distribution from the day-side to the night-side of the planet is extremely inefficient. Our results are consistent wi...

  2. Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

    2017-01-01

    Recent work has shown that sulfur hazes may arise in the atmospheres of giant exoplanets due to the photolysis of H$_{2}$S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum using a suite of established radiative-convective, cloud, and albedo models, and how it may affect the direct imaging results of WFIRST, a planned NASA mission. For Jupiter-mass planets, photochemical destruction of H$_{2}$S results in the production of ~1 ppmv of S$_{8}$ between...

  3. KELT-10b and KELT-11b: Two Sub-Jupiter Mass Planets well-Suited for Atmospheric Characterization in the Southern Hemisphere

    Rodriguez, Joseph E.

    2015-12-01

    The Kilodegree Extremely Little Telescope (KELT) project is a photometric survey in both the northern and southern hemispheres for transiting planets around bright stars (8 inflated transiting sub-Jupiter mass planet (0.68 MJ) around a V=10.7 early G-star. It has the 3rd deepest transit (1.4%) in the southern hemisphere for a star V target for transmission spectroscopy. KELT-11b is a highly inflated transiting Saturn mass planet (0.22 MJ) orbiting one of the brightest planet-hosting stars in the southern hemisphere. Interestingly, KELT-11b's host star is a clear sub-giant star (log(g) ~ 3.7). I will discuss their impact for atmospheric characterization. For example, the highly inflated nature of the KELT-11b planet provides the ability to study a sub-Jupiter atmosphere at very low planetary gravity, while the sub-giant nature of its host star allows us to study the effects of post main sequence evolution of a host star on a hot Jupiter.

  4. Transiting exoplanets from the CoRoT space mission II. CoRoT-Exo-2b: A transiting planet around an active G star

    Alonso, R; Baglin, A; Ollivier, M; Moutou, C; Rouan, D; Deeg, H J; Aigrain, S; Almenara, J M; Barbieri, M; Barge, P; Benz, W; Bordé, P; Bouchy, F; De la Reza, R; Deleuil, M; Dvorak, R; Erikson, A; Fridlund, M; Gillon, M; Gondoin, P; Guillot, T; Hatzes, A; Hébrard, G; Kabath, P; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Loeillet, B; Magain, P; Mayor, M; Mazeh, T; Pätzold, M; Pepe, F; Pont, F; Queloz, D; Rauer, H; Shporer, A; Schneider, J; Stecklum, B; Udry, S; Wuchterl, G

    2008-01-01

    Context. The CoRoT mission, a pioneer in exoplanet searches from space, has completed its first 150 days of continuous observations of ~12000 stars in the galactic plane. An analysis of the raw data identifies the most promising candidates and triggers the ground-based follow-up. Aims. We report on the discovery of the transiting planet CoRoT-Exo-2b, with a period of 1.743 days, and characterize its main parameters. Methods. We filter the CoRoT raw light curve of cosmic impacts, orbital residuals, and low frequency signals from the star. The folded light curve of 78 transits is fitted to a model to obtain the main parameters. Radial velocity data obtained with the SOPHIE, CORALIE and HARPS spectro-graphs are combined to characterize the system. The 2.5 min binned phase-folded light curve is affected by the effect of sucessive occultations of stellar active regions by the planet, and the dispersion in the out of transit part reaches a level of 1.09x10-4 in flux units. Results. We derive a radius for the planet...

  5. The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246

    Boisse, I.; Eggenberger, A.; Santos, N. C.; Lovis, C.; Bouchy, F.; Hébrard, G.; Arnold, L.; Bonfils, X.; Delfosse, X.; Desort, M.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gallenne, A.; Lagrange, A. M.; Moutou, C.; Udry, S.; Pepe, F.; Perrier, C.; Perruchot, S.; Pont, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Vidal-Madjar, A.

    2010-11-01

    We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD 109246, a G0V star slightly more metallic than the Sun. HD 109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (v sin i, [Fe/H], log R’HK) directly from the SOPHIE data. Based on observations made with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS).RV tables (Tables C.1 and C.2) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A88

  6. Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet

    Carballido, Augusto; Hyde, Truell W

    2015-01-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses a) close to the gap edge, b) in one of the two gas streams that accrete onto the planet, c) inside the low-density gap, and d) outside the gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking and compaction. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 $\\mu$m, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 $\\mu$m. Our Monte Carlo calculations show initial growth of dust aggregates foll...

  7. Information Content Analysis for Selection of Optimal JWST  Observing Modes for Transiting Exoplanet Atmospheres

    Batalha, Natasha E.; Line, M. R.

    2017-04-01

    The James Webb Space Telescope (JWST) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically, the atmospheric parameter space we cover is T = 600–1800 K, C/O = 0.55–1, [M/H] = 1–100 × Solar for an R = 1.39 R J , M = 0.59 M J planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.

  8. SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period

    Santerne, A; Tsantaki, M; Bouchy, F; Hébrard, G; Adibekyan, V; Almenara, J -M; Amard, L; Barros, S C C; Boisse, I; Bonomo, A S; Bruno, G; Courcol, B; Deleuil, M; Demangeon, O; Díaz, R F; Guillot, T; Havel, M; Montagnier, G; Rajpurohit, A S; Rey, J; Santos, N C

    2015-01-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions such as their dominant formation and migration process, as well as their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allow us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derive the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the different populations of giant plan...

  9. WASP-37b: a 1.7 MJ exoplanet transiting a metal-poor star

    Simpson, E K; Barros, S C C; Brown, D J A; Cameron, A Collier; Hebb, L; Pollacco, D; Smalley, B; Todd, I; Butters, O W; Hebrard, G; McCormac, J; Miller, G R M; Santerne, A; Street, R A; Skillen, I; Triaud, A H M J; Anderson, D R; Bento, J; Boisse, I; Bouchy, F; Enoch, B; Haswell, C A; Hellier, C; Holmes, S; Horne, K; Keenan, F P; Lister, T A; Maxted, P F L; Moulds, V; Moutou, C; Norton, A J; Parley, N; Pepe, F; Queloz, D; Segransan, D; Smith, A M S; Stempels, H C; Udry, S; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 +/- 0.00001 d, transit epoch T0 = 2455338.6189 +/- 0.0006 (HJD), and a transit duration 0.1307 +/- 0.0019 d. The planetary companion has a mass Mp = 1.696(+0.123)(-0.128) MJ and radius Rp = 1.136(+0.060){-0.051} RJ, yielding a mean density of 1.169(+0.119)(-0.152) times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.849(+0.067)(-0.040) Msun, R* = 0.977(+0.045)(-0.042) Rsun, Teff = 5800 +/- 150 K and [Fe/H] = -0.40 +/- 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  10. Limb darkening and exoplanets: testing stellar model atmospheres and indentifying biases in transit parameters

    Espinoza, Néstor

    2015-01-01

    Limb-darkening is fundamental in determining transit lightcurve shapes, and is typically modeled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit lightcurve, some authors fix the parameters of these laws, the so-called limb-darkening coefficients (LDCs), while others prefer to let them float in the lightcurve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first re-calculating these LDCs, comparing them to measured values from Kepler transit lightcurves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb-darkening still needs to improve. Then, we show through simulations that ...

  11. Exoplanets: The Hunt Continues!

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  12. WASP-37b: a 1.8 MJ exoplanet transiting a metal-poor star

    Simpson, E. K.; Faedi, F.; Barros, S. C. C.; Brown, D. J. A.; Cameron, A. Collier; Hebb, L.; Pollacco, D.; Smalley, B.; Todd, I.; Butters, O. W.; Hebrard, G.; McCormac, J.; Miller, G. R. M.; Santerne, A.; Street, R. A.

    2010-01-01

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 \\pm 0.00001 d, transit epoch T0 = 2455338.6188 \\pm 0.0006 (HJD), and a transit duration 0.1304 \\pm 0.0018 d. The planetary companion has a mass Mp = 1.80 \\pm 0.17 MJ and radius Rp = 1.16 \\pm 0.07 RJ, yielding a mean density of 1.15 \\pm 0.15 times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.925 \\pm 0.1...

  13. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F.; Kadakia, Shimonee; Vanderbei, Robert J.; Adams, Elisabeth R.; Lockhart, Matthew; Crossfield, Ian J.; Valenti, Jeff A.; Dantowitz, Ronald; Carter, Joshua A.

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  14. First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy: Confirmation of Rayleigh scattering in HD 189733 b with HIPO

    Angerhausen, Daniel; Mandell, Avi; Dunham, Edward W; Becklin, Eric E; Collins, Peter L; Hamilton, Ryan T; Logsdon, Sarah E; McElwain, Michael W; McLean, Ian S; Pfueller, Enrico; Savage, Maureen L; Shenoy, Sachindev S; Vacca, William; VanCleve, Jeffry; Wolf, Juergen

    2015-01-01

    Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z' bands as a demonstration of SOFIA's capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z' wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.

  15. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Mandell, Avram Max; Haynes, Korey N.; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 nano meter most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  16. 32 New Exoplanets Found

    2009-10-01

    less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models. Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets. More information This discovery was announced today at the ESO/CAUP conference "Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19-23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium "Heirs of Galileo: Frontiers of Astronomy" in Madrid, Spain. This research was presented in a series of eight papers submitted - or soon to be submitted - to the Astronomy and Astrophysics journal. The team is composed of * Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils * LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier * CAUP Porto: N.C. Santos * ESO: G. Lo Curto, D. Naef * University of Bern: W. Benz, C. Mordasini * IAP Paris: F. Bouchy, G. Hébrard * LAM Marseille: C. Moutou * Service d'aéronomie, Paris: J.-L. Bertaux ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most

  17. Exoplanet atmospheres physical processes

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introdu

  18. Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars

    Cauley, Paul W.; Redfield, Seth

    2017-01-01

    Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be

  19. Transiting exoplanets from the CoRoT space mission. XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    Cabrera, J; Ollivier, M; Diaz, R F; Csizmadia, Sz; Aigrain, S; Alonso, R; Almenara, J -M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Carone, L; Carpano, S; Deleuil, M; Deeg, H J; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gazzano, J -C; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jorda, L; Leger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Moutou, C; Ofir, A; von Paris, P; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Titz-Weider, R; Wuchterl, G

    2010-01-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with Teff=5945K, M*=1.09 Msun, R*=1.01 Rsun, solar metallicity, a lithium content of +1.45 dex, and an estimated age between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass. It implies the existence of an amount of heavy elements with a mass between about 140 and 300 Mearth.

  20. Radial velocity follow-up of CoRoT transiting exoplanets

    Deleuil M.

    2011-02-01

    Full Text Available We report on the results from the radial-velocity follow-up program performed to establish the planetary nature and to characterize the transiting candidates discovered by the space mission CoRoT. We use the SOPHIE at OHP, HARPS at ESO and the HIRES at Keck spectrographs to collect spectra and high-precision radial velocity (RV measurements for several dozens different candidates from CoRoT. We have measured the Rossiter-McLaughlin effect of several confirmed planets, especially CoRoT-1b which revealed that it is another highly inclined system. Such high-precision RV data are necessary for the discovery of new transiting planets. Furthermore, several low mass planet candidates have emerged from our Keck and HARPS data.

  1. Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Mandell, Avi M.; Haynes, Korey [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sinukoff, Evan [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-12-20

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 μm most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  2. Three WASP-South Transiting Exoplanets: WASP-74b, WASP-83b, and WASP-89b

    Hellier, Coel; Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G.

    2015-07-01

    We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to southern telescopes. It is a 0.95MJup planet with a moderately bloated radius of 1.5 {R}{Jup} in a 2 day orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 {M}{Jup} with a radius of 1.0 {R}{Jup}. It is in a 5 day orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 MJup planet in a 3 day orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 days, while star spots are visible in the transits. There are indications that the planet’s orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.

  3. Three WASP-South transiting exoplanets: WASP-74b, WASP-83b & WASP-89b

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2014-01-01

    We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to Southern telescopes. It is a 0.95 M_Jup planet with a moderately bloated radius of 1.5 R_Jup in a 2-d orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 M_Jup with a radius of 1.0 R_Jup. It is in a 5-d orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M_Jup planet in a 3-d orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 d, while star spots are visible in the transits. There are indications that the planet's orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.

  4. The Rossiter-McLaughlin Effect of the Transiting Exoplanet XO-4b

    Narita, Norio; Sanchis-Ojeda, Roberto; Winn, Joshua N; Holman, Matthew J; Sato, Bun'ei; Aoki, Wako; Tamura, Motohide

    2010-01-01

    We report photometric and radial velocity observations of the XO-4 transiting planetary system, conducted with the FLWO 1.2m telescope and the 8.2m Subaru Telescope. Based on the new light curves, the refined transit ephemeris of XO-4b is $P = 4.1250828 \\pm 0.0000040$ days and $T_c [BJD_TDB] = 2454485.93323 \\pm 0.00039$. We measured the Rossiter-McLaughlin effect of XO-4b and estimated the sky-projected angle between the stellar spin axis and the planetary orbital axis to be $\\lambda = -46.7^{\\circ} ^{+8.1^{\\circ}}_{-6.1^{\\circ}}$. This measurement of $\\lambda$ is less robust than in some other cases because the impact parameter of the transit is small, causing a strong degeneracy between $\\lambda$ and the projected stellar rotational velocity. Nevertheless, our finding of a spin-orbit misalignment suggests that the migration process for XO-4b involved few-body dynamics rather than interaction with a gaseous disk. In addition, our result conforms with the pattern reported by Winn et al. (2010, ApJL, 718, L145...

  5. Analyzing Kepler lightcurves of exoplanets

    Dulz, Shannon Diane; Reed, Mike

    2016-10-01

    The Kepler space telescope successfully found thousands of exoplanets. The next step is characterizing what those planets are like. Additional processing of the light curves and meticulous removal of spacecraft artifacts from the data such as pointing adjustments, safing events and thermal variations, may yield more information on the features of exoplanet systems. Bond albedo can be measured from the exoplanet's day-side flux contribution prior to secondary eclipse and asymmetries in the day-side contribution may indicate thermal asymmetries driven by motion in the planet's atmosphere. Transit timing variations indicate non-circular or precessing orbits, potentially due to a non-transiting third body, which influence the planetary environment and atmosphere. We investigated transit timing variations and day-side flux contributions of an exoplanet.

  6. NASA's Missions for Exoplanet Exploration

    Unwin, Stephen

    2014-05-01

    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (spectroscopy. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development (survey of nearby transiting exoplanets with TESS, and followup of the most important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  7. Exoplanet Detection Techniques

    Fischer, Debra A; Laughlin, Greg P; Macintosh, Bruce; Mahadevan, Suvrath; Sahlmann, Johannes; Yee, Jennifer C

    2015-01-01

    We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instrumentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit photometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions.

  8. Fluctuations and Flares in the Ultraviolet Line Emission of Cool Stars: Implications for Exoplanet Transit Observations

    Loyd, R. O. Parke; France, Kevin

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206 one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ x . Maximum likelihood values of σ x range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is gsim1 RJ . However, for some M dwarfs this limit can be as low as several R ⊕.

  9. FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS

    Loyd, R. O. Parke [Center for Astrophysics and Space Astronomy, Boulder, CO 80303 (United States); France, Kevin, E-mail: robert.loyd@colorado.edu [NASA Nancy Grace Roman Fellow. (United States)

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206; one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ {sub x}. Maximum likelihood values of σ {sub x} range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is ≳1 R{sub J} . However, for some M dwarfs this limit can be as low as several R {sub ⊕}.

  10. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  11. The Effects of Refraction on Transit Transmission Spectroscopy: Application to Earth-like Exoplanets

    Misra, Amit; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Palle et al. (2009). We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSPEC). Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal to noise ratio (SNR) of absorption features by 60%, while for an Earth-analog plan...

  12. Zodiacal Exoplanets in Time (ZEIT) IV: seven transiting planets in the Praesepe cluster

    Mann, Andrew W; Vanderburg, Andrew; Rizzuto, Aaron C; Ansdell, Megan; Medina, Jennifer Vanessa; Mace, Gregory N; Kraus, Adam L

    2016-01-01

    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the $\\simeq$800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets. For each host star we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We obtain low-resolution optical and NIR spectroscopy for each system, which we use in conjunction with the cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods from the K2 light curves, and our derived stellar radii, we show that all planetary orbits are, within errors, aligned with their host star's...

  13. Search of Exoplanets - Phase I

    Vodniza, Alberto Q.; Pereira, M. R.; Lopez, J. P.; Reyes, K.; Chaves, L.

    2008-09-01

    From the Astronomical Observatory at the University of Nariño-COLOMBIA, we have begun a systematic search for exoplanets. Initially we made differential photometry on variable stars weaker than the tenth magnitude to get enough experience on the establishment of stellar transits, so then we could undertake the work with exoplanets. We have already confirmed the transits of two exoplanets with good photometry data: At the exoplanet HAT-P-5b, discovered by Bakos and other investigators and which turns around the GSC 02634-01087, with an orbital period of 2.788491 days according to measurements of the discoverers, and also at the exoplanet TrES-3, discovered by O'Donovan and other investigators and which turns around the GSC 03089-00929, with an orbital period of 1.30619 days, established by its discoverers. Both exoplanets are quite interesting because they have one of the smallest periods found on exoplanets. The TrES-3 also provides a big opportunity for studying the orbital decay and mass loss due to evaporation, caused by the great closeness to its star. We have captured a lot of data to elaborate the lightcurves so we can estimate physical parameters of the bodies. We are getting data on various dates. Actually we are preparing the equipment to develop observations of radial velocities through spectrometry. In a later phase, we expect to verify the presence of other exoplanets which cause less deep transits, and then we can investigate stars with possible exoplanets around them. Besides we hope to design a mathematical model of the studied systems. The equipment we employed is: 14"LX200 GPS MEADE telescope, ST-7XME SBIG camera, STL-1001 SBIG camera, LHIRES III Spectrograph, and SGS-SBIG Spectrograph. On the poster it is explained at length the methodology followed over the search, the data we obtained and the physical- mathematical analysis that was carried out.

  14. The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b

    Nortmann, L.; Pallé, E.; Murgas, F.; Dreizler, S.; Iro, N.; Cabrera-Lavers, A.

    2016-10-01

    We observed the hot Jupiter HAT-P-32b (also known as HAT-P-32Ab) to determine its optical transmission spectrum by measuring the wavelength-dependent, planet-to-star radius ratios in the region between 518-918 nm. We used the OSIRIS instrument at the Gran Telescopio CANARIAS (GTC) in long-slit spectroscopy mode, placing HAT-P-32 and a reference star in the same slit and obtaining a time series of spectra covering two transit events. Using the best quality data set, we were able to yield 20 narrowband transit light curves, with each passband spanning a 20 nm wide interval. After removal of all systematic noise signals and light curve modeling, the uncertainties for the resulting radius ratios lie between 337 and 972 ppm. The radius ratios show little variation with wavelength, suggesting a high altitude cloud layer masking any atmospheric features. Alternatively, a strong depletion in alkali metals or a much smaller than expected planetary atmospheric scale height could be responsible for the lack of atmospheric features. Our result of a flat transmission spectrum is consistent with a previous ground-based study of the optical spectrum of this planet. This agreement between independent results demonstrates that ground-based measurements of exoplanet atmospheres can give reliable and reproducible results despite the fact that the data often is heavily affected by systematic noise as long as the noise source is well understood and properly corrected. We also extract an optical spectrum of the M-dwarf companion HAT-P-32B. Using PHOENIX stellar atmosphere models we determine an effective temperature of Teff = 3187+60-71 K, which is slightly colder than previous studies relying only on broadband infrared data. The 20 narrowband and white light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A65

  15. Independent discovery and refined parameters of the transiting exoplanet HAT-P-14b

    Simpson, E K; Brown, D J A; Cameron, A Collier; Pollacco, D; Skillen, I; Stempels, H C; Boisse, I; Faedi, F; Hebrard, G; McCormac, J; Sorensen, P; Street, R A; Bento, J; Bouchy, F; Butters, O W; Enoch, B; Haswell, C A; Hebb, L; Holmes, S; Horne, K; Keenan, F P; Lister, T A; Miller, G R M; Moulds, V; Moutou, C; Norton, A J; Parley, N; Santerne, A; Todd, I; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we refine the parameters by combining our datasets. We also provide additional evidence against astronomical false positives. Due to the brightness of the host star, V = 10, HAT-P-14 is an attractive candidate for further characterisation observations. The planet has a high impact parameter, b = 0.907 +/- 0.004, and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity, e = 0.095 +/- 0.011. The system geometry suggests that the planet narrowly fails to undergo a secondary ecl...

  16. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    Narita, Norio; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-01-01

    We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g'_2$ (400--550 nm), $r'_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g'_2$, $r'_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g'$=11.81, $r'$=10.08, and $z'$=8.6...

  17. Metal enrichment leads to low atmospheric C/O ratios in transiting giant exoplanets

    Espinoza, Néstor; Miguel, Yamila; Thorngren, Daniel; Murray-Clay, Ruth

    2016-01-01

    We predict the carbon-to-oxygen (C/O) ratios in the hydrogen-helium envelope and atmospheres of a sample of nearly 50 relatively cool ($T_{\\mathrm eq}<$ 1000 K) transiting gas giant planets. The method involves planetary envelope metallicity estimates that use the structure models of Thorngren et al. (2016) and the disk and planetary accretion model of \\"Oberg et al. (2011). We find that nearly all of these planets are strongly metal-enriched which, coupled with the fact that solid material is the main deliverer of metals in the protoplanetary disk, implies that the substellar C/O ratios of their accreted solid material dominate compared to the enhanced C/O ratio of their accreted gaseous component. We predict that these planets will have atmospheres that are typically reduced in their C/O compared to parent star values independent of the assessed formation locations, with C/O $<1$ a nearly universal outcome within the framework of the model. We expect water vapor absorption features to be ubiquitous in...

  18. The transiting exoplanet CoRoT-11b and its peculiar tidal evolution

    Damiani C.

    2011-02-01

    Full Text Available CoRoT-11b is a fairly massive hot-Jupiter (Mp = 2.33 ± 0.34 MJup in a 3 days orbit around a F6 V star with an age of 2 ± 1 Gyr. The relatively high projected rotational velocity of the star (v sin i⋆ = 40 ± 5 km/s places CoRoT-11 among the most rapidly rotating planet hosting stars discovered so far. Assuming that the star is seen equator-on, the v sin i⋆ and the star radius (R∗ = 1.37±0.03 R⊙ translate into a stellar rotation period of 1.73±0.26 days. This peculiar planet/star configuration offers an unique opportunity to study the tidal evolution of the system. Owing to the strong tidal interaction, the planet would have moved outwards, from a starting semi-major axis corresponding to an orbital period almost synchronized with the stellar rotation. We found that the present value of the tidal quality factor Q′s could be measured by a timing of the mid-epoch of the transits to be observed with an accuracy of about 0.5 − 1 seconds over a time baseline of about 25 years.

  19. Fluctuations and Flares in the Ultraviolet Line Emission of Cool Stars: Implications for Exoplanet Transit Observations

    Loyd, R O Parke

    2014-01-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, CII $\\lambda\\lambda$1334,1335 and SiIII $\\lambda$1206; one enclosing SiIV $\\lambda\\lambda$1393,1402; and 36.5 \\AA\\ of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival HST COS and STIS time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: We used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 h, over 50% last 4 min or less, and most produce the strongest response in SiIV. If...

  20. Near-UV and optical observations of the transiting exoplanet TrES-3b

    Turner, Jake D; Hardegree-Ullman, Kevin K; Carleton, Timothy M; Walker-LaFollette, Amanda M; Crawford, Benjamin E; Smith, Carter-Thaxton W; McGraw, Allison M; Small, Lindsay C; Rocchetto, Marco; Cunningham, Kathryn I; Towner, Allison P M; Zellem, Robert; Robertson, Amy N; Guvenen, Blythe C; Schwarz, Kamber R; Hardegree-Ullman, Emily E; Collura, Daniel; Henz, Triana N; Lejoly, Cassandra; Richardson, Logan L; Weinand, Michael A; Taylor, Joanna M; Daugherty, Michael J; Wilson, Ashley A; Austin, Carmen L

    2012-01-01

    We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3b's magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the N...

  1. A new view on exoplanet transits: Transit of Venus described using three-dimensional solar atmosphere Stagger-grid simulations

    Chiavassa, A; Faurobert, M; Ricort, G; Tanga, P; Magic, Z; Collet, R; Asplund, M

    2015-01-01

    Stellar activity and, in particular, convection-related surface structures, potentially cause fluctuations that can affect the transit light curves. Surface convection simulations can help the interpretation of ToV. We used realistic three-dimensional radiative hydrodynamical simulation of the Sun from the Stagger-grid and synthetic images computed with the radiative transfer code Optim3D to provide predictions for the transit of Venus in 2004 observed by the satellite ACRIMSAT. We computed intensity maps from RHD simulation of the Sun and produced synthetic stellar disk image. We computed the light curve and compared it to the ACRIMSAT observations and also to the light curves obtained with solar surface representations carried out using radial profiles with different limb-darkening laws. We also applied the same spherical tile imaging method to the observations of center-to-limb Sun granulation with HINODE. We managed to explain ACRIMSAT observations of 2004 ToV and showed that the granulation pattern cause...

  2. TraMoS project III: Improved physical parameters, timing analysis, and star-spot modelling of the WASP-4b exoplanet system from 38 transit observations

    Hoyer, S; Rojo, P; Nascimbeni, V; Hidalgo, S; Astudillo-Defru, N; Concha, F; Contreras, Y; Servajean, E; Hinse, T C

    2013-01-01

    We report twelve new transit observations of the exoplanet WASP-4b from the Transit Monitoring in the South Project (TraMoS) project. These transits are combined with all previously published transit data for this planet to provide an improved radius measurement of Rp = 1.395 +- 0.022 Rjup and improved transit ephemerides. In a new homogeneous analysis in search for Transit Timing Variations (TTVs) we find no evidence of those with RMS amplitudes larger than 20 seconds over a 4-year time span. This lack of TTVs rules out the presence of additional planets in the system with masses larger than about 2.5 M_earth, 2.0 M_earth, and 1.0 M_earth around the 1:2, 5:3 and 2:1 orbital resonances. Our search for the variation of other parameters, such as orbital inclination and transit depth also yields negative results over the total time span of the transit observations. Finally we perform a simple study of stellar spots configurations of the system and conclude that the star rotational period is about 34 days.

  3. SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period

    Santerne, A.; Moutou, C.; Tsantaki, M.; Bouchy, F.; Hébrard, G.; Adibekyan, V.; Almenara, J.-M.; Amard, L.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Bruno, G.; Courcol, B.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Guillot, T.; Havel, M.; Montagnier, G.; Rajpurohit, A. S.; Rey, J.; Santos, N. C.

    2016-03-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions as to their dominant formation and migration processes, as well as to their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allowed us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 ± 6.5% for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derived the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 ± 0.6%. We recovered, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot Jupiters but not for the longer-period planets. We also derive a first measurement of the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29 ± 0.17%. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving moderate irradiation are not inflated, but we find that they are on average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the iron abundance of the host star, which needs more detections to be confirmed. Based on observations made with SOPHIE on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France.RV data (Appendices C and D) are only available at the CDS via anonymous ftp to

  4. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  5. An Automated System for Citizen Searches for Exoplanets

    Edberg, Stephen J.

    2016-05-01

    The Panoptic Astronomical Networked OPtical observatory for Transiting Exoplanets Survey (PANOPTES) is a citizen science project which aims to build low cost, automated, robotic sky patrol camera systems which can be used to detect transiting exoplanets: planets orbiting other stars. The goal is to establish a worldwide network to image the nighttime celestial hemisphere 24/7/365. PANOPTES will search for exoplanets using the reduction in starlight caused when an exoplanet transits its host star. Individuals or groups can construct a PANOPTES station, tie it in the data reporting system, and contribute to the discovery of exoplanets across the large area of the sky not yet surveyed.

  6. Using Small Telescopes, Citizen Science, and Network Surveys to find Exoplanets - An Overview of the Kelt team and the Exoplanets Found to Date

    Stephens, Denise C.; Kelt North Survey Team, Kelt South Survey Team

    2016-10-01

    The Kelt-North and Kelt-South transit survey is a wide angle search for hot Jupiters around some of the brightest stars in the night sky. Survey operations are based out of the Ohio State and Vanderbilt Universities, with observing facilities at Winer Observatory in Arizona and in Sutherland, South Africa. KELT stands for Kilodegree Extremely Little Telescope, where "Kilodegree" refers to the large area on the sky that the telescope can observe in a single shot. These "Little Telescopes" monitor the brightness of hundreds of thousands of stars night after night, month after month, for many years. Stars that show apparent changes in brightness are put through a careful vetting process and the best transiting planet candidates are sent on for photometric follow-up by a ground based team made up of nearly 40 members in 10 countries across 4 continents. The KELT Follow-Up Network is the largest, most coordinated network of its kind, and their work has contributed to the discovery of multiple new planets: including Kelt-1b which is a 30 Jupiter-mass object at an orbital period of 1.2 days; Kelt-6b wich is a Hot Saturn on a 7.9 day orbital period; and Kelt-8b which is a highly inflated Hot Jupiter that required the development of new techniques to extract high-precision radial velocities. In this presentation I will highlight all of the Kelt Exoplanets discovered to date and how the Kelt team is using small telescopes, citizen science, and network surveys to make these discoveries possible.

  7. The Transit Light Curve project. XIV. Confirmation of Anomalous Radii for the Exoplanets TrES-4b, HAT-P-3b, and WASP-12b

    Chan, Tucker; Winn, Joshua N; Holman, Matthew J; Sanchis-Ojeda, Roberto; Esquerdo, Gil; Everett, Mark

    2011-01-01

    We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems' parameters. TrES-4b and WASP-12b were confirmed to be "bloated" planets, with radii of 1.706 +/- 0.056 R_Jup and 1.736 +/- 0.092 R_Jup, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 +/- 0.055 R_Jup, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.

  8. Direct imaging discovery of a Jovian exoplanet within a triple-star system.

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-12

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged.

  9. Exoplanet Habitability

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet’s surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  10. Exoplanet habitability.

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  11. Asteroseismology of Exoplanet Host Stars

    Huber, Daniel

    2015-01-01

    Asteroseismology is among the most powerful observational tools to determine fundamental properties of stars. Space-based photometry has recently enabled the systematic detection of oscillations in exoplanet host stars, allowing a combination of asteroseismology with transit and radial-velocity measurements to characterize planetary systems. In this contribution I will review the key synergies between asteroseismology and exoplanet science such as the precise determination of radii and ages of exoplanet host stars, as well as applications of asteroseismology to measure spin-orbit inclinations in multiplanet systems and orbital eccentricities of small planets. Finally I will give a brief outlook on asteroseismic studies of exoplanet hosts with current and future space-based missions such as K2 and TESS.

  12. The Exoplanet Orbit Database II: Updates to exoplanets.org

    Han, Eunkyu; Wright, Jason T; Feng, Y Katherina; Zhao, Ming; Brown, Jacob I; Hancock, Colin

    2014-01-01

    The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Table, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma sep...

  13. The Fabra-ROA Baker-Nunn Camera at Observatori Astron\\`omic del Montsec: a wide-field imaging facility for exoplanet transit detection

    Fors, O; Muiños, J L; Montojo, F J; Baena, R; Merino, M; Morcillo, R; Blanco, V

    2009-01-01

    A number of Baker-Nunn Camera (BNC) were manufactured by Smithsonian Institution during the 60s as optical tracking systems for artificial satellites with optimal optical and mechanical specifications. One of them was installed at the Real Instituto y Observatorio de la Armada (ROA). We have conducted a profound refurbishment project of the telescope to be installed at Observatori Astron\\`omic del Montsec (OAdM). As a result, the BNC offers the largest combination of a huge FOV (4.4$\\deg$x4.4$\\deg$) and aperture (leading to a limiting magnitude of V$\\sim$20). These specifications, together with their remote and robotic natures, allows this instrument to face an observational program of exoplanets detection by means of transit technique with high signal-to-noise ratio in the appropiate magnitude range.

  14. Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy

    Hebrard, G; Diaz, R F; Boisse, I; Bouchy, F; Etangs, A Lecavelier des; Moutou, C; Ehrenreich, D; Arnold, L; Bonfils, X; Delfosse, X; Desort, M; Eggenberger, A; Forveille, T; Gregorio, J; Lagrange, A -M; Lovis, C; Pepe, F; Perrier, C; Pont, F; Queloz, D; Santerne, A; Santos, N C; Segransan, D; Sing, D K; Udry, S; Vidal-Madjar, A

    2010-01-01

    We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the full transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to a...

  15. Water in exoplanets.

    Tinetti, Giovanna; Tennyson, Jonathan; Griffith, Caitlin A; Waldmann, Ingo

    2012-06-13

    Exoplanets--planets orbiting around stars other than our own Sun--appear to be common. Significant research effort is now focused on the observation and characterization of exoplanet atmospheres. Species such as water vapour, methane, carbon monoxide and carbon dioxide have been observed in a handful of hot, giant, gaseous planets, but cooler, smaller planets such as Gliese 1214b are now analysable with current telescopes. Water is the key chemical dictating habitability. The current observations of water in exoplanets from both space and the ground are reviewed. Controversies surrounding the interpretation of these observations are discussed. Detailed consideration of available radiative transfer models and linelists are used to analyse these differences in interpretation. Models suggest that there is a clear need for data on the pressure broadening of water transitions by H(2) at high temperatures. The reported detections of water appear to be robust, although final confirmation will have to await the better quality observational data provided by currently planned dedicated space missions.

  16. A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths

    Heng, Kevin

    2016-01-01

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke & Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloudfree atmospheres. We derive values of our cloudiness index for a small sample of 7 hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b and HAT-P-1b are nearly cloudfree at visible wavelengths. We find the tentative trend that more irradiate...

  17. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

    Akeson, R L; Ciardi, D; Crane, M; Good, J; Harbut, M; Jackson, E; Kane, S R; Laity, A C; Leifer, S; Lynn, M; McElroy, D L; Papin, M; Plavchan, P; Ramirez, S V; Rey, R; von Braun, K; Wittman, M; Abajian, M; Ali, B; Beichman, C; Beekley, A; Berriman, G B; Berukoff, S; Bryden, G; Chan, B; Groom, S; Lau, C; Payne, A N; Regelson, M; Saucedo, M; Schmitz, M; Stauffer, J; Wyatt, P; Zhang, A

    2013-01-01

    We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial velocity measurements from the literature. Tools provided to work with these data include a transit ephemeris predictor, both for single planets and for observing locations, light curve viewing and normalization utilities, and a periodogram and phased light curve service. The archive can be accessed at http://exoplanetarchive.ipac.caltech.edu.

  18. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Southworth, J; Triaud, A H M J; Udry, S; Wagg, T; West, R G

    2016-01-01

    We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with [Fe/H] = +0.26. Warm Jupiters tend to have smaller radii than hot Jupiters, and WASP-130b is in line with this trend (1.23 Mjup; 0.89 Rjup). WASP-131b is a bloated Saturn-mass planet (0.27 Mjup; 1.22 Rjup). Its large scale height coupled with the V = 10.1 brightness of its host star make the planet a good target for atmospheric characterisation. WASP-132b is among the least irradiated and coolest of WASP planets, being in a 7.1-d orbit around a K4 star. It has a low mass and a modest radius (0.41 Mjup; 0.87 Rjup). The V = 12.4, [Fe/H] = +0.22 star shows a possible rotational modulation at 33 d. WASP-139b is the lowest-mass planet yet found by WASP, at 0.12 Mjup and 0.80 Rjup. It is a "super-Neptune" akin to HATS-7b and HATS-8b. It orbits a V = 12.4, [Fe/H] = +0.20, K0 star. The star appears to be anomalously...

  19. What asteroseismology can do for exoplanets

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  20. What asteroseismology can do for exoplanets

    Van Eylen, Vincent; Aguirre, Victor Silva; Arentoft, Torben; Kjeldsen, Hans; Albrecht, Simon; Chaplin, William J; Isaacson, Howard; Pedersen, May G; Jessen-Hansen, Jens; Tingley, Brandon; Christensen-Dalsgaard, Joergen; Aerts, Conny; Campante, Tiago L; Bryson, Steve T

    2014-01-01

    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  1. Eclipsing Binary Science Via the Merging of Transit and Doppler Exoplanet Survey Data - A Case Study With the MARVELS Pilot Project and SuperWASP

    Fleming, Scott W; Hebb, Leslie; Stassun, Keivan G; Ge, Jian; Cargile, Phillip A; Ghezzi, Luan; De Lee, Nathan M; Wisniewski, John; Gary, Bruce; de Mello, Gustavo F Porto; Ferreira, Leticia; Zhao, Bo; Anderson, David R; Wan, Xiaoke; Hellier, Coel; Guo, Pengcheng; West, Richard G; Mahadevan, Suvrath; Pollacco, Don; Lee, Brian; Cameron, Andrew Collier; van Eyken, Julian C; Skillen, Ian; Crepp, Justin R; Nguyen, Duy Cuong; Kane, Stephen R; Paegert, Martin; da Costa, Luiz Nicolaci; Maia, Marcio A G; Santiago, Basilio X

    2011-01-01

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M_1 = 0.92 +/- 0.1 M_solar, we find M_2 = 0.610 +/- 0.036 M_solar, R_1 = 0.932 +/- 0.076 R_solar and R_2 = 0.559 +/- 0.102 R_solar, and find that both stars have masses and radii consistent with model pr...

  2. Transiting exoplanets from the CoRoT space mission. XX. CoRoT-18b: a massive hot jupiter on a prograde, nearly aligned orbit

    Hebrard, G; Alonso, R; Fridlund, M; Ofir, A; Aigrain, S; Guillot, T; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Csizmadia, Sz; Deeg, H J; Deleuil, M; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gibson, N; Gillon, M; Guenther, E; Hatzes, A; Havel, M; Jorda, L; Lammer, H; Leger, A; Llebaria, A; Mazeh, T; Moutou, C; Ollivier, M; Parviainen, H; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-18b, a massive hot jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric follow-up ground-based observations. The planet has a mass M_p = 3.47 +/- 0.38 M_Jup, a radius R_p = 1.31 +/- 0.18 R_Jup, and a density rho_p = 2.2 +/- 0.8 g/cm3. It orbits a G9V star with a mass M_* = 0.95 +/- 0.15 M_Sun, a radius R_* = 1.00 +/- 0.13 R_Sun, and a rotation period P_rot = 5.4 +/- 0.4 days. The age of the system remains uncertain, stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possible significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected...

  3. A transit timing analysis of nine RISE light curves of the exoplanet system TrES-3

    Gibson, N P; Skillen, I; Simpson, E K; Barros, S; Joshi, Y C; Todd, I; Benn, C; Christian, D; Hrudková, M; Keenan, F P; Steele, I A

    2009-01-01

    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a con...

  4. WASP-38b: A 6.87 day period exoplanet transiting a bright F-type star

    Barros, S C C; Cameron, A Collier; Lister, T A; McCormac, J; Pollacco, D; Simpson, E K; Smalley, B; Street, R A; Todd, I; Triaud, A H M J; Boisse, I; Bouchy, F; Hebrard, G; Moutou, C; Pepe, F; Queloz, D; Santerne, A; Segransan, D; Udry, S; Bento, J; Butters, O W; Enoch, B; Haswell, C A; Hellier, C; Keenan, F P; Miller, G R M; Moulds, V; Norton, A J; Parley, N; Skillen, I; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We report the discovery of WASP-38b, a long period transiting planet in an eccentric $6.871815$ day orbit. The transit epoch is $2455335.92050 \\pm 0.00074$ (HJD) and the transit duration is $4.663$ hours. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded $T_{eff} = 6150 \\pm 80 $K, \\logg$=4.3 \\pm 0.1$, \\vsini=$8.6 \\pm 0.4 $\\kms, $M_*=1.16 \\pm 0.04$\\Msun\\ and $R_* =1.36 \\pm 0.05 $\\Rsun, consistent with a dwarf of spectral type F8. The radial velocity variations and the transit light curves were fitted simultaneously to estimate the orbital and planetary parameters. The planet has a mass of $2.71 \\pm 0.07 $ \\Mjup\\ and a radius of $1.08 \\pm 0.05\\, $\\Rjup\\, giving a density, $ \\rho_p = 2.2 \\pm 0.3 \\rho_J$. The high precision of the eccentricity $e=0.032 \\pm 0.0045$ is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at $1311 \\pm 45$K. WASP-38b is the longest period planet found by WASP-North and with a brigh...

  5. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Lattanzi M.G.

    2013-04-01

    Full Text Available Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA, we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  6. The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b

    Winn, Joshua N; Torres, Guillermo; McCullough, Peter; Johns-Krull, Christopher M; Latham, David W; Shporer, Avi; Mazeh, Tsevi; Garcia-Melendo, Enrique; Foote, Cindy; Esquerdo, Gil; Everett, Mark

    2008-01-01

    We present photometry of 13 transits of XO-3b, a massive transiting planet on an eccentric orbit. Previous data led to two inconsistent estimates of the planetary radius. Our data strongly favor the smaller radius, with increased precision: R_p = 1.217 +/- 0.073 R_Jup. A conflict remains between the mean stellar density determined from the light curve, and the stellar surface gravity determined from the shapes of spectral lines. We argue the light curve should take precedence, and revise the system parameters accordingly. The planetary radius is about 1 sigma larger than the theoretical radius for a hydrogen-helium planet of the given mass and insolation. To help in planning future observations, we provide refined transit and occultation ephemerides.

  7. Transiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star

    Gandolfi, D; Alonso, R; Deleuil, M; Guenther, E W; Fridlund, M; Endl, M; Eigmüller, P; Csizmadia, Sz; Havel, M; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Deeg, H J; Dvorak, R; Eislöffel, J; Erikson, A; Ferraz-Mello, S; Gazzano, J -C; Gibson, N P; Gillon, M; Gondoin, P; Guillot, T; Hartmann, M; Hatzes, A; Jorda, L; Kabath, P; Léger, A; Llebaria, A; Lammer, H; MacQueen, P J; Mayor, M; Mazeh, T; Moutou, C; Ollivier, M; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Stecklum, B; Tingley, B; Udry, S; Wuchterl, G; 10.1051/0004-6361/201015132

    2010-01-01

    The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.

  8. Transit spectrophotometry of the exoplanet HD189733b. II. New Spitzer observations at 3.6 microns

    Desert, J -M; Vidal-Madjar, A; Hebrard, G; Ehrenreich, D; Etangs, A Lecavelier des; Parmentier, V; Ferlet, R; Henry, G W

    2010-01-01

    We present a new primary transit observation of the hot-jupiter HD189733b, obtained at 3.6 microns with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations. We use a high S/N Spitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 microns. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength. We obtained the following system parameters: R_p/R_\\star=0.15566+0.00011-...

  9. WASP-40b: independent discovery of the 0.6-Mjup transiting exoplanet HAT-P-27b

    Anderson, D R; Boisse, I; Bouchy, F; Collier-Cameron, A; Faedi, F; Hebrard, G; Hellier, C; Lendl, M; Moutou, C; Pollacco, D; Santerne, A; Smalley, B; Smith, A M S; Todd, I; Triaud, A H M J; West, R G; Wheatley, P J; Bento, J; Enoch, B; Gillon, M; Maxted, P F L; McCormac, J; Queloz, D; Simpson, E K; Skillen, I

    2011-01-01

    From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (= HAT-P-27b), a 0.6-Mjup planet that transits its 12th magnitude host star every 3.04 d. The host star is of late-G or early-K type and likely has an above-Solar metallicity, with [Fe/H] = 0.14 +/- 0.11. The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3 to 4 d. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.

  10. Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS

    Sing, David K; Etangs, A Lecavelier des; Ballester, G E; Vidal-Madjar, A; Parmentier, V; Hébrard, G; Henry, G W

    2009-01-01

    We present Hubble Space Telescope near-infrared transit photometry of the nearby hot-Jupiter HD189733b. The observations were taken with the NICMOS instrument during five transits, with three transits executed with a narrowband filter at 1.87 microns and two performed with a narrowband filter at 1.66 microns. Our observing strategy using narrowband filters is insensitive to the usual HST intra-orbit and orbit-to-orbit measurement of systematic errors, allowing us to accurately and robustly measure the near-IR wavelength dependance of the planetary radius. Our measurements fail to reproduce the Swain et al. absorption signature of atmospheric water below 2 microns at a 5-sigma confidence level. We measure a planet-to-star radius contrast of 0.15498+/-0.00035 at 1.66 microns and a contrast of 0.15517+/-0.00019 at 1.87 microns. Both of our near-IR planetary radii values are in excellent agreement with the levels expected from Rayleigh scattering by sub-micron haze particles, observed at optical wavelengths, indi...

  11. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Lillo-Box, J; Santos, N C; Mancini, L; Figueira, P; Ciceri, S; Henning, Th

    2015-01-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyze its transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet ($M_p=1.37^{+0.48}_{-0.46} M_{\\rm Jup}$), with an estimated radius of $R_p=1.65^{+0.59}_{-0.56} R_{\\rm Jup}$ (uncertainties provided in this work are $3\\sigma$ unless specified). This translates into a sub-Jupiter density. The planet revolves every $\\sim7.8$ days around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter ($b=1.076^{+0.112}_{-0.086}$), being one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of ...

  12. Spectra as windows into exoplanet atmospheres.

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  13. Evolution of Exoplanets and their Parent Stars

    Guillot, Tristan; Morel, Pierre; Havel, Mathieu; Parmentier, Vivien

    2014-01-01

    Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets a...

  14. Observations of Exoplanet Atmospheres

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  15. Exoplanet Detection Methods

    Wright, Jason T

    2012-01-01

    This chapter reviews various methods of detecting planetary companions to stars from an observational perspective, focusing on radial velocities, astrometry, direct imaging, transits, and gravitational microlensing. For each method, this chapter first derives or summarizes the basic observable phenomena that are used to infer the ex- istence of planetary companions, as well as the physical properties of the planets and host stars that can be derived from the measurement of these signals. This chapter then outlines the general experimental requirements to robustly detect the signals us- ing each method, by comparing their magnitude to the typical sources of measurement uncertainty. This chapter goes on to compare the various methods to each other by outlining the regions of planet and host star parameter space where each method is most sensitive, stressing the complementarity of the ensemble of the methods at our disposal. Finally, there is a brief review of the history of the young exoplanet field, from the f...

  16. Eclipsing Binary Science via the Merging of Transit and Doppler Exoplanet Survey Data—A Case Study with the MARVELS Pilot Project and SuperWASP

    Fleming, Scott W.; Maxted, Pierre F. L.; Hebb, Leslie; Stassun, Keivan G.; Ge, Jian; Cargile, Phillip A.; Ghezzi, Luan; De Lee, Nathan M.; Wisniewski, John; Gary, Bruce; Porto de Mello, G. F.; Ferreira, Leticia; Zhao, Bo; Anderson, David R.; Wan, Xiaoke; Hellier, Coel; Guo, Pengcheng; West, Richard G.; Mahadevan, Suvrath; Pollacco, Don; Lee, Brian; Collier Cameron, Andrew; van Eyken, Julian C.; Skillen, Ian; Crepp, Justin R.; Nguyen, Duy Cuong; Kane, Stephen R.; Paegert, Martin; Nicolaci da Costa, Luiz; Maia, Marcio A. G.; Santiago, Basilio X.

    2011-08-01

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.

  17. GTC OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT-P-1b from narrowband spectrophotometry

    Wilson, P A; Nikolov, N; Etangs, A Lecavelier des; Pont, F; Fortney, J J; Ballester, G E; López-Morales, M; Désert, J -M; Vidal-Madjar, A

    2015-01-01

    We present the detection of potassium in the atmosphere of HAT-P-1b using optical transit narrowband photometry. The results are obtained using the 10.4 m Gran Telescopio Canarias (GTC) together with the OSIRIS instrument in tunable filter imaging mode. We observed four transits, two at continuum wavelengths outside the potassium feature, at 6792 {\\AA} and 8844 {\\AA}, and two probing the potassium feature in the line wing at 7582.0 {\\AA} and the line core at 7664.9 {\\AA} using a 12 {\\AA} filter width (R~650). The planet-to-star radius ratios in the continuum are found to be $R_{\\rm{pl}}/R_{\\star}$ = 0.1176 $\\pm$ 0.0013 at 6792 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1168 $\\pm$ 0.0022 at 8844 {\\AA}, significantly lower than the two observations in the potassium line: $R_{\\rm{pl}}/R_{\\star}$ = 0.1248 $\\pm$ 0.0014 in the line wing at 7582.0 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1268 $\\pm$ 0.0012 in the line core at 7664.9 {\\AA}. With a weighted mean of the observations outside the potassium feature $R_{\\rm{pl}}/R_...

  18. Precise Estimates of the Physical Parameters for the Exoplanet System HD-17156 Enabled by HST FGS Transit and Asteroseismic Observations

    Nutzman, Philip; McCullough, Peter R; Charbonneau, David; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Nelan, Edmund P; Brown, Timothy M; Holman, Matthew J

    2010-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors (FGS) on board the Hubble Space Telescope} (HST). We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio R_p/R_s = 0.07454 +/- 0.00035, inclination i=86.49 +0.24/-0.20 deg, and scaled semi-major axis a/R = 23.19 +0.32/-0.27. This last value translates directly to a mean stellar density determination of 0.522 +0.021/-0.018 g cm^-3. Analysis of asteroseismology observations by the companion paper of Gilliland et al. (2009) provides a consistent but significantly refined measurement of the stellar mean density. We compare stellar isochrones to this density estimate and find M_s = 1.275 +/- 0.018 M_sun and a stellar age of $3.37 +0.20/-0.47 Gyr. Using this estimate of M_s and incorporating the density constraint from asteroseismology, we model both the photometry and published radial velocities to estimate the planet radius R_p= 1.0870 +/- 0.0066 ...

  19. The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b

    Nortmann, L; Murgas, F; Dreizler, S; Iro, N; Cabrera-Lavers, A

    2016-01-01

    We observed the hot Jupiter HAT-P-32b (also known as HAT-P-32Ab) to determine its optical transmission spectrum by measuring the wavelength-dependent planet-to-star radius ratios in the region between 518 - 918 nm. We used the OSIRIS instrument at the GTC in long slit spectroscopy mode, placing HAT-P-32 and a reference star in the same slit and obtaining a time series of spectra covering two transit events. Using the best quality data set, we were able to yield 20 narrow-band transit light curves, with each passband spanning a 20 nm wide interval. After removal of all systematic noise signals and light curve modeling the uncertainties for the resulting radius ratios lie between 337 and 972 ppm. The radius ratios show little variation with wavelength suggesting a high altitude cloud layer masking any atmospheric features. Alternatively, a strong depletion in alkali metals or a much smaller than expected planetary atmospheric scale height could be responsible for the lack of atmospheric features. Our result of ...

  20. Exoplanets versus brown dwarfs: the CoRoT view and the future

    Schneider, Jean

    2016-01-01

    CoRoT has detected by transit several tens of objects whose radii run from 1.67 Earth radius. Their mass run from less than 5.7 Earth mass (CoRoT-24 b, Alonso et al. 2014) to 63 Jupiter mass (CoRoT-15 b, Bouchy et al. 2011). One could be tempted to think that more massive the object is, the larger it is in size and that there is some limit in mass and/or radius beyond which objects are not planets but very low mass stars below the 80 Jupiter mass limit to trigger nuclear fusion (namely "brown dwarfs" ). CoRoT findings contribute to the planet versus brown dwarf debate since there is no clear mass-radius relation.

  1. Transiting exoplanets from the CoRoT space mission: XXIV. CoRoT-24: A transiting multi-planet system

    Alonso, R; Endl, M; Almenara, J M; Guenther, E W; Deleuil, M; Hatzes, A; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Cavarroc, C; Cabrera, J; Carpano, S; Csizmadia, Sz; Cochran, W D; Deeg, H J; Díaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Fruth, T; Gandolfi, D; Gillon, M; Grziwa, S; Guillot, T; Hébrard, G; Jorda, L; Léger, A; Lammer, H; Lovis, C; MacQueen, P J; Mazeh, T; Ofir, A; Ollivier, M; Pasternacki, T; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Santos, M Tadeu dos; Tingley, B; Titz-Weider, R; Weingrill, J; Wuchterl, G

    2014-01-01

    We present the discovery of a candidate multiply-transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76d are detected in the CoRoT light curve, around a main sequence K1V star of r=15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7$\\pm$0.4 and 5.0$\\pm$0.5 R_earth respectively. Several radial velocities serve to provide an upper limit of 5.7 M_earth for the 5.11~d signal, and to tentatively measure a mass of 28$^{+11}_{-11}$ M_earth for the object transiting with a 11.76~d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serve to estimate the probability that the observations are caused by transiting Neptune-sized planets as $>$26$\\times$ higher than a blend scenario involving only one transiting planet, and $>$900$\\times$ higher than a scenario involving two blends and no planets....

  2. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b and WASP-142b

    Hellier, C.; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; Wagg, T.; West, R. G.

    2017-03-01

    We describe seven exoplanets transiting stars of brightness V = 10.1-12.4. WASP-130b is a 'warm Jupiter' having an orbital period of 11.6 d around a metal-rich G6 star. Its mass and radius (1.23 ± 0.04 MJup and 0.89 ± 0.03 RJup) support the trend that warm Jupiters have smaller radii than hot Jupiters. WASP-131b is a bloated Saturn-mass planet (0.27 MJup and 1.22 RJup). Its large scaleheight and bright (V = 10.1) host star make it a good target for atmospheric characterization. WASP-132b (0.41 MJup and 0.87 RJup) is among the least irradiated and coolest of WASP planets, having a 7.1-d orbit around a K4 star. WASP-139b is a 'super-Neptune' akin to HATS-7b and HATS-8b, being the lowest mass planet yet found by WASP (0.12 MJup and 0.80 RJup). The metal-rich K0 host star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4-MJup planet in an eccentric (e = 0.047 ± 0.004) 2.2-d orbit. The planet's radius is large (1.4 RJup), but uncertain owing to the grazing transit (b = 0.93). The 10.4-d rotation period of the K0 host star suggests a young age, and the time-scale for tidal circularization is likely to be the lowest of all known eccentric hot Jupiters. WASP-141b (2.7 MJup, 1.2 RJup and P = 3.3 d) and WASP-142b (0.84 MJup, 1.53 RJup and P = 2.1 d) are typical hot Jupiters orbiting metal-rich F stars. We show that the period distribution within the hot-Jupiter bulge does not depend on the metallicity of the host star.

  3. Transiting exoplanets from the CoRoT space mission III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS

    Bouchy, F; Deleuil, M; Loeillet, B; Hatzes, A P; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Benz, W; Bordé, P; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Fridlund, M; Gondoin, P; Guillot, T; Hébrard, G; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Magain, P; Mayor, M; Moutou, C; Ollivier, M; Pätzold, M; Pepe, F; Pont, F; Rauer, H; Rouan, D; Schneider, J; Triaud, A H M J; Udry, S; Wuchterl, G

    2008-01-01

    We report on the spectroscopic transit of the massive hot-Jupiter CoRoT-Exo-2b observed with the high-precision spectrographs SOPHIE and HARPS. By modeling the radial velocity anomaly occurring during the transit due to the Rossiter-McLaughlin (RM) effect, we determine the sky-projected angle between the stellar spin and the planetary orbital axis to be close to zero lambda=7.2+-4.5 deg, and we secure the planetary nature of CoRoT-Exo-2b. We discuss the influence of the stellar activity on the RM modeling. Spectral analysis of the parent star from HARPS spectra are presented.

  4. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; Hori, Y.; Suzuki, R.; Burrows, A.; Henning, T.; Turner, E. L.; McElwain, M. W.; Moro-Martin, A.; Suenaga, T.; Takahashi, Y. H.; Kwon, J.; Lucas, P.; Abe, L.; Brandner, W.; Grady, C. A.; Serabyn, E.

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  5. SOPHIE velocimetry of $\\textit{Kepler}$ transit candidates XII. KOI-1257 b: a highly-eccentric 3-month period transiting exoplanet

    Santerne, A; Deleuil, M; Havel, M; Correia, A C M; Almenara, J -M; Alonso, R; Arnold, L; Barros, S C C; Behrend, R; Bernasconi, L; Boisse, I; Bonomo, A S; Bouchy, F; Bruno, G; Damiani, C; Díaz, R F; Gravallon, D; Guillot, T; Labrevoir, O; Montagnier, G; Moutou, C; Rinner, C; Santos, N C; Abe, L; Audejean, M; Bendjoya, P; Gillier, C; Gregorio, J; Martinez, P; Michelet, J; Montaigut, R; Poncy, R; Rivet, J -P; Rousseau, G; Roy, R; Suarez, O; Vanhuysse, M; Verilhac, D

    2014-01-01

    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the $\\textit{Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d $\\pm$ 3 s and a high eccentricity of 0.772 $\\pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $\\pm$ 0.05 Msun and 0.70 $ \\pm $ 0.07 Msun for the primary and secondary (respectively). This binary system is constrained thanks to a self-consistent modelling of the $\\textit{Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations as well as the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By...

  6. Astrometric exoplanet detection with Gaia

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á. [Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544 (United States); Lindegren, Lennart [Lund Observatory, Lund, Box 43, SE-22100 Sweden (Sweden)

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  7. MEPHISTO - Mapping the Exoplanet Population via High-Contrast Observations

    Apai, Daniel

    The surprising recent discovery of four large-separation super-Jupiters highlighted how little we know about the giant exoplanet population beyond 5 AU. The HR8799bcd system includes three 7-10 jupiter-mass planets at separations > 24 AU. This system is not simply the result of a scaled-up version of the Solar System formation, but suggests a qualitatively different way of super-jupiter formation, perhaps efficient only in initially massive disks. At the same time, these spectacular images demonstrated the opportunity high-contrast imaging has to offer in answering three fundamental questions: 1)How frequent are gas giants and super-Jupiters as a function of host star mass? 2)What are the planet mass and semi-major axis distributions? 3)How frequent are HR8799-like multiple super-jupiter systems? In addition to answering these questions, most large-separation giant planets discovered from ground-based observations today will also be ideal targets for JWST for in-depth spectroscopic characterization. To study the properties of the large-separation giant exoplanet population we developed new high-contrast imaging techniques that work in the 3-4 micron atmospheric window. These ground-based observations reach the most favorable contrasts and sensitivities to giant planets and also remain sensitive to few Gyr-old planets, in contrast to shorter- wavelength observations. We demonstrated the advantage of these techniques in technical papers, on-sky published surveys, on the HR8799bcd planets and by confirming the nature of the planet candidate around Beta Pictoris b (results in press in Science). Here we propose to utilize these well-tested, powerful techniques to significantly extend our sensitive imaging surveys to image all 138 known southern stars around which we are capable of detecting at least 5 Jupiter-mass planets on separations smaller than 70 AU, analogs to the HR8799bcd system. Our goal is to provide a statistically well sampled range of spectral type and

  8. First Temperate Exoplanet Sized Up

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  9. Spectra as Windows into Exoplanet Atmospheres

    Burrows, Adam

    2013-01-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability, This puts a premium on obtaining spectra, and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Though not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focussing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists that, by rapid trial and error, is fast establishing a solid future foundation for a robust sc...

  10. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    Kuzuhara, M; Kudo, T; Janson, M; Kandori, R; Brandt, T D; Thalmann, C; Spiegel, D; Biller, B; Carson, J; Hori, Y; Suzuki, R; Burrows, A; Henning, T; Turner, E L; McElwain, M W; Moro-Martin, A; Suenaga, T; Takahashi, Y H; Kwon, J; Lucas, P; Abe, L; Brandner, W; Egner, S; Feldt, M; Fujiwara, H; Goto, M; Grady, C A; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S S; Hodapp, K W; Ishii, M; Iye, M; Knapp, G R; Matsuo, T; Mayama, S; Miyama, S; Morino, J -I; Nishikawa, J; Nishimura, T; Kotani, T; Kusakabe, N; Pyo, T -S; Serabyn, E; Suto, H; Takami, M; Takato, N; Terada, H; Tomono, D; Watanabe, M; Wisniewski, J P; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary ...

  11. Exoplanet Caught on the Move

    2010-06-01

    observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would

  12. The Hubble Exoplanet Classroom

    Stevens, Laura; Carson, J.; Ruwadi, D.; Low, K.; Jordan, S.; Schneider, G.

    2013-01-01

    We present a status report on the Hubble Exoplanet Classroom, an interactive website designed to engage 8-12th grade students in physical science concepts using the exciting field of exoplanet studies. Addressing national teaching standards, the webpage allows educators to enhance their physical science, physics, and astronomy curriculum with student-driven lessons. The webpage records students' performance on lessons and quizzes and compiles the results, which can be accessed by the instructor using a secure website.

  13. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  14. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.

    2010-01-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  15. Warm Spitzer Photometry of the Transiting Exoplanets CoRoT-1 and CoRoT-2 at Secondary Eclipse

    Deming, Drake; Agol, Eric; Desert, Jean-Michel; Burrows, Adam; Fortney, Jonathan J; Charbonneau, David; Cowan, Nicolas B; Laughlin, Gregory; Langton, Jonathan; Showman, Adam P; Lewis, Nikole K

    2010-01-01

    We measure secondary eclipses of the hot giant exoplanets CoRoT-1 at 3.6 and 4.5 microns, and CoRoT-2 at 3.6 microns, both using Warm Spitzer. We find that the Warm Spitzer mission is working very well for exoplanet science. For consistency of our analysis we also re-analyze archival cryogenic Spitzer data for secondary eclipses of CoRoT-2 at 4.5 and 8 microns. We compare the total data for both planets, including optical eclipse measurements by the CoRoT mission, and ground-based eclipse measurements at 2 microns, to existing models. Both planets exhibit stronger eclipses at 4.5 than at 3.6 microns, which is often indicative of an atmospheric temperature inversion. The spectrum of CoRoT-1 is best reproduced by a 2460K blackbody, due either to a high altitude layer that strongly absorbs stellar irradiance, or an isothermal region in the planetary atmosphere. The spectrum of CoRoT-2 is unusual because the 8 micron contrast is anomalously low. Non-inverted atmospheres could potentially produce the CoRoT-2 spect...

  16. Enabling Participation In Exoplanet Science

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  17. Transiting exoplanets from the CoRoT space mission XVII. The hot Jupiter CoRoT-17b: a very old planet

    Csizmadia, Sz; Deleuil, M; Cabrera, J; Fridlund, M; Gandolfi, D; Aigrain, S; Alonso, R; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Bruntt, H; Carone, L; Carpano, S; Cavarroc, C; Cochran, W; Deeg, H J; Diaz, R F; Dvorak, R; Endl, M; Erikson, A; Ferraz-Mello, S; Fruth, Th; Gazzano, J C; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jehin, E; Jorda, L; Leger, A; Llebaria, A; Lammer, H; Lovis, C; MacQueen, P J; Mazeh, T; Ollivier, M; Paetzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Titz-Weider, R; Wuchterl, G

    2011-01-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of $2.43\\pm0.30$\\Mjup and a radius of $1.02\\pm0.07$\\Rjup, while its mean density is $2.82\\pm0.38$ g/cm$^3$. CoRoT-17b is in a circular orbit with a period of $3.7681\\pm0.0003$ days. The host star is an old ($10.7\\pm1.0$ Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain $\\sim$380 earth masses of heavier elements.

  18. The history of exoplanet detection.

    Perryman, Michael

    2012-10-01

    I summarize the early developments of the more quantitative aspects of exoplanet detection. After a brief overview of the observational methods currently applied to exoplanet searches and a summary of the first true exoplanet detections resulting from these various techniques, the more relevant historical background is organized according to the observational techniques that are currently most relevant.

  19. WASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP

    Faedi, F; Barros, S C C; Brown, D; Cameron, A Collier; Doyle, A P; Gillon, M; Chew, Y Gomez Maqueo; Hebrard, G; Lendl, M; Liebig, C; Smalley, B; Triaud, A H M J; West, R G; Wheatley, P J; Alsubai, K A; Anderson, D R; Armstrong, D J; Bento, J; Bochinski, J; Bouchy, F; Busuttil, R; Fossati, L; Fumel, A; Haswell, C A; Hellier, C; Holmes, S; Jehin, E; Kolb, U; McCormac, J; Miller, G R M; Moutou, C; Norton, A J; Parley, N; Queloz, D; Skillen, I; Smith, A M S; Udry, S; Watson, C

    2012-01-01

    We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \\mj and radius 1.653$^{+0.090}_{-0.083}$ \\rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \\mj and $0.672^{+0.049}_{-0.046}$ \\mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \\rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \\rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively...

  20. Atmospheric Circulation of Exoplanets

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  1. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  2. The Role of Amateur Astronomers in Exoplanet Research

    Conti, Denns M.

    2016-05-01

    Because of recent technological advances in imaging equipment and processing software, research grade characterization of exoplanet transits is now within the realm of amateur astronomers. This paper will describe the current state of exoplanet observing by amateur astronomers and the best practices used for conducting such observations. In addition, a pipeline will be described that has proved successful in obtaining high quality, exoplanet science data from these observations. The paper will also describe a major collaboration currently underway between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. Finally, the growing need for exoplanet observations by amateur astronomers will be discussed, as well as an example of their role in characterizing other "exo-objects."

  3. Impact of Sulfur Hazes on the Reflected Light Spectra of Giant Exoplanets

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin; Robinson, Tyler D.; Lewis, Nikole K.

    2017-01-01

    Recent work has shown that photochemical hazes composed of elemental sulfur and its allotropes may arise in the atmospheres of warm and temperate giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum using a suite of established radiative-convective, cloud, and albedo models, and how this may impact future direct imaging missions, such as WFIRST. For Jupiter-massed planets, photochemical destruction of H2S results in the production of ~1 ppmv of S8 between 100 and 0.1 mbar. The S8 mixing ratio is largely independent of the stellar UV flux, vertical mixing rates, and atmospheric temperature for expected ranges of those values, such that the S8 haze mass is dependent only on the S8 supersaturation, controlled by the local temperature. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ~0.7 due to its purely scattering nature. Strong absorption by the haze shortward of 0.4 μm results in albedos discriminating between a sulfur haze and any other reflective material, such as water ice, will require observations shortward of 0.4 μm, which is currently beyond WFIRST's grasp.

  4. The Optical Design of CHARIS: An Exoplanet IFS for the Subaru Telescope

    Peters-Limbach, Mary; Groff, Tyler; Kasdin, N. Jeremy; Driscoll, Dave; Galvin, Michael; Foster, Allen; Carr, Michael; LeClerc, Dave; Fagan, Rad; McElwain, Michael; Knapp, Gillian; Brandt, Timothy; Janson, Markus; Guyone, Olivier; Jovanovic, Nemanja; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2013-01-01

    High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138×138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 micrometers) and will feature two spectral resolution modes of R is approximately 18 (low-res mode) and R is approximately 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.

  5. Exoplanet's Atmospheres Characteristics vs. Exoplanet's Orbital Elements

    Molaverdikhani, Karan

    2009-10-01

    400 years after Galileo Galilei was detected Jovian system, we know about 400 exoplanets in other stellar systems. But we identify just about their major properties like some of orbital elements, planet's radii or density. Also, there are many scientists who interested in searching for life or habitability on these planets. They are working in different ways such as planetary formation, planetary orbital stability or immigration, HabStars, composition of atmospheres, most probable zone in sky for exoplanets detection, etc. In this research we distinct and defined some main characteristics of terrestrial planet's atmospheres with surveying on solar system's planets and matching with current theorems on atmosphere formation. On the other hand, we were modeled Mars, Venus, Titan, single Hadley Earth and virtual Venus with different tilt angel (applying Global Circulation Modeling) to finding a critical limit on Polar Vortex formation in our last research. With extension this method on hypothetical terrestrial planets in constraint mass between 0.7 to 2.5 Earth's mass on Green Belt and applying host stars from 0.5 to 1.5 Sun's mass, we found some limitations on planet's atmosphere formation and estimation values of atmosphere's main characteristics.

  6. Exoplanet atmosphere highlights

    García Muñoz, A.

    2017-03-01

    In only two decades since the first identification of a planet outside the Solar System,and about one since the pioneering detection of an atmosphere, exoplanet science has established itself as a mature field of astrophysics. As the search of as-of-yet undiscovered planets goes on, the field is steadily expanding its focus from detection only to detection and characterization. The information to be grasped from exoplanet atmospheres provides valuable insight into the formation and evolution of the planets and, in turn, into how unique our Solar System is. Ultimately, a dedicated search for life in these distant worlds will have to deal with the information encoded in their atmospheres. In recent years there has been rapid progress on both the theoretical and observational fronts in the investigation of exoplanet atmospheres. Theorists are predicting the prevailing conditions (temperature, chemical composition, cloud occurrence, energy transport) in these objects' envelopes, and are building the frameworks with which to approach the interpretation of observables. In parallel, observers have consolidated the remote sensing techniques that were utilized during the early years, and are now venturing into techniques that hold great promise for the future. With a number of space missions soon to fly and ground-based telescopes and instruments to be commissioned, all of them conceived during the exoplanet era, the field is set to experience unprecedented progress.

  7. An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

    Tinetti, Giovanna; Tennyson, Jonathan; Tessenyi, Marcell;

    2012-01-01

    The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a 1.2 m class telescope. The mission is currently being studied...

  8. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.;

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in......We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0...

  9. Using SPICA Space Telescope to characterize Exoplanets

    Goicoechea, J R; Tinetti, G; Nakagawa, T; Enya, K; Tamura, M; Ferlet, M; Isaak, K G; Wyatt, M; Aylward, A D; Barlow, M; Beaulieu, J P; Boccaletti, A; Cernicharo, J; Cho, J; Claudi, R; Jones, H; Lammer, H; Léger, A; Martín-Pintado, J; Miller, S; Najarro, F; Pinfield, D; Schneider, J; Selsis, F; Stam, D M; Tennyson, J; Viti, S; White, G

    2008-01-01

    We present the 3.5m SPICA space telescope, a proposed Japanese-led JAXA-ESA mission scheduled for launch around 2017. The actively cooled ( 18 um). SPICA is one of the few space missions selected to go to the next stage of ESA's Cosmic Vision 2015-2025 selection process. In this White Paper we present the main specifications of the three instruments currently baselined for SPICA: a mid-infrared (MIR) coronagraph (~3.5 to ~27 um) with photometric and spectral capabilities (R~200), a MIR wide-field camera and high resolution spectrometer (R~30,000), and a far-infrared (FIR ~30 to ~210 um) imaging spectrometer - SAFARI - led by a European consortium. We discuss their capabilities in the context of MIR direct observations of exo-planets (EPs) and multiband photometry/high resolution spectroscopy observations of transiting exo-planets. We conclude that SPICA will be able to characterize the atmospheres of transiting exo-planets down to the super-Earth size previously detected by ground- or space-based observatorie...

  10. Mass-radius relationships of rocky exoplanets

    Sohl, F; Rauer, H

    2012-01-01

    Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planet's mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.

  11. Leveraging Ensemble Dynamical Properties to Prioritize Exoplanet Follow-Up Observations

    Ballard, Sarah

    2017-01-01

    The number of transiting exoplanets now exceeds several thousand, enabling ensemble studies of the dynamical properties of exoplanetary systems. We require a mixture model of dynamical conditions (whether frozen in from formation or sculpted by planet-planet interactions) to recover Kepler's yield of transiting planets. Around M dwarfs, which will be predominate sites of exoplanet follow-up atmospheric study in the next decade, even a modest orbital eccentricity can sterilize a planet. I will describe efforts to link cheap observables, such as number of transiting planets and presence of transit timing variations, to eccentricity and mutual inclination in exoplanet systems. The addition of a second transiting planet, for example, halves the expected orbital eccentricity. For the vast majority of TESS targets, the light curve alone will furnish the sum total of data about the exoplanet. Extracting information about orbital properties from these light curves will help prioritize precious follow-up resources.

  12. Chemical modeling of exoplanet atmospheres

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  13. Exoplanet Transits Registered at the Universidad de Monterrey Observatory. Part I: HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b

    Sada, Pedro V

    2016-01-01

    Forty transits of the exoplanets HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b were recorded with the 0.36m telescope at the Universidad de Monterrey Observatory. The images were captured with a standard Johnson-Cousins Rc and Ic and Sloan z' filters and processed to obtain individual light curves of the events. These light curves were successfully combined for each system to obtain a resulting one of higher quality, but with a slightly larger time sampling rate. A reduction by a factor of about four in per-point scatter was typically achieved, resulting in combined light curves with a scatter of ~1 mmag. The noise characteristics of the combined light curves were verified by comparing Allan variance plots of the residuals. The combined light curves for each system, along with radial velocity measurements from the literature when available, were modeled using a Monte Carlo method to obtain the essential parameters that characterize the systems. Our results for all these systems confirm the derived t...

  14. Transiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf

    Bordé, P; Deleuil, M; Cabrera, J; Jorda, L; Lovis, C; Csizmadia, S; Aigrain, S; Almenara, J M; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Benz, W; Bonomo, A S; Bruntt, H; Carone, L; Carpano, S; Deeg, H; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gazzano, J -C; Gillon, M; Guenther, E; Guillot, T; Guterman, P; Hatzes, A; Havel, M; Hébrard, G; Lammer, H; Léger, A; Mayor, M; Mazeh, T; Moutou, C; Pätzold, M; Pepe, F; Ollivier, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Udry, S; Weingrill, J; Wuchterl, G

    2010-01-01

    We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 RJ, a mass of 0.22 +/- 0.03 MJ, and therefore a mean density 1.6 +/- 0.1 g/cm^3. With 67 % of the size of Saturn and 72 % of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g/cm^3). We estimate its content in heavy elements to be 47-63 Earth masses, and the mass of its hydrogen-helium envelope to be 7-23 Earth masses. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than about 0.1 % over an assumed integrated lifetime of 3~Ga.

  15. Dynamical Constraints on Exoplanets

    Horner, Jonti; Tinney, Chris; Hinse, Tobias C; Marshall, Jonathan P

    2013-01-01

    Dynamical studies of new exoplanet systems are a critical component of the discovery and characterisation process. Such studies can provide firmer constraints on the parameters of the newly discovered planets, and may even reveal that the proposed planets do not stand up to dynamical scrutiny. Here, we demonstrate how dynamical studies can assist the characterisation of such systems through two examples: QS Virginis and HD 73526.

  16. Detecting Exomoons Around Self-luminous Giant Exoplanets Through Polarization

    Sengupta, Sujan

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time re...

  17. Discriminating Between Cloudy, Hazy and Clearsky Exoplanets Using Refraction

    Misra, Amit

    2014-01-01

    We propose a method to distinguish between cloudy, hazy and clearsky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detectio...

  18. Transiting exoplanets from the CoRoT space mission. XXI. CoRoT-19b: a low density planet orbiting an old inactive F9V-star

    Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.; Mazeh, T.; Rouan, D.; Gibson, N.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J. M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Cabrera, J.; Carone, L.; Carpano, S.; Cavarroc, C.; Deeg, H. J.; Deleuil, M.; Dreizler, S.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Lammer, H.; Léger, A.; Moutou, C.; Nortmann, L.; Ollivier, M.; Ofir, A.; Pasternacki, Th.; Pätzold, M.; Parviainen, H.; Queloz, D.; Rauer, H.; Samuel, B.; Santerne, A.; Schneider, J.; Tal-Or, L.; Tingley, B.; Weingrill, J.; Wuchterl, G.

    2012-01-01

    Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims: The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods: After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results: We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M∗ = 1.21 ± 0.05 M⊙ and radius R∗ = 1.65 ± 0.04 R⊙. The planet has a mass of MP = 1.11 ± 0.06 MJup and radius of RP = 1.29 ± 0.03 RJup. The resulting bulk density is only ρ = 0.71 ± 0.06 g cm-3, which is much lower than that for Jupiter. Conclusions: The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a ≈30% larger radius. The CoRoT space mission, launched on

  19. Trawling for transits in a sea of noise: A Search for Exoplanets by Analysis of WASP Optical Lightcurves and Follow-up (SEAWOLF)

    Gaidos, E; Lepine, S; Colon, K D; Maravelias, G; Narita, N; Chang, E; Beyer, J; Fukui, A; Armstrong, J D; Zezas, A; Fulton, B J; Mann, A W; West, R G; Faedi, F

    2013-01-01

    Studies of transiting Neptune-size planets orbiting close to nearby bright stars can inform theories of planet formation because mass and radius and therefore mean density can be accurately estimated and compared with interior models. The distribution of such planets with stellar mass and orbital period relative to their Jovian-mass counterparts can test scenarios of orbital migration, and whether "hot" (period < 10d) Neptunes evolved from "hot" Jupiters as a result of mass loss. We searched 1763 late K and early M dwarf stars for transiting Neptunes by analyzing photometry from the Wide Angle Search for Planets and obtaining high-precision ($<10^{-3}$) follow-up photometry of stars with candidate transit signals. One star in our sample (GJ 436) hosts a previously reported hot Neptune. We identified 92 candidate signals among 80 other stars and carried out 148 observations of predicted candidate transits with 1-2 m telescopes. Data on 70 WASP signals rules out transits for 39 of them; 28 other signals a...

  20. WASP-37b: A 1.8 M J exoplanet transiting a metal-poor star

    Simpson, E. K.; Faedi, F.; Barros, S. C. C.; Brown, D. J. A.; Cameron, A. Collier; Hebb, L.; Pollacco, D.; Smalley, B.; Todd, I.; Butters, O. W.; Hébrard, G.; McCormac, J.; Miller, G. R. M.; Santerne, A.; Street, R. A.

    2011-01-01

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m v = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T 0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018,sub>0.0017 d. The planetary companion has a mass M p = 1.80 ± 0.17 M J and radius R p = 1.16+0.070.06 R J, yielding a mean density of 1.15+0.120.15 ρJ. From a spectral analysis, we find that the...

  1. Exoplanet Transmission Spectroscopy using KMOS

    Parviainen, Hannu; Thatte, Niranjan; Barstow, Joanna K; Evans, Thomas M; Gibson, Neale

    2015-01-01

    KMOS (K-Band Multi Object Spectrograph) is a novel integral field spectrograph installed in the VLT's ANTU unit. The instrument offers an ability to observe 24 2.8"$\\times$2.8" sub-fields positionable within a 7.2' patrol field, each sub-field producing a spectrum with a 14$\\times$14-pixel spatial resolution. The main science drivers for KMOS are the study of galaxies, star formation, and molecular clouds, but its ability to simultaneously measure spectra of multiple stars makes KMOS an interesting instrument for exoplanet atmosphere characterization via transmission spectroscopy. We set to test whether transmission spectroscopy is practical with KMOS, and what are the conditions required to achieve the photometric precision needed, based on observations of a partial transit of WASP-19b, and full transits of GJ 1214b and HD 209458b. Our analysis uses the simultaneously observed comparison stars to reduce the effects from instrumental and atmospheric sources, and Gaussian processes to model the residual system...

  2. Climates of Oblique Exoplanets

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  3. RADIAL VELOCITY ECLIPSE MAPPING OF EXOPLANETS

    Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-07-20

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  4. CHEOPS: CHaracterising ExOPlanet Satellite

    Isaak, K. G.

    2015-10-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. CHEOPS will provide the unique capability of determining radii to ~10% accuracy for a subset of those planets in the super-Earth to Neptune mass range. The high photometric precision of CHEOPS will be achieved using a photometer covering the 0.4 - 1.1um waveband and designed around a single frame-transfer CCD which is mounted in the focal plane of a 30 cm equivalent aperture diameter, f/5 on-axis Ritchey-Chretien telescope. Key to reaching the required performance is rejection of straylight from the Earth that is achieved using a specially designed optical baffle. CHEOPS is the first S-class mission in ESA's Cosmic Vision 2015-2025, and is currently planned to be launch-ready by the end of 2017. The mission is a partnership between Switzerland and ESA's science programme, with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. In this presentation I will give a scientific and technical overview of the mission, as well as an update on the status of the project.

  5. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  6. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    Pätzold, M.; Endl, M.; Csizmadia, Sz.;

    2012-01-01

    CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observ...

  7. Transiting exoplanets from the CoRoT space mission VI. CoRoT-Exo-3b: The first secure inhabitant of the brown-dwarf desert

    Deleuil, M; Alonso, R; Bouchy, F; Rouan, D

    2008-01-01

    Context. The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims. The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. Methods. A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations. Results. CoRoT-Exo-3b has a radius of 1.01+-0.07 RJup and transits around its F3-type primary every 4.26 days in a synchronous orbit. Its mass of 21.66+-1.0 MJup, density of 26.4+-5.6 g cm^-3, and surface gravity of log g = 4.72 clearly distinguish it from the regular close-in planet popula...

  8. New exoplanets from the SuperWASP-North survey

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  9. The CoRoT mission's exoplanet program

    Deeg H.J.

    2013-04-01

    Full Text Available The CoRoT space observatory was launched at the end of 2006 and has been delivering scientific data from early 2007 until its recent interruption, on 2 Nov. 2012, leading to the discovery of over 30 transiting planets. Here we give an overview over the most relevant results from CoRoT's exoplanet detection program.

  10. Transiting exoplanets from the CoRoT space mission - XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    Rouan, D; Moutou, C; Deleuil, M; Fridlund, M; Ofir, A; Havel, M; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Bonomo, A; Bordé, P; Bouchy, F; Cabrera, J; Cavarroc, C; Csizmadia, Sz; Deeg, H; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Léger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Ollivier, M; Pätzold, M; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \\pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 \\pm 0.3 MJup, a radius of Rpl = 1.05 \\pm 0.13 RJup, a density of \\approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 \\pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass M\\star = 1.14 \\pm 0.08 M\\odot, a radius R\\star = 1. 61 \\pm 0.18 R\\odot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the r...

  11. Transiting exoplanets from the CoRoT space mission: VII. The "hot-Jupiter"-type planet CoRoT-5b

    Rauer, H; Csizmadia, Sz; Deleuil, M; Alonso, R; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Bruntt, H; Cabrera, J; Carone, L; Carpano, S; De la Reza, R; Deeg, H J; Dvorak, R; Erikson, A; Fridlund, M; Gandolfi, D; Gillon, M; Guillot, T; Günther, E; Hatzes, A; Hébrard, G; Kabath, P; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Paetzold, M; Pont, F; Rabus, M; Renner, S; Rouan, D; Shporer, A; Samuel, B; Schneider, J; Triaud, A H M J; Wuchterl, G

    2009-01-01

    Aims. The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the "alarm-mode" in parallel to the ongoing target field monitoring. CoRoT's first planets have been detected in this mode. Methods. The CoRoT raw lightcurves are filtered for orbital residuals, outliers, and low-frequency stellar signals. The phase folded lightcurve is used to fit the transit signal and derive the main planetary parameters. Radial velocity follow-up observations were initiated to secure the detection and to derive the planet mass. Results. We report the detection of CoRoT-5b, detected during observations of the LRa01 field, the first long-duration field in the galactic anticenter direction. CoRoT-5b is a "hot Jupiter-type" planet with a radius of 1.388(+0.046, -0.047) R_Jup, a mass of 0.467(+0.047, -0.024) M_Jup, and therefore, a mean density of 0.21...

  12. Characterizing Exoplanets with WFIRST

    Robinson, Tyler D.; Stapelfeldt, Karl R.; Marley, Mark S.; Marchis, Franck; Fortney, Jonathan J.

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission is expected to be equipped with a Coronagraph Instrument (CGI) that will study and explore a diversity of exoplanets in reflected light. Beyond being a technology demonstration, the CGI will provide our first glimpses of temperate worlds around our nearest stellar neighbors. In this presentation, we explore how instrumental and astrophysical parameters will affect the ability of the WFIRST/CGI to obtain spectral and photometric observations that are useful for characterizing its planetary targets. We discuss the development of an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. To be consistent with planned technologies, we assume a baseline set of telescope and instrument parameters that include a 2.4 meter diameter primary aperture, an up-to-date filter set spanning the visible wavelength range, a spectroscopic wavelength range of 600-970 nm, and an instrument spectral resolution of 70. We present applications of our baseline model to a variety of spectral models of different planet types, emphasizing warm jovian exoplanets. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization—gas giants with extensive water vapor clouds—we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to detect key methane absorption bands to exozodiacal light levels. We conclude with a discussion of the opportunities for characterizing smaller, potentially rocky, worlds under a “rendezvous” scenario, where an external starshade is later paired with

  13. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.;

    2015-01-01

    in the characterization of host stars and their planetary systems. Examples include the precise estimation of the fundamental properties of stellar hosts, the obliquity determination of planetary systems, or the orbital eccentricity determination via asterodensity profiling. The Transiting Exoplanet Survey Satellite...... and planetary populations, we investigate the asteroseismic yield of the mission, placing particular emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done both for the cohort of target stars (observed at a 2-min cadence), which will mainly involve low...

  14. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  15. Photometric stability analysis of the Exoplanet Characterisation Observatory

    Waldmann, I P; Swinyard, B; Tinetti, G; Amaral-Rogers, A; Spencer, L; Tessenyi, M; Ollivier, M; Foresto, V Coudé du

    2013-01-01

    Photometric stability is a key requirement for time-resolved spectroscopic observations of transiting extrasolar planets. In the context of the Exoplanet Characterisation Observatory (EChO) mission design, we here present and investigate means of translating spacecraft pointing instabilities as well as temperature fluctuation of its optical chain into an overall error budget of the exoplanetary spectrum to be retrieved. Given the instrument specifications as of date, we investigate the magnitudes of these photometric instabilities in the context of simulated observations of the exoplanet HD189733b secondary eclipse.

  16. Discovering new worlds: a review of signal processing methods for detecting exoplanets from astronomical radial velocity data

    Khan, Muhammad Salman; Yoma, Nestor Becerra

    2016-01-01

    Exoplanets, short for `extra solar planets', are planets outside our solar system. They are objects with masses less than around 15 Jupiter-masses that orbit stars other than the Sun. They are small enough so they can not burn deuterium in their cores, yet large enough that they are not so called `dwarf planets' like Pluto. To discover life elsewhere in the universe, particularly outside our own solar system, a good starting point would be to search for planets orbiting nearby Sun-like stars, since the only example of life we know of thrives on a planet we call Earth that orbits a G-type dwarf star. Furthermore, understanding the population of exoplanetary systems in the nearby solar neighbourhood allows us to understand the mechanisms that built our own solar system and gave rise to the conditions necessary for our tree of life to flourish. Signal processing is an integral part of exoplanet detection. From improving the signal-to-noise ratio of the observed data to applying advanced statistical signal proces...

  17. Doppler tomography of transiting exoplanets: A prograde, low-inclined orbit for the hot Jupiter CoRoT-11b

    Gandolfi, Davide; Endl, Michael; Lanza, Antonino F; Damiani, Cilia; Alonso, Roi; Cochran, William D; Deleuil, Magali; Fridlund, Malcolm; Hatzes, Artie P; Guenther, Eike W

    2012-01-01

    We report the detection of the Doppler shadow of the transiting hot Jupiter CoRoT-11b. Our analysis is based on line-profile tomography of time-series, Keck/HIRES high-resolution spectra acquired during the transit of the planet. We measured a sky-projected, spin-orbit angle of 0.1 +/- 2.6 degrees, which is consistent with a very low-inclined orbit with respect to the stellar rotation axis. We refined the physical parameters of the system using a Markov chain Monte Carlo simultaneous fitting of the available photometric and spectroscopic data. An analysis of the tidal evolution of the system shows how the currently measured obliquity and its uncertainty translate into an initial absolute value of less than about 10 degrees on the zero-age main sequence, for an expected average modified tidal quality factor of the star Q'* > 4 x 10^6. This is indicative of an inward migration scenario that would not have perturbed the primordial low obliquity of CoRoT-11b. Taking into account the effective temperature and mass...

  18. Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Léger, A; Schneider, J; Barge, P; Fridlund, M; Samuel, B; Ollivier, M; Günther, E; Deleuil, M; Deeg, H J; Auvergne, M; Alonso, R; Aigrain, S; Alapini, A; Almenara, J M; Baglin, A; Barbieri, M; Bruntt, H; Borde, P; Bouchy, F; Cabrera, J; Catala, C; Carone, L; Carpano, S; Csizmadia, Sz; Dvorak, R; Erikson, A; Ferraz-Mello, S; Foing, B; Fressin, F; Gandolfi, D; Gillon, M; Gondoin, Ph; Grasset, O; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Lammer, H; Llebaria, A; Loeillet, B; Mayor, M; Mazeh, T; Moutou, C; Paetzold, M; Pont, F; Queloz, D; Rauer, H; Renner, S; Samadi, R; Shporer, A; Sotin, Ch; Tingley, B; Wuchterl, G

    2009-01-01

    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 ris...

  19. The search for exomoons and the characterization of exoplanet atmospheres

    Campanella, Giammarco

    2009-01-01

    Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. A review on the current situation of exoplanet characterization is presented in Chapter 3. We focus on the characterization of transiting planets orbiting very close to their parent star since for them we can already probe their atmospheric constituents. By contrast, the second part of the Chapter is dedicated to the search for extraterrestrial life, both within and beyond the Solar System. The characteristics of the Habitable Zone and the markers for the presence of life (biosignatures) are detailed. In Chapter 4 ...

  20. Exoplanets and Multiverses (Abstract)

    Trimble, V.

    2016-12-01

    (Abstract only) To the ancients, the Earth was the Universe, of a size to be crossed by a god in a day, by boat or chariot, and by humans in a lifetime. Thus an exoplanet would have been a multiverse. The ideas gradually separated over centuries, with gradual acceptance of a sun-centered solar system, the stars as suns likely to have their own planets, other galaxies beyond the Milky Way, and so forth. And whenever the community divided between "just one' of anything versus "many," the "manies" have won. Discoveries beginning in 1991 and 1995 have gradually led to a battalion or two of planets orbiting other stars, very few like our own little family, and to moderately serious consideration of even larger numbers of other universes, again very few like our own. I'm betting, however, on habitable (though not necessarily inhabited) exoplanets to be found, and habitable (though again not necessarily inhabited) universes. Only the former will yield pretty pictures.

  1. Lightest exoplanet yet discovered

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  2. Tidal Evolution of Exoplanets

    Correia, Alexandre C M

    2010-01-01

    Tidal effects arise from differential and inelastic deformation of a planet by a perturbing body. The continuous action of tides modify the rotation of the planet together with its orbit until an equilibrium situation is reached. It is often believed that synchronous motion is the most probable outcome of the tidal evolution process, since synchronous rotation is observed for the majority of the satellites in the Solar System. However, in the 19th century, Schiaparelli also assumed synchronous motion for the rotations of Mercury and Venus, and was later shown to be wrong. Rather, for planets in eccentric orbits synchronous rotation is very unlikely. The rotation period and axial tilt of exoplanets is still unknown, but a large number of planets have been detected close to the parent star and should have evolved to a final equilibrium situation. Therefore, based on the Solar System well studied cases, we can make some predictions for exoplanets. Here we describe in detail the main tidal effects that modify the...

  3. Kepler Observations of Three Pre-launch Exoplanet Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet

    Howell, Steve B.; Rowe, Jason F.; Sherry, William; von Braun, Kaspar; Ciardi, David R.; Bryson, Stephen T.; Feldmeier, John J.; Horch, Elliott; van Belle, Gerard T.

    2010-12-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R Jupiter in a 3.9 day orbit.

  4. Undercover Stars Among Exoplanet Candidates

    2005-03-01

    Very Large Telescope Finds Planet-Sized Transiting Star Summary An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey. The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days. This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets. In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers. PR Photo 06a/05: Brightness "Dip" and Velocity Variations of OGLE-TR-122. PR Photo 06b/05: Properties of Low-Mass Stars and Planets. PR Photo 06c/05: Comparison Between OGLE-TR-122b, Jupiter and the Sun. The OGLE Survey When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star's light from our view [1]. These "planetary transits" are of great interest as they allow astronomers to measure in a unique way the mass and the radius of exoplanets. Several surveys are therefore underway which attempt to find these faint signatures of other worlds. One of these programmes is the OGLE survey which was originally devised to detect microlensing

  5. Transiting exoplanets from the CoRoT space mission XXV. CoRoT-27b: a massive and dense planet on a short-period orbit

    Parviainen, H; Deleuil, M; Moutou, C; Deeg, H J; Ferraz-Mello, S; Samuel, B; Csizmadia, Sz; Pasternacki, T; Wuchterl, G; Havel, M; Fridlund, M; Agnus, R; Tingley, B; Aigrain, S; Almenara, J M; Alonso, R; Baglin, A; Barros, S; Bordé, A S P; Bouchy, F; Cabrera, J; Díaz, R; Dvorak, R; Erikson, A; Guillot, T; Hatzes, A; Hébrard, G; Mazeh, T; Montagnier, G; Ofir, A; Ollivier, M; Pätzold, M; Rauer, H; Rouan, D; Santerne, A; Schneider, J

    2014-01-01

    We report the discovery of a massive and dense transiting planet CoRoT-27b on a 3.58 day orbit around a 4.2 Gyr-old G2~star. The planet candidate was identified from the CoRoT photometry, and was confirmed as a planet with ground-based spectroscopy. The confirmation of the planet candidate is based on radial velocity observations combined with imaging to rule out blends. The characterisation of the planet and its host star is carried out using a Bayesian approach where all the data (CoRoT photometry, radial velocities, and spectroscopic characterisation of the star) are used jointly. The Bayesian analysis includes a study whether the assumption of white normally distributed noise holds for the CoRoT photometry, and whether the use of a non-normal noise distribution offers advantages in parameter estimation and model selection. CoRoT-27b has a mass of $10.39 \\pm 0.55$ $\\mathrm{M}_{\\rm Jup}$, a radius of $1.01 \\pm 0.04$ $\\mathrm{R}_{\\rm Jup}$, a mean density of $12.6_{-1.67}^{+1.92}$ $\\mathrm{g\\,cm^{-3}}$, and ...

  6. Transiting exoplanets from the CoRoT space mission IV: CoRoT-Exo-4b: A transiting planet in a 9.2 day synchronous orbit

    Aigrain, S; Ollivier, M; Pont, F; Jorda, L; Almenara, J M; Alonso, R; Barge, P; Borde, P; Bouchy, F; Deeg, H; De la Reza, R; Deleuil, M; Dvorak, R; Erikson, A; Fridlund, M; Gondoin, P; Gillon, M; Guillot, T; Hatzes, A; Lammer, H; Lanza, A F; Léger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Paetzold, M; Pinte, C; Queloz, D; Rauer, H; Rouan, D; Schneider, J; Wuchter, G; Zucker, S

    2008-01-01

    CoRoT, the first space-based transit search, provides ultra-high precision light curves with continuous time-sampling over periods, of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this letter, we report on the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and to determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability around each transit, the transit light curve was analysed to determine the transit parameters. A discrete auto-correlation function method was used to derive the rotation period of the star from the out-of-transit light curve. We derive periods for the planet's orbit and star's rotation of 9.20205 +/- 0.00037 and 8.87 +/- 1.12 days resp...

  7. A Cubesat Payload for Exoplanet Detection

    Iuzzolino, M.; Accardo, D.; Rufino, G.; Oliva, E.; Tozzi, A.; Schipani, P.

    2017-03-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to 0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  8. A Cubesat Payload for Exoplanet Detection

    Marcella Iuzzolino

    2017-03-01

    Full Text Available The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE, the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  9. Exploring Exoplanet Populations with NASA's Kepler Mission

    Batalha, Natalie M

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star-type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first three years of data, 100 of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane) which is improving as follow-up observations continue. Dynamical (e.g. velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting wit...

  10. Exploring exoplanet populations with NASA's Kepler Mission.

    Batalha, Natalie M

    2014-09-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  11. Characterization of exoplanet hosts

    Valenti Jeff A.

    2013-04-01

    Full Text Available Spectroscopic analysis of exoplanet hosts and the stellar sample from which they are drawn provides abundances and other properties that quantitively constrain models of planet formation. The program Spectroscopy Made Easy (SME determines stellar parameters by fitting observed spectra, though line lists must be selected wisely. For giant planets, it is now well established that stars with higher metallicity are more likely to have detected companions. Stellar metallicity does not seem to affect the formation and/or migration of detectable planets less massive than Neptune, especially when considering only the most massive planet in the system. In systems with at least one planet less than 10 times the mass of Earth, the mass of the most massive planet increases dramatically with host star metallicity. This may reflect metallicity dependent timescales for core formation, envelope accretion, and/or migration into the detection zone.

  12. Geoengineering on exoplanets

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  13. Structure of exoplanets

    Spiegel, David S.; Fortney, Jonathan J.; Sotin, Christophe

    2014-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  14. The Structure of Exoplanets

    Spiegel, David S; Sotin, Christophe

    2013-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our Solar System are merely possible outcomes of planetary system formation and evolution, and conceivably not even terribly common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are known to, and speculated to, exist in exoplanetary systems -- from mostly degenerate objects that are more than 10 times as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of the Earth.

  15. Coreless Terrestrial Exoplanets

    Elkins-Tanton, L

    2008-01-01

    Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core--planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements.

  16. Results from the Exoplanet Search Programmes with BEST and TEST

    Eislöffel, J; Rauer, H; Voss, H; Erikson, A; Eigmueller, P; Günther, E; Eisloeffel, Jochen; Hatzes, Artie P.; Rauer, Heike; Voss, Holger; Erikson, Anders; Eigmueller, Philipp; Guenther, Eike

    2006-01-01

    Thueringer Landessternwarte Tautenburg (TLS) has started to operate a small dedicated telescope - the Tautenburg Exoplanet Search Telescope (TEST) - searching for transits of extrasolar planets in photometric time series observations. In a joint effort with the Berlin Exoplanet Search Telescope (BEST) operated by the Institut fuer Planetenforschung of the "Deutsches Zentrum fuer Luft- und Raumfahrt (DLR)" at the Observatoire de Haute-Provence (OHP), France, two observing sites are used to optimise transit search. Here, we give a short overview of these systems and the data analysis. We describe a software pipeline that we have set up to identify transit events of extrasolar planets and variable stars in time series data from these and other telescopes, and report on some first results.

  17. The study of exoplanets and protoplanetary discs in the Main astronomical observatory of NAS of Ukraine

    Kuznyetsova, Yu. G.; Krushevska, V. N.; Zakhozhay, O. V.; Matsiaka, O. M.; Vidmachenko, A. P.; Shliakhetskaya, Ya. O.; Andreev, M. V.; Romaniuk, Ya. O.

    2016-10-01

    Long-term spectral and photometric observations of transit and nontransit exoplanet systems are carried out in MAO NAS of Ukraine. On the base of obtained data we study the influence of exoplanets on chromospherical activity of the host stars, model the light curves, calculate exoplanet system's parameters and search planets in eclipsing binary star's systems. In the field of protoplanetary disc researches it was developed a new algorithm for calculation of the energy distribution in spectra of systems containing a spherical central source and a surrounding protoplanetary disc.

  18. Illusion and reality in the atmospheres of exoplanets

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  19. The NASA Exoplanet Exploration Program

    Hudgins, Douglas M.; Blackwood, Gary H.; Gagosian, John S.

    2015-12-01

    The NASA Exoplanet Exploration Program (ExEP) is chartered to implement the NASA space science goals of detecting and characterizing exoplanets and to search for signs of life. The ExEP manages space missions, future studies, technology investments, and ground-based science that either enables future missions or completes mission science. The exoplanet science community is engaged by the Program through Science Definition Teams and through the Exoplanet Program Analysis Group (ExoPAG). The ExEP includes the space science missions of Kepler, K2 , and the proposed WFIRST-AFTA that includes dark energy science, a widefield infrared survey, a microlensing survey for outer-exoplanet demographics, and a coronagraph for direct imaging of cool outer gas- and ice-giants around nearby stars. Studies of probe-scale (medium class) missions for a coronagraph (internal occulter) and starshade (external occulter) explore the trades of cost and science and provide motivation for a technology investment program to enable consideration of missions at the next decadal survey for NASA Astrophysics. Program elements include follow-up observations using the Keck Observatory, which contribute to the science yield of Kepler and K2, and include mid-infrared observations of exo-zodiacal dust by the Large Binocular Telescope Interferometer which provide parameters critical to the design and predicted science yield of the next generation of direct imaging missions. ExEP includes the NASA Exoplanet Science Institute which provides archives, tools, and professional education for the exoplanet community. Each of these program elements contribute to the goal of detecting and characterizing earth-like planets orbiting other stars, and seeks to respond to rapid evolution in this discovery-driven field and to ongoing programmatic challenges through engagement of the scientific and technical communities.

  20. Prospects for the characterization of exoplanet atmospheres

    Lunine, J. I.

    2007-08-01

    Spectra of the giant planets of our own solar system have provided important constraints on the origin of these bodies (1). Spectra of extrasolar giant planets potentially can do likewise, provided the spectral resolution is sufficiently high. For terrestrial planets, spectra will provide the primary—or even the only—way to gauge habitability of these objects (2). Currently extrasolar giant planets around solar-type stars are examined spectroscopically during both primary eclipses of the parent star ("transits") and secondary eclipses. Of the 235 extrasolar planets known at the time of writing of this abstract, not much more than a dozen have been examined in primary eclipse, and only a handful in secondary eclipse. The latter provides an opportunity to detect the infrared emission from the planet with the Spitzer Space Telescope in the 7 to 13 micron region, which is key for close-in giant planets because their flux peaks in this spectral region (3). When Spitzer's supply of cryogen is depleted, the ability to utilize the mid-infrared will be lost until the launch of the James Webb Space Telescope (JWST) early in the next decade (4). The James Webb Space Telescope (JWST) is a large (6.6 m), cold (1000 spectroscopy of objects in excess of 7 Jupiter masses at the age of the Sun, 10 parsecs from Earth, will be possible. (The masses translate into infrared brightnesses and assume large separation from the parent, Sunlike star). This will allow study of massive giant planets in some ways akin to the studies of our own giant planets undertaken today by ground-based telescopes. JWST will be able to conduct a program of spectroscopy, in emission and transmission, of a variety of extrasolar giant planets including those that may be discovered by Kepler and Corot. The unique piece of planetary parameter space that JWST may be able to open up is transit spectroscopy of near-Earth-sized planets orbiting M-dwarf stars. The smaller size of M-dwarfs relative to sun

  1. Exoplanet Science in the National Science Olympiad

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  2. Constraints on Secondary Eclipse Probabilities of Long-Period Exoplanets from Orbital Elements

    von Braun, Kaspar

    2009-01-01

    Long-period transiting exoplanets provide an opportunity to study the mass-radius relation and internal structure of extrasolar planets. Their studies grant insights into planetary evolution akin to the Solar System planets, which, in contrast to hot Jupiters, are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses allow investigations of exoplanet temperatures and large-scale exo-atmospheric properties. In this short paper, we elaborate on, and calculate, probabilities of secondary eclipses for given orbital parameters, both in the presence and absence of detected primary transits, and tabulate these values for the forty planets with the highest primary transit probabilities.

  3. ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

    McDonald, I; Penny, M; Beaulieu, J -P; Batista, V; Novati, S Calchi; Cassan, A; Fouque, P; Mao, S; Marquette, J B; Rattenbury, N; Robin, A C; Tisserand, P; Osorio, M R Zapatero

    2014-01-01

    The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's V...

  4. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  5. Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    Cabrera, J; Montagnier, G; Fridlund, M; Eiff, M Ammler-von; Chaintreuil, S; Damiani, C; Deleuil, M; Ferraz-Mello, S; Ferrigno, A; Gandolfi, D; Guillot, T; Guenther, E W; Hatzes, A; Hébrard, G; Klagyivik, P; Parviainen, H; Pasternacki, Th; Pätzold, M; Sebastian, D; Santos, M Tadeu dos; Wuchterl, G; Aigrain, S; Alonso, R; Almenara, J -M; Armstrong, J D; Auvergne, M; Baglin, A; Barge, P; Barros, S C C; Bonomo, A S; Bordé, P; Bouchy, F; Carpano, S; Chaffey, C; Deeg, H J; Díaz, R F; Dvorak, R; Erikson, A; Grziwa, S; Korth, J; Lammer, H; Lindsay, C; Mazeh, T; Moutou, C; Ofir, A; Ollivier, M; Pallé, E; Rauer, H; Rouan, D; Samuel, B; Santerne, A; Schneider, J

    2015-01-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g,Teff,v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical...

  6. Is This Speck of Light an Exoplanet?

    2004-09-01

    VLT Images and Spectra of Intriguing Object near Young Brown Dwarf [1] Summary Is this newly discovered feeble point of light the long-sought bona-fide image of an exoplanet? A research paper by an international team of astronomers [2] provides sound arguments in favour, but the definitive answer is now awaiting further observations. On several occasions during the past years, astronomical images revealed faint objects, seen near much brighter stars. Some of these have been thought to be those of orbiting exoplanets, but after further study, none of them could stand up to the real test. Some turned out to be faint stellar companions, others were entirely unrelated background stars. This one may well be different. In April of this year, the team of European and American astronomers detected a faint and very red point of light very near (at 0.8 arcsec angular distance) a brown-dwarf object, designated 2MASSWJ1207334-393254. Also known as "2M1207", this is a "failed star", i.e. a body too small for major nuclear fusion processes to have ignited in its interior and now producing energy by contraction. It is a member of the TW Hydrae stellar association located at a distance of about 230 light-years. The discovery was made with the adaptive-optics supported NACO facility [3] at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory (Chile). The feeble object is more than 100 times fainter than 2M1207 and its near-infrared spectrum was obtained with great efforts in June 2004 by NACO, at the technical limit of the powerful facility. This spectrum shows the signatures of water molecules and confirms that the object must be comparatively small and light. None of the available observations contradict that it may be an exoplanet in orbit around 2M1207. Taking into account the infrared colours and the spectral data, evolutionary model calculations point to a 5 jupiter-mass planet in orbit around 2M1207. Still, they do not yet allow a clear-cut decision about the real

  7. Kepler Observations of Three Pre-Launch Exoplanet Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet

    Howell, Steve B; Sherry, William; von Braun, Kaspar; Ciardi, David R; Bryson, Stephen T; Feldmeier, John J; Horch, Elliott; van Belle, Gerard T

    2010-01-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's {\\it Kepler} mission. {\\it Kepler} observations of them were obtained during Quarter 1 of the {\\it Kepler} mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the {\\it Kepler} mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the {\\it Kepler} light curves and pixel data, as well as medium resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion while the other is a K0 star plus a late M-dwarf/brown...

  8. Transiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star

    Gillon, M; Csizmadia, Sz; Fridlund, M; Deleuil, M; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Barnes, S I; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carone, L; Carpano, S; Cochran, W D; Deeg, H J; Dvorak, R; Endl, M; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gazzano, J C; Guenther, E; Guillot, T; Havel, M; Hébrard, G; Jorda, L; Léger, A; Llebaria, A; Lammer, H; Lovis, C; Mayor, M; Mazeh, T; Montalbán, J; Moutou, C; Ofir, A; Ollivier, M; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Udry, S; Weingrill, J; Wuchterl, G

    2010-01-01

    We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V=15.5 solar analog star (M_* = 1.08 +- 0.08 M_sun, R_* = 1.1 +- 0.1 R_sun, T_eff = 5675 +- 80 K). This new planet, CoRoT-12b, has a mass of 0.92 +- 0.07 M_Jup and a radius of 1.44 +- 0.13 R_Jup. Its low density can be explained by standard models for irradiated planets.

  9. Radial velocity eclipse mapping of exoplanets

    Nikolov, Nikolay

    2015-01-01

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetrie...

  10. Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate

    Ciardi, David R; Barnes, J W; Beichman, C A; Carey, S J; Crockett, C J; Eastman, J; Johns-Krull, C M; Howell, S B; Kane, S R; Mclane, J N; Plavchan, P; Prato, L; Stauffer, J; van Belle, G T; von Braun, K

    2015-01-01

    We present Spitzer 4.5\\micron\\ light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous work by \\citet{vaneyken12} and \\citet{barnes13} predicts that the stellar rotation axis and the planetary orbital plane should precess with a period of $300 - 600$ days. As a consequence, the observed transits should change shape and depth, disappear, and reappear with the precession. Our observations indicate the long-term presence of the transit events ($>3$ years), and that the transits indeed do change depth, disappear and reappear. The Spitzer observations and the NIRSPEC radial velocity observations (with contemporaneous LCOGT optical light curve data) are consistent with the predicted transit times and depths for the $M_\\star = 0.34\\ M_\\odot$ precession model and demonstrate the disappearance of the transits. An LCOGT optical light curve shows that the tran...

  11. Eccentricity from transit photometry

    Van Eylen, Vincent; Albrecht, Simon

    2015-01-01

    and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....

  12. Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    Fridlund, M; Alonso, R; Deleuil, M; Gandolfi, D; Gillon, M; Bruntt, H; Alapini, A; Csizmadia, Sz; Guillot, T; Lammer, H; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Ferraz-Mello, S; Guenther, E; Gondoin, P; Hartog, R den; Hatzes, A; Jorda, L; Leger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Stecklum, B; Tingley, B; Weingrill, J; Wuchterl, G

    2010-01-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.

  13. A Search for Radio Emission from Nearby Exoplanets

    Maps, Amethyst D.; Bastian, Timothy S.; Beasley, Anthony J.

    2017-01-01

    Since the discovery of the first extrasolar planet orbiting a main sequence star more than 20 years ago, the study of exoplanets has become a burgeoning field with more than 3300 confirmed extrasolar planets now known. A variety of techniques has been used to discover exoplanets orbiting main sequence stars and to deduce their properties: timing, radial velocities, direct imaging, microlensing, and transits in the optical/IR bands. Absent from this list so far is the detection of exoplanets at radio wavelengths, but not for lack of trying. Searches for radio emission from exoplanets predate their discovery (Winglee et al. 1986) and have continued sporadically to this day. The majority of searches for radio emission from exoplanets has searched for coherent radio emission. It is indeed the case that in our own solar system, all magnetized planets are powerful radio emitters, the likely emission mechanism being the cyclotron maser instability. The outstanding example is Jupiter, which emits 1010-1011 W at decameter wavelengths (frequencies planets in other solar systems, many must surely emit CMI radiation. The emitted radiation could be orders of magnitude more intense than Jupiter’s if the interaction between the magnetized planet and the wind from the primary star is stronger than the Sun/Jupiter interaction - due, for example, to a more powerful wind and/or the planet being closer to the star.We have initiated a new search for radio emission from exoplanets, focusing on all known exoplanetary systems within 20 pc - more than 50 systems containing nearly 100 planets using the Jansky Very Large Array (JVLA) in three frequency bands: 1-2 GHz, 2-4 GHz, and 4-8 GHz with a target sensitivity of ~10 microJy. We have completed the 2-4 GHz survey and report our preliminary results, which include the detection of two systems. We discuss whether the emission is from a planet or from the star and the implications of our conclusions for habitability of exoplanets.

  14. The asteroseismic potential of TESS: exoplanet-host stars

    Campante, T L; Kuszlewicz, J S; Bouma, L; Chaplin, W J; Huber, D; Christensen-Dalsgaard, J; Kjeldsen, H; Bossini, D; North, T S H; Appourchaux, T; Latham, D W; Pepper, J; Ricker, G R; Stassun, K G; Vanderspek, R; Winn, J N

    2016-01-01

    New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the ta...

  15. EChOSim: The Exoplanet Characterisation Observatory software simulator

    Pascale, E; MacTavish, C J; Papageorgiou, A; Amaral-Rogers, A; Varley, R; de Foresto, V Coudé; Griffin, M J; Ollivier, M; Sarkar, S; Spencer, L; Swinyard, B M; Tessenyi, M; Tinetti, G

    2014-01-01

    EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability EChO has to detect and characterize the atmospheres of transiting exoplanets, and through this revolutionize the knowledge we have of the Milky Way and of our place in the Galaxy. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers for exoplanet transits, including instruments on the Hubble Space Telescope and Spitzer, or ground-based and balloon borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to ass...

  16. ASTEP: Towards the detection and characterization of exoplanets from Dome C

    Rauer H.

    2011-02-01

    Full Text Available The ASTEP project (Antarctic Search for Transiting ExoPlanets, aims at testing the quality of the Dome C site in Antarctica for photometry in the visible, as well as detecting and characterizing transiting exoplanets. A dedicated telescope, ASTEP400, has been developped and installed at Concordia. The first campaign took place during the winter 2010, and the telescope functionned nominally during all the winter. A first analysis of the data leads to a precision of 189 and 205 ppm for WASP-19 and WASP-18 respectively, for continuous observations during 1 month. This shows that extremely high precision photometry is achievable from Dome C.

  17. Project MINERVA's Follow-up on Wide-Field, Small Telescope Photometry to Identify Exoplanets

    Houghton, Audrey; Henderson, Morgan; Johnson, Samson; Sergi, Anthony; Eastman, Jason D.; Beatty, Thomas G.; McCrady, Nate

    2017-01-01

    MINERVA is an array of four 0.7-m telescopes equipped for high precision photometry and spectroscopy dedicated to exoplanet observations. During the first 18 months of science operations, MINERVA engaged in a program of photometric follow-up of potential transiting exoplanet targets identified by the Kilodegree Extremely Little Telescope (KELT). Robotically-obtained observations are passed through our data reduction pipeline and we extract light curves via differential photometry. We seek transit signals via a Markov chain Monte Carlo fit using BATMAN. We discuss results for over 100 target stars analyzed to date.

  18. PyTransit: Transit light curve modeling

    Parviainen, Hannu

    2015-05-01

    PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

  19. The SPICA coronagraphic instrument (SCI) for the study of exoplanets

    Enya, K; Haze, K; Aono, K; Nakagawa, T; Matsuhara, H; Kataza, H; Wada, T; Kawada, M; Fujiwara, K; Mita, M; Takeuchi, S; Komatsu, K; Sakai, S; Uchida, H; Mitani, S; Yamawaki, T; Miyata, T; Sako, S; Nakamura, T; Asano, K; Yamashita, T; Narita, N; Matsuo, T; Tamura, M; Nishikawa, J; Kokubo, E; Hayano, Y; Oya, S; Fukagawa, M; Shibai, H; Baba, N; Murakami, N; Itoh, Y; Honda, M; Okamoto, B; Ida, S; Takami, M; Abe, L; Guyon, O; Bierden, P; Yamamuro, T; 10.1016/j.asr.2011.03.010

    2011-01-01

    We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27$\\mu$m, and 10$^{-6}$, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels...

  20. SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    Christille, Jean Marc; Borsa, Francesco; Busonero, Deborah; Calcidese, Paolo; Claudi, Riccardo; Damasso, Mario; Giacobbe, Paolo; Molinari, Emilio; Pace, Emanuele; Riva, Alberto; Sozzetti, Alessandro; Toso, Giorgio; Tresoldi, Daniela

    2016-01-01

    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of sys- tematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precisi...

  1. The Observational Effects and Signatures of Tidally Distorted Solid Exoplanets

    Saxena, Prabal; Summers, Michael

    2014-01-01

    Our work examines the detectability of tidally distorted solid exoplanets in synchronous rotation. Previous work has shown that tidally distorted shapes of close-in gas giants can give rise to radius underestimates and subsequently density overestimates for those planets. We examine the assumption that such an effect is too minimal for rocky exoplanets and find that for smaller M Class stars there may be an observationally significant tidal distortion effect at very close-in orbits. We quantify the effect for different stellar types and planetary properties using some basic assumptions. Finally, we develop a simple analytic expression to test if there are detectable bulge signatures in the photometry of a system. We find that close in for smaller M Class stars there may be an observationally significant signature that may manifest itself in both in-transit bulge signatures and ellipsoidal variations.

  2. Scalable Gaussian Processes and the search for exoplanets

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  3. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    Misra, Amit K.; Meadows, Victoria S. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  4. The Asteroseismic Potential of TESS: Exoplanet-host Stars

    Campante, T. L.; Schofield, M.; Kuszlewicz, J. S.; Bouma, L.; Chaplin, W. J.; Huber, D.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Bossini, D.; North, T. S. H.; Appourchaux, T.; Latham, D. W.; Pepper, J.; Ricker, G. R.; Stassun, K. G.; Vanderspek, R.; Winn, J. N.

    2016-10-01

    New insights on stellar evolution and stellar interior physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the target stars (observed at a 2-minute cadence) and the full-frame-image stars (observed at a 30-minute cadence). A similar exercise is also conducted based on a compilation of known host stars. We predict that TESS will detect solar-like oscillations in a few dozen target hosts (mainly subgiant stars but also in a smaller number of F dwarfs), in up to 200 low-luminosity red-giant hosts, and in over 100 solar-type and red-giant known hosts, thereby leading to a threefold improvement in the asteroseismic yield of exoplanet-host stars when compared to Kepler's.

  5. Increasing the sensitivity of Kepler to Earth-like exoplanets

    Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard; Wang, Dun

    2015-01-01

    Many transiting exoplanets have been discovered using photometry from the Kepler mission but the results are still very incomplete in some of the most interesting parts of parameter space: small planetary radius and long orbital period. We have developed a method for detecting transiting exoplanet signals in stellar light curves that is more sensitive to small planets on long orbits than previously published procedures. It is standard practice to start by "de-trending" the light curves—by filtering—to remove the instrumental systematics and stellar variability from the time series. Instead, we build an flexible model for these effects using a Gaussian Process. We use as inputs to the Gaussian Process not just time but also the light curves of dozens of other stars. This exploits the causal structure of the problem: permitting the noise model to capture spacecraft-induced covariability. Since we know a priori that the other stars are causally unrelated to the star of interest, any information that they share must be due to systematics. A key motivation for our work is that any filtering—no matter how robust—reduces the amplitude of the signals of interest. By marginalizing over the stellar and instrumental variability while simultaneously fitting for the transits, we maintain sensitivity to transit signals and reduce contamination. We apply our method to light curves from the Kepler mission. Using synthetic transits generated by realistic planetary systems injected into raw aperture photometry from the pipeline, we determine the detection efficiency of our method and train a supervised classification algorithm to weed out false signals. Our pipeline returns all of the ingredients needed for studies of exoplanet populations: a catalog of planet candidates, posterior samples for the physical parameters of these planets and their host stars, and an empirical measurement of the detection efficiency as a function of all of these parameters.

  6. Atmospheric Circulation of Terrestrial Exoplanets

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  7. HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...

  8. Multiplicity-Study of Exoplanet Host Stars

    Mugrauer, M.; Neuhäuser, R.; Ginski, C.; Eisenbeiss, T.

    2005-01-01

    We carry out a systematic search campaign for wide companions of exoplanet host stars to study their multiplicity and its influence on the long-term stability and the orbital parameters of the exoplanets. We have already found 6 wide companions, raising the number of confirmed binaries among the exoplanet host stars to 20 systems. We have also searched for wide companions of Gl86, the first known exoplanet host star with a white dwarf companion. Our Sofi/NTT observations are sensitive to subs...

  9. In the Search of Exoplanets

    Crespo, Luis Cuesta

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located in some of the best places for Astronomy in Spain: the Observatory of Calar Alto, in Almería, near Calatayud, in Zaragoza, at the summit of a 1,400m high mountain, and at the campus of INTA, in Madrid. The three telescopes have diameters between 40 and 50cm, and are equipped with instrumentation very adequate to identify exoplanets.

  10. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  11. Looking inside exoplanets. Exoplanetary Atmospheres.

    Lampon, M.; Lara, L. M.; Jimenez-Ortega, J.; Gomez-Gonzalez, J. L.

    2017-03-01

    If we want to help to obtain answers to scientific key questions like, what are exoplanets made of?, why are planets as they are?, how were they formed and how did they evolve?, we have to understand their atmospheres, so to be able to build suitable exoplanetary atmospheric models. For this purpose, we are developing the necessary tools. At present, we are able to build a one dimensional equilibrium thermodynamic atmospheric model for exoplanets, that is a first approximation to their characterization. In the near future, our model will be implemented with new tools for describing disequilibrium processes and therefore will let us to reach a deeper understanding. In this work we expose a sample of 3 exoplanets, 1 hot Jupiter and 2 hot Neptunes-like at which we build several one dimensional equilibrium thermodynamic atmospheric models. The purpose of this work is show the different variables that even in a first approximation (i.e. equilibrium thermodynamic model) seriously affect the characterization of the system.

  12. VLT Detects First Superstorm on Exoplanet

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  13. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    2009-09-01

    "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass

  14. Using direct imaging to investigate the formation and migration histories of gas giant exoplanets

    Ngo, Henry

    2016-10-01

    Gas giant exoplanets are found around their host stars at orbital separations spanning more than four orders of magnitude (0.01 to 100 AU). However, it is not known whether the planets at the extreme ends of this range could have formed in situ or if they instead formed closer to ice lines between 1-10 AU and then migrated to their present day locations. In this study, we use two direct imaging surveys to explore the potential origins of hot Jupiters and to characterize the population of gas giant planets beyond the ice line. In our first survey, we focus on the role of stellar companions in hot Jupiter formation and migration. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing migration via Kozai-Lidov oscillations. In addition, we find that hot Jupiter hosts are three times more likely to have a stellar companion between 50-2000 AU than field stars, suggesting that binary star systems may be favorable environments for gas giant planet formation. In our second study, we present the results from the first year of a two-year direct imaging planet survey of 200 young M-dwarf stars. By imaging in L-band (3.8 micron) and taking advantage of the new 80 milliarcsecond inner working angle "vortex" coronagraph on Keck NIRC2, we are sensitive to young planets with masses between 1-10 Jupiter masses with projected separations between 1-10 AU. We can compare the semi-major axis distribution of directly imaged planets beyond 10 AU to that of intermediate period gas giants from radial velocity surveys and determine whether or not these two populations form a continuous distribution. If so, this would imply these populations share common formation (core accretion) and migration channels.

  15. Using direct imaging to investigate the formation and migration histories of gas giant exoplanets

    Ngo, Henry

    2017-01-01

    Gas giant exoplanets are found around their host stars at orbital separations spanning more than four orders of magnitude (0.01 to 100 AU). However, it is not known whether the planets at the extreme ends of this range could have formed in situ or if they instead formed closer to ice lines between 1-10 AU and then migrated to their present day locations. In this study, we use two direct imaging surveys to explore the potential origins of hot Jupiters and to characterize the population of gas giant planets beyond the ice line. In our first survey, we focus on the role of stellar companions in hot Jupiter formation and migration. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing migration via Kozai-Lidov oscillations. In addition, we find that hot Jupiter hosts are three times more likely to have a stellar companion between 50-2000 AU than field stars, suggesting that binary star systems may be favorable environments for gas giant planet formation. In our second study, we present the results from the first year of a two-year direct imaging planet survey of 200 young M-dwarf stars. By imaging in L-band (3.8 micron) and taking advantage of the new 80 milliarcsecond inner working angle "vortex" coronagraph on Keck NIRC2, we are sensitive to young planets with masses between 1-10 Jupiter masses with projected separations between 1-10 AU. We can compare the semi-major axis distribution of directly imaged planets beyond 10 AU to that of intermediate period gas giants from radial velocity surveys and determine whether or not these two populations form a continuous distribution. If so, this would imply these populations share common formation (core accretion) and migration channels.

  16. Exploring Equilibrium Chemistry for Hot Exoplanets

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  17. Exoplanets with JWST: degeneracy, systematics and how to avoid them

    Barstow, Joanna K.; Irwin, Patrick G. J.; Kendrew, Sarah; Aigrain, Suzanne

    2016-07-01

    The high sensitivity and broad wavelength coverage of the James Webb Space Telescope will transform the field of exoplanet transit spectroscopy. Transit spectra are inferred from minute, wavelength-dependent variations in the depth of a transit or eclipse as the planet passes in front of or is obscured by its star, and the spectra contain information about the composition, structure and cloudiness of exoplanet atmospheres. Atmospheric retrieval is the preferred technique for extracting information from these spectra, but the process can be confused by astrophysical and instrumental systematic noise. We present results of retrieval tests based on synthetic, noisy JWST spectra, for clear and cloudy planets and active and inactive stars. We find that the ability to correct for stellar activity is likely to be a limiting factor for cloudy planets, as the effects of unocculted star spots may mimic the presence of a scattering slope due to clouds. We discuss the pros and cons of the available JWST instrument combinations for transit spectroscopy, and consider the effect of clouds and aerosols on the spectra. Aerosol high in a planet's atmosphere obscures molecular absorption features in transmission, reducing the information content of spectra in wavelength regions where the cloud is optically thick. We discuss the usefulness of particular wavelength regions for identifying the presence of cloud, and suggest strategies for solving the highly-degenerate retrieval problem for these objects.

  18. Stellar Variability of the Exoplanet Hosting Star HD 63454

    Kane, Stephen R; Ciardi, David R; Lee, Jae-Woo; Curto, Gaspare Lo; Lovis, Christophe; Naef, Dominique; Mahadevan, Suvrath; Pilyavsky, Genady; Udry, Stephane; Wang, Xuesong; Wright, Jason

    2011-01-01

    Of the hundreds of exoplanets discovered using the radial velocity technique, many are orbiting close to their host stars with periods less than 10 days. One of these, HD 63454, is a young active K dwarf which hosts a Jovian planet in a 2.82 day period orbit. The planet has a 14% transit probability and a predicted transit depth of 1.2%. Here we provide a re-analysis of the radial velocity data to produce an accurate transit ephemeris. We further analyse 8 nights of time series data to search for stellar activity both intrinsic to the star and induced by possible interactions of the exoplanet with the stellar magnetospheres. We establish the photometric stability of the star at the 3 millimag level despite strong Ca II emission in the spectrum. Finally, we rule out photometric signatures of both star-planet magnetosphere interactions and planetary transit signatures. From this we are able to place constraints on both the orbital and physical properties of the planet.

  19. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  20. Ground-based observations of exoplanet atmospheres

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  1. Bayesian analysis of exoplanet and binary orbits

    Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas

    2012-01-01

    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.

  2. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition

    R. van Lieshout; M. Min; C. Dominik

    2014-01-01

    Context. Recently, two exoplanet candidates have been discovered, KIC 12557548b and KOI-2700b, whose transit profiles show evidence of a comet-like tail of dust trailing the planet, thought to be fed by the evaporation of the planet’s surface. Aims. We aim to put constraints on the composition of th

  3. High-precision ground-based photometry of exoplanets

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  4. Exoplanet Forecast: Hot and Wet

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data from NASA's Spitzer Space Telescope tells astronomers that a toasty gas exoplanet, or a planet beyond our solar system, contains water vapor. Spitzer observed the planet, called HD 189733b, cross in front of its star at three different infrared wavelengths: 3.6 microns; 4.5 microns and 8 microns (see lime-colored dots). For each wavelength, the planet's atmosphere absorbed different amounts of the starlight that passed through it. The pattern by which this absorption varies with wavelength matches known signatures of water, as shown by the theoretical model in blue.

  5. VLT Captures First Direct Spectrum of an Exoplanet

    2010-01-01

    receive from distant objects into its different colours (or "wavelengths"). However, where we distinguish five or six rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. This makes spectroscopy, the recording of spectra, an important investigative tool in astronomy. [2] In 2004, astronomers used NACO on the VLT to obtain an image and a spectrum of a 5 Jupiter mass object around a brown dwarf - a "failed star". It is however thought that the pair probably formed together, like a petite stellar binary, instead of the companion forming in the disc around the brown dwarf, like a star-planet system (see eso0428, eso0515 and eso0619). [3] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (several hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star. More information This research was presented in a paper in press as a Letter to the Astrophysical Journal ("Spatially resolved spectroscopy of the exoplanet HR 8799 c", by M. Janson et al.). The team is composed of M. Janson

  6. Making FORS2 fit for exoplanet observations (again)

    Boffin, H M J; Gonzalez, O A; Moehler, S; Sedaghati, E; Gibson, N; Ancker, M E van den; Smoker, J; Anderson, J; Hummel, C; Dobrzycka, D; Smette, A; Rupprecht, G

    2015-01-01

    For about three years, it was known that precision spectrophotometry with FORS2 suffered from systematic errors that made quantitative observations of planetary transits impossible. We identified the Longitudinal Atmospheric Dispersion Compensator (LADC) as the most likely culprit, and therefore engaged in a project to exchange the LADC prisms with the uncoated ones from FORS1. This led to a significant improvement in the depth of FORS2 zero points, a reduction in the systematic noise, and should make FORS2 again competitive for transmission spectroscopy of exoplanets.

  7. The Host Stars of Keplers Habitable Exoplanets: Superflares, Rotation and Activity

    Armstrong, D J; Broomhall, A -M; Brown, D J A; Lund, M N; Osborn, H P; Pollacco, D L

    2015-01-01

    We embark on a detailed study of the lightcurves of Keplers most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the lightcurve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166AU to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  8. Age consistency between exoplanet hosts and field stars

    Bonfanti, Andrea; Nascimbeni, Valerio

    2015-01-01

    Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive and metal-rich stars. Nevertheless, we suspect that observational biases could impact also transiting-planet hosts. This paper aims at evaluating how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of $\\log{R'_{HK}}$ and $v\\sin{i}$ and the evaluation of the stellar evolutionary speed in the Hertz...

  9. Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution

    Udry, S; Bouchy, F; Cameron, A Collier; Henning, T; Mayor, M; Pepe, F; Piskunov, N; Pollacco, D; Queloz, D; Quirrenbach, A; Rauer, H; Rebolo, R; Santos, N C; Snellen, I; Zerbi, F

    2014-01-01

    Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A hig...

  10. How Many Exoplanets Does it Take to Constrain the Origin of Mercury?

    Rogers, Leslie

    2016-01-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury (Rappaport et al. 2013). In contrast, Dressing et al. (2015) have noted that, to date, all confirmed transiting small (exoplanets with masses measured to better than 20% precision have mean densities that are consistent with Earth-like bulk compositions, though significant compositional dispersion is also admitted within the observational uncertainties. This presentation will describe the application of hierarchical Bayesian models to constrain the underlying distribution of rocky exoplanet iron contents from a sample of noisy mass-radius measurements coupled to rocky planet interior structure models. In addition to deriving constraints on the distribution of iron-enhanced exo-Mercuries from the exoplanet mass-radius measurements in hand, we also apply this approach to simulated data sets to predict how the constraints should improve as increasing numbers of exoplanets are characterized. The work outlines an observational pathway toward using exoplanets to place Mercury into context.

  11. Highlights in the Study of Exoplanet Atmospheres

    Burrows, Adam

    2014-01-01

    Exoplanets are now being discovered in profusion. However, to understand their character requires spectral models and data. These elements of remote sensing can yield temperatures, compositions, and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are achieved. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has oftimes lagged ambition. I summarize the most productive, and at times novel, methods employed to probe exoplanet atmospheres, highlight some of the most interesting results obtained, and suggest various broad theoretical topics in which further work could pay significant dividends.

  12. Highlights in the study of exoplanet atmospheres.

    Burrows, Adam S

    2014-09-18

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

  13. Lightning and Life on Exoplanets

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  14. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  15. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Superstellar Metallicity

    Skemer, Andrew J.; Morley, Caroline V.; Zimmerman, Neil T.; Skrutskie, Michael F.; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R.; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R.; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ˜500 K temperature that bridges the gap between the first directly imaged planets (˜1000 K) and our own solar system's Jupiter (˜130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: Teff = 544 ± 10 K, g GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of

  16. WASP-17b - possibly the first moving away from parent star exoplanet. International campaign on its observations

    Sokov, E. N.

    2016-11-01

    We present detected moving away from the parent star WASP-17b exoplanet and organized international campaign on its observations. The difference between the predicted moment of a mid of transit and the observed (O-C) reached ∼55 minutes. In the period from 2011 to 2015 yy. there was a non-linear increasing of the (O-C) data, which may point on an increasing of the orbital period of WASP-17b. Difference between duration of the transit obtained at 2011 year and 2015 year is ∼15 minutes. This fact also point on moving away from the star WASP- 17b exoplanet.

  17. Astrology in the Era of Exoplanets

    Lund, Michael B

    2016-01-01

    The last two decades have seen the number of known exoplanets increase from a small handful to nearly 2000 known exoplanets, thousands more planet candidates, and several upcoming missions that are expected to further increase the population of known exoplanets. Beyond the strictly scientific questions that this has led to regarding planet formation and frequency, this has also led to broader questions such as the philosophical implications of life elsewhere in the universe and the future of human civilization and space exploration. One additional realm that hasn't been adequately considered, however, is that this large increase in exoplanets would also impact claims regarding astrology. In this paper we look at the distribution of planets across the sky and along the Ecliptic, as well as the current and future implications of this planet distribution.

  18. Walking on exoplanets: Is Star Wars right?

    Ballesteros, Fernando J

    2016-01-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation, but also challenging our theories with new unexpected properties.

  19. Walking on Exoplanets: Is Star Wars Right?

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  20. The Brown Dwarf-Exoplanet Connection

    Burgasser, Adam J

    2009-01-01

    Brown dwarfs are commonly regarded as easily-observed templates for exoplanet studies, with comparable masses, physical sizes and atmospheric properties. There is indeed considerable overlap in the photospheric temperatures of the coldest brown dwarfs (spectral classes L and T) and the hottest exoplanets. However, the properties and processes associated with brown dwarf and exoplanet atmospheres can differ significantly in detail; photospheric gas pressures, elemental abundance variations, processes associated with external driving sources, and evolutionary effects are all pertinent examples. In this contribution, I review some of the basic theoretical and empirical properties of the currently known population of brown dwarfs, and detail the similarities and differences between their visible atmospheres and those of extrasolar planets. I conclude with some specific results from brown dwarf studies that may prove relevant in future exoplanet observations.

  1. Exploring exoplanet populations with NASA’s Kepler Mission

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  2. Constraining Tidal Dissipation in Stars and Destruction Rates of Exoplanets

    Jackson, Brian; Penev, K.; Barnes, R.

    2011-01-01

    Several recent studies have shown that the orbits of most transiting extra-solar planets, with periods of order a few days, are not stable against tidal decay. If the host star rotates slowly enough, tidal dissipation within the star causes the planet to spiral in over many millions or billions of years. Because the rate of tidal decay increases rapidly as orbital semi-major axis drops, planets that start out very close to their host stars are quickly destroyed, while planets farther out require more time. We calculate the times left for known transiting exoplanets as a function of the rate of tidal dissipation within the host star. For a population of such planets, we expect to observe a minority of planets near the end of their lives since those planets will only survive for a short time more. For an assumed tidal dissipation rate, if we find instead that a majority of transiting planets have only a small fraction of the lifetimes left before destruction, we can conclude the assumed tidal dissipation rate is too large. Thus, we can estimate the rate of tidal dissipation within planet-hosting stars by considering the distributions of times left of transiting planets for a range of assumed dissipation rates. We must also account for important selection and observational biases. Our results based on such an analysis suggest stellar dissipation rates corresponding to tidal Q-values of 106 and larger are consistent with observations, while values of 105 and smaller are not. Given these constraints, we estimate the rates of tidal destruction of transiting exoplanets.

  3. Investigating Exoplanets Within Stellar Clusters

    Glaser, Joseph Paul; Reisinger, Tyler; Thornton, Jonathan; McMillan, Stephen L. W.

    2017-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as it is widely accepted that a majority of stars form within clustered environments before dispersing throughout the galaxy. Though dynamical arguments have been used to explain this discrepancy in the past, previous surveys' observational statistics and detection biases can also be used to argue that the open cluster planet population is indistinguishable from the Field.Our group aims to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. We employ a variety of different computational techniques to investigate these effects, ranging from traditional Monte Carlo scattering experiments to multi-scale n-body simulations. We are interested in: the effects of stellar binaries; Hot Jupiter migrations; long-period ice giants; and the habitability history of terrestrial planets.

  4. Balloon Exoplanet Nulling Interferometer (BENI)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  5. Atmospheric Retrievals from Exoplanet Observations and Simulations with BART

    Harrington, Joseph

    This project will determine the observing plans needed to retrieve exoplanet atmospheric composition and thermal profiles over a broad range of planets, stars, instruments, and observing modes. Characterizing exoplanets is hard. The dim planets orbit bright stars, giving orders of magnitude more relative noise than for solar-system planets. Advanced statistical techniques are needed to determine what the data can - and more importantly cannot - say. We therefore developed Bayesian Atmospheric Radiative Transfer (BART). BART explores the parameter space of atmospheric chemical abundances and thermal profiles using Differential-Evolution Markov-Chain Monte Carlo. It generates thousands of candidate spectra, integrates over observational bandpasses, and compares to data, generating a statistical model for an atmosphere's composition and thermal structure. At best, it gives abundances and thermal profiles with uncertainties. At worst, it shows what kinds of planets the data allow. It also gives parameter correlations. BART is open-source, designed for community use and extension (http://github.com/exosports/BART). Three arXived PhD theses (papers in publication) provide technical documentation, tests, and application to Spitzer and HST data. There are detailed user and programmer manuals and community support forums. Exoplanet analysis techniques must be tested against synthetic data, where the answer is known, and vetted by statisticians. Unfortunately, this has rarely been done, and never sufficiently. Several recent papers question the entire body of Spitzer exoplanet observations, because different analyses of the same data give different results. The latest method, pixel-level decorrelation, produces results that diverge from an emerging consensus. We do not know the retrieval problem's strengths and weaknesses relative to low SNR, red noise, low resolution, instrument systematics, or incomplete spectral line lists. In observing eclipses and transits, we assume

  6. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Super-Stellar Metallicity

    Skemer, Andrew J; Zimmerman, Neil T; Skrutskie, Michael F; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R; De Rosa, Robert J; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E

    2015-01-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar System's Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we w...

  7. Atmospheric mass loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b

    Kurokawa, Hiroyuki

    2013-01-01

    Short-period exoplanets potentially lose envelope masses during their evolution because of atmospheric escape caused by the intense XUV radiation from their host stars. We develop a combined model of atmospheric mass loss calculation and thermal evolution calculation of a planet to simulate its evolution and explore the dependences on the formation history of the planet. Thermal atmospheric escape as well as the Roche-lobe overflow contributes to mass loss. The maximum initial planetary model mass depends primarily on the assumed evolution model of the stellar XUV luminosity. We adapt the model to CoRoT-7b and Kepler-10b to explore the evolution of both planets and the maximum initial mass of these planets. We take the recent X-ray observation of CoRoT-7 into account and exploring the effect of different XUV evolution models on the planetary initial mass. Our calculations indicate that both hot super Earths could be remnants of Jupiter mass gas planets.

  8. Transiting exoplanets from the CoRoT space missionXIX. CoRoT-19b: A low density planet orbiting an old inactive F9V-star

    Guenther, E W; Gazzano, J -C; Mazeh, T; Rouan, D; Gibson, N; Csizmadia, Sz; Aigrain, S; Alonso, R; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Bruntt, H; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Deeg, H J; Deleuil, M; Dreizler, S; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jehin, E; Jorda, L; Lammer, H; Leger, A; Moutou, C; Nortmann, L; Ollivier, M; Ofir, A; Pasternacki, Th; Paetzold, M; Parviainen, H; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tal-Or, L; Tingley, B; Weingrill, J; Wuchterl, G

    2011-01-01

    Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbi...

  9. System parameters, transit times and secondary eclipse constraints of the exoplanet systems HAT-P-4, TrES-2, TrES-3 and WASP-3 from the NASA EPOXI Mission of Opportunity

    Christiansen, Jessie L; Charbonneau, David; Deming, Drake; Holman, Matthew J; Madhusudhan, Nikku; Seager, Sara; Wellnitz, Dennis D; Barry, Richard K; Livengood, Timothy A; Hewagama, Tilak; Hampton, Don L; Lisse, Carey M; A'Hearn, Michael F

    2010-01-01

    As part of the NASA EPOXI Mission of Opportunity, we observed seven known transiting extrasolar planet systems in order to construct time series photometry of extremely high phase coverage and precision. Here we present the results for four "hot-Jupiter systems" with near-solar stars - HAT-P-4, TrES-3, TrES-2 and WASP-3. We observe ten transits of HAT-P-4, estimating the planet radius Rp = 1.332 \\pm 0.052 RJup, the stellar radius R \\star = 1.602 \\pm 0.061 R \\odot, the inclination i = 89.67 \\pm 0.30 degrees and the transit duration from first to fourth contact T = 255.6 \\pm 1.9 minutes. For TrES-3, we observe seven transits, and find Rp = 1.320 \\pm 0.057 RJup, R\\star = 0.817 \\pm 0.022 R\\odot, i = 81.99 \\pm 0.30 degrees and T = 81.9 \\pm 1.1 minutes. We also note a long term variability in the TrES-3 light curve, which may be due to star spots. We observe nine transits of TrES-2, and find Rp = 1.169 \\pm 0.034 RJup, R\\star = 0.940 \\pm 0.026 R\\odot, i = 84.15 \\pm 0.16 degrees and T = 107.3 \\pm 1.1 minutes. Finally...

  10. Solar system neighbors as proxies for exoplanets; Peering through the atmospheres of Titan and Saturn with Cassini

    Teal, Dillon J.; Fortney, Jonathan J.; Line, Michael R.

    2016-10-01

    A transiting exoplanet is a planet that orbits another star, and periodically passes directly in front of its parent star, blocking out a small fraction of the stellar light. We can study the atmospheres of these planets by looking at the tiny fraction of the star's light that passes through the planet's thin outer atmosphere, called a transmission spectrum. This is one of the few ways to probe an exoplanet's atmosphere with current technology. This field will rapidly expand with the launch of the Transiting Exoplanet Survey System (TESS) in 2017, to find more planets, and the James Webb Space Telescope (JWST) in 2018, to characterize exoplanet atmospheres. The need to validate the models we use to calculate exoplanet atmosphere properties in the regime of high signal-to-noise data has become increasingly important. Thankfully, with the help of NASA's Cassini orbiter we can test our transmission spectra models against transmission spectra of real planetary bodies for which we have "ground truth" measurements. Using the CHIMERA Transmission spectra model of Line et al. (2013a) and the Python multinesting framework pyMultinest, from the Saturn and Titan transmission spectra we retrieve the abundances of the important molecules CH4, CO, CO2, NH3, and C2H2 along with atmospheric temperature, a reference or "surface" pressure, and the cloud pressure. Here we discuss the current status of this work, and potential problems facing our models, including a C-H stretching feature between 3-4 microns and haze scattering.

  11. Detection and initial characterisation of an exoplanet atmosphere with small aperture telescopes

    Bernt, I.; Müller, M.; Strassmeier, K. G.; Granzer, T.

    2013-09-01

    In the recent years atmospheres of exoplanets have been studied with space-based telescopes like the HST or large aperture ground-based telescopes like the Gran Telescopio Canarias. But as the number of suitable exoplanets is rising, comparative studies of atmospheres with a statistically meaningful amount of targets will follow, for which the observational time with large telescopes is limited and expensive. Our aim is to investigate whether it is possible to detect and initially characterise the atmosphere of an exoplanet with small aperture telescopes using chromatic variations in transit depths. We collected multi-color transits in the years 2011 to 2013 using the robotic 1.2m-telescope STELLA on Tenerife as well as the Nordic Optical Telescope and the 70cm-telescope at the Leibniz Institute for Astrophysics Potsdam. The highly inflated Hot Jupiter HAT-P-32 b was chosen as target for our pilot study for its favorable large atmospheric scale height and therefore enhanced atmospheric detectability. Models of the atmospheric spectra of HAT-P-32 b indicate that the STELLA-data can be used to distinguish between a dusty and a cloud-free atmosphere using the gradient in transit depth of the observations in the blue band and in the visible band. Here we want to present our project together with the first results of the transit depth analysis.

  12. Planetesimal Compositions in Exoplanet Systems

    Johnson, Torrence V; Lunine, Jonathan I; Madhusudhan, Nikku

    2012-01-01

    We have used recent surveys of the composition of exoplanet host stars to investigate the expected composition of condensed material in planetesimals formed beyond the snow line in the circumstellar nebulae of these systems. Of the major solid forming elements, we find that, as for the Sun, the C and O abundances (and particularly the C/O abundance ratio) have the most significant effect on the composition of icy planetesimals formed in these systems. The calculations use a self-consistent model for the condensation sequence of volatile ices from the nebula gas after refractory (silicate and metal) phases have condensed. The resultant proportions of refractory phases and ices were calculated for a range of nebular temperature structure and redox conditions. Planetesimals in systems with sub-solar C/O should be water ice-rich, with lower than solar mass fractions of refractory materials, while in super-solar C/O systems planetesimals should have significantly higher fractions of refractories, in some cases hav...

  13. Relation between Brown Dwarfs and Exoplanets

    Torres, Lauren Melissa Flor; Schröeder, Klauss-Peter; Caretta, César A; Jack, Dennis

    2016-01-01

    One of the most debated subjects in Astronomy since the discovery of exoplanets is how can we distinguish the most massive of such objects from very-low mass stars like Brown Dwarfs (BDs)? We have been looking for evidences of a difference in physical characteristics that could be related to different formation processes. Using a new diagnostic diagram that compares the baryonic gravitational potential (BGP) with the distances from their host stars, we have classified a sample of 355 well-studied exoplanets according to their possible structures. We have then compared the exoplanets to a sample of 87 confirmed BDs, identifying a range in BGP that could be common to both objects. By analyzing the mass-radius relations (MRR) of the exoplanets and BDs in those different BGP ranges, we were able to distinguish different characteristic behaviors. By comparing with models in the literature, our results suggest that BDs and massive exoplanets might have similar structures dominated by liquid metallic hydrogen (LMH).

  14. A lucky imaging multiplicity study of exoplanet host stars II

    Ginski, C; Seeliger, M; Buder, S; Errmann, R; Avenhaus, H; Mouillet, D; Maire, A -L; Raetz, S

    2016-01-01

    The vast majority of extrasolar planets are detected by indirect detection methods such as transit monitoring and radial velocity measurements. While these methods are very successful in detecting short-periodic planets, they are mostly blind to wide sub-stellar or even stellar companions on long orbits. In our study we present high resolution imaging observations of 63 exoplanet hosts carried out with the lucky imaging instrument AstraLux at the Calar Alto 2.2m telescope as well as with the new SPHERE high resolution adaptive optics imager at the ESO/VLT in the case of a known companion of specific interest. Our goal is to study the influence of stellar multiplicity on the planet formation process. We detected and confirmed 4 previously unknown stellar companions to the exoplanet hosts HD197037, HD217786, Kepler-21 and Kepler-68. In addition, we detected 11 new low-mass stellar companion candidates which must still be confirmed as bound companions. We also provide new astrometric and photometric data points ...

  15. The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars

    France, Kevin; Linsky, Jeffrey L; Roberge, Aki; Stocke, John T; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M

    2012-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line fluxes comprise ~37-75% of the tota...

  16. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    Misra, Amit; Koehler, Matthew C; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (...

  17. Ammonia, Water Clouds and Methane Abundances of Giant Exoplanets and Opportunities for Super-Earth Exoplanets

    Hu, Renyu

    2014-01-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. The exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. We study the science return from direct-imaging exoplanet missions, focusing on the exoplanet atmospheric compositions. First, the study shows that a low-resolution (R=70) reflection spectrum of a giant exoplanet at 600 - 1000 nm, for a moderate signal-to-noise ratio of 20, will allow measurements of both the pressure of the uppermost cloud deck and the mixing ratio of methane, if the uppermost cloud deck is located at the pressure level of 0.6 - 1.5 bars. Further increasing the signal-to-noise ratio can improve the measurement range of the cloud deck pressure to 0.2 - 4 bars. The strong and the weak absorption...

  18. Transiting exoplanets from the CoRoT space mission. XXI. CoRoT-19b: a low density planet orbiting an old inactive F9V-star

    Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.

    2012-01-01

    Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is gener......Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets...... physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch...... to the end of its main-sequence life. The host star has a mass M∗ = 1.21 ± 0.05  M⊙ and radius R∗ = 1.65  ±  0.04 R⊙. The planet has a mass of MP = 1.11 ± 0.06 MJup and radius of RP = 1.29  ± 0.03 RJup. The resulting bulk density is only ρ = 0.71  ± 0.06 g cm-3, which is much lower than that for Jupiter...

  19. PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    Santerne, A; Almenara, J -M; Bouchy, F; Deleuil, M; Figueira, P; Hébrard, G; Moutou, C; Rodionov, S; Santos, N C

    2015-01-01

    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We r...

  20. Constraining exoplanet mass from transmission spectroscopy.

    de Wit, Julien; Seager, Sara

    2013-12-20

    Determination of an exoplanet's mass is a key to understanding its basic properties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semimajor axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet's mass solely from its transmission spectrum. We find good agreement between the mass retrieved for the hot Jupiter HD 189733b from transmission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric characterization.

  1. Gaia and WEAVE/WxES: Supporting the PLATO Exoplanet Hunter

    Walton, N. A.

    2016-10-01

    This paper briefly describes the powerful linkages between the Gaia and PLATO missions and the potential for WEAVE in the study of exoplanet populations, for instance through the proposed WxES survey. Gaia successfully launched in December 2013, and over the course of its nominal five year mission will discover, via their astrometric signatures, upwards of 20 000 massive Jupiter sized long period planets at distances out to several hundred parsecs around all star types. In addition Gaia will discover up to a thousand short period hot Jupiters around M stars. PLATO, to launch in 2024, will through precision photometry, observe in detail some million host stars, and will detect, via the transit technique, planets down to Earth masses. PLATO will observe two fields of over 2 000 square degrees for 2-3 years each. At least one of these will be in the northern hemisphere. WEAVE has the potential to provide detailed chemical characterization of the host stars of the Gaia and PLATO exoplanet systems. This will enable insights into, for instance, metallicity of the host star correlations against both massive exoplanets (perhaps confirming current relationships), and lower mass exoplanets. We note how the rapid exploitation of such a potential WEAVE survey could be achieved, utilizing the WEAVE processing systems being developed at the IoA, Cambridge, coupled with efficient interfaces to both Gaia and PLATO data products, that are also being generated at the IoA.

  2. VLT FORS2 comparative transmission spectral survey of clear and cloudy exoplanet atmospheres

    Nikolov, Nikolay; Sing, David K.; Gibson, Neale; Fortney, Jonathan J.; Evans, Tom M.; Barstow, Joanna; Kataria, Tiffany; Wilson, Paul

    2017-01-01

    Thousands of transiting exoplanets are known today but not many have been studied in transmission. While observations with the Hubble Space Telescope (HST) have started to reveal a diversity of atmosphere types, drawing robust conclusions about the underlying population is hampered by the small sample size. This can be greatly aided by ground-based telescopes, equipped with multi-object spectrographs by their unprecedented access to the abundance of fainter systems that HST cannot observe. We have initiated a ground-based, multi-object transmission spectroscopy of a handful of hot gas-giants, covering the wavelength range 360-850nm, using the recently upgraded FOcal Reducer and Spectrograph (FORS2) mounted on the Very Large Telescope (VLT). These exoplanets were selected for a comparative follow-up as their transmission spectra showed evidence for alkali metal absorption, based on the results of HST observations. Here we will discuss first results from the program, demonstrating an excellent agreement between the transmission spectra measured from VLT and HST and detections of Na and K absorption and scattering by clouds/hazes in the atmospheres of several exoplanets. More details will be discussed on the narrow alkali features obtained with FORS2 at higher resolution, revealing its high potential in obtaining optical transmission spectra, which can greatly aid comparative exoplanet studies.

  3. Probe-Scale Mission Concepts for Direct Imaging and Spectroscopy of Nearby Exoplanet Systems

    Unwin, Stephen C.; Seager, Sara; Stapelfeldt, Karl R.; Warfield, Keith; Dekens, Frank G.; Blackwood, Gary; Exo-S Science; Technology Definition Team, Exo-C Science; Technology Definition Team, JPL Probe Study Design Teams

    2015-01-01

    Two mission concepts are now under study for detecting visible light from exoplanets orbiting nearby stars through high-contrast imaging and for characterizing them through spectroscopy. Exo-S uses a starshade (external occulter) that flies in front of a telescope to block out the central starlight; Exo-C uses a coronagraph with an internal occulter to accomplish the suppression of starlight. Both concepts have the objective of taking optical spectra of nearby exoplanets in reflected light, searching for previously undetected planets, and imaging structure in circumstellar debris disks.The concepts are being developed by two NASA-selected community-led Science and Technology Definition Teams (STDTs), supported by study design teams from NASA's Exoplanet Exploration Program. In addition to developing concepts with an estimated cost ~1B, the Teams are identifying key enabling technologies needed for their designs. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development or active study (TESS, JWST, WFIRST-AFTA).Final Reports from the two studies will be published in early 2015. This poster serves as an introduction to a series of posters featuring the two studies. At the conclusion of the studies in early 2015, NASA will evaluate them for further technology development and possible development as flight missions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  4. Generation of an optimal target list for the Exoplanet Characterisation Observatory (EChO)

    Varley, Ryan; Pascale, Enzo; Tessenyi, Marcell; Hollis, Morgan; Morales, Juan Carlos; Tinetti, Giovanna; Swinyard, Bruce; Deroo, Pieter; Ollivier, Marc; Micela, Giusi

    2014-01-01

    The Exoplanet Characterisation Observatory EChO is a space mission concept studied by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing a large and diverse sample of planets even if it were launched today, and the wealth of optimal targets for EChO expected to be discovered ...

  5. The effect of stellar radiation on exoplanet atmospheric heating and mass loss

    Ojanen, Winonah; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    Our project aims to investigate the influence of stellar activity and high-energy radiation on short-period transiting exoplanet atmospheric heating and mass loss. Mass loss in closely orbiting gaseous exoplanets could be significant enough to evaporate a significant portion of the atmosphere over the total system lifetime. A current question of interest is how Neptune-class gas giants might change over time from being exposed to intense X-ray and UV flux radiated from the star. Our research aims to estimate current and total mass loss for four Neptune-class exoplanets that have both measured radii and masses. We use computer software to reduce and analyze Chandra X-ray observations of Neptune-class exoplanets, including HAT-P-11b and archival data of GJ 436b, to calculate the high-energy incident flux for each planet. We then estimate the current-epoch mass-loss rate and construct integrated mass-loss histories. We test whether planets receiving the greatest dose of high-energy radiation also tend to be the lowest mass and the most dense, suggestive of evaporation. These observations provide essential empirical input for understanding and modeling the potential evolutionary transformation of hot gas giants into less massive and more dense remnants.

  6. Atmospheric Chemistry of Venus-like Exoplanets

    Schaefer, Laura

    2010-01-01

    We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibira between the atmosphere and lithosphere, as on Venus. The results of our calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the surface. These results will be useful in planning future observations of the atmospheres of terrestrial-sized exoplanets by current and proposed space observatories such as the Hubble Space Telescope (HST), Spitzer, James Webb Space Telescope (JWST), Terrestrial Planet Finder, and Darwin.

  7. Key Challenges for Exoplanet Biosignature Gas Studies

    Seager, S.

    2014-03-01

    Biosignature gases are gases emitted by life that can accumulate in an exoplanet atmosphere to remotely detectable levels by future space telescopes. Until now, the dominant focus has been on Earth-like planets, because Earth is the only known planet with life. Yet exoplanets are astonishingly diverse--in terms of their masses, densities, orbits, and host star types--and this diversity motivates a radical extension of what conventionally constitutes a habitable planet. By building a general framework with which to understand a wide range of plausible biosignature gases, we will increase our chances of identifying inhabited worlds.

  8. Characterizing Exoplanet Atmospheres: From Light-curve Observations to Radiative-transfer Modeling

    Cubillos, Patricio E

    2016-01-01

    Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve mode...

  9. Transiting exoplanets from the CoRoT space mission I - CoRoT-Exo-1b: a low-density short-period planet around a G0V star

    Barge, P; Auvergne, M; Rauer, H; Léger, A; Schneider, J; Pont, F; Aigrain, S; Almenara, J -M; Alonso, R; Barbieri, M; Borde, P; Bouchy, F; Deeg, H -J; De la Reza, R; Deleuil, M; Dvorak, R; Erikson, A; Fridlund, M; Gillon, M; Gondoin, P; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Kabath, P; Lammer, H; Llebaria, A; Loeillet, B; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rouan, D; Shporer, A; Wuchterl, G

    2008-01-01

    Context. The pioneer space mission for photometric planet searches, CoRoT, steadily monitors about 12,000 stars in each of its fields of view; it is able to detect transit candidates early in the processing of the data and before the end of a run. Aims. We report the detection of the first planet discovered by CoRoT and characterizing it with the help of follow-up observations. Methods. Raw data were filtered from outliers and residuals at the orbital period of the satellite. The orbital parameters and the radius of the planet were estimated by best fitting the phase folded light curve with 34 successive transits. Doppler measurements with the SOPHIE spectrograph permitted us to secure the detection and to estimate the planet mass. Results. The accuracy of the data is very high with a dispersion in the 2.17 min binned phase-folded light curve that does not exceed 3.10-4 in flux unit. The planet orbits a mildly metal-poor G0V star of magnitude V=13.6 in 1.5 days. The estimated mass and radius of the star are 0...

  10. A Semi-Analytical Model of Visible-Wavelength Phase Curves of Exoplanets and Applications to Kepler-7 b and Kepler-10 b

    Hu, Renyu; Seager, Sara; Lewis, Nikole; Showman, Adam P

    2015-01-01

    Kepler has detected numerous exoplanet transits by precise measurements of stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler-7 b and the rocky planet Kepler-10 b using the model. In general, we find that a hot exoplanet's visible-wavelength phase curve having a significant phase offset c...

  11. A New Analysis of the Exoplanet Hosting System HD 6434

    Hinkel, Natalie R; Pilyavsky, Genady; Boyajian, Tabetha S; James, David J; Naef, Dominique; Fischer, Debra A; Udry, Stephane

    2015-01-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a M_p*sin(i) = 0.44 M_J mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ~6 hrs, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9m and 1.0m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry P...

  12. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  13. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  14. Jupiter as an exoplanet: UV to NIR transmission spectrum reveals hazes, a Na layer and possibly stratospheric H2O-ice clouds

    Montañes-Rodriguez, P; Palle, E; Lopez-Puertas, M; Garcia-Melendo, E

    2015-01-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. But the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here we show the UV-VIS-IR transmission spectrum of Jupiter, as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter's shadow i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere, and strong absorption features from CH4. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H2O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore...

  15. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  16. A sub-Mercury-sized exoplanet

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of Ear

  17. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  18. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to

  19. The Transit Monitoring in the South (TraMoS project

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  20. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Apai, Daniel, E-mail: vkostov@pha.jhu.edu [Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85718 (United States)

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  1. Insolation patterns on synchronous exoplanets with obliquity

    Dobrovolskis, Anthony R.

    2009-11-01

    A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ˜90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet's surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or

  2. Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star

    Csizmadia, Sz; Gandolfi, G; Deleuil, M; Bouchy, M; Fridlund, M; Szabados, L; Parviainen, H; Cabrera, J; Aigrain, S; Alonso, R; Almenara, J M; Baglin, A; Bordé, P; Bonomo, A S; Deeg, H J; Dıaz, R F; Erikson, A; Ferraz-Mello, S; Santos, M Tadeu dos; Guenther, E W; Guillot, T; Grziwa, S; Hébrard, G; Klagyivik, P; Ollivier, M; Pätzold, M; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Mazeh, T; Wuchterl, G; Carpano, S; Ofir, A

    2015-01-01

    We report the detection of a rare transiting brown dwarf with a mass of 59 M_Jup and radius of 1.1 R_Jup around the metal-rich, [Fe/H] = +0.44, G9V star CoRoT-33. The orbit is eccentric (e = 0.07) with a period of 5.82 d. The companion, CoRoT-33b, is thus a new member in the so-called brown dwarf desert. The orbital period is within 3% to a 3:2 resonance with the rotational period of the star. CoRoT-33b may be an important test case for tidal evolution studies. The true frequency of brown dwarfs close to their host stars (P < 10 d) is estimated to be approximately 0.2% which is about six times smaller than the frequency of hot Jupiters in the same period range. We suspect that the frequency of brown dwarfs declines faster with decreasing period than that of giant planets.

  3. Zodical Exoplanets in Time: Are These Worlds Flat?

    Mann, Andrew; Rizzuto, Aaron; Newton, Elisabeth; Gaidos, Eric; Kraus, Adam; Dalba, Paul

    2016-08-01

    Over the past decade, Spitzer has helped to revolutionize our understanding of exoplanet atmospheres. By extending the reach of transmission spectroscopy (change in transit depth with wavelength) past 3 microns, Spitzer has provided unique constraints on the composition of the atmospheres of transiting planets. Such studies of super-Earth and Neptune size planets with both the Hubble Space Telescope and Spitzer have generally found featureless atmospheres, consistent with high clouds or a haze layer. This finding motivates more questions; how and when do these atmospheres form, how do they sustain themselves, and how long do they persist? Some answers could be found by comparing the atmospheres of similar planets with a range of ages from infancy (0-20 Myr) to adolescence (100-1000 Myr) to maturity (more than 1 Gyr). The mature part of this comparison is starting to become complete with many older super-Earth to Neptune size systems undergoing detailed study. However, even among the known young and adolescent systems, few were known to transit and none were amenable to transmission spectroscopy. Observations of young stars by the K2 mission has changed the landscape. From this data our team has identified and confirmed two transiting planets that will promote studies of exoplanet evolution. The first, K2-25b, orbits an M4.5 in the Hyades cluster (650 Myr), and the second, K2-33b, orbits an M3.5 pre-main sequence star in the Upper Scorpius OB association (11 Myr). We propose to observe 6 transits of the former and 5 of the latter with Spitzer/IRAC 3.6 and 4.5 micron bands. In combination with our K2 and ground-based data we can construct low-resolution transmission spectra of each planet in the key regions of atmospheric differentiation. This will provide the first insight into the atmospheres of young, small planets, determine when featureless atmospheres first appear, and provide constraints on the evolution of planetary atmospheres.

  4. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Ehrenreich, David; Wheatley, Peter J; Etangs, Alain Lecavelier des; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-01-01

    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is su...

  5. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b.

    Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-06-25

    Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

  6. A lower mass for the exoplanet WASP-21b

    Barros, S C C; Gibson, N P; Howarth, I D; Keenan, F P; Simpson, E K; Skillen, I; Steele, I A; .,

    2011-01-01

    We present high precision transit observations of the exoplanet WASP-21b, obtained with the RISE instrument mounted on 2.0m Liverpool Telescope. A transit model is fitted, coupled with an MCMC routine to derive accurate system parameters. The two new high precision transits allow to estimate the stellar density directly from the light curve. Our analysis suggests that WASP-21 is evolving off the main sequence which led to a previous overestimation of the stellar density. Using isochrone interpolation, we find a stellar mass of 0.86 \\pm 0.04 Msun which is significantly lower than previously reported (1.01 \\pm 0.03 Msun). Consequently, we find a lower planetary mass of $0.27 \\pm 0.01 Mjup$. A lower inclination (87.4 \\pm 0.3 degrees) is also found for the system than previously reported, resulting in a slightly larger stellar (R_* =1.10 \\pm 0.03 Rsun) and planetary radius (R_p = 1.14 \\pm 0.04 Rjup). The planet radius suggests a hydrogen/helium composition with no core which strengthens the correlation between pl...

  7. Optical transmission photometry of the highly inflated exoplanet WASP-17b

    Bento, J; Copperwheat, C M; Fortney, J J; Dhillon, V S; Hickman, R; Littlefair, S P; Marsh, T R; Parsons, S G; Southworth, J

    2013-01-01

    We present ground-based high-precision observations of the transit of WASP-17b using the multi-band photometer ULTRACAM on ESO's NTT in the context of performing transmission spectrophotometry of this highly inflated exoplanet. Our choice of filters (SDSS u', g' and r' bands) is designed to probe for the presence of opacity sources in the upper atmosphere. We find evidence for a wavelength dependence in the planet radius in the form of enhanced absorption in the SDSS r' band, consistent with a previously detected broad sodium feature. We present a new independent measurement of the planetary radius at Rpl = 1.97 +/- 0.06 Rjup, which confirms this planet as the most inflated exoplanet known to date. Our measurements are most consistent with an atmospheric profile devoid of enhanced TiO opacity, previously predicted to be present for this planet.

  8. A Large Hubble Space Telescope Survey of Low-Mass Exoplanets

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; Lothringer, Joshua; McCullough, Peter R.; Dragomir, Diana; Morley, Caroline; Kempton, Eliza

    2016-10-01

    The discovery of short-period planets with masses and radii between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. From the Kepler mission, we know that these "super-Earths" or "sub-Neptunes" orbit at least 40% of stars, likely representing the most common outcome of planet formation. Despite this ubiquity, we know little about their typical compositions and formation histories. In this talk, we will shed new light on these worlds by presenting the multiple the main results from our 124-orbit HST transit spectroscopy survey to probe the chemical compositions of low-mass exoplanets. We will report on multiple molecular detections. Our unprecedented HST survey provides the first comprehensive look at this intriguing new class of planets by covering seven planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth-mass planet near the habitable zone of its host star.

  9. Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

    Swift, Jonathan J; Johnson, John A; Wright, Jason T; McCrady, Nate; Wittenmyer, Robert A; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S; Herzig, Erich; Myles, Justin; Blake, Cullen H; Eastman, Jason; Beatty, Thomas G; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew

    2014-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance...

  10. Combining Photometry from Kepler and TESS to Improve Short-period Exoplanet Characterization

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-07-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  11. Combining Photometry from Kepler and TESS to Improve Short-Period Exoplanet Characterization

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-01-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  12. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  13. High resolution transmission spectrum of the Earth's atmosphere -- Seeing Earth as an exoplanet using a lunar eclipse

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Wang, Wei; Wang, Liang; Liu, Yujuan; Pallé, Enric

    2014-01-01

    With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satell...

  14. SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    Christille, Jean Marc; Bonomo, Aldo Stefano; Borsa, Francesco; Busonero, Deborah; Calcidese, Paolo; Claudi, Riccardo; Damasso, Mario; Giacobbe, Paolo; Molinari, Emilio; Pace, Emanuele; Riva, Alberto; Sozzetti, Alesandro; Toso, Giorgio; Tresoldi, Daniela

    2016-08-01

    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of systematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precision differential photometry that exploits the choice of specifically selected narrow-band filters and novel ideas for the execution of simultaneous VIS and NIR measurements. Starting from the fundamental system requirements driven by the science case at hand, we describe a set of three opto-mechanical solutions for the instrument prototype: 1) a radial distribution of the optical flux using dichroic filters for the wavelength separation and narrow-band filters or liquid crystal filters for the observations; 2) a tree distribution of the optical flux (implying 2 separate foci), with the same technique used for the beam separation and filtering; 3) an 'exotic' solution consisting of the study of a complete optical system (i.e. a brand new telescope) that exploits the chromatic errors of a reflecting surface for directing the different wavelengths at different foci. In this paper we present the first results of the study phase for the three solutions, as well as the

  15. What can exoplanets tell us about our Solar System?

    Lineweaver, Charles H.; Grether, Daniel; Hidas, Marton

    2002-01-01

    We update our analysis of recent exoplanet data that gives us a partial answer to the question: How does our Solar System compare to the other planetary systems in the Universe? Exoplanets detected between January and August 2002 strengthen the conclusion that Jupiter is a typical massive planet rather than an outlier. The trends in detected exoplanets do not rule out the hypothesis that our Solar System is typical. They support it.

  16. The detection and exploration of planets from the Trans-atlantic Exoplanet Survey

    O'Donovan, Francis Thomas

    I present the discovery of three transiting planets (TrES-2, TrES-3, and TrES-4) of nearby bright stars made with the ten-centimeter telescope Sleuth as part of the Trans-atlantic Exoplanet Survey (TrES). TrES-2 is the first transiting exoplanet detected in the field of view of NASA’s Kepler mission. Of the 20 known transiting exoplanets, TrES-3 has the second shortest period, facilitating the study of orbital decay and atmospheric evaporation. Its visible/infrared brightness makes TrES-3 an ideal target for observations to determine the atmospheric composition. TrES-4 has the largest radius and lowest density of the known transiting planets. These three planets have radii larger than that of Jupiter, and the radius of TrES-4 significantly exceeds predictions from models of hot Jupiters, indicating a possible lack of an energy source in these models. I present the results of Spitzer observations of TrES-2. I reject tidal dissipation of eccentricity as an explanation for the inflated radius, and examine the spectrum for evidence of atmospheric absorption.I have monitored 19 fields each containing 6,000-36,000 stars for evidence of transits. I discuss the rejection of six of my candidate transiting systems from an early field that represent examples of the 67 astrophysical false positives that I encountered in Sleuth data. These six false positives highlight the benefit of a multisite survey such as TrES, and also of comprehensive follow-up of transit candidates. As a further example, I present the candidate GSC 03885-00829 from Sleuth data that was revealed to be a blend of a bright F dwarf and a fainter K-dwarf eclipsing binary. This candidate proved nontrivial to reject, requiring multicolor follow-up photometry to produce evidence of the true binary nature of this candidate.The yield of planets from transit surveys is not yet well constrained or understood. There are numerous factors that affect the predictions such as the amount of correlated photometric noise

  17. Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    Wang, Ji; Barclay, Thomas; Picard, Alyssa; Ma, Bo; Bowler, Brendan P; Schmitt, Joseph R; Boyajian, Tabetha S; Jek, Kian J; LaCourse, Daryll; Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Lintott, Chris; Schawinski, Kevin; Simister, Dean Joseph; Gregoire, Boscher; Babin, Sean P; Poile, Trevor; Jacobs, Thomas Lee; Jebson, Tony; Omohundro, Mark R; Schwengeler, Hans Martin; Sejpka, Johann; Terentev, Ivan A; Gagliano, Robert; Paakkonen, Jari-Pekka; Berge, Hans Kristian Otnes; Winarski, Troy; Green, Gerald R; Schmitt, Allan R

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4". We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive a...

  18. Statistical Signatures of Panspermia in Exoplanet Surveys

    Lin, Henry W.; Loeb, Abraham

    2015-09-01

    A fundamental astrobiological question is whether life can be transported between extrasolar systems. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: a smoking gun signature of panspermia would be the detection of large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as ∼25 biologically active exoplanets could yield a 5σ detection of panspermia. Detectability of position-space correlations is possible unless the timescale for life to become observable once seeded is longer than the timescale for stars to redistribute in the Milky Way.

  19. Light scattering from exoplanet oceans and atmospheres

    Zugger, Michael E; Williams, Darren M; Kane, Timothy J; Philbrick, C Russell

    2010-01-01

    Orbital variation in polarized and unpolarized reflected starlight from exoplanets could eventually be used to detect liquid water on planet surfaces. Exoplanets with rough surfaces, or those dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 degrees, whereas ocean-covered planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 degrees. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 degrees; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach...

  20. Dispatch Scheduling to Maximize Exoplanet Detection

    Johnson, Samson; McCrady, Nate; MINERVA

    2016-01-01

    MINERVA is a dedicated exoplanet detection telescope array using radial velocity measurements of nearby stars to detect planets. MINERVA will be a completely robotic facility, with a goal of maximizing the number of exoplanets detected. MINERVA requires a unique application of queue scheduling due to its automated nature and the requirement of high cadence observations. A dispatch scheduling algorithm is employed to create a dynamic and flexible selector of targets to observe, in which stars are chosen by assigning values through a weighting function. I designed and have begun testing a simulation which implements the functions of a dispatch scheduler and records observations based on target selections through the same principles that will be used at the commissioned site. These results will be used in a larger simulation that incorporates weather, planet occurrence statistics, and stellar noise to test the planet detection capabilities of MINERVA. This will be used to heuristically determine an optimal observing strategy for the MINERVA project.

  1. ASTRO 850: Teaching Teachers about Exoplanets

    Barringer, Daniel; Palma, Christopher

    2017-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013), a pilot section of introductory astronomy for non-science majors (Palma et al. 2014), and into the design of an online elective course on exoplanets for the M.Ed. in Earth Science (Barringer and Palma, 2016). Here, we present the finished version of that exoplanet course, ASTRO 850. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  2. The Radiation Environment of Exoplanet Atmospheres

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  3. Exoplanet Science with E-ELT/METIS

    Quanz, S. P.

    2015-10-01

    METIS - the Mid-infrared E-ELT Imager and Spectrograph - is foreseen as one of the first instruments for the 39-m European Extremely Large Telescope (E-ELT). It will provide diffraction limited imaging and spectroscopy in the L, M, N and Q band and also feature a high-dispersion integral field unit in the L and M band. While being a multi-purpose instrument with a broad and diverse science case, exoplanets are one of the driving science topics for METIS. In this talk I will highlight a few areas in exoplanet research, where METIS will be uniquely positioned to deliver breakthrough results early in the era of ground-based ELTs. In fact, it might be METIS that takes the first image of a small and possibly rocky planet around a nearby star.

  4. Understanding Young Exoplanet Analogs with WISE

    Rice, Emily

    We propose to tackle outstanding questions about the fundamental properties of young brown dwarfs, which are atmospheric analogs to massive gas giant exoplanets, using public archive data from the Wide-field Infrared Survey Explorer (WISE) combined with our extensive dataset of optical and near-infrared observations, including spectra, proper motions, and parallaxes. Using WISE data we will construct color-color diagrams, color- magnitude diagrams, and spectral energy distributions for our sample of candidate young brown dwarfs. We will fully characterize the spectral properties of the candidates and evaluate their membership in nearby young moving groups in order to obtain independent age estimates. The practical outcomes of this project will allow the research community to use observed colors and spectra to reliably constrain the properties - including effective temperature, gravity, and dust/cloud properties - of both brown dwarfs and gas giant exoplanets. We will also search for new young brown dwarfs in the WISE archive using colors and proper motions. The expanded sample of young brown dwarfs will be used to create a self-contained feedback loop to identify and address the shortcomings of cool atmosphere models and low-mass evolutionary tracks, both of which are already being used to infer the properties of massive exoplanets. Disentangling the effects of physical parameters on the observed properties of young brown dwarfs is directly relevant to studies of exoplanets. Direct observations of exoplanets are currently very limited, and young brown dwarfs are the laboratories in which we can solve existing problems before the onslaught of new observations from instruments capable of directly imaging exoplanets, including the Gemini Planet Imager, Project 1640 at the Palomar Observatory, SPHERE on the VLT, and the James Webb Space Telescope. This project addresses the goal of the NASA Science Mission Directorate to discover how the universe works; in particular

  5. Exoplanet Characterization and the Search for Life

    Kasting, J; Roberge, A; Leger, A; Schwartz, A; Wooten, A; Vosteen, A; Lo, A; Brack, A; Tanner, A; Coustenis, A; Lane, B; Oppenheimer, B; Mennesson, B; Lopez, B; Grillmair, C; Beichman, C; Cockell, C; Hanot, C; McCarthy, C; Stark, C; Marois, C; Aime, C; Angerhausen, D; Montes, D; Wilner, D; Defrere, D; Mourard, D; Lin, D; Kite, E; Chassefiere, E; Malbet, F; Tian, F; Westall, F; Illingworth, G; Vasisht, G; Serabyn, G; Marcy, G; Bryden, G; White, G; Laughlin, G; Torres, G; Hammel, H; Ferguson, H; Shibai, H; Rottgering, H; Surdej, J; Wiseman, J; Ge, J; Bally, J; Krist, J; Monnier, J; Trauger, J; Horner, J; Catanzarite, J; Harrington, J; Nishikawa, J; Stapelfeldt, K; von Braun, K; Biazzo, K; Carpenter, K; Balasubramanian, K; Kaltenegger, L; Postman, M; Spaans, M; Turnbull, M; Levine, M; Burchell, M; Ealey, M; Kuchner, M; Marley, M; Dominik, M; Mountain, M; Kenworthy, M; Muterspaugh, M; Shao, M; Zhao, M; Tamura, M; Kasdin, N; Haghighipour, N; Kiang, N; Elias, N; Woolf, N; Mason, N; Absil, O; Guyon, O; Lay, O; Borde, P; Fouque, P; Kalas, P; Lowrance, P; Plavchan, P; Hinz, P; Kervella, P; Chen, P; Akeson, R; Soummer, R; Waters, R; Barry, R; Kendrick, R; Brown, R; Vanderbei, R; Woodruff, R; Danner, R; Allen, R; Polidan, R; Seager, S; MacPhee, S; Hosseini, S; Metchev, S; Kafka, S; Ridgway, S; Rinehart, S; Unwin, S; Shaklan, S; Brummelaar, T ten; Mazeh, T; Meadows, V; Weiss, W; Danchi, W; Ip, W; Rabbia, Y

    2009-01-01

    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.

  6. Statistical Signatures of Panspermia in Exoplanet Surveys

    Lin, Henry W

    2015-01-01

    A fundamental astrobiological question is whether life arose spontaneously on earth or was transported here from an extrasolar system. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: panspermia predicts large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as $\\sim 25$ biologically active exoplanets could yield a $5\\sigma$ detection of panspermia.

  7. Statistical Signatures of Panspermia in Exoplanet Surveys

    2015-01-01

    A fundamental astrobiological question is whether life can be transported between extrasolar systems. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: a sm...

  8. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    Hu Renyu; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ehlmann, Bethany L., E-mail: hury@mit.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  9. Calibration of surface temperature on rocky exoplanets

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  10. Advances in exoplanet science from Kepler.

    Lissauer, Jack J; Dawson, Rebekah I; Tremaine, Scott

    2014-09-18

    Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASA's Kepler space telescope. Kepler has discovered most of the known exoplanets, the smallest planets to orbit normal stars and the planets most likely to be similar to Earth. Most importantly, Kepler has provided us with our first look at the typical characteristics of planets and planetary systems for planets with sizes as small as, and orbits as large as, those of Earth.

  11. The far future of exoplanet direct characterization

    Schneider, Jean; Fridlund, Malcolm; White, Glenn; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Liseau, Rene; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Roettgering, Huub; Selsis, Franck; Beichman, Charles; Danchi, William; Kaltenegger, Lisa; Lunine, Jonathan; Stam, Daphne; Tinetti, Giovanna

    2009-01-01

    In this outlook we describe what could be the next steps of the direct characterization of habitable exoplanets after first the medium and large mission projects and investigate the benefits of the spectroscopic and direct imaging approaches. We show that after third and fourth generation missions foreseeable for the next 100 years, we will face a very long era before being able to see directly the morphology of extrasolar organisms.

  12. The far future of exoplanet direct characterization.

    Schneider, Jean; Léger, Alain; Fridlund, Malcolm; White, Glenn J; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Liseau, René; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Franck; Beichman, Charles; Danchi, William; Kaltenegger, Lisa; Lunine, Jonathan; Stam, Daphne; Tinetti, Giovanna

    2010-01-01

    We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.

  13. Mass-radius relationships for exoplanets

    Swift, Damian; Hicks, Damien; Hamel, Sebastien; Caspersen, Kyle; Schwegler, Eric; Collins, Gilbert; Ackland, Graeme

    2010-01-01

    For planets other than Earth, and in particular for exoplanets, interpretation of the composition and structure depends largely on a comparison of the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation for different layers within the planet, which is based heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We summarize current techniques for predicting and measuring equations of state, and calculate mass-radius relations for key materials for which the equation of state is reasonably well established, and for Fe-rock combinations. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. CoRoT-7b probably has a rocky mantle over an Fe-based core. The core is likely to be proportionately smaller than the Earth's. GJ 1214b lies between the mass-radius curves for H_2Oand CH_...

  14. Two Exoplanets Discovered at Keck Observatory

    Valenti, J A; Marcy, G W; Johnson, J A; Henry, G W; Wright, J T; Howard, A W; Giguere, M; Isaacson, H

    2009-01-01

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).

  15. Theoretical Spectra of Terrestrial Exoplanet Surfaces

    Hu, Renyu; Seager, Sara

    2012-01-01

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7 - 13 \\mu m and 15 - 25 \\mu m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high-resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K band and J band geometric albedos (A_g (K)-A_g (J)): A_g (K)-A_g (J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as oliv...

  16. Electron densities and alkali atoms in exoplanet atmospheres

    Lavvas, P. [GSMA, Université de Reims Champagne Ardenne, CNRS UMR 7331, Reims, 51687 France (France); Koskinen, T.; Yelle, R. V., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  17. Analysis of exoplanet XO-2 b observed with HST NICMOS

    Crouzet, Nicolas; McCullough, P. R.; Burke, C.; Long, D.

    2011-09-01

    We present the photometric and spectroscopic analysis of the transiting planet XO-2 b, from HST NICMOS. Three transits of the planet have been observed. The field of view contains not only the XO-2 star but also a second star of very similar properties, which we use as a comparison star. We first perform a white-light photometric analysis of the data. The high signal to noise ratio yields improved parameters for the planet and host star. We then build the spectrum of this system in the range 1.2-1.8 microns with a spectral resolution of R 35, taking into account systematic effects. To investigate the validity of the method and the reliability of NICMOS data, we also build a spectrum for the exoplanet XO-1 b. We find an overall shape close to Tinetti et al. (ApJL 2010), although differences appear for some particular features. In the context of a debate about planetary spectra obtained with NICMOS, this study suggests that NICMOS data, although clearly affected by systematics, contain enough information to derive planetary spectra at least at low resolution.

  18. Transiting exoplanets from the CoRoT space mission

    Ollivier, M.; Gillon, M.; Santerne, A.

    2012-01-01

    RoT-16b is a 0.535 −0.083/+0.085 MJ, 1.17 −0.14/+0.16 RJ hot Jupiter with a density of 0.44 −0.14/+0.21 g cm-3. Despite its short orbital distance (0.0618 ± 0.0015 AU) and the age of the parent star (6.73 ± 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon...

  19. A map of the large day-night temperature gradient of a super-Earth exoplanet

    Demory, Brice-Olivier; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenkovic, Vlada; Benneke, Bjorn; Kane, Stephen; Queloz, Didier

    2016-01-01

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths (exoplanets with masses of one to ten times that of Earth) have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 +- 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase c...

  20. The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

    Galicher, Raphael; Macintosh, Bruce; Zuckerman, Ben; Barman, Travis; Konopacky, Quinn; Song, Inseok; Patience, Jenny; Lafreniere, David; Doyon, Rene; Nielsen, Eric L

    2016-01-01

    Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 years. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2,279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05[+2.80-0.70]% of stars harbor at least one giant planet between 0.5 and 14...

  1. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion

    Sing, David K; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; Etangs, Alain Lecavelier des; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2015-01-01

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1 to 1.7 {\\mu}m). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse...

  2. Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

    Barstow, Joanna K; Aigrain, Suzanne; Fletcher, Leigh N; Irwin, Patrick G J; Varley, Ryan; Pascale, Enzo

    2014-01-01

    We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim (Waldmann & Pascale 2014) to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of Barstow et al. (2013a). To correctly retrieve the temperature structure and composition of the atmosphere to within 2 {\\sigma}, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiti...

  3. The Promise of Many Worlds: Detection and Characterization of Exoplanets with Extreme Precision Spectroscopy

    Roy, Arpita

    2017-01-01

    Two decades ago, technological advancement aligned with some of mankind's oldest and most compelling questions to give birth to exoplanet science. Since then, the study of exoplanets, more than any other field of astrophysics, has grown in direct consonance with new instrumentation. In this dissertation talk I will discuss the development of three precision spectrographs that are pushing the limits on current radial velocity (RV) precision: (a) PARAS, a workhorse optical instrument achieving ~1m/s over several months, (b) the Habitable Zone Planet Finder, an upcoming NIR instrument for the 10m Hobby Eberly Telescope, and (c) NEID, an extreme precision instrument that will be the centerpiece of the NASA-NSF Exoplanet Observational Research (NN-EXPLORE) partnership. The path to the extreme precisions required to detect Earth analogs (~10cm/s), requires severe technical artistry and demands unprecedented performance from both hardware and software. I will summarize the most challenging sources of measurement error and the hardware solutions we have innovated, including my work on the invention of an efficient ball lens double scrambler (patent pending) that essentially retires issues of illumination instability. As software architect of these instruments, I will also describe the pathways to extreme precision data analysis pipelines, rooted firmly in the heritage of current instruments in the field. Fortunately, the scientific return from these meticulously produced spectra will be manifold, extending beyond precision RVs. I will briefly discuss my work leveraging the stability and resolution of similar instruments for stellar activity diagnosis and the determination of insidious false positives, as well as for the direct detection of reflected light from exoplanets. These efforts together underline both the formidable demands and rich rewards of extreme precision spectroscopy, which remains our fundamental tool for the discovery of potentially habitable non-transiting

  4. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    Burke, Christopher J. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); McCullough, P. R., E-mail: christopher.j.burke@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ{sub rv} ∼ 0.6 m s{sup –1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ{sub phot} ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ{sub rv} ∼ 2.0 m s{sup –1} precision radial velocity survey has comparable efficiency to a transit survey with σ{sub phot} ∼ 2300 ppm.

  5. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tian, Feng [Center for Earth System Sciences, Tsinghua University, Beijing 100084 (China); Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomsica del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, 1428 Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: kevin.france@colorado.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV

  6. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; Walkowicz, Lucianne M.

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  7. Exoplanets Bouncing Between Binary Stars

    Moeckel, Nickolas

    2012-01-01

    Exoplanetary systems are found not only among single stars, but also binaries of widely varying parameters. Binaries with separations of 100--1000 au are prevalent in the Solar neighborhood; at these separations planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet--planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then this planet may be able to transition from the ...

  8. Extreme physical phenomena associated with close-in solid exoplanets: Models and consequences

    Saxena, Prabal

    Solid exoplanets orbiting at very close distances away from their host star are astrophysical laboratories for unique and exotic processes that define everything from their orbit and shape to their atmospheres and interiors. We create models to examine the unique physical environments that these planets inhabit and explore the effects on planetary shape and on atmosphere and resurfacing processes. In particular we examine three related topics. The first topic involves the creation of a model of the atmospheres of synchronously orbiting close in solid planets which examines the potential of mass advection by the atmosphere to deform the planets shape and produce observable surface signatures. This model reproduces and builds upon earlier low dimension atmospheric models produced for Io and Heated Super-Earths by incorporating stellar disk insolation and latent heat considerations and then examines bulk atmospheric mass transport processes on a variety of different close in solid exoplanets. Spatial deposition profiles are then compared to putative sub-stellar magma oceans in order to examine deformation to a planets' shape and potential production of observable surface features. The second is the potential for tidally and rotationally distorted planets in synchronous orbit to produce observational effects and transit signatures which can both confound system characterization and also act as a probe to constrain system and planet properties. In this model we examine a number of different planet-star systems and quantify their potential biases and asphericity signatures in hypothetical transit data. The results indicate that such signatures and biases exceed observational thresholds of a number of current and future surveys and instruments and consequently may be an invaluable probe for exoplanet characterization - in particular they may help to discriminate between rocky super-earths and mini neptunes - a fundamental unresolved question regarding exoplanets. Finally

  9. Search for a circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates

    Garai, Z; Budaj, J; Stellingwerf, R F

    2014-01-01

    A unique short-period Mercury-size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum-planetary material - comet-like tail. Close-in exoplanets, like KIC012557548b, are subjected to the greatest planet-star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet-like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet-like tails similar to KIC012557548b and for long-term orbital period variations. We are curious about frequency of comet-like tail formation among short-period Kepler exoplanet candidates. We concentrate on a sample of 20 close-in candidates with a period similar to KIC012557548b from the Kepler mission.

  10. Transits Probabilities Around Hypervelocity and Runaway Stars

    Fragione, Giacomo

    2016-01-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. In this paper, we explore the possibility of detecting planetary transits around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multi-planetary transit is $10^{-3}\\lesssim P\\lesssim 10^{-1}$. We therefore need to observe $\\sim 10-1000$ high-velocity stars to spot a transit. We predict that the European Gaia satellite, along with TESS, could spot such transits.

  11. The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystems

    Focardi, M.; Pace, E.; Colomé, J.; Ribas, I.; Rataj, M.; Ottensamer, R.; Farina, M.; Di Giorgio, A. M.; Wawer, P.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Morgante, G.; Artigues, B.; Sierra-Roig, C.; Gesa, L.; Eccleston, P.; Crook, M.; Micela, G.

    2016-07-01

    The ARIEL mission has been proposed to ESA by an European Consortium as the first space mission to extensively perform remote sensing on the atmospheres of a well defined set of warm and hot transiting gas giant exoplanets, whose temperature range between ~600 K and 3000 K. ARIEL will observe a large number (~500) of warm and hot transiting gas giants, Neptunes and super-Earths around a range of host star types using transit spectroscopy in the ~2-8 μm spectral range and broad-band photometry in the NIR and optical. ARIEL will target planets hotter than 600 K to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk and elemental composition. One of the major motivations for exoplanet characterisation is to understand the probability of occurrence of habitable worlds, i.e. suitable for surface liquid water. While ARIEL will not study habitable planets, its major contribution to this topic will results from its capability to detect the presence of atmospheres on many terrestrial planets outside the habitable zone and, in many cases, characterise them. This represents a fundamental breakthrough in understanding the physical and chemical processes of a large sample of exoplanets atmospheres as well as their bulk properties and to probe in-space technology. The ARIEL infrared spectrometer (AIRS) provides data on the atmospheric composition; these data are acquired and processed by an On-Board Data Handling (OBDH) system including the Cold Front End Electronics (CFEE) and the Instrument Control Unit (ICU). The Telescope Control Unit (TCU) is also included inside the ICU. The latter is directly connected to the Control and Data Management Unit (CDMU) on board the Service Module (SVM). The general hardware architecture and the application software of the ICU are described. The Fine Guidance Sensor (FGS) electronics and the Cooler Control Electronics are also presented.

  12. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute (United States)

    2015-06-01

    We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.

  13. Weighing Rocky Exoplanets with Improved Radial Velocimetry

    Xuesong Wang, Sharon; Wright, Jason; California Planet Survey Consortium

    2016-01-01

    The synergy between Kepler and the ground-based radial velocity (RV) surveys have made numerous discoveries of small and rocky exoplanets, opening the age of Earth analogs. However, most (29/33) of the RV-detected exoplanets that are smaller than 3 Earth radii do not have their masses constrained to better than 20% - limited by the current RV precision (1-2 m/s). Our work improves the RV precision of the Keck telescope, which is responsible for most of the mass measurements for small Kepler exoplanets. We have discovered and verified, for the first time, two of the dominant terms in Keck's RV systematic error budget: modeling errors (mostly in deconvolution) and telluric contamination. These two terms contribute 1 m/s and 0.6 m/s, respectively, to the RV error budget (RMS in quadrature), and they create spurious signals at periods of one sidereal year and its harmonics with amplitudes of 0.2-1 m/s. Left untreated, these errors can mimic the signals of Earth-like or Super-Earth planets in the Habitable Zone. Removing these errors will bring better precision to ten-year worth of Keck data and better constraints on the masses and compositions of small Kepler planets. As more precise RV instruments coming online, we need advanced data analysis tools to overcome issues like these in order to detect the Earth twin (RV amplitude 8 cm/s). We are developing a new, open-source RV data analysis tool in Python, which uses Bayesian MCMC and Gaussian processes, to fully exploit the hardware improvements brought by new instruments like MINERVA and NASA's WIYN/EPDS.

  14. A sub-Mercury-sized exoplanet

    Barclay, Thomas; Ciardi, David

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  15. Collaboration and Competition in Exoplanet Research

    Beichman, Charles

    2009-01-01

    Collaboration and competition are strong driving forces in the modern search for exoplanets, appears between individuals, agencies and nations as well as between observing techniques and theoretical interpretation. I will argue that these forces, taken in balance, are beneficial to the field and are partly responsible for the rapid progress in the search for planets and ultimately the search for life beyond the solar system. Specific examples will include indirect detection of Earth analogs from ground and space and the direct detection of gas giant and terrestrial planets.

  16. Young Brown Dwarfs as Giant Exoplanet Analogs

    Faherty, Jacqueline K; Rice, Emily L; Riedel, Adric

    2013-01-01

    Young brown dwarfs and directly-imaged exoplanets have enticingly similar photometric and spectroscopic characteristics, indicating that their cool, low gravity atmospheres should be studied in concert. Similarities between the peculiar shaped H band, near and mid-IR photometry as well as location on color magnitude diagrams provide important clues about how to extract physical properties of planets from current brown dwarf observations. In this proceeding we discuss systems newly assigned to 10-150 Myr nearby moving groups, highlight the diversity of this uniform age-calibrated brown dwarf sample, and reflect on their implication for understanding current and future planetary data.

  17. New Exoplanet Surveys in the Canadian High Arctic at 80 Degrees North

    Law, Nicholas M; Murowinski, Richard; Carlberg, Raymond; Ngan, Wayne; Salbi, Pegah; Ahmadi, Aida; Steinbring, Eric; Halman, Mark; Graham, James

    2012-01-01

    Observations from near the Eureka station on Ellesmere Island, in the Canadian High Arctic at 80 degrees North, benefit from 24-hour darkness combined with dark skies and long cloud-free periods during the winter. Our first astronomical surveys conducted at the site are aimed at transiting exoplanets; compared to mid-latitude sites, the continuous darkness during the Arctic winter greatly improves the survey's detection efficiency for longer-period transiting planets. We detail the design, construction, and testing of the first two instruments: a robotic telescope, and a set of very wide-field imaging cameras. The 0.5m Dunlap Institute Arctic Telescope has a 0.8-square-degree field of view and is designed to search for potentially habitable exoplanets around low-mass stars. The very wide field cameras have several-hundred-square-degree fields of view pointed at Polaris, are designed to search for transiting planets around bright stars, and were tested at the site in February 2012. Finally, we present a concep...

  18. Obliquities of Exoplanet Host Stars from Precise Distances and Stellar Angular Diameters

    Quinn, Samuel N.; White, Russel J.

    2017-01-01

    The next generation of exoplanet space photometry missions proposed by both NASA and ESA promise to discover small transiting planets around the nearest and brightest main-sequence stars. The physical and rotational properties of these stars, in conjunction with Gaia-precision distances, can be used to determine the inclination of the stellar rotation axis. Given edge-on orbital paths for transiting planets, stellar inclinations can be interpreted as obliquities projected into the line of sight, which can be used to more clearly reveal the system architectures of small planets and the factors that drive their orbital evolution. To demonstrate the method, we use a sample of simulated target stars for the NASA Transiting Exoplanet Survey Satellite (TESS) mission. Based on predicted characteristics of these stars and likely measurement uncertainties, we show that the expected TESS discoveries will allow us to finely differentiate the true underlying obliquity distribution. Under conservative assumptions in our illustrative example -- in which the true distribution is assumed to contain systems drawn from both well-aligned and isotropic distributions (e.g., due to multiple migration channels) -- the fraction of well-aligned systems can be determined to within 0.15, thus enabling constraints on the evolutionary processes that shape system architectures. Moreover, because of the excellent astrometric precision expected from Gaia, this technique will also be applicable to the large number of planets already discovered by Kepler orbiting much more distant stars.

  19. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    Law, Nicholas M.; Sivanandam, Suresh [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Ahmadi, Aida [University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada); Steinbring, Eric; Murowinski, Richard, E-mail: law@di.utoronto.ca [National Science Infrastructure, National Research Council Canada, Victoria, British Columbia, V9E 2E7 (Canada)

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  20. Observations of Extrasolar Planet Transits: What's next?

    Rauer, H.

    2014-03-01

    Transits of extrasolar planets are a goldmine for our understanding of the physical nature of planets beyond the Solar System. Measurements of radii from transit observations combined with mass determinations from radial velocity spectroscopy, or transit timing variations, have provided the first indications to the planetary composition and interior structure. It turns out that planets show a much richer diversity than found in our own planetary system, considering e.g. the so-called 'super-Earths', 'mini-Neptunes', and inflated giant planets. Transiting exoplanets also allow for spectroscopic observations of their atmospheres, either during transit or near secondary eclipse. Exoplanets showing transits have therefore been identified as key observables, not only for planet detection, but in particular for investigating further planetary nature. As a result, a new generation of instruments (space- and groundbased) for exoplanet transit observations is already in the construction phase and is planned for the near future. Most of these target specifically stars bright enough for spectroscopic follow-up observations, a èlesson learned' from past transit surveys. A clear goal for future investigations of habitable planets is the detection and characterization of terrestrial planets which potentially could harbor life. This talk will review the status and in particular the future of transit observations, with a focus on rocky planets in the habitable zone of their host stars.