WorldWideScience

Sample records for jupiter-mass exoplanet transiting

  1. WASP-34b: a near-grazing transiting sub-Jupiter-mass exoplanet in a hierarchical triple system

    CERN Document Server

    Smalley, B; Cameron, A Collier; Hellier, C; Lendl, M; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038 +/- 0.012). We find a planetary mass of 0.59 +/- 0.01 M_Jup and radius of 1.22 ^{+0.11}_{-0.08} R_Jup. There is a linear trend in the radial velocities of 55+/-4 m/s/y indicating the presence of a long-period third body in the system with a mass > 0.45 M_Jup at a distance of >1.2 AU from the host star. This third-body is either a low-mass star, white dwarf, or another planet. The transit depth ((R_P/R_*)^2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only ~80%.

  2. A SHORT-PERIOD CENSOR OF SUB-JUPITER MASS EXOPLANETS WITH LOW DENSITY

    International Nuclear Information System (INIS)

    Despite the existence of many short-period hot Jupiters, there is not one hot Neptune with an orbital period less than 2.5 days. Here, we discuss a cluster analysis of the currently known 106 transiting exoplanets to investigate a possible explanation for this observation. We find two distinct clusters in the mass-density space, one with hot Jupiters with a wide range of orbital periods (0.8-114 days) and a narrow range of planet radii (1.2 ± 0.2 RJ ) and another one with a mixture of super-Earths, hot Neptunes, and hot Jupiters, exhibiting a surprisingly narrow period distribution (3.7 ± 0.8 days). These two clusters follow strikingly different distributions in the period-radius parameter plane. The branch of sub-Jupiter mass exoplanets is censored by the orbital period at the large-radius end: no planets with mass between 0.02 and 0.8 MJ or with radius between 0.25 and 1.0 RJ are known with Porb < 2.5 days. This clustering is not predicted by current theories of planet formation and evolution, which we also review briefly.

  3. WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    CERN Document Server

    Smalley, B; Collier-Cameron, A; Doyle, A P; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet.

  4. DISCOVERY OF A PROBABLE 4-5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Delorme, P. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Boccaletti, A. [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France); Quanz, S. P. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Bonnefoy, M.; Klahr, H.; Mordasini, C. [Max Planck Institute for Astronomy, Koenigsthul 17, D-69117 Heidelberg (Germany); Girard, J. H.; Dumas, C. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Desidera, S.; Bonavita, M., E-mail: julien.rameau@obs.ujf-grenoble.fr [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-08-01

    Direct imaging has only begun to inventory the population of gas giant planets on wide orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. Here we report the discovery of a probable companion orbiting the young (10-17 Myr), dusty, early-type (A8) star HD 95086 at 56 AU in L' (3.8 {mu}m) images. This discovery is based on observations with more than a year time lapse. Our first epoch clearly revealed the source at {approx_equal} 10{sigma}, while our second epoch lacks good observing conditions, yielding a {approx_equal} 3{sigma} detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests that the companion is comoving with the star with a 3{sigma} confidence level. The planetary nature of the source is reinforced by a non-detection in the Ks-band (2.18 {mu}m) images according to its possible extremely red Ks-L' color. Conversely, background contamination is rejected with good confidence level. The luminosity yields a predicted mass of about 4-5 M{sub Jup} (at 10-17 Myr) using ''hot-start'' evolutionary models, making HD 95086 b the exoplanet with the lowest mass ever imaged around a star.

  5. Light Scattering in Exoplanet Transits

    Science.gov (United States)

    Robinson, Tyler D.; Fortney, Jonathan J.

    2016-10-01

    Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2–4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major

  6. KOI-183b: a half-Jupiter mass planet transiting a very old solar-like star

    CERN Document Server

    Gandolfi, D; Deeg, H J; Lanza, A F; Fridlund, M; Moroni, P G Prada; Alonso, R; Augusteijn, T; Cabrera, J; Evans, T; Geier, S; Hatzes, A P; Holczer, T; Hoyer, S; Kangas, T; Mazeh, T; Pagano, I; Tal-Or, L; Tingley, B

    2014-01-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183b (also known as KOI-183.01), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with $M_\\star=0.85\\pm0.04$ M$_\\rm{Sun}$, $R_\\star=0.95\\pm0.04$ R$_\\rm{Sun}$, $T_\\mathrm{eff}=5560\\pm...

  7. Saturn as a Transiting Exoplanet

    Science.gov (United States)

    Dalba, Paul A.; Muirhead, Philip S.; Fortney, Jonathan J.; Hedman, Matthew M.; Nicholson, Philip D.; Veyette, Mark J.

    2015-11-01

    Previous investigations of exoplanet atmospheres have not targeted those resembling the gas giant planets in our solar system. These types of exoplanets are too cold to be directly imaged or observed in emission, and their low transit probabilities and frequencies make characterization via transmission spectroscopy a challenging endeavor. However, studies of cold giant exoplanets would be highly valuable to our understanding of planet formation and migration and could place the gas giant members of our own solar system in a greater context. Here, we use solar occultations observed by the Visual and Infrared Mapping Spectrometer aboard the Cassini Spacecraft to extract the 1 to 5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption features from several molecules despite the presence of ammonia clouds. Self-consistent exoplanet atmosphere models show good agreement with Saturn's transmission spectrum but fail to reproduce the largest feature in the spectrum. We also find that atmospheric refraction determines the minimum altitude that could be probed during mid-transit of a Saturn-twin exoplanet around a Sun-like star. These results suggest that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories.

  8. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    CERN Document Server

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  9. Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  10. Factors Affecting the Radii of Close-in Transiting Exoplanets

    CERN Document Server

    Enoch, B; Horne, K

    2012-01-01

    The radius of an exoplanet may be affected by various factors, including irradiation, planet mass and heavy element content. A significant number of transiting exoplanets have now been discovered for which the mass, radius, semi-major axis, host star metallicity and stellar effective temperature are known. We use multivariate regression models to determine the dependence of planetary radius on planetary equilibrium temperature T_eq, planetary mass M_p, stellar metallicity [Fe/H], orbital semi-major axis a, and tidal heating rate H_tidal, for 119 transiting planets in three distinct mass regimes. We determine that heating leads to larger planet radii, as expected, increasing mass leads to increased or decreased radii of low-mass (2.0R_J) planets, respectively (with no mass effect on Jupiter-mass planets), and increased host-star metallicity leads to smaller planetary radii, indicating a relationship between host-star metallicity and planet heavy element content. For Saturn-mass planets, a good fit to the radii...

  11. Comparative Habitability of Transiting Exoplanets

    Science.gov (United States)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  12. Comparative Habitability of Transiting Exoplanets

    CERN Document Server

    Barnes, Rory; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiti...

  13. The Transiting Exoplanet Survey Satellite

    CERN Document Server

    Ricker, George R; Vanderspek, Roland; Latham, David W; Bakos, Gaspar A; Bean, Jacob L; Berta-Thompson, Zachory K; Brown, Timothy M; Buchhave, Lars; Butler, Nathaniel R; Butler, R Paul; Chaplin, William J; Charbonneau, David; Christensen-Dalsgaard, Jorgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, E W; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J; Howard, Andrew W; Ida, Shigeru; Jenkins, Jon; Jernigan, Garrett; Johnson, John Asher; Kaltenegger, Lisa; Kawai, Nobuyuki; Kjeldsen, Hans; Laughlin, Gregory; Levine, Alan M; Lin, Douglas; Lissauer, Jack J; MacQueen, Phillip; Marcy, Geoffrey; McCullough, P R; Morton, Timothy D; Narita, Norio; Paegert, Martin; Palle, Enric; Pepe, Francesco; Pepper, Joshua; Quirrenbach, Andreas; Rinehart, S A; Sasselov, Dimitar; Sato, Bun'ei; Seager, Sara; Sozzetti, Alessandro; Stassun, Keivan G; Sullivan, Peter; Szentgyorgyi, Andrew; Torres, Guillermo; Udry, Stephane; Villasenor, Joel

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I<13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler missio...

  14. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy

    Science.gov (United States)

    Wyttenbach, Aurélien; Ehrenreich, David

    2015-12-01

    The field of exoplanet atmospheres is booming thanks to (low-resolution) space-borne spectrographs and high-resolution (narrow-ranged) NIR spectrographs on ground-based 8m-class telescopes. Atmospheres are important because they are our observing window on the physical, chemical, and evolutionary processes occurring on exoplanets. Transiting exoplanets are the best suitable targets for atmospheric studies. Observing a transit in different filters or with a spectrograph reveals the transmission spectrum of the planet atmosphere. More than one decade of such observations allowed the exploration of these remote words by detecting some constituents of their atmospheres, but revealing also the presence of scattering hazes and clouds in several exoplanets preventing the detection of major chemical constituents at low to medium resolution even from space.Transit observations from the ground with stabilised high-resolution spectrograph, such HARPS, have key roles to play in this context. Observation of the hot-jupiter HD 189733b with HARPS allow the detection of sodium in the planet atmosphere. The high-resolution transmission spectra allowed to probe a new region high in the atmosphere and revealed rapid winds and a heating thermosphere. This new use of the famous planet hunter turned HARPS into a powerful exoplanet characterisation machine. It has the precision level of the Hubble Space Telescope, albeit at 20 higher resolution.A survey of a large set of known hot transiting exoplanets with HARPS and later with ESPRESSO will allow the detection of key tracers of atmospheric physics, chemistry, and evolution, above the scattering haze layers known to dominate low-resolution visible spectra of exoplanets.Such observation, in total sinergy with other technics, will rmly establish stabilised, high-resolution spectrographs on 4m telescopes as corner-stones for the characterisation of exoplanets. This is instrumental considering the upcoming surveys (NGTS,K2, CHEOPS, TESS

  15. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    DEFF Research Database (Denmark)

    Van Eylen, Vincent

    2015-01-01

    Are we alone in the Universe? So far, the question remains unanswered, but a significant leap forward was achieved two decades ago, with the discovery of the first planets orbiting stars other than our Sun. Almost 2000 exoplanets have now been detected. They are diverse in radius, mass and orbital......, in this thesis I make use of the transit method, which is based on the observed brightness drop of a star as a planet crosses in front of it. This thesis consists of two parts. The first part focuses on the discovery of new planets and the understanding of exoplanet properties. I report the discovery...... results of this study, constraining the masses and bulk compositions of three planets. The second part of this thesis focuses on dynamics of exoplanets. All the solar system planets orbit in nearly the same plane, and that plane is also aligned with the equatorial plane of the Sun. That is not true...

  16. CoRoT pictures transiting exoplanets

    CERN Document Server

    Moutou, Claire

    2015-01-01

    The detection and characterization of exoplanets have made huge progresses since the first discoveries in the late nineties. In particular, the independent measurement of the mass and radius of planets, by combining the transit and radial-velociy techniques, allowed exploring their density and hence, their internal structure. With CoRoT (2007-2012), the pioneering CNES space-based mission in this investigation, about thirty new planets were characterized. CoRoT has enhanced the diversity of giant exoplanets and discovered the first telluric exoplanet. Following CoRoT, the NASA Kepler mission has extended our knowledge to small-size planets, multiple systems and planets orbiting binaries. Exploring these new worlds will continue with the NASA/TESS (2017) and ESA/PLATO (2024) missions.

  17. WASP-26b: A 1-Jupiter-mass planet around an early-G-type star

    CERN Document Server

    Smalley, B; Cameron, A Collier; Gillon, M; Hellier, C; Lister, T A; Maxted, P F L; Queloz, D; Triaud, A H M J; West, R G; Bentley, S J; Enoch, B; Pepe, F; Pollacco, D L; Segransan, D; Smith, A M S; Southworth, J; Udry, S; Wheatley, P J; Wood, P L; Bento, J

    2010-01-01

    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy.

  18. Searching for transit timing variations in transiting exoplanet systems

    CERN Document Server

    Hrudková, Marie; Benn, Chris; Pollacco, Don; Gibson, Neale; Joshi, Yogesh; Harmanec, Petr; Tulloch, Simon

    2008-01-01

    Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were observed with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.

  19. Tidal dynamics of transiting exoplanets

    Science.gov (United States)

    Fabrycky, Daniel C.

    2011-11-01

    Transits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.

  20. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.;

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets...

  1. Transiting exoplanets: From planet statistics to their physical nature

    OpenAIRE

    Rauer H.

    2011-01-01

    The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections ...

  2. The observation of exoplanet transit events in China

    Directory of Open Access Journals (Sweden)

    Fang X.-S.

    2011-07-01

    Full Text Available We have carried out a research project on the exoplanet transit events at Yunnan Observatory. By using CCD cameras attached to 1m telescope of Yunnan Observatory and 85cm telescope of Xinglong station, NAOC, a group of exoplanet systems with transit events have been observed photometrically. By means of MCMC method, the preliminary results of the systems WASP-11 and XO-2 are derived. Finally, we give out the future plan on this research topic in China.

  3. Characterizing transiting exoplanet atmospheres with JWST

    CERN Document Server

    Greene, Thomas P; Montero, Cezar; Fortney, Jonathan J; Lustig-Yeager, Jacob; Luther, Kyle

    2015-01-01

    We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\\lambda = 1 - 11$ $\\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\\lambda = 1 - 2.5$ $\\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong t...

  4. KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    CERN Document Server

    Kuhn, Rudolf B; Collins, Karen A; Lund, Michael B; Siverd, Robert J; Colón, Knicole D; Pepper, Joshua; Stassun, Keivan G; Cargile, Phillip A; James, David J; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T G; Curtis, Ivan A; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B Scott; Myers, Gordon; Beatty, Thomas G; Eastman, Jason D; Reichart, Daniel E; Haislip, Joshua B; Kielkopf, John; Bieryla, Allyson; Latham, David W; Jensen, Eric L N; Oberst, Thomas E; Stevens, Daniel J

    2015-01-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright $V = 10.7$ star (TYC 8378-64-1), with T$_{eff}$ = $5948\\pm74$ K, $\\log{g}$ = $4.319_{-0.030}^{+0.020}$ and [Fe/H] = $0.09_{-0.10}^{+0.11}$, an inferred mass M$_{*}$ = $1.112_{-0.061}^{+0.055}$ M$_{\\odot}$ and radius R$_{*}$ = $1.209_{-0.035}^{+0.047}$ R$_{\\odot}$. The planet has a radius R$_{P}$ = $1.399_{-0.049}^{+0.069}$ R$_{J}$ and mass M$_{P}$ = $0.679_{-0.038}^{+0.039}$ M$_{J}$. The planet has an eccentricity consistent with zero and a semi-major axis $a$ = $0.05250_{-0.00097}^{+0.00086}$ AU. The best fitting linear ephemeris is $T_{0}$ = 2457066.72045$\\pm$0.00027 BJD$_{TDB}$ and P = 4.1662739$\\pm$0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively ...

  5. The population of long-period transiting exoplanets

    CERN Document Server

    Foreman-Mackey, Daniel; Hogg, David W; Agol, Eric; Schölkopf, Bernhard

    2016-01-01

    The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $\\sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, ...

  6. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    CERN Document Server

    Brogi, M; Birkby, J L; Schwarz, H; Snellen, I A G

    2014-01-01

    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, ...

  7. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  8. Transiting exoplanets: From planet statistics to their physical nature

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  9. Characterization of transiting exoplanets by way of differential photometry

    CERN Document Server

    Cowley, Michael

    2015-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.

  10. KELT-1b: A Strongly Irradiated, Highly Inflated, Short Period, 27 Jupiter-mass Companion Transiting a mid-F Star

    CERN Document Server

    Siverd, Robert J; Pepper, Joshua; Eastman, Jason D; Collins, Karen; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Crepp, Justin R; Street, Rachel; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; DePoy, D L; Esquerdo, Gilbert A; Fulton, Benjamin J; Furesz, Gabor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M; van Saders, Jennifer L

    2012-01-01

    We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) survey. The V=10.7 primary is a mildly evolved, solar-metallicity, mid-F star. The companion is a low-mass brown dwarf or super-massive planet with mass of 27.23+/-0.50 MJ and radius of 1.110+0.037-0.024 RJ, on a very short period (P=1.21750007) circular orbit. KELT-1b receives a large amount of stellar insolation, with an equilibrium temperature assuming zero albedo and perfect redistribution of 2422 K. Upper limits on the secondary eclipse depth indicate that either the companion must have a non-zero albedo, or it must experience some energy redistribution. Comparison with standard evolutionary models for brown dwarfs suggests that the radius of KELT-1b is significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1, which is consistent with an M dwarf if bound. The projected spin-orbit alignment angle is consistent with ...

  11. Detection of transiting Jovian exoplanets by Gaia photometry - expected yield

    CERN Document Server

    Dzigan, Yifat

    2012-01-01

    Several attempts have been made in the past to assess the expected number of exoplanetary transits that the Gaia space mission will detect. In this Letter we use the updated design of Gaia and its expected performance, and apply recent empirical statistical procedures to provide a new assessment. Depending on the extent of the follow-up effort that will be devoted, we expect Gaia to detect a few hundreds to a few thousands transiting exoplanets.

  12. The NStED Exoplanet Transit Survey Service

    CERN Document Server

    Von Braun, K; Ali, B; Baker, R; Berriman, G B; Chiu, N-M; Ciardi, D R; Good, J; Kane, S R; Laity, A C; McElroy, D L; Monkewitz, S; Payne, A N; Ramírez, S; Schmitz, M; Stauffer, J R; Wyatt, P L; Zhang, A

    2008-01-01

    The NASA Star and Exoplanet Database (NStED) is a general purpose stellar archive with the aim of providing support for NASA's planet finding and characterization goals, stellar astrophysics, and the planning of NASA and other space missions. There are two principal components of NStED: a database of (currently) 140,000 nearby stars and exoplanet-hosting stars, and an archive dedicated to high-precision photometric surveys for transiting exoplanets. We present a summary of the latter component: the NStED Exoplanet Transit Survey Service (NStED-ETSS), along with its content, functionality, tools, and user interface. NStED-ETSS currently serves data from the TrES Survey of the Kepler Field as well as dedicated photometric surveys of four stellar clusters. NStED-ETSS aims to serve both the surveys and the broader astronomical community by archiving these data and making them available in a homogeneous format. Examples of usability of ETSS include investigation of any time-variable phenomena in data sets not stud...

  13. THE LOW DENSITY TRANSITING EXOPLANET WASP-15b

    International Nuclear Information System (INIS)

    We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 ± 0.0000028 d, has a mass M p = 0.542 ± 0.050 M J and radius R p = 1.428 ± 0.077 R J, and is therefore one of the least dense transiting exoplanets so far discovered (ρp = 0.247 ± 0.035 g cm-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T eff = 6300 ± 100 K and [Fe/H] = -0.17 ± 0.11.

  14. Transiting planets with LSST. I. Potential for LSST exoplanet detection

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Michael B.; Pepper, Joshua; Stassun, Keivan G., E-mail: michael.b.lund@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is designed to meet several scientific objectives over a 10 year synoptic sky survey. Beyond its primary goals, the large amount of LSST data can be exploited for additional scientific purposes. We show that LSST data are sufficient to detect the transits of exoplanets, including planets orbiting stars that are members of stellar populations that have so far been largely unexplored. Using simulated LSST light curves, we find that existing transit detection algorithms can identify the signatures of Hot Jupiters around solar-type stars, Hot Neptunes around K-dwarfs, and (in favorable cases) Super-Earths in habitable-zone orbits of M-dwarfs. We also find that LSST may identify Hot Jupiters orbiting stars in the Large Magellanic Cloud—a remarkable possibility that would advance exoplanet science into the extragalactic regime.

  15. KELT-10b: the first transiting exoplanet from the KELT-South survey - a hot sub-Jupiter transiting a V = 10.7 early G-star

    Science.gov (United States)

    Kuhn, Rudolf B.; Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Siverd, Robert J.; Colón, Knicole D.; Pepper, Joshua; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T. G.; Curtis, Ivan A.; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Dhital, Saurav; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B. Scott; Myers, Gordon; Beatty, Thomas G.; Eastman, Jason D.; Reichart, Daniel E.; Haislip, Joshua B.; Kielkopf, John; Bieryla, Allyson; Latham, David W.; Jensen, Eric L. N.; Oberst, Thomas E.; Stevens, Daniel J.

    2016-07-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with Teff = 5948 ± 74 K, log g = 4.319_{-0.030}^{+0.020} and [Fe/H] = 0.09_{-0.10}^{+0.11}, an inferred mass M* = 1.112_{-0.061}^{+0.055} M⊙ and radius R* = 1.209_{-0.035}^{+0.047} R⊙. The planet has a radius Rp = 1.399_{-0.049}^{+0.069} RJ and mass Mp = 0.679_{-0.038}^{+0.039} MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.052 50_{-0.000 97}^{+0.000 86} au. The best-fitting linear ephemeris is T0 = 2457 066.720 45 ± 0.000 27 BJDTDB and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of Teq = 1377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817_{-0.054}^{+0.068} × 109 erg s-1 cm-2, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.

  16. Five Kepler Target Stars That Show Multiple Transiting Exoplanet Candidates

    Science.gov (United States)

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Fabrycky, Daniel C.; Fressin, François; Ford, Eric B.; Fortney, Jonathan J.; Haas, Michael J.; Holman, Matthew J.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Koch, David; Latham, David W.; Lissauer, Jack J.; Moorhead, Althea V.; Morehead, Robert C.; Marcy, Geoffrey; MacQueen, Phillip J.; Quinn, Samuel N.; Ragozzine, Darin; Rowe, Jason F.; Sasselov, Dimitar D.; Seager, Sara; Torres, Guillermo; Welsh, William F.

    2010-12-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities—two near 2:1 and one just outside 5:2. We discuss the implications that multi-transiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories, as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTVs) due to gravitational interactions, though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  17. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  18. Dynamics and Transit Variations of Resonant Exoplanets

    CERN Document Server

    Nesvorny, D

    2016-01-01

    The Transit Timing Variations (TTVs) are deviations of the measured mid-transit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M_*)^(-2/3), where m and M_* are the planetary and stellar masses. For m=10^(-4) M_*, for example, the TTV period exceeds the orbital period by ~2 orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two ...

  19. New tools and improvements in the Exoplanet Transit Database

    Directory of Open Access Journals (Sweden)

    Pejcha O.

    2011-02-01

    Full Text Available Comprehensive collection of the available light curves, prediction possibilities and the online model fitting procedure, that are available via Exoplanet Transit Database became very popular in the community. In this paper we summarized the changes, that we made in the ETD during last year (including the Kepler candidates into the prediction section, modeling of an unknown planet in the model-fit section and some other small improvements. All this new tools cannot be found in the main ETD paper.

  20. Dynamics and Transit Variations of Resonant Exoplanets

    Science.gov (United States)

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)-2/3, where m and M * are the planetary and stellar masses. For m = 10-4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  1. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    CERN Document Server

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of datapoints, and of multi-passband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific, analyses.

  2. Optical Observations of the Transiting Exoplanet GJ 1214b

    CERN Document Server

    Teske, Johanna K; Mueller, Matthias; Griffith, Caitlin A

    2013-01-01

    We observed nine primary transits of the super-Earth exoplanet GJ 1214b in several optical photometric bands from March to August 2012, with the goal of constraining the short-wavelength slope of the spectrum of GJ 1214b. Our observations were conducted on the Kuiper 1.55 m telescope in Arizona and the STELLA-I robotic 1.2 m telescope in Tenerife, Spain. From the derived light curves we extracted transit depths in R (0.65 {\\mu}m), V (0.55 {\\mu}m), and g' (0.475 {\\mu}m) bands. Most previous observations of this exoplanet suggest a flat spectrum varying little with wavelength from the near-infrared to the optical, corresponding to a low-scale-height, high-molecular-weight atmosphere. However, a handful of observations around Ks band (~2.15 {\\mu}m) and g-band (~0.46 {\\mu}m) are inconsistent with this scenario and suggest a variation on a hydrogen- or water-dominated atmosphere that also contains a haze layer of small particles. In particular, the g-band observations of de Mooij et al. (2012), consistent with Ray...

  3. Transiting Planets with LSST I: Potential for LSST Exoplanet Detection

    CERN Document Server

    Lund, Michael B; Stassun, Keivan G

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) has been designed in order to satisfy several different scientific objectives that can be addressed by a ten-year synoptic sky survey. However, LSST will also provide a large amount of data that can then be exploited for additional science beyond its primary goals. We demonstrate the potential of using LSST data to search for transiting exoplanets, and in particular to find planets orbiting host stars that are members of stellar populations that have been less thoroughly probed by current exoplanet surveys. We find that existing algorithms can detect in simulated LSST light curves the transits of Hot Jupiters around solar-type stars, Hot Neptunes around K dwarfs, and planets orbiting stars in the Large Magellanic Cloud. We also show that LSST would have the sensitivity to potentially detect Super-Earths orbiting red dwarfs, including those in habitable zone orbits, if they are present in some fields that LSST will observe. From these results, we make the case that LS...

  4. ExTrA: Exoplanets in Transit and their Atmospheres

    CERN Document Server

    Bonfils, X; Jocou, L; Wunsche, A; Kern, P; Delboulbé, A; Delfosse, X; Feautrier, P; Forveille, T; Gluck, L; Lafrasse, S; Magnard, Y; Maurel, D; Moulin, T; Murgas, F; Rabou, P; Rochat, S; Roux, A; Stadler, E

    2015-01-01

    The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall enable the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.

  5. Toward the detection of exoplanet transits with polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  6. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Science.gov (United States)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  7. On the Possibility of Detecting Class A Stellar Engines Using Exoplanet Transit Curves

    CERN Document Server

    Forgan, Duncan H

    2013-01-01

    The Class A stellar engine (also known as a Shkadov thruster) is a spherical arc mirror, designed to use the impulse from a star's radiation pressure to generate a thrust force, perturbing the star's motion. If this mirror obstructs part of the stellar disc during the transit of an exoplanet, then this may be detected by studying the shape of the transit light curve, presenting another potential means by which the action of extraterrestrial intelligence (ETI) can be discerned. We model the light curves produced by exoplanets transiting a star which possesses a Shkadov thruster, and show how the parameters of the planet and the properties of the thruster can be disentangled. provided that radial velocity follow-up measurements are possible, and that other obscuring phenomena typical to exoplanet transit curves (such as the presence of starspots or intrinsic stellar noise) do not dominate. These difficulties aside, we estimate the a priori probability of detecting a Shkadov thruster during an exoplanet transit,...

  8. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    OpenAIRE

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometr...

  9. The role of space telescopes in the characterization of transiting exoplanets

    Science.gov (United States)

    Hatzes, Artie P.

    2014-09-01

    Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets.

  10. Simulating Exoplanet Transit and Eclipse Observations with JWST

    Science.gov (United States)

    Greene, Tom

    2011-01-01

    The James Webb Space Telescope (JWST) will be a nearly ideal machine for acquiring the transmission and emission spectra of transiting exoplanets over its large wavelength range 0.7 - 28 microns. The NIRSpec, NIRCam, nTFI, and MIRI instruments will have spectroscopic capabilities that span spectral resolutions from 20 - 3000 and can cover up to 2 - 3 octaves in wavelength simultaneously. This will allow observing multiple molecular features at once, facilitating the separation of atmospheric temperature and abundance effects on spectra. Many transiting planets will also be able to be observed with both transmission and eclipse spectroscopy, providing further insights and constraints on planetary thermal structures and energy transport. Simulated JWST spectra of planets ranging from mini-Neptunes to gas giants will be presented. These simulations include planets ranging from mini-Neptunes to gas giants will be presented. These simulations include current best estimates of actual instrument throughput, resolution, spectral range, systematic noise, and random noise terms. They show that JWST will be able to determine the atmospheric parameters of a wide variety of planets, often when observing only one or a few transit or eclipse event sequences. The thermal emissions of rocky super-Earths will also be quickly detectable via mid-IR eclipse observations if such planets are found around nearby M star hosts beforehand.

  11. A search for photometric variability towards M71 with the Near-Infrared Transiting ExoplanetS Telescope

    Science.gov (United States)

    McCormac, J.; Skillen, I.; Pollacco, D.; Faedi, F.; Ramsay, G.; Dhillon, V. S.; Todd, I.; Gonzalez, A.

    2014-03-01

    We present the results of a high-cadence photometric survey of an 11 arcmin × 11 arcmin field centred on the globular cluster M71, with the Near-Infrared Transiting ExoplanetS Telescope. The aim of our survey is to search for stellar variability and giant transiting exoplanets. This survey differs from previous photometric surveys of M71 in that it is more sensitive to lower amplitude (ΔM ≤ 0.02 mag) and longer period (P > 2 d) variability than previous work on this cluster. We have discovered 17 new variable stars towards M71 and confirm the nature of 13 previously known objects, for which the orbital periods of 7 are refined or newly determined. Given the photometric precision of our high-cadence survey on the horizontal branch of M71, we confirm that the cluster is devoid of RR Lyrae variable stars within the area surveyed. We present new B- and V-band photometry of the stars in our sample from which we estimate spectral types of the variable objects. We also search our survey data for transiting hot Jupiters and present simulations of the expected number of detections. Approximately 1000 stars were observed on the main sequence of M71 with sufficient photometric accuracy to detect a transiting hot Jupiter; however, none were found.

  12. A Search for Photometric Variability Towards M71 with the Near-Infrared Transiting ExoplanetS Telescope

    CERN Document Server

    McCormac, J; Pollacco, D; Faedi, F; Ramsay, G; Dhillon, V S; Todd, I; Gonzalez, A

    2013-01-01

    We present the results of a high-cadence photometric survey of an $11'\\times11'$ field centred on the globular cluster M71, with the Near-Infrared Transiting ExoplanetS Telescope. The aim of our survey is to search for stellar variability and transiting giant exoplanets. This survey differs from previous photometric surveys of M71 in that it is more sensitive to lower amplitude ($\\Delta M\\leq0.02$ mag) and longer period ($P>2$ d) variability than previous work on this cluster. We have discovered $17$ new variable stars towards M71 and confirm the nature of $13$ previously known objects, for which the orbital periods of $7$ are refined or newly determined. Given the photometric precision of our high-cadence survey on the horizontal branch of M71, we confirm the cluster is devoid of RR Lyrae variable stars within the area surveyed. We present new $B$ and $V$ band photometry of the stars in our sample from which we estimate spectral types of the variable objects. We also search our survey data for transiting hot...

  13. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  14. Trajectory Design for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  15. Exoplanet HAT-P-11b Secondary Transit Observations

    Science.gov (United States)

    Barry, Richard K., Jr.

    2010-01-01

    We have conducted secondary eclipse observations of exoplanet HAT--11b, recently discovered by proposal G. Bakos and his colleagues. HAT-P-11b is the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We have observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Once the secondary eclipse is located through analysis of the data, we will make a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-1lb has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi major axis 0.053 AU. Measurements of the secondary eclipse will clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  16. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets

    CERN Document Server

    Griffith, Caitlin A

    2013-01-01

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO, and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of "hot Jupiter" exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly 4 atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius in planet (at a reference pressure), which are approximately a few percent. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius a...

  17. The GTC exoplanet transit spectroscopy survey. IV.: No asymmetries in the transit of Corot-29b

    CERN Document Server

    Palle, E; Alonso, R; Nowak, G; Deeg, H; Cabrera, J; Murgas, F; Parviainen, H; Nortmann, L; Hoyer, S; Prieto-Arranz, J; Nespral, D; Lavers, A Cabrera; Iro, N

    2016-01-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims. Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods. Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric di?erential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results. After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 3...

  18. The Third Transit of Snow-Line Exoplanet Kepler-421b

    Science.gov (United States)

    Dalba, Paul A.; Muirhead, Philip Steven

    2016-10-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit from the cold outer reaches of their systems, despite their low transit probabilities. The atmospheres of these cold gas giant exoplanets are amenable to transit transmission spectroscopy enabling tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-421b, a Neptune-sized exoplanet with a 704-day orbital period residing near the snow-line. Since the Kepler Spacecraft only observed two transits of Kepler-421b, the transit ephemeris is relatively uncertain. We observed Kepler-421 during the anticipated third transit of Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Barring significant TTVs, our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope (DCT) were designed to capture pre-transit baseline and the partial transit of Kepler-421b. We find strong evidence in favor of transit models with no TTVs, suggesting that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the combined Kepler and DCT observations, we calculate the timing of future transits and discuss the unique opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy.

  19. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    CERN Document Server

    Stevenson, Kevin B; Bean, Jacob L; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M; Krick, J E; Lothringer, Joshua D; Mandell, Avi M; Valenti, Jeff A; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K; Birkmann, Stephan M; Burrows, Adam; Cowan, Nicolas B; Crouzet, Nicolas; Cubillos, Patricio E; Curry, S M; Dalba, Paul A; de Wit, Julien; Deming, Drake; Desert, Jean-Michel; Doyon, Rene; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J; Munoz, Antonio Garcia; Gibson, Neale P; Gizis, John E; Greene, Thomas P; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M -R; Knutson, Heather; Kreidberg, Laura; Lafreniere, David; Lagage, Pierre-Olivier; Line, Michael R; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L; Shporer, Avi; Sing, David K; Todorov, Kamen O; Tucker, Gregory S; Wakeford, Hannah R

    2016-01-01

    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions...

  20. C/O Ratios of Stars with Transiting Hot Jupiter Exoplanets

    CERN Document Server

    Teske, Johanna K; Smith, Verne V; Schuler, Simon C; Griffith, Caitlin A

    2014-01-01

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] 6300 {\\AA} line and NLTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously-measured exoplanet host star...

  1. The Kilodegree Extremely Little Telescope: Searching for Transiting Exoplanets in the Northern and Southern Sky

    CERN Document Server

    Soutter, Jack; Pepper, Joshua

    2016-01-01

    The Kilodegree Extremely Little Telescope (KELT) survey is a ground-based program designed to search for transiting exoplanets orbiting relatively bright stars. To achieve this, the KELT Science Team operates two planets facilities - KELT-North, at Winer Observatory, Arizona, and KELT-South, at the South African Astronomical Observatory. The telescopes used at these observatories have particularly wide fields of view, allowing KELT to study a large number of potential exoplanet host stars. One of the major advantages of targeting bright stars is that the exoplanet candidates detected can be easily followed up by small, ground-based observatories distributed around the world. This paper will provide a brief overview of the KELT-North and the KELT-South surveys, the follow-up observations preformed by the KELT Follow-up Collaboration, and exoplanet discoveries confirmed thus far, before concluding with a brief discussion of the future for the KELT program.

  2. Search for transiting exoplanets and variable stars in the open cluster NGC 7243

    CERN Document Server

    Garai, Z; Hambálek, L; Errmann, R; Adam, Ch; Buder, S; Butterley, T; Dhillon, V S; Dincel, B; Gilbert, H; Ginski, Ch; Hardy, L K; Kellerer, A; Kitze, M; Kundra, E; Littlefair, S P; Mugrauer, M; Nedoroščík, J; Neuhäuser, R; Pannicke, A; Raetz, S; Schmidt, J G; Schmidt, T O B; Seeliger, M; Vaňko, M; Wilson, R W

    2016-01-01

    We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets, and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550.6+495611. Furthermore, we detected and analysed 37 new eclipsing binary stars in the studied region. The best fit parameters and light curves of all systems are given. Finally, we detected and analysed 26 new, presumably pulsating variable stars in the studied region. The follow-up investigation of these objects, including spectroscopic measurements of the exoplanet candidate, is currently planned.

  3. On the Detection of Non-Transiting Exoplanets with Dusty Tails

    CERN Document Server

    DeVore, John; Sanchis-Ojeda, Roberto; Hoffman, Kelsey; Rowe, Jason

    2016-01-01

    We present a way of searching for non-transiting exoplanets with dusty tails. In the transiting case, the extinction by dust during the transit removes more light from the beam than is scattered into it. Thus, the forward scattering component of the light is best seen either just prior to ingress, or just after egress, but with reduced amplitude over the larger peak that is obscured by the transit. This picture suggests that it should be equally productive to search for positive-going peaks in the flux from non-transiting exoplanets with dusty tails. We discuss what amplitudes are expected for different orbital inclination angles. The signature of such objects should be distinct from normal transits, starspots, and most - but not all - types of stellar pulsations.

  4. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.;

    2011-01-01

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...

  5. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  6. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; "Enabling Transiting Exoplanet Science with JWST" workshop attendees

    2016-10-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science; however, it is unclear precisely how well it will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. We will describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We will also present a list of "community targets" that are well suited to achieving these goals. Since most of the community targets do not have well-characterized atmospheres, we have initiated a preparatory HST + Spitzer observing program to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. We will present preliminary results from this preparatory observing program and discuss their implications on the pending JWST ERS proposal deadline in mid-2017.

  7. Transit timing, depth, and duration variation in exoplanet TrES-2?

    Directory of Open Access Journals (Sweden)

    Vaňko M.

    2011-02-01

    Full Text Available We report on our ongoing search for timing, duration, and depth variations in the exoplanet TrES-2. In Raetz et al. (2009 we already presented ten different transits obtained at the University Observatory Jena. Between November 2008 and August 2010 twelve additional transits could be observed. The timing, depth and duration of each individual event was analyzed and is presented here.

  8. On the Possibility of Detecting Class A Stellar Engines Using Exoplanet Transit Curves

    OpenAIRE

    Forgan, Duncan H.

    2013-01-01

    The Class A stellar engine (also known as a Shkadov thruster) is a spherical arc mirror, designed to use the impulse from a star's radiation pressure to generate a thrust force, perturbing the star's motion. If this mirror obstructs part of the stellar disc during the transit of an exoplanet, then this may be detected by studying the shape of the transit light curve, presenting another potential means by which the action of extraterrestrial intelligence (ETI) can be discerned. We model the li...

  9. DETECTION OF TRANSITING JOVIAN EXOPLANETS BY GAIA PHOTOMETRY-EXPECTED YIELD

    Energy Technology Data Exchange (ETDEWEB)

    Dzigan, Yifat; Zucker, Shay, E-mail: yifatdzigan@gmail.com, E-mail: shayz@post.tau.ac.il [Department of Geophysical, Atmospheric, and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-07-01

    Several attempts have been made in the past to assess the expected number of exoplanetary transits that the Gaia space mission will detect. In this Letter, we use the updated design of Gaia and its expected performance and apply recent empirical statistical procedures to provide a new assessment. Depending on the extent of the follow-up effort that will be devoted, we expect Gaia to detect from a few hundreds to a few thousands of transiting exoplanets.

  10. Exo-planet detection with the COROT space mission. I. A multi-transit detection criterion

    CERN Document Server

    Bordé, P J; Léger, A; Borde', Pascal; Rouan, Daniel; Leger, Alain

    2001-01-01

    We present a detection criterion for exo-planets to be used with the space mission COROT. This criterion is based on the transit method, which suggests the observation of star dimming caused by partial occulations by planetary companions. When at least three transits are observed, we show that a cross-correlation technique can yield a detection threshold, thus enabling the evaluation of the number of possible detections, assuming a model for the stellar population in the Galaxy.

  11. Transit Analysis Package: An IDL Graphical User Interface for Exoplanet Transit Photometry

    Directory of Open Access Journals (Sweden)

    J. Zachary Gazak

    2012-01-01

    Full Text Available We present an IDL graphical user-interface-driven software package designed for the analysis of exoplanet transit light curves. The Transit Analysis Package (TAP software uses Markov Chain Monte Carlo (MCMC techniques to fit light curves using the analytic model of Mandal and Agol (2002. The package incorporates a wavelet-based likelihood function developed by Carter and Winn (2009, which allows the MCMC to assess parameter uncertainties more robustly than classic χ2 methods by parameterizing uncorrelated “white” and correlated “red” noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc.. The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user’s specific data set and has been thoroughly tested on ground-based and Kepler photometry. This paper describes the software release and provides applications to new and existing data. Reanalysis of ground-based observations of TrES-1b, WASP-4b, and WASP-10b (Winn et al., 2007, 2009; Johnson et al., 2009; resp. and space-based Kepler 4b–8b (Kipping and Bakos 2010 show good agreement between TAP and those publications. We also present new multi-filter light curves of WASP-10b and we find excellent agreement with previously published values for a smaller radius.

  12. Maps and Masses of Transiting Exoplanets: Towards New Insights into Atmospheric and Interior Properties of Planets

    CERN Document Server

    de Wit, Julien

    2015-01-01

    With over 1800 planets discovered outside of the Solar System in the past two decades, the field of exoplanetology has broadened our perspective on planetary systems. Research priorities are now moving from planet detection to planet characterization. In this context, transiting exoplanets are of special interest due to the wealth of data made available by their orbital configuration. Here, I introduce two methods to gain new insights into the atmospheric and interior properties of exoplanets. The first method aims to map an exoplanet's atmosphere based on the scanning obtained while it is occulted by its host star. I introduce the basics of eclipse mapping, its caveats, and a framework to mitigate their effects via global analyses including transits, phase curves, and radial velocity measurements. I use this method to create the first 2D map and the first cloud map of an exoplanet for the hot-Jupiters HD189733b and Kepler-7b, respectively. Ultimately temperature, composition, and circulation patterns could b...

  13. Thermal phase curves of non-transiting terrestrial exoplanets 1. Characterizing atmospheres

    CERN Document Server

    Selsis, Franck; Forget, François

    2011-01-01

    Although transit spectroscopy is a powerful method for studying the composition, thermal properties and dynamics of exoplanet atmospheres, only a few transiting terrestrial exoplanets will be close enough to allow significant transit spectroscopy. Thermal phase curves (variations of the apparent infrared emission of the planet with its orbital phase) have been observed for hot Jupiters in both transiting and non-transiting configurations, and could be observed for hot terrestrial exoplanets. We study the wavelength and phase changes of the thermal emission of a tidally-locked terrestrial planet as atmospheric pressure increases, and address the observability of these multiband phase-curves and the ability to use them to detect atmospheric constituents. We used a 3D climate model (GCM) to simulate the CO2 atmosphere of a terrestrial planet on an 8-day orbit around a M3 dwarf and its apparent infrared emission as a function of its orbital phase. We estimated the signal to photon-noise ratio in narrow bands betw...

  14. Using near infra-red spectroscopy for characterization of transiting exoplanets

    CERN Document Server

    Aronson, Erik; Piskunov, Nikolai

    2015-01-01

    We propose a method for observing transiting exoplanets with near-infrared high-resolution spectrometers. We aim to create a robust data analysis method for recovering atmospheric transmission spectra from transiting exoplanets over a wide wavelength range in the near infrared. By using an inverse method approach, combined with stellar models and telluric transmission spectra, the method recovers the transiting exoplanet's atmospheric transmittance at high precision over a wide wavelength range. We describe our method and have tested it by simulating observations. This method is capable of recovering transmission spectra of high enough accuracy to identify absorption features from molecules such as O2, CH4, CO2, and H2O. This accuracy is achievable for Jupiter-size exoplanetsat S/N that can be reached for 8m class telescopes using high-resolution spectrometers (R>20 000) during a single transit, and for Earth-size planets and super-Earths transiting late K or M dwarf stars at S/N reachable during observations...

  15. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  16. Scientific, Back-Illuminated CCD Development for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Suntharalingam, V.; Ciampi, J.; Cooper, M. J.; Lambert, R. D.; O'Mara, D. M.; Prigozhin, I.; Young, D. J.; Warner, K.; Burke, B. E.

    2015-01-01

    We describe the development of the fully depleted, back illuminated charge coupled devices for the Transiting Exoplanet Survey Satellite, which includes a set of four wide angle telescopes, each having a 2x2 array of CCDs. The devices are fabricated on the newly upgraded 200-mm wafer line at Lincoln Laboratory. We discuss methods used to produce the devices and present early performance results from the 100- micron thick, 15x15-microns, 2k x 4k pixel frame transfer CCDs.

  17. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    CERN Document Server

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  18. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Crouzet, Nicolas; Cubillos, Patricio E.; Curry, S. M.; Dalba, Paul A.; de Wit, Julien; Deming, Drake; Désert, Jean-Michel; Doyon, René; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J.; García Muñoz, Antonio; Gibson, Neale P.; Gizis, John E.; Greene, Thomas P.; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M.-R.; Knutson, Heather; Kreidberg, Laura; Lafrenière, David; Lagage, Pierre-Olivier; Line, Michael R.; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V.; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L.; Shporer, Avi; Sing, David K.; Todorov, Kamen O.; Tucker, Gregory S.; Wakeford, Hannah R.

    2016-09-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  19. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles A.; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Greene, Thomas P.; Line, Michael R.; Wakeford, Hanna R.

    2016-01-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed community targets'') that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  20. OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b

    International Nuclear Information System (INIS)

    Using the new Cosmic Origins Spectrograph on the Hubble Space Telescope, we obtained moderate-resolution, high signal/noise ultraviolet spectra of HD 209458 and its exoplanet HD 209458b during transit, both orbital quadratures, and secondary eclipse. We compare transit spectra with spectra obtained at non-transit phases to identify spectral features due to the exoplanet's expanding atmosphere. We find that the mean flux decreased by 7.8% ± 1.3% for the C II 1334.5323 A and 1335.6854 A lines and by 8.2% ± 1.4% for the Si III 1206.500 A line during transit compared to non-transit times in the velocity interval -50 to +50 km s-1. Comparison of the C II and Si III line depths and transit/non-transit line ratios shows deeper absorption features near -10 and +15 km s-1 and less certain features near -40 and +30-70 km s-1, but future observations are needed to verify this first detection of velocity structure in the expanding atmosphere of an exoplanet. Our results for the C II lines and the non-detection of Si IV 1394.76 A absorption are in agreement with Vidal-Madjar et al., but we find absorption during transit in the Si III line contrary to the earlier result. The 8% ± 1% obscuration of the star during transit is far larger than the 1.5% obscuration by the exoplanet's disk. Absorption during transit at velocities between -50 and +50 km s-1 in the C II and Si III lines requires high-velocity ion absorbers. Assuming hydrodynamic model values for the gas temperature and outflow velocity at the limb of the outflow as seen in the C II lines, we find mass-loss rates in the range (8-40)x1010 g s-1. These rates assume that the carbon abundance is solar, which is not the case for the giant planets in the solar system. Our mass-loss rate estimate is consistent with theoretical hydrodynamic models that include metals in the outflowing gas.

  1. RATS: an Italian project for Exoplanets Transit Search

    Science.gov (United States)

    Granata, V.; Claudi, R. U.; Baruffolo, A.; Contri, L.; Montalto, M.; Piotto, G. P.; Bruno, P.; Scuderi, S.

    2007-07-01

    The RATS (RAdial velocity and Transit Search) project is a collaboration among INAF sections of Catania, Napoli, Padova and Palermo and the Physics and Astronomy departments of Padova University. The main goal of the project is to discover at least 10 new planets transiting the host star using a suitable automatic data-reduction pipeline developed for RATS.

  2. A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    CERN Document Server

    Enya, K; Takeuchi, S; Kotani, T; Yamamuro, T

    2011-01-01

    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-s...

  3. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Science.gov (United States)

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-10-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the box-least-squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically generated transit fits and assorted diagnostic tests to inform the vetting. We detect 145 single-planet system candidates and 5 multi-planet systems, independently recovering the previously published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  4. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Science.gov (United States)

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-06-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian Process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the Box Least Squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically-generated transit fits and assorted diagnostic tests to inform the vetting. We detect 147 single-planet system candidates and 5 multi-planet systems, independently recovering the previously-published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  5. Influence of stellar variability on the determination of the radius during a transit of an exoplanet

    Directory of Open Access Journals (Sweden)

    Désert J.-M.

    2011-07-01

    Full Text Available Stellar variability can affect the estimate of an exoplanet radius measured during a transit. We developed a transit light curve model which includes stellar spots. It appears that, if spectro-photometric technique is used, spots and faculae have to be considered to conclude on atmospheric detection and characterization. When using a model including spots, characterization of Hot-Jupiter atmosphere around active stars is possible with this technique, provided a signal to noise ratio up to 105. For Earth-size planets a long-term parallel photometric follow up monitoring the stellar activity is required to compensate the error due to the stellar variability.

  6. A Method to Identify the Boundary Between Rocky and Gaseous Exoplanets from Tidal Theory and Transit Durations

    CERN Document Server

    Barnes, Rory

    2013-01-01

    The determination of an exoplanet as rocky is critical for the assessment of planetary habitability. Observationally, the number of small-radius, transiting planets with accompanying mass measurements is insufficient for a robust determination of the transitional mass or radius. Theoretically, models predict that rocky planets can grow large enough to become gas giants when they reach ~10 Earth-masses, but the transitional mass remains unknown. Here I show how transit data, interpreted in the context of tidal theory, can reveal the critical radius that separates rocky and gaseous exoplanets. Standard tidal models predict that rocky exoplanets' orbits are tidally circularized much more rapidly than gaseous bodies', suggesting the former will tend to be found on circular orbits at larger semi-major axes than the latter. Well-sampled transits can provide a minimum eccentricity of the orbit, allowing a measurement of this differential circularization. I show that this effect should be present in the data from the...

  7. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing

    CERN Document Server

    Jontof-Hutter, Daniel; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-01-01

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star once per orbit, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favorable cases, the departures from Keplerian orbits implied by the observed transit times permit planetary masses to be measured, which is key to determining bulk densities. Characterizing rocky planets is particularly difficult, since they are generally smaller and less massive than gaseous planets. Thus, few exoplanets near Earth's size have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We measure the mass of the Mars-sized inner planet based on on the transit times of its neighbour and thereby provide the first density measuremen...

  8. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    CERN Document Server

    Pope, Benjamin J S; Aigrain, Suzanne

    2016-01-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian Process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the Box Least Squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically-generated transit fits and assorted diagnostic tests to inform the vetting. We detect 147 single-planet system candidates and 5 multi-planet systems, independently recovering the previously-published hot~Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spec...

  9. Toward the Detection of Exoplanet Transits with Polarimetry

    CERN Document Server

    Wiktorowicz, Sloane J

    2014-01-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the $90^\\circ$ scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio $R_{\\rm p} / R_*$, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with th...

  10. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    OpenAIRE

    Hedelt, P.; Alonso, R.; Brown, T; Collados Vera, M.; Rauer, H.; Schleicher, H.; Schmidt, W.; F. Schreier; Titz, R.

    2011-01-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmos...

  11. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    CERN Document Server

    Burdanov, Artem Y; Krushinsky, Vadim V; Popov, Alexander A; Sokov, Evgenii N; Sokova, Iraida A; Rusov, Sergei A; Lyashenko, Artem Yu; Ivanov, Kirill I; Moiseev, Alexei V; Rastegaev, Denis A; Dyachenko, Vladimir V; Balega, Yuri Yu; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-01-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the $R_c$ magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size $2\\times2$ deg$^2$ during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of ...

  12. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Science.gov (United States)

    Burdanov, Artem Y.; Benni, Paul; Krushinsky, Vadim V.; Popov, Alexander A.; Sokov, Evgenii N.; Sokova, Iraida A.; Rusov, Sergei A.; Lyashenko, Artem Yu.; Ivanov, Kirill I.; Moiseev, Alexei V.; Rastegaev, Denis A.; Dyachenko, Vladimir V.; Balega, Yuri Yu.; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-10-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the Rc magnitude range of 11-14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2 × 2 deg2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39 000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.

  13. Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs

    CERN Document Server

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L-dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T- and L-dwarfs, I derive the time dependent polarization ...

  14. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    CERN Document Server

    Hedelt, P; Brown, T; Vera, M Collados; Rauer, H; Schleicher, H; Schmidt, W; Schreier, F; Titz, R

    2011-01-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.

  15. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Science.gov (United States)

    Hedelt, P.; Alonso, R.; Brown, T.; Collados Vera, M.; Rauer, H.; Schleicher, H.; Schmidt, W.; Schreier, F.; Titz, R.

    2011-09-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. We were able to identify CO2 absorption lines in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. We demonstrate the utility of ground-based measurements in analyzing the atmospheric constituents of a terrestrial planet atmosphere using methods that might be applied in future to terrestrial extrasolar planets.

  16. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Science.gov (United States)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  17. Defocused Observations of Selected Exoplanet Transits with T100 in TUBITAK National Observatory of Turkey (TUG)

    CERN Document Server

    Basturk, Ozgur; Ozavci, Ibrahim; Yorukoglu, Onur; Selam, Selim O

    2015-01-01

    It is crucial to determine masses and radii of extrasolar planets with high precision to have constraints on their chemical composition, internal structure and thereby their formation and evolution. In order to achieve this goal, we apply the defocus technique in the observations of selected planetary systems with the 1 m Turkish telescope T100 in TUBITAK National Observatory (TUG). With this contribution, we aim to present preliminary analyses of transit light curves of the selected exoplanets KELT-3b, HAT-P-10b/WASP-11b, HAT-P-20b, and HAT-P-22b, observed with this technique using T100.

  18. Bayesian mass and age estimates for transiting exoplanet host stars

    CERN Document Server

    Maxted, P F L; Southworth, J

    2014-01-01

    The mean density of a star transited by a planet, brown dwarf or low mass star can be accurately measured from its light curve. This measurement can be combined with other observations to estimate its mass and age by comparison with stellar models. Our aim is to calculate the posterior probability distributions for the mass and age of a star given its density, effective temperature, metallicity and luminosity. We computed a large grid of stellar models that densely sample the appropriate mass and metallicity range. The posterior probability distributions are calculated using a Markov-chain Monte-Carlo method. The method has been validated by comparison to the results of other stellar models and by applying the method to stars in eclipsing binary systems with accurately measured masses and radii. We have explored the sensitivity of our results to the assumed values of the mixing-length parameter, $\\alpha_{\\rm MLT}$, and initial helium mass fraction, Y. For a star with a mass of 0.9 solar masses and an age of 4...

  19. No Timing Variations Observed in Third Transit of Snow-Line Exoplanet Kepler-421b

    CERN Document Server

    Dalba, Paul A

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kepler-421b leaving the planet's transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characteriz...

  20. Exoplanet transits enable high-resolution spectroscopy across spatially resolved stellar surfaces

    CERN Document Server

    Dravins, Dainis; Dahlén, Erik; Pazira, Hiva

    2016-01-01

    Observations of stellar surfaces - except for the Sun - are hampered by their tiny angular extent, while observed spectral lines are smeared by averaging over the stellar surface, and by stellar rotation. Exoplanet transits can be used to analyze stellar atmospheric structure, yielding high-resolution spectra across spatially highly resolved stellar surfaces, free from effects of spatial smearing and the rotational wavelength broadening present in full-disk spectra. During a transit, stellar surface portions successively become hidden, and differential spectroscopy between various transit phases provides spectra of those surface segments then hidden behind the planet. The small area subtended by even a large planet (about 1% of a main-sequence star) offers high spatial resolution but demands very precise observations. We demonstrate the reconstruction of photospheric FeI line profiles at a spectral resolution R=80,000 across the surface of the solar-type star HD209458. Any detailed understanding of stellar at...

  1. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  2. Titan-like exoplanets: Variations in geometric albedo and effective transit height with haze production rate

    Science.gov (United States)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-09-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 μm). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 μm, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  3. The refined physical parameters of transiting exoplanet system HAT-P-24

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bin Wang; Sheng-Hong Gu; Andrew Collier Cameron; Hong-Bo Tan; Ho-Keung Hui; Chi-Tai Kwok; Bill Yeung

    2013-01-01

    The transiting exoplanet system HAT-P-24 was observed by using CCD cameras at Yunnan Observatory and Hokoon Astronomical Centre,China in 2010 and 2012.In order to enhance the signal to noise ratio of transit events,the observed data are corrected for systematic errors according to Collier Cameron et al.'s coarse decorrelation and Tamuz et al.'s SYSREM algorithms.Three new complete transit light curves are analyzed by means of the Markov chain Monte Carlo technique,and the new physical parameters of the system are derived.They are consistent with the old ones from the discovered paper except for a new larger radius RP =1.364 RJ of HAT-P-24b,which confirms its inflated nature.By combining the five available epochs of mid-transit derived from complete transit light curves,the orbital period of HAT-P-24b is refined to P =3.3552479 d and no obvious transit timing variation signal can be found from these five transit events during 2010-2012.

  4. The refined physical parameters of transiting exoplanet system HAT-P-24

    International Nuclear Information System (INIS)

    The transiting exoplanet system HAT-P-24 was observed by using CCD cameras at Yunnan Observatory and Hokoon Astronomical Centre, China in 2010 and 2012. In order to enhance the signal to noise ratio of transit events, the observed data are corrected for systematic errors according to Collier Cameron et al.'s coarse de-correlation and Tamuz et al.'s SYSREM algorithms. Three new complete transit light curves are analyzed by means of the Markov chain Monte Carlo technique, and the new physical parameters of the system are derived. They are consistent with the old ones from the discovered paper except for a new larger radius Rp = 1.364 RJ of HAT-P-24b, which confirms its inflated nature. By combining the five available epochs of mid-transit derived from complete transit light curves, the orbital period of HAT-P-24b is refined to P = 3.3552479 d and no obvious transit timing variation signal can be found from these five transit events during 2010–2012

  5. Thermal phase curves of non-transiting terrestrial exoplanets 2. Characterizing airless planets

    CERN Document Server

    Maurin, A S; Hersant, F; Belu, A

    2011-01-01

    Context. The photometric signal we receive from a star hosting a planet is modulated by the variation of the planet signal with its orbital phase. Such phase variations are observed for transiting hot Jupiters with current instrumentation, and have also been measured for one transiting terrestrial planet (Kepler 10 b) and one non-transiting gas giant (Ups A b). Future telescopes (JWST and EChO) will have the capability to measure thermal phase curves of exoplanets including hot rocky planets in transiting and non-transiting configurations, and at different wavelengths. Short-period planets with a mass below 10 R_EARTH are indeed frequent and nearby targets (within 10 pc) are already known and more are to be found. Aims. To test the possibility to use multi-wavelengths infrared phase curves to constrain the radius, the albedo and the orbital inclination of a non-transiting planet with no atmosphere and on a 1:1 spin orbit resonance. Methods. We model the thermal emission of a synchronous rocky planet with no a...

  6. A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars

    CERN Document Server

    Maxted, P F L; Southworth, J

    2015-01-01

    Previous studies suggest that tidal interactions may be responsible for discrepancies between the ages of exoplanet host stars estimated using stellar models (isochronal ages) and age estimates based on the stars' rotation periods (gyrochronological ages). We have compiled a sample of 28 transiting exoplanet host stars with measured rotation periods. We use a Bayesian Markov chain Monte Carlo method to determine the joint posterior distribution for the mass and age of each star in the sample, and extend this method to include a calculation of the posterior distribution of the gyrochronological age. The gyrochronological age ($\\tau_{\\rm gyro}$) is significantly less than the isochronal age for about half of the stars in our sample. Tidal interactions between the star and planet are a reasonable explanation for this discrepancy in some cases, but not all. The distribution of $\\tau_{\\rm gyro}$ values is evenly spread from very young ages up to a maximum value of a few Gyr. There is no clear correlation between $...

  7. Directly Imaged L-T Transition Exoplanets in the Mid-Infrared

    CERN Document Server

    Skemer, Andrew J; Hinz, Philip M; Morzinski, Katie M; Skrutskie, Michael F; Leisenring, Jarron M; Close, Laird M; Saumon, Didier; Bailey, Vanessa P; Briguglio, Runa; Defrere, Denis; Esposito, Simone; Follette, Katherine B; Hill, John M; Males, Jared R; Puglisi, Alfio; Rodigas, Timothy J; Xompero, Marco

    2013-01-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared ($\\gtrsim$3$\\mu \\rm m$), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L and M-band atmospheric windows (3-5$\\mu \\rm m$), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT AO images of the HR 8799 planetary system in six narrow-band filters from 3-4$\\mu \\rm m$, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3$\\mu \\rm m$ band. These systems encompass the five known exoplanets with luminosities consistent with L$\\rightarrow$T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature. For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing ...

  8. Multi-band transit observations of the TrES-2b exoplanet

    CERN Document Server

    Mislis, D; Schmitt, J H M M; Cordes, O; Reif, K

    2009-01-01

    We present a new data set of transit observations of the TrES-2b exoplanet taken in spring 2009, using the 1.2m Oskar-Luhning telescope (OLT) of Hamburg Observatory and the 2.2m telescope at Calar Alto Observatory using BUSCA (Bonn University Simultaneous CAmera). Both the new OLT data, taken with the same instrumental setup as our data taken in 2008, as well as the simultaneously recorded multicolor BUSCA data confirm the low inclination values reported previously, and in fact suggest that the TrES-2b exoplanet has already passed the first inclination threshold (i_min,1 = 83.417) and is not eclipsing the full stellar surface any longer. Using the multi-band BUSCA data we demonstrate that the multicolor light curves can be consistently fitted with a given set of limb darkening coefficients without the need to adjust these coefficients, and further, we can demonstrate that wavelength dependent stellar radius changes must be small as expected from theory. Our new observations provide further evidence for a chan...

  9. TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Betremieux, Y. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, L., E-mail: betremieux@mpia.de, E-mail: kaltenegger@mpia.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge MA 02138 (United States)

    2013-08-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering, and refraction from 115 to 1000 nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200 nm, ultraviolet (UV) O{sub 2} absorption increases the effective planetary radius by about 180 km, versus 27 km at 760.3 nm, and 14 km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the UV is an interesting wavelength range for future space missions.

  10. Transmission spectrum of Earth as a transiting exoplanet - from the ultraviolet to the near-infrared

    CERN Document Server

    Betremieux, Y

    2013-01-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering and refraction from 115 to 1000nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200nm, ultraviolet(UV) O_2 absorption increases the effective planetary radius by about 180km, versus 27km at 760.3nm, and 14km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the ultraviolet is an interesting wavelength range for future space mi...

  11. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    CERN Document Server

    Maciejewski, G; Fernández, M; Sota, A; Nowak, G; Ohlert, J; Nikolov, G; Bukowiecki, Ł; Hinse, T C; Pallé, E; Tingley, B; Kjurkchieva, D; Lee, J W; Lee, C -U

    2016-01-01

    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predicti...

  12. Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  13. Colour-magnitude diagrams of transiting Exoplanets - II. A larger sample from photometric distances

    CERN Document Server

    Triaud, Amaury H M J; Smalley, Barry; Gillon, Michael

    2014-01-01

    Colour-magnitude diagrams form a traditional way of presenting luminous objects in the Universe and compare them to each others. Here, we estimate the photometric distance of 44 transiting exoplanetary systems. Parallaxes for seven systems confirm our methodology. Combining those measurements with fluxes obtained while planets were occulted by their host stars, we compose colour-magnitude diagrams in the near and mid-infrared. When possible, planets are plotted alongside very low-mass stars and field brown dwarfs, who often share similar sizes and equilibrium temperatures. They offer a natural, empirical, comparison sample. We also include directly imaged exoplanets and the expected loci of pure blackbodies. Irradiated planets do not match blackbodies; their emission spectra are not featureless. For a given luminosity, hot Jupiters' daysides show a larger variety in colour than brown dwarfs do and display an increasing diversity in colour with decreasing intrinsic luminosity. The presence of an extra absorben...

  14. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    Science.gov (United States)

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.

  15. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    CERN Document Server

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  16. Limb-darkening and exoplanets II: Choosing the Best Law for Optimal Retrieval of Transit Parameters

    CERN Document Server

    Espinoza, Néstor

    2016-01-01

    Very precise measurements of exoplanet transit lightcurves both from ground and space based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such lightcurves such as the planetary radius. However, studies of the effect of limb darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit lightcurves, both in terms of bias and precision, for a wide range...

  17. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    CERN Document Server

    Turner, Jake D; Arras, Phil; Johnson, Robert E; Schmidt, Carl

    2016-01-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1-D slabs of gas in coronal equilibrium with varying densities ($10^{4}-10^{8} \\, {\\rm cm^{-3}}$) and temperatures ($2000-10^{6} \\ {\\rm K}$) illuminated by a solar spectrum. For slabs at coronal temperatures ($10^{6} \\ {\\rm K}$) and densities even orders of magnitude larger than expected for the compressed stellar wind ($10^{4}-10^{5} \\, {\\rm cm^{-3}}$), we find optical depths orders of magnitude too small ($> 3\\times10^{-7}$) to explain the $\\sim3\\%$ UV transit depths seen with Hubble. Using this result and our modeling of slabs with lower temperatures ($2000-10^4 {\\rm K}$), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originatin...

  18. Characterization of transiting exoplanets: analyzing the impact of the host star on the planet parameters

    CERN Document Server

    Bruno, Giovanni

    2016-01-01

    In this PhD dissertation, I discuss issues of the Radial Velocities (RV) and transit methods. These techniques allow us to derive the mass and radius of an exoplanet, necessary to model its bulk structure and to have insight on its formation. To do this, however, also the same parameters of its host star are needed. By using spectroscopy, I participated in TRANSITS, an RV follow-up program of Kepler Objects of Interest. I determined the parameters of nine host stars, enabling the characterization of their companions. With the same method, I participated in two studies which aim at exploring the mass-radius relationship of low-mass stars and at improving the statistics of star-planet interactions. I also inspected the behavior of SOPHIE/OHP spectra for instrumental effects which can affect the measure of the stellar parameters. From a different perspective, I studied Kepler-117, a multi-planetary system which presents Transit Timing Variations (TTV). A specific approach was developed in order to realize a simu...

  19. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    CERN Document Server

    Winn, Joshua N; Johnson, John Asher; Marcy, Geoffrey W; Gazak, J Zachary; Starkey, Donn; Ford, Eric B; Colon, Knicole D; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F; Kadakia, Shimonee; Vanderbei, Robert J; Adams, Elisabeth R; Lockhart, Matthew; Crossfield, Ian J; Valenti, Jeff A; Dantowitz, Ronald; Carter, Joshua A

    2009-01-01

    We present the results of a pan-American campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting ...

  20. Eight years of accurate photometric follow-up of transiting giant exoplanets

    CERN Document Server

    Mancini, Luigi

    2016-01-01

    Since 2008 we have run an observational program to accurately measure the characteristics of known exoplanet systems hosting close-in transiting giant planets, i.e. hot Jupiters. Our study is based on high-quality photometric follow-up observations of transit events with an array of medium-class telescopes, which are located in both the northern and the southern hemispheres. A high photometric precision is achieved through the telescope-defocussing technique. The data are then reduced and analysed in a homogeneous way for estimating the orbital and physical parameters of both the planets and their parent stars. We also make use of multi-band imaging cameras for probing planetary atmospheres via the transmission-photometry technique. In some cases we adopt a two-site observational strategy for collecting simultaneous light curves of individual transits, which is the only completely reliable method for truly distinguishing a real astrophysical signal from systematic noise. In this contribution we review the mai...

  1. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  2. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    Science.gov (United States)

    Turner, Jake D.; Christie, Duncan; Arras, Phil; Johnson, Robert E.; Schmidt, Carl

    2016-06-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1D slabs of gas in coronal equilibrium with varying densities (104-108 cm-3) and temperatures (2000-106 K) illuminated by a solar spectrum. For slabs at coronal temperatures (106 K) and densities even orders of magnitude larger than expected for the compressed stellar wind (104-105 cm-3), we find optical depths orders of magnitude too small (>3 × 10-7) to explain the ˜3 per cent UV transit depths seen with Hubble. Using this result and our modelling of slabs with lower temperatures (2000-104K), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originating in the planet, as the stellar wind is too highly ionized. A corollary of this result is that transport of neutral atoms from the denser planetary atmosphere outward must be a primary consideration when constructing physical models. In the second part of this paper, additional calculations using CLOUDY are carried out to model a slab of planetary gas in radiative and thermal equilibrium with the stellar radiation field. Promising sources of opacity from the X-ray to radio wavelengths are discussed, some of which are not yet observed.

  3. The Mid-infrared Spectrum of the Transiting Exoplanet HD 209458b

    Science.gov (United States)

    Swain, M. R.; Bouwman, J.; Akeson, R. L.; Lawler, S.; Beichman, C. A.

    2008-01-01

    We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 micrometers. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 m, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broadband eclipse depth to be 0:00315 +/- 0:000315, implying significant redistribution of heat from the dayside to the nightside. This work required the development of improved methods for Spitzer IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.

  4. A new look at Spitzer primary transit observations of the exoplanet HD189733b

    CERN Document Server

    Morello, Giuseppe; Tinetti, Giovanna; Peres, Giovanni; Micela, Giuseppina; Howarth, Ian D

    2014-01-01

    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor $1.6$. This is a worthwhile t...

  5. Space weather: recovering the variation of the stellar EUV spectral Energy distribution from the companion exoplanet FUV transit observation

    Science.gov (United States)

    Ben-Jaffel, Lotfi; Guo, Jianheng

    2016-07-01

    The stellar extreme ultraviolet (EUV) irradiation determines the atmospheric properties of exoplanets. Recently, by varying the profiles of the EUV spectral energy distribution (SED), we tested the influences of stellar EUV SEDs on the physical and chemical properties of the escaping atmosphere (Guo & Ben-Jaffel, 2015). One of our major results was that the composition and species distributions in the atmosphere could be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape rate, the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. For exoplanet HD 189733b, it was possible to explain the time variability observed during transit in the Lyman-α line by the Hubble Space Telescope (HST) between 2010 and 2011 by a change in the EUV SED of the host K star. Our proposed technique provides a straightforward and easy-to-follow proxy to connect the EUV SED of the star with the planetary companion Lyman--α transit absorption, the monitoring of which may provide a direct measure of the stellar EUV flux. Here, we extend our study using new HST FUV observations.

  6. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12

    Science.gov (United States)

    Maciejewski, G.; Dimitrov, D.; Fernández, M.; Sota, A.; Nowak, G.; Ohlert, J.; Nikolov, G.; Bukowiecki, Ł.; Hinse, T. C.; Pallé, E.; Tingley, B.; Kjurkchieva, D.; Lee, J. W.; Lee, C.-U.

    2016-04-01

    Aims: Most hot Jupiters are expected to spiral in toward their host stars because the angular momentum of the orbital motion is transferred to the stellar spin. Their orbits can also precess as a result of planet-star interactions. Calculations show that both effects might be detected for the very-hot exoplanet WASP-12 b using the method of precise transit-timing over a time span of about 10 yr. Methods: We acquired new precise light curves for 29 transits of WASP-12 b, spannning four observing seasons from November 2012 to February 2016. New mid-transit times, together with those from the literature, were used to refine the transit ephemeris and analyze the timing residuals. Results: We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5σ confidence level. They may be approximated with a quadratic ephemeris that gives a change rate in the orbital period of (-2.56 ± 0.40) × 10-2 s yr-1. The tidal quality parameter of the host star was found to be equal to 2.5 × 105, which is similar to theoretical predictions for Sun-like stars. We also considered a model in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay. Partly based on (1) data collected with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, (2) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and (3) data collected with telescopes at the Rozhen National Astronomical Observatory.The light curves are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/L

  7. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  8. How do sharp transmission boundaries change the effective radius of a transiting exoplanet?

    Science.gov (United States)

    Betremieux, Yan; Swain, Mark R.

    2016-10-01

    Most radiative transfer codes for exoplanet transmission spectroscopy either use or are validated against the formalism of Lecavelier des Etangs et al. (2008). Although extremely useful to understand what shapes transmission spectra, this formalism does not consider the effects of sharp boundaries below which an exoplanet's limb transmission suddenly decreases. However, with recent advances on the effects of refraction in transmission spectroscopy (Bétrémieux & Kaltenegger 2014, Bétrémieux 2016), it turns out that all exoplanets possess one such boundary in the form of either a surface, optically-thick clouds, or in the form of a refractive boundary. We have deriveda first-order analytical expression for an exoplanet's effective radius, which can be used to further validate or improve radiative transfer codes, which accounts for the presence of these boundaries, and discuss their effects on exoplanetary transmission spectra.

  9. Directed follow-up strategy of low-cadence photometric surveys in Search of Transiting Exoplanets - II. application to Gaia

    CERN Document Server

    Dzigan, Yifat

    2012-01-01

    In a previous paper we presented the Directed Follow-Up (DFU) approach, which we suggested can be used to efficiently augment low-cadence photometric surveys in a way that will optimize the chances to detect transiting exoplanets. In this paper we present preliminary tests of applying the DFU approach to the future ESA space mission Gaia. We demonstrate the strategy application to Gaia photometry through a few simulated cases of known transiting planets, using Gaia expected performance and current design. We show that despite the low cadence observations DFU, when tailored for Gaia's scanning law, can facilitate detection of transiting planets with ground-based observations, even during the lifetime of the mission. We conclude that Gaia photometry, although not optimized for transit detection, should not be ignored in the search of transiting planets. With a suitable ground-based follow-up network it can make an important contribution to this search.

  10. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    Energy Technology Data Exchange (ETDEWEB)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J. [University of Bristol, School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Teanby, Nick A. [University of Bristol, School of Earth Sciences, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2016-03-20

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.

  11. Accretion of Jupiter-mass Planets in the Limit of Vanishing Viscosity

    CERN Document Server

    Szulágyi, J; Crida, A; Masset, F

    2013-01-01

    In the core-accretion model the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter-mass. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in low-viscosity regime, or both. Here we explore the second way using global, three-dimensional isothermal hydrodynamical simulations with 8 levels of nested grids around the planet. In our simulations the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without prescribed viscosity Jupiter's mass-doubling time is $\\sim 10^4$ years, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We i...

  12. SOPHIE velocimetry of Kepler transit candidates. X. KOI-142 c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing

    Science.gov (United States)

    Barros, S. C. C.; Díaz, R. F.; Santerne, A.; Bruno, G.; Deleuil, M.; Almenara, J.-M.; Bonomo, A. S.; Bouchy, F.; Damiani, C.; Hébrard, G.; Montagnier, G.; Moutou, C.

    2014-01-01

    The exoplanet KOI-142b (Kepler-88b) shows transit timing variations (TTVs) with a semi-amplitude of ~12 h, which earned it the nickname "king of transit variations". Only the transit of planet b was detected in the Kepler data with an orbital period of ~10.92 days and a radius of ~0.36 RJup. The TTVs together with the transit duration variations of KOI-142b were analysed recently, finding a unique solution for a companion-perturbing planet. An outer non-transiting companion was predicted, KOI-142c, with a mass of 0.626 ± 0.03 MJup and a period of 22.3397-0.0018+0.0021 days, which is close to the 2:1 mean-motion resonance with the inner transiting planet. We report an independent confirmation of KOI-142c using radial velocity observations with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derive an orbital period of 22.10 ± 0.25 days and a minimum planetary mass of 0.760.16+0.32 MJup, both in good agreement with the predictions by previous transit timing analysis. Therefore, this is the first radial velocity confirmation of a non-transiting planet discovered with TTVs, providing an independent validation of the TTVs technique. Based on observations collected with the NASA Kepler satellite and with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  13. The Transiting Exoplanet Survey Satellite (TESS): Discovering New Earths and Super-Earths in the Solar Neighborhood

    Science.gov (United States)

    Ricker, George R.

    2015-12-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes or less. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. These objects will include more than 1 million stars and bright galaxies observed during sessions of several weeks. In total, more than 30 million objects brighter than I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade, with data rates in excess of 100 Mbits/s.An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets, as well as commensal survey candidates from the FFI. A NASA Guest

  14. Spectroscopically Unlocking Exoplanet Characteristics

    Science.gov (United States)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  15. KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    CERN Document Server

    Pepper, Joshua; Collins, Karen A; Johnson, John Asher; Fulton, Benjamin J; Howard, Andrew W; Beatty, Thomas; Stassun, Keivan G; Isaacson, Howard; Colón, Knicole d; Lund, Michael B; Kuhn, Rudolf B; Siverd, Robert J; Gaudi, B Scott; Tan, T G; Curtis, Ivan; Stockdale, Christopher; Mawet, Dimitri; Bottom, Michael; James, David; Zhou, George; Bayliss, Daniel; Cargile, Phillip; Bieryla, Allyson; Penev, Kaloyan; Latham, David W; Labadie-Bartz, Jonathan; Kielkopf, John; Eastman, Jason D; Oberst, Thomas E; Jensen, Eric L N; Nelson, Peter; Sliski, David H; Wittenmyer, Robert A; McCrady, Nate; Wright, Jason T; Relles, Howard M

    2016-01-01

    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{\\rm eff} = 5370\\pm51$ K, $M_{*} = 1.438_{-0.052}^{+0.061} M_{\\odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{\\odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180\\pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529\\pm0.00006$ day orbit, with $M_{P} = 0.195\\pm0.018 M_J$, $R_{P}= 1.37_{-0.12}^{+0.15} R_J$, $\\rho_{P} = 0.093_{-0.024}^{+0.028}$ g cm$^{-3}$, surface gravity log ${g_{P}} = 2.407_{-0.086}^{+0.080}$, and equilibrium temperature $T_{eq} = 1712_{-46}^{+51}$ K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric trans...

  16. Ground-based near-UV observations of 15 transiting exoplanets: Constraints on their atmospheres and no evidence for asymmetrical transits

    CERN Document Server

    Turner, Jake D; Biddle, Lauren I; Smart, Brianna M; Zellem, Robert T; Teske, Johanna K; Hardegree-Ullman, Kevin K; Griffith, Caitlin C; Leiter, Robin M; Cates, Ian T; Nieberding, Megan N; Smith, Carter-Thaxton W; Thompson, Robert M; Hofmann, Ryan; Berube, Michael P; Nguyen, Chi H; Small, Lindsay C; Guvenen, Blythe C; Richardson, Logan; McGraw, Allison; Raphael, Brandon; Crawford, Benjamin E; Robertson, Amy N; Tombleson, Ryan; Carleton, Timothy M; Towner, Allison P M; Walker-LaFollette, Amanda M; Hume, Jeffrey R; Watson, Zachary T; Jones, Christen K; Lichtenberger, Matthew J; Hoglund, Shelby R; Cook, Kendall L; Crossen, Cory A; Jorgensen, Curtis R; Thompson, James M Romine Alejandro R; Villegas, Christian F; Wilson, Ashley A; Sanford, Brent; Taylor, Joanna M

    2016-01-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multi-wavele...

  17. Hiding in the Shadows II: Collisional Dust as Exoplanet Markers

    CERN Document Server

    Dobinson, Jack; Lines, Stefan; Carter, Philip J; Dodson-Robinson, Sarah E; Teanby, Nick A

    2016-01-01

    Observations of the youngest planets ($\\sim$1-10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake even in ideal circumstances. Therefore, we propose the determination of a set of markers that can pre-select promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 $\\mu$m for a low eccentricity planet, whereas a high eccentricity planet would produce a ch...

  18. Constraining the atmosphere of exoplanet WASP-34b

    Science.gov (United States)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio; Garland, Justin; Foster, Andrew S. D.; Blecic, Jasmina; Foster, Austin James; Smalley, Barry

    2016-01-01

    WASP-34b is a short-period exoplanet with a mass of 0.59 +/- 0.01 Jupiter masses orbiting a G5 star with a period of 4.3177 days and an eccentricity of 0.038 +/- 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 micron channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to present eclipse-depth measurements, estimates of infrared brightness temperatures, and a refined orbit. With our Bayesian Atmospheric Radiative Transfer (BART) code, we characterized the atmosphere's temperature and pressure profile, and molecular abundances. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.

  19. Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST), Publications of the Astronomical Society of the Pacific (PASP), December 2014

    CERN Document Server

    Beichman, Charles; Knutson, Heather; Smith, Roger; Dressing, Courtney; Latham, David; Deming, Drake; Lunine, Jonathan; Lagage, Pierre-Olivier; Sozzetti, Alessandro; Beichman, Charles; Sing, David; Kempton, Eliza; Ricker, George; Bean, Jacob; Kreidberg, Laura; Bouwman, Jeroen; Crossfield, Ian; Christiansen, Jessie; Ciardi, David; Fortney, Jonathan; Albert, Loïc; Doyon, René; Rieke, Marcia; Rieke, George; Clampin, Mark; Greenhouse, Matt; Goudfrooij, Paul; Hines, Dean; Keyes, Tony; Lee, Janice; McCullough, Peter; Robberto, Massimo; Stansberry, John; Valenti, Jeff; Deroo, Pieter D; Mandell, Avi; Ressler, Michael E; Shporer, Avi; Swain, Mark; Vasisht, Gautam; Carey, Sean; Krick, Jessica; Birkmann, Stephan; Ferruit, Pierre; Giardino, Giovanna; Greene, Tom; Howell, Steve

    2014-01-01

    This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST's unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.

  20. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    OpenAIRE

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Szilard; Aigrain, S; Alonso, R.; Almenara, J. -M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.

    2010-01-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm[SUP]-3[/SUP]. It orbits a G0V star with T_eff = 5 945 K, M[SUB]*...

  1. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  2. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    International Nuclear Information System (INIS)

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼104 yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  3. Molecular opacities for exoplanets

    OpenAIRE

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules...

  4. KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    OpenAIRE

    Pepper, Joshua; Rodriguez, Joseph E.; Collins, Karen A.; Johnson, John Asher; Fulton, Benjamin J.; Howard, Andrew W.; Beatty, Thomas; Stassun, Keivan G.; Isaacson, Howard; Colón, Knicole D.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Gaudi, B. Scott; Tan, T G

    2016-01-01

    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{\\rm eff} = 5370\\pm51$ K, $M_{*} = 1.438_{-0.052}^{+0.061} M_{\\odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{\\odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180\\pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529\\pm0.00006$ day orbit, with $M_{P} = 0.195\\pm0.018 M_J$, $R_{P...

  5. A Study of the Effects of Underlying Assumptions in the Reduction of Multi-Object Photometry of Transiting Exoplanets

    Science.gov (United States)

    Fitzpatrick, M. Ryleigh; Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Zellem, Robert Thomas; AzGOE

    2016-10-01

    The analysis of ground-based photometric observations of planetary transits must treat the effects of the Earth's atmosphere, which exceed the signal of the extrasolar planet. Generally, this is achieved by dividing the signal of the host star and planet from that of nearby field stars to reveal the lightcurve. The lightcurve is then fit to a model of the planet's orbit and physical characteristics, also taking into account the characteristics of the star. The fit to the in and out-of-transit data establish the depth of the lightcurve. The question arises, what is the best way to select and treat reference stars to best characterize and remove the shared atmospheric systematics that plague our transit signal. To explore these questions we examine the effects of several assumptions that underline the calculation of the light curve depth. Our study involves repeated photometric observations of hot Jupiter primary transits in the U and B filters. Data were taken with the University of Arizona's Kuiper 1.55m telescope/Mont4K CCD. Each exoplanet observed offers a unique field with stars of various brightness, spectral types and angular distance from the host star. While these observations are part of a larger study of the Rayleigh scattering signature of hot Jupiter exoplanets, here we study the effects of various choices during reduction, specifically the treatment of reference stars and atmospheric systematics.We calculate the lightcurve for all permutations of reference stars, considering several out-of-transit assumptions (e.g. linear, quadratic or exponential). We assess the sensitivity of the transit depths based on the spread of values. In addition we look for characteristics that minimize the scatter in the reduced lightcurve and analyze the effects of the treatment of individual variables on the resultant lightcurve model. Here we present the results of an in depth statistical analysis that classifies the effect of various parameters and choices involved in

  6. The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Pallé, Enric

    2015-01-01

    The atmospheres of exoplanets are commonly studied by observing the transit of the planet passing in front of its parent star. The obscuration of part of the stellar disk during a transit will reveal aspects of its surface structure resulting from general centre-to-limb variations (CLVs). These become apparent when forming the ratio between the stellar light in and out of transit. These phenomena can be seen particularly clearly during the progress of a penumbral lunar eclipse, where the Earth transits the solar disk and masks different regions of the solar disk as the eclipse progresses. When inferring the properties of the planetary atmosphere, it is essential that this effect originating at the star is properly accounted for. Using the data observed from the 2014-April-15 lunar eclipse with the ESPaDOnS spectrograph mounted on the Canada France Hawaii Telescope (CFHT), we have obtained for the first time a time sequence of the penumbral spectra. These penumbral spectra enable us to study the centre-to-limb...

  7. Thermal Design of the Instrument for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Allen, Gregory D.

    2016-01-01

    TESS observatory is a two year NASA Explorer mission which will use a set of four cameras to discover exoplanets. It will be placed in a high-earth orbit with a period of 13.7 days and will be unaffected by temperature disturbances caused by environmental heating from the Earth. The cameras use their stray-light baffles to passively cool the cameras and in turn the CCD's in order to maintain operational temperatures. The design has been well thought out and analyzed to maximize temperature stability. The analysis shows that the design keeps the cameras and their components within their temperature ranges which will help make it a successful mission. It will also meet its survival requirement of sustaining exposure to a five hour eclipse. Official validation and verification planning is underway and will be performed as the system is built up. It is slated for launch in 2017.

  8. The Architecture of Exoplanets

    Science.gov (United States)

    Hatzes, Artie P.

    2016-05-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets ( ≈ 20-25 %) that tend to be more massive ( M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large ( a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range

  9. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing

    OpenAIRE

    Jontof-Hutter, Daniel; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Ford, Eric B.

    2015-01-01

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star once per orbit, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favorable cases, the departures from Keplerian orbits implied by the observed transit times permit planetary mass...

  10. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    CERN Document Server

    Tingley, B; Gandolfi, D; Deeg, H J; Pallé, E; Rodriguez, P Montañés; Murgas, F; Alonso, R; Bruntt, H; Fridlund, M

    2014-01-01

    We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 Mjup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~4...

  11. Line-profile tomography of exoplanet transits -- II. A gas-giant planet transiting a rapidly-rotating A5 star

    CERN Document Server

    Cameron, A Collier; Smalley, B; McDonald, I; Hebb, L; Andersen, J; Augusteijn, Th; Barros, S C C; Brown, D J A; Cochran, W D; Endl, M; Fossey, S J; Hartmann, M; Maxted, P F L; Pollacco, D; Skillen, I; Telting, J; Waldmann, I P; West, R G

    2010-01-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its r...

  12. SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period

    CERN Document Server

    Santerne, A; Tsantaki, M; Bouchy, F; Hébrard, G; Adibekyan, V; Almenara, J -M; Amard, L; Barros, S C C; Boisse, I; Bonomo, A S; Bruno, G; Courcol, B; Deleuil, M; Demangeon, O; Díaz, R F; Guillot, T; Havel, M; Montagnier, G; Rajpurohit, A S; Rey, J; Santos, N C

    2015-01-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions such as their dominant formation and migration process, as well as their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allow us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derive the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the different populations of giant plan...

  13. WASP-37b: a 1.7 MJ exoplanet transiting a metal-poor star

    CERN Document Server

    Simpson, E K; Barros, S C C; Brown, D J A; Cameron, A Collier; Hebb, L; Pollacco, D; Smalley, B; Todd, I; Butters, O W; Hebrard, G; McCormac, J; Miller, G R M; Santerne, A; Street, R A; Skillen, I; Triaud, A H M J; Anderson, D R; Bento, J; Boisse, I; Bouchy, F; Enoch, B; Haswell, C A; Hellier, C; Holmes, S; Horne, K; Keenan, F P; Lister, T A; Maxted, P F L; Moulds, V; Moutou, C; Norton, A J; Parley, N; Pepe, F; Queloz, D; Segransan, D; Smith, A M S; Stempels, H C; Udry, S; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 +/- 0.00001 d, transit epoch T0 = 2455338.6189 +/- 0.0006 (HJD), and a transit duration 0.1307 +/- 0.0019 d. The planetary companion has a mass Mp = 1.696(+0.123)(-0.128) MJ and radius Rp = 1.136(+0.060){-0.051} RJ, yielding a mean density of 1.169(+0.119)(-0.152) times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.849(+0.067)(-0.040) Msun, R* = 0.977(+0.045)(-0.042) Rsun, Teff = 5800 +/- 150 K and [Fe/H] = -0.40 +/- 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  14. Investigation of transit-selected exoplanet candidates from the MACHO survey

    CERN Document Server

    Huegelmeyer, S D; Homeier, D; Reiners, A

    2007-01-01

    Context: Planets outside our solar system transiting their host star, i. e. those with an orbital inclination near 90 degree, are of special interest to derive physical properties of extrasolar planets. With the knowledge of the host star's physical parameters, the planetary radius can be determined. Combined with spectroscopic observations the mass and therefore the density can be derived from Doppler-measurements. Depending on the brightness of the host star, additional information, e. g. about the spin-orbit alignment between the host star and planetary orbit, can be obtained. Aims: The last few years have witnessed a growing success of transit surveys. Among other surveys, the MACHO project provided nine potential transiting planets, several of them with relatively bright parent stars. The photometric signature of a transit event is, however, insufficient to confirm the planetary nature of the faint companion. The aim of this paper therefore is a determination of the spectroscopic parameters of the host s...

  15. KELT-10b and KELT-11b: Two Sub-Jupiter Mass Planets well-Suited for Atmospheric Characterization in the Southern Hemisphere

    Science.gov (United States)

    Rodriguez, Joseph E.

    2015-12-01

    The Kilodegree Extremely Little Telescope (KELT) project is a photometric survey in both the northern and southern hemispheres for transiting planets around bright stars (8 inflated transiting sub-Jupiter mass planet (0.68 MJ) around a V=10.7 early G-star. It has the 3rd deepest transit (1.4%) in the southern hemisphere for a star V target for transmission spectroscopy. KELT-11b is a highly inflated transiting Saturn mass planet (0.22 MJ) orbiting one of the brightest planet-hosting stars in the southern hemisphere. Interestingly, KELT-11b's host star is a clear sub-giant star (log(g) ~ 3.7). I will discuss their impact for atmospheric characterization. For example, the highly inflated nature of the KELT-11b planet provides the ability to study a sub-Jupiter atmosphere at very low planetary gravity, while the sub-giant nature of its host star allows us to study the effects of post main sequence evolution of a host star on a hot Jupiter.

  16. Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet

    CERN Document Server

    Carballido, Augusto; Hyde, Truell W

    2015-01-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses a) close to the gap edge, b) in one of the two gas streams that accrete onto the planet, c) inside the low-density gap, and d) outside the gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking and compaction. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 $\\mu$m, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 $\\mu$m. Our Monte Carlo calculations show initial growth of dust aggregates foll...

  17. 32 New Exoplanets Found

    Science.gov (United States)

    2009-10-01

    less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models. Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets. More information This discovery was announced today at the ESO/CAUP conference "Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19-23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium "Heirs of Galileo: Frontiers of Astronomy" in Madrid, Spain. This research was presented in a series of eight papers submitted - or soon to be submitted - to the Astronomy and Astrophysics journal. The team is composed of * Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils * LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier * CAUP Porto: N.C. Santos * ESO: G. Lo Curto, D. Naef * University of Bern: W. Benz, C. Mordasini * IAP Paris: F. Bouchy, G. Hébrard * LAM Marseille: C. Moutou * Service d'aéronomie, Paris: J.-L. Bertaux ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most

  18. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introdu

  19. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Science.gov (United States)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F.; Kadakia, Shimonee; Vanderbei, Robert J.; Adams, Elisabeth R.; Lockhart, Matthew; Crossfield, Ian J.; Valenti, Jeff A.; Dantowitz, Ronald; Carter, Joshua A.

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  20. First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy: Confirmation of Rayleigh scattering in HD 189733 b with HIPO

    CERN Document Server

    Angerhausen, Daniel; Mandell, Avi; Dunham, Edward W; Becklin, Eric E; Collins, Peter L; Hamilton, Ryan T; Logsdon, Sarah E; McElwain, Michael W; McLean, Ian S; Pfueller, Enrico; Savage, Maureen L; Shenoy, Sachindev S; Vacca, William; VanCleve, Jeffry; Wolf, Juergen

    2015-01-01

    Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z' bands as a demonstration of SOFIA's capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z' wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.

  1. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    CERN Document Server

    Mandell, Avi; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 on the HST. We analyze the data for a single transit for each planet using a strategy similar in certain aspects to the techniques used by Berta et al. (2012), but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 microns potentially due to water. However, the amplitude of the absorption is less than that expected based on previous o...

  2. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Science.gov (United States)

    Mandell, Avram Max; Haynes, Korey N.; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 nano meter most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  3. WASP-37b: A 1.8 MJ EXOPLANET TRANSITING A METAL-POOR STAR

    International Nuclear Information System (INIS)

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an mv = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018-0.0017 d. The planetary companion has a mass Mp = 1.80 ± 0.17 MJ and radius Rp = 1.16+0.07-0.06 RJ, yielding a mean density of 1.15+0.12-0.15 ρJ. From a spectral analysis, we find that the host star has M* = 0.925 ± 0.120 Msun, R* = 1.003 ± 0.053 Rsun, Teff = 5800 ± 150 K, and [Fe/H] = -0.40 ± 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  4. Analyzing Kepler lightcurves of exoplanets

    Science.gov (United States)

    Dulz, Shannon Diane; Reed, Mike

    2016-10-01

    The Kepler space telescope successfully found thousands of exoplanets. The next step is characterizing what those planets are like. Additional processing of the light curves and meticulous removal of spacecraft artifacts from the data such as pointing adjustments, safing events and thermal variations, may yield more information on the features of exoplanet systems. Bond albedo can be measured from the exoplanet's day-side flux contribution prior to secondary eclipse and asymmetries in the day-side contribution may indicate thermal asymmetries driven by motion in the planet's atmosphere. Transit timing variations indicate non-circular or precessing orbits, potentially due to a non-transiting third body, which influence the planetary environment and atmosphere. We investigated transit timing variations and day-side flux contributions of an exoplanet.

  5. Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Haynes, Korey [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sinukoff, Evan [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-12-20

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 μm most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  6. Three WASP-South transiting exoplanets: WASP-74b, WASP-83b & WASP-89b

    CERN Document Server

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2014-01-01

    We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to Southern telescopes. It is a 0.95 M_Jup planet with a moderately bloated radius of 1.5 R_Jup in a 2-d orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 M_Jup with a radius of 1.0 R_Jup. It is in a 5-d orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M_Jup planet in a 3-d orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 d, while star spots are visible in the transits. There are indications that the planet's orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.

  7. FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Loyd, R. O. Parke [Center for Astrophysics and Space Astronomy, Boulder, CO 80303 (United States); France, Kevin, E-mail: robert.loyd@colorado.edu [NASA Nancy Grace Roman Fellow. (United States)

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206; one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ {sub x}. Maximum likelihood values of σ {sub x} range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is ≳1 R{sub J} . However, for some M dwarfs this limit can be as low as several R {sub ⊕}.

  8. The Effects of Refraction on Transit Transmission Spectroscopy: Application to Earth-like Exoplanets

    CERN Document Server

    Misra, Amit; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Palle et al. (2009). We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSPEC). Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal to noise ratio (SNR) of absorption features by 60%, while for an Earth-analog plan...

  9. Dust Coagulation in the Vicinity of a Gap-opening Jupiter-mass Planet

    Science.gov (United States)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.

    2016-06-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking and compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μm, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μm. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.

  10. NASA's Missions for Exoplanet Exploration

    Science.gov (United States)

    Unwin, Stephen

    2014-05-01

    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  11. Zodiacal Exoplanets in Time (ZEIT) IV: seven transiting planets in the Praesepe cluster

    CERN Document Server

    Mann, Andrew W; Vanderburg, Andrew; Rizzuto, Aaron C; Ansdell, Megan; Medina, Jennifer Vanessa; Mace, Gregory N; Kraus, Adam L

    2016-01-01

    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the $\\simeq$800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets. For each host star we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We obtain low-resolution optical and NIR spectroscopy for each system, which we use in conjunction with the cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods from the K2 light curves, and our derived stellar radii, we show that all planetary orbits are, within errors, aligned with their host star's...

  12. The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b

    Science.gov (United States)

    Nortmann, L.; Pallé, E.; Murgas, F.; Dreizler, S.; Iro, N.; Cabrera-Lavers, A.

    2016-10-01

    We observed the hot Jupiter HAT-P-32b (also known as HAT-P-32Ab) to determine its optical transmission spectrum by measuring the wavelength-dependent, planet-to-star radius ratios in the region between 518-918 nm. We used the OSIRIS instrument at the Gran Telescopio CANARIAS (GTC) in long-slit spectroscopy mode, placing HAT-P-32 and a reference star in the same slit and obtaining a time series of spectra covering two transit events. Using the best quality data set, we were able to yield 20 narrowband transit light curves, with each passband spanning a 20 nm wide interval. After removal of all systematic noise signals and light curve modeling, the uncertainties for the resulting radius ratios lie between 337 and 972 ppm. The radius ratios show little variation with wavelength, suggesting a high altitude cloud layer masking any atmospheric features. Alternatively, a strong depletion in alkali metals or a much smaller than expected planetary atmospheric scale height could be responsible for the lack of atmospheric features. Our result of a flat transmission spectrum is consistent with a previous ground-based study of the optical spectrum of this planet. This agreement between independent results demonstrates that ground-based measurements of exoplanet atmospheres can give reliable and reproducible results despite the fact that the data often is heavily affected by systematic noise as long as the noise source is well understood and properly corrected. We also extract an optical spectrum of the M-dwarf companion HAT-P-32B. Using PHOENIX stellar atmosphere models we determine an effective temperature of Teff = 3187+60-71 K, which is slightly colder than previous studies relying only on broadband infrared data. The 20 narrowband and white light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A65

  13. The transiting exoplanet CoRoT-11b and its peculiar tidal evolution

    Directory of Open Access Journals (Sweden)

    Damiani C.

    2011-02-01

    Full Text Available CoRoT-11b is a fairly massive hot-Jupiter (Mp = 2.33 ± 0.34 MJup in a 3 days orbit around a F6 V star with an age of 2 ± 1 Gyr. The relatively high projected rotational velocity of the star (v sin i⋆ = 40 ± 5 km/s places CoRoT-11 among the most rapidly rotating planet hosting stars discovered so far. Assuming that the star is seen equator-on, the v sin i⋆ and the star radius (R∗ = 1.37±0.03 R⊙ translate into a stellar rotation period of 1.73±0.26 days. This peculiar planet/star configuration offers an unique opportunity to study the tidal evolution of the system. Owing to the strong tidal interaction, the planet would have moved outwards, from a starting semi-major axis corresponding to an orbital period almost synchronized with the stellar rotation. We found that the present value of the tidal quality factor Q′s could be measured by a timing of the mid-epoch of the transits to be observed with an accuracy of about 0.5 − 1 seconds over a time baseline of about 25 years.

  14. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    CERN Document Server

    Narita, Norio; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-01-01

    We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g'_2$ (400--550 nm), $r'_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g'_2$, $r'_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g'$=11.81, $r'$=10.08, and $z'$=8.6...

  15. Near-UV and optical observations of the transiting exoplanet TrES-3b

    CERN Document Server

    Turner, Jake D; Hardegree-Ullman, Kevin K; Carleton, Timothy M; Walker-LaFollette, Amanda M; Crawford, Benjamin E; Smith, Carter-Thaxton W; McGraw, Allison M; Small, Lindsay C; Rocchetto, Marco; Cunningham, Kathryn I; Towner, Allison P M; Zellem, Robert; Robertson, Amy N; Guvenen, Blythe C; Schwarz, Kamber R; Hardegree-Ullman, Emily E; Collura, Daniel; Henz, Triana N; Lejoly, Cassandra; Richardson, Logan L; Weinand, Michael A; Taylor, Joanna M; Daugherty, Michael J; Wilson, Ashley A; Austin, Carmen L

    2012-01-01

    We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3b's magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the N...

  16. Independent discovery and refined parameters of the transiting exoplanet HAT-P-14b

    CERN Document Server

    Simpson, E K; Brown, D J A; Cameron, A Collier; Pollacco, D; Skillen, I; Stempels, H C; Boisse, I; Faedi, F; Hebrard, G; McCormac, J; Sorensen, P; Street, R A; Bento, J; Bouchy, F; Butters, O W; Enoch, B; Haswell, C A; Hebb, L; Holmes, S; Horne, K; Keenan, F P; Lister, T A; Miller, G R M; Moulds, V; Moutou, C; Norton, A J; Parley, N; Santerne, A; Todd, I; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we refine the parameters by combining our datasets. We also provide additional evidence against astronomical false positives. Due to the brightness of the host star, V = 10, HAT-P-14 is an attractive candidate for further characterisation observations. The planet has a high impact parameter, b = 0.907 +/- 0.004, and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity, e = 0.095 +/- 0.011. The system geometry suggests that the planet narrowly fails to undergo a secondary ecl...

  17. Exoplanets versus brown dwarfs: the CoRoT view and the future

    OpenAIRE

    Schneider, Jean

    2016-01-01

    CoRoT has detected by transit several tens of objects whose radii run from 1.67 Earth radius. Their mass run from less than 5.7 Earth mass (CoRoT-24 b, Alonso et al. 2014) to 63 Jupiter mass (CoRoT-15 b, Bouchy et al. 2011). One could be tempted to think that more massive the object is, the larger it is in size and that there is some limit in mass and/or radius beyond which objects are not planets but very low mass stars below the 80 Jupiter mass limit to trigger nuclear fusion (namely "brown...

  18. SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period

    Science.gov (United States)

    Santerne, A.; Moutou, C.; Tsantaki, M.; Bouchy, F.; Hébrard, G.; Adibekyan, V.; Almenara, J.-M.; Amard, L.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Bruno, G.; Courcol, B.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Guillot, T.; Havel, M.; Montagnier, G.; Rajpurohit, A. S.; Rey, J.; Santos, N. C.

    2016-03-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions as to their dominant formation and migration processes, as well as to their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allowed us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 ± 6.5% for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derived the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 ± 0.6%. We recovered, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot Jupiters but not for the longer-period planets. We also derive a first measurement of the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29 ± 0.17%. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving moderate irradiation are not inflated, but we find that they are on average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the iron abundance of the host star, which needs more detections to be confirmed. Based on observations made with SOPHIE on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France.RV data (Appendices C and D) are only available at the CDS via anonymous ftp to

  19. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    CERN Document Server

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  20. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  1. Asteroseismology of Exoplanet Host Stars

    CERN Document Server

    Huber, Daniel

    2015-01-01

    Asteroseismology is among the most powerful observational tools to determine fundamental properties of stars. Space-based photometry has recently enabled the systematic detection of oscillations in exoplanet host stars, allowing a combination of asteroseismology with transit and radial-velocity measurements to characterize planetary systems. In this contribution I will review the key synergies between asteroseismology and exoplanet science such as the precise determination of radii and ages of exoplanet host stars, as well as applications of asteroseismology to measure spin-orbit inclinations in multiplanet systems and orbital eccentricities of small planets. Finally I will give a brief outlook on asteroseismic studies of exoplanet hosts with current and future space-based missions such as K2 and TESS.

  2. The Qatar Exoplanet Survey

    CERN Document Server

    Alsubai, K A; Bramich, D M; Horne, K; Cameron, A Collier; West, R G; Sorensen, P M; Pollacco, D; Smith, J C; Fors, O

    2014-01-01

    The Qatar Exoplanet Survey (QES) is discovering hot Jupiters and aims to discover hot Saturns and hot Neptunes that transit in front of relatively bright host stars. QES currently operates a robotic wide-angle camera system to identify promising transiting exoplanet candidates among which are the confirmed exoplanets Qatar 1b and 2b. This paper describes the first generation QES instrument, observing strategy, data reduction techniques, and follow-up procedures. The QES cameras in New Mexico complement the SuperWASP cameras in the Canary Islands and South Africa, and we have developed tools to enable the QES images and light curves to be archived and analysed using the same methods developed for the SuperWASP datasets. With its larger aperture, finer pixel scale, and comparable field of view, and with plans to deploy similar systems at two further sites, the QES, in collaboration with SuperWASP, should help to speed the discovery of smaller radius planets transiting bright stars in northern skies.

  3. Using Small Telescopes, Citizen Science, and Network Surveys to find Exoplanets - An Overview of the Kelt team and the Exoplanets Found to Date

    Science.gov (United States)

    Stephens, Denise C.; Kelt North Survey Team, Kelt South Survey Team

    2016-10-01

    The Kelt-North and Kelt-South transit survey is a wide angle search for hot Jupiters around some of the brightest stars in the night sky. Survey operations are based out of the Ohio State and Vanderbilt Universities, with observing facilities at Winer Observatory in Arizona and in Sutherland, South Africa. KELT stands for Kilodegree Extremely Little Telescope, where "Kilodegree" refers to the large area on the sky that the telescope can observe in a single shot. These "Little Telescopes" monitor the brightness of hundreds of thousands of stars night after night, month after month, for many years. Stars that show apparent changes in brightness are put through a careful vetting process and the best transiting planet candidates are sent on for photometric follow-up by a ground based team made up of nearly 40 members in 10 countries across 4 continents. The KELT Follow-Up Network is the largest, most coordinated network of its kind, and their work has contributed to the discovery of multiple new planets: including Kelt-1b which is a 30 Jupiter-mass object at an orbital period of 1.2 days; Kelt-6b wich is a Hot Saturn on a 7.9 day orbital period; and Kelt-8b which is a highly inflated Hot Jupiter that required the development of new techniques to extract high-precision radial velocities. In this presentation I will highlight all of the Kelt Exoplanets discovered to date and how the Kelt team is using small telescopes, citizen science, and network surveys to make these discoveries possible.

  4. Direct imaging discovery of a Jovian exoplanet within a triple-star system.

    Science.gov (United States)

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-12

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged.

  5. Direct imaging discovery of a Jovian exoplanet within a triple-star system

    Science.gov (United States)

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-01

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged.

  6. The Exoplanet Orbit Database II: Updates to exoplanets.org

    CERN Document Server

    Han, Eunkyu; Wright, Jason T; Feng, Y Katherina; Zhao, Ming; Brown, Jacob I; Hancock, Colin

    2014-01-01

    The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Table, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma sep...

  7. Exoplanet Chemistry

    OpenAIRE

    Lodders, Katharina

    2009-01-01

    The terrestrial and gas-giant planets in our solar system may represent some prototypes for planets around other stars; the exoplanets because most stars have similar overall elemental abundances as our sun. The solar system planets represent at least four chemical planet types, depending on the phases that make them: Terrestrial-like planets made of rock (metal plus silicates), Plutonian planets made of rock and ice, Neptunian giant planets of rocky, icy with low H and He contents, and Jovia...

  8. The Fabra-ROA Baker-Nunn Camera at Observatori Astron\\`omic del Montsec: a wide-field imaging facility for exoplanet transit detection

    CERN Document Server

    Fors, O; Muiños, J L; Montojo, F J; Baena, R; Merino, M; Morcillo, R; Blanco, V

    2009-01-01

    A number of Baker-Nunn Camera (BNC) were manufactured by Smithsonian Institution during the 60s as optical tracking systems for artificial satellites with optimal optical and mechanical specifications. One of them was installed at the Real Instituto y Observatorio de la Armada (ROA). We have conducted a profound refurbishment project of the telescope to be installed at Observatori Astron\\`omic del Montsec (OAdM). As a result, the BNC offers the largest combination of a huge FOV (4.4$\\deg$x4.4$\\deg$) and aperture (leading to a limiting magnitude of V$\\sim$20). These specifications, together with their remote and robotic natures, allows this instrument to face an observational program of exoplanets detection by means of transit technique with high signal-to-noise ratio in the appropiate magnitude range.

  9. Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy

    CERN Document Server

    Hebrard, G; Diaz, R F; Boisse, I; Bouchy, F; Etangs, A Lecavelier des; Moutou, C; Ehrenreich, D; Arnold, L; Bonfils, X; Delfosse, X; Desort, M; Eggenberger, A; Forveille, T; Gregorio, J; Lagrange, A -M; Lovis, C; Pepe, F; Perrier, C; Pont, F; Queloz, D; Santerne, A; Santos, N C; Segransan, D; Sing, D K; Udry, S; Vidal-Madjar, A

    2010-01-01

    We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the full transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to a...

  10. A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths

    CERN Document Server

    Heng, Kevin

    2016-01-01

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke & Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloudfree atmospheres. We derive values of our cloudiness index for a small sample of 7 hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b and HAT-P-1b are nearly cloudfree at visible wavelengths. We find the tentative trend that more irradiate...

  11. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

    CERN Document Server

    Akeson, R L; Ciardi, D; Crane, M; Good, J; Harbut, M; Jackson, E; Kane, S R; Laity, A C; Leifer, S; Lynn, M; McElroy, D L; Papin, M; Plavchan, P; Ramirez, S V; Rey, R; von Braun, K; Wittman, M; Abajian, M; Ali, B; Beichman, C; Beekley, A; Berriman, G B; Berukoff, S; Bryden, G; Chan, B; Groom, S; Lau, C; Payne, A N; Regelson, M; Saucedo, M; Schmitz, M; Stauffer, J; Wyatt, P; Zhang, A

    2013-01-01

    We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial velocity measurements from the literature. Tools provided to work with these data include a transit ephemeris predictor, both for single planets and for observing locations, light curve viewing and normalization utilities, and a periodogram and phased light curve service. The archive can be accessed at http://exoplanetarchive.ipac.caltech.edu.

  12. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b

    CERN Document Server

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Southworth, J; Triaud, A H M J; Udry, S; Wagg, T; West, R G

    2016-01-01

    We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with [Fe/H] = +0.26. Warm Jupiters tend to have smaller radii than hot Jupiters, and WASP-130b is in line with this trend (1.23 Mjup; 0.89 Rjup). WASP-131b is a bloated Saturn-mass planet (0.27 Mjup; 1.22 Rjup). Its large scale height coupled with the V = 10.1 brightness of its host star make the planet a good target for atmospheric characterisation. WASP-132b is among the least irradiated and coolest of WASP planets, being in a 7.1-d orbit around a K4 star. It has a low mass and a modest radius (0.41 Mjup; 0.87 Rjup). The V = 12.4, [Fe/H] = +0.22 star shows a possible rotational modulation at 33 d. WASP-139b is the lowest-mass planet yet found by WASP, at 0.12 Mjup and 0.80 Rjup. It is a "super-Neptune" akin to HATS-7b and HATS-8b. It orbits a V = 12.4, [Fe/H] = +0.20, K0 star. The star appears to be anomalously...

  13. What asteroseismology can do for exoplanets

    Directory of Open Access Journals (Sweden)

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  14. What asteroseismology can do for exoplanets

    CERN Document Server

    Van Eylen, Vincent; Aguirre, Victor Silva; Arentoft, Torben; Kjeldsen, Hans; Albrecht, Simon; Chaplin, William J; Isaacson, Howard; Pedersen, May G; Jessen-Hansen, Jens; Tingley, Brandon; Christensen-Dalsgaard, Joergen; Aerts, Conny; Campante, Tiago L; Bryson, Steve T

    2014-01-01

    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  15. Transiting exoplanets from the CoRoT space mission. XX. CoRoT-18b: a massive hot jupiter on a prograde, nearly aligned orbit

    CERN Document Server

    Hebrard, G; Alonso, R; Fridlund, M; Ofir, A; Aigrain, S; Guillot, T; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Csizmadia, Sz; Deeg, H J; Deleuil, M; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gibson, N; Gillon, M; Guenther, E; Hatzes, A; Havel, M; Jorda, L; Lammer, H; Leger, A; Llebaria, A; Mazeh, T; Moutou, C; Ollivier, M; Parviainen, H; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-18b, a massive hot jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric follow-up ground-based observations. The planet has a mass M_p = 3.47 +/- 0.38 M_Jup, a radius R_p = 1.31 +/- 0.18 R_Jup, and a density rho_p = 2.2 +/- 0.8 g/cm3. It orbits a G9V star with a mass M_* = 0.95 +/- 0.15 M_Sun, a radius R_* = 1.00 +/- 0.13 R_Sun, and a rotation period P_rot = 5.4 +/- 0.4 days. The age of the system remains uncertain, stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possible significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected...

  16. A transit timing analysis of nine RISE light curves of the exoplanet system TrES-3

    CERN Document Server

    Gibson, N P; Skillen, I; Simpson, E K; Barros, S; Joshi, Y C; Todd, I; Benn, C; Christian, D; Hrudková, M; Keenan, F P; Steele, I A

    2009-01-01

    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a con...

  17. WASP-38b: A 6.87 day period exoplanet transiting a bright F-type star

    CERN Document Server

    Barros, S C C; Cameron, A Collier; Lister, T A; McCormac, J; Pollacco, D; Simpson, E K; Smalley, B; Street, R A; Todd, I; Triaud, A H M J; Boisse, I; Bouchy, F; Hebrard, G; Moutou, C; Pepe, F; Queloz, D; Santerne, A; Segransan, D; Udry, S; Bento, J; Butters, O W; Enoch, B; Haswell, C A; Hellier, C; Keenan, F P; Miller, G R M; Moulds, V; Norton, A J; Parley, N; Skillen, I; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We report the discovery of WASP-38b, a long period transiting planet in an eccentric $6.871815$ day orbit. The transit epoch is $2455335.92050 \\pm 0.00074$ (HJD) and the transit duration is $4.663$ hours. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded $T_{eff} = 6150 \\pm 80 $K, \\logg$=4.3 \\pm 0.1$, \\vsini=$8.6 \\pm 0.4 $\\kms, $M_*=1.16 \\pm 0.04$\\Msun\\ and $R_* =1.36 \\pm 0.05 $\\Rsun, consistent with a dwarf of spectral type F8. The radial velocity variations and the transit light curves were fitted simultaneously to estimate the orbital and planetary parameters. The planet has a mass of $2.71 \\pm 0.07 $ \\Mjup\\ and a radius of $1.08 \\pm 0.05\\, $\\Rjup\\, giving a density, $ \\rho_p = 2.2 \\pm 0.3 \\rho_J$. The high precision of the eccentricity $e=0.032 \\pm 0.0045$ is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at $1311 \\pm 45$K. WASP-38b is the longest period planet found by WASP-North and with a brigh...

  18. Analysis of Exoplanet Light Curves

    Science.gov (United States)

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  19. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Lattanzi M.G.

    2013-04-01

    Full Text Available Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA, we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  20. Spectra as windows into exoplanet atmospheres.

    Science.gov (United States)

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  1. Evolution of Exoplanets and their Parent Stars

    CERN Document Server

    Guillot, Tristan; Morel, Pierre; Havel, Mathieu; Parmentier, Vivien

    2014-01-01

    Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets a...

  2. Observations of Exoplanet Atmospheres

    CERN Document Server

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  3. Exoplanet Detection Methods

    CERN Document Server

    Wright, Jason T

    2012-01-01

    This chapter reviews various methods of detecting planetary companions to stars from an observational perspective, focusing on radial velocities, astrometry, direct imaging, transits, and gravitational microlensing. For each method, this chapter first derives or summarizes the basic observable phenomena that are used to infer the ex- istence of planetary companions, as well as the physical properties of the planets and host stars that can be derived from the measurement of these signals. This chapter then outlines the general experimental requirements to robustly detect the signals us- ing each method, by comparing their magnitude to the typical sources of measurement uncertainty. This chapter goes on to compare the various methods to each other by outlining the regions of planet and host star parameter space where each method is most sensitive, stressing the complementarity of the ensemble of the methods at our disposal. Finally, there is a brief review of the history of the young exoplanet field, from the f...

  4. WASP-40b: independent discovery of the 0.6-Mjup transiting exoplanet HAT-P-27b

    CERN Document Server

    Anderson, D R; Boisse, I; Bouchy, F; Collier-Cameron, A; Faedi, F; Hebrard, G; Hellier, C; Lendl, M; Moutou, C; Pollacco, D; Santerne, A; Smalley, B; Smith, A M S; Todd, I; Triaud, A H M J; West, R G; Wheatley, P J; Bento, J; Enoch, B; Gillon, M; Maxted, P F L; McCormac, J; Queloz, D; Simpson, E K; Skillen, I

    2011-01-01

    From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (= HAT-P-27b), a 0.6-Mjup planet that transits its 12th magnitude host star every 3.04 d. The host star is of late-G or early-K type and likely has an above-Solar metallicity, with [Fe/H] = 0.14 +/- 0.11. The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3 to 4 d. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.

  5. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    Science.gov (United States)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  6. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    CERN Document Server

    Lillo-Box, J; Santos, N C; Mancini, L; Figueira, P; Ciceri, S; Henning, Th

    2015-01-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyze its transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet ($M_p=1.37^{+0.48}_{-0.46} M_{\\rm Jup}$), with an estimated radius of $R_p=1.65^{+0.59}_{-0.56} R_{\\rm Jup}$ (uncertainties provided in this work are $3\\sigma$ unless specified). This translates into a sub-Jupiter density. The planet revolves every $\\sim7.8$ days around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter ($b=1.076^{+0.112}_{-0.086}$), being one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of ...

  7. The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b

    CERN Document Server

    Nortmann, L; Murgas, F; Dreizler, S; Iro, N; Cabrera-Lavers, A

    2016-01-01

    We observed the hot Jupiter HAT-P-32b (also known as HAT-P-32Ab) to determine its optical transmission spectrum by measuring the wavelength-dependent planet-to-star radius ratios in the region between 518 - 918 nm. We used the OSIRIS instrument at the GTC in long slit spectroscopy mode, placing HAT-P-32 and a reference star in the same slit and obtaining a time series of spectra covering two transit events. Using the best quality data set, we were able to yield 20 narrow-band transit light curves, with each passband spanning a 20 nm wide interval. After removal of all systematic noise signals and light curve modeling the uncertainties for the resulting radius ratios lie between 337 and 972 ppm. The radius ratios show little variation with wavelength suggesting a high altitude cloud layer masking any atmospheric features. Alternatively, a strong depletion in alkali metals or a much smaller than expected planetary atmospheric scale height could be responsible for the lack of atmospheric features. Our result of ...

  8. GTC OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT-P-1b from narrowband spectrophotometry

    CERN Document Server

    Wilson, P A; Nikolov, N; Etangs, A Lecavelier des; Pont, F; Fortney, J J; Ballester, G E; López-Morales, M; Désert, J -M; Vidal-Madjar, A

    2015-01-01

    We present the detection of potassium in the atmosphere of HAT-P-1b using optical transit narrowband photometry. The results are obtained using the 10.4 m Gran Telescopio Canarias (GTC) together with the OSIRIS instrument in tunable filter imaging mode. We observed four transits, two at continuum wavelengths outside the potassium feature, at 6792 {\\AA} and 8844 {\\AA}, and two probing the potassium feature in the line wing at 7582.0 {\\AA} and the line core at 7664.9 {\\AA} using a 12 {\\AA} filter width (R~650). The planet-to-star radius ratios in the continuum are found to be $R_{\\rm{pl}}/R_{\\star}$ = 0.1176 $\\pm$ 0.0013 at 6792 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1168 $\\pm$ 0.0022 at 8844 {\\AA}, significantly lower than the two observations in the potassium line: $R_{\\rm{pl}}/R_{\\star}$ = 0.1248 $\\pm$ 0.0014 in the line wing at 7582.0 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1268 $\\pm$ 0.0012 in the line core at 7664.9 {\\AA}. With a weighted mean of the observations outside the potassium feature $R_{\\rm{pl}}/R_...

  9. Exoplanets versus brown dwarfs: the CoRoT view and the future

    CERN Document Server

    Schneider, Jean

    2016-01-01

    CoRoT has detected by transit several tens of objects whose radii run from 1.67 Earth radius. Their mass run from less than 5.7 Earth mass (CoRoT-24 b, Alonso et al. 2014) to 63 Jupiter mass (CoRoT-15 b, Bouchy et al. 2011). One could be tempted to think that more massive the object is, the larger it is in size and that there is some limit in mass and/or radius beyond which objects are not planets but very low mass stars below the 80 Jupiter mass limit to trigger nuclear fusion (namely "brown dwarfs" ). CoRoT findings contribute to the planet versus brown dwarf debate since there is no clear mass-radius relation.

  10. Transiting exoplanets from the CoRoT space mission: XXIV. CoRoT-24: A transiting multi-planet system

    CERN Document Server

    Alonso, R; Endl, M; Almenara, J M; Guenther, E W; Deleuil, M; Hatzes, A; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Cavarroc, C; Cabrera, J; Carpano, S; Csizmadia, Sz; Cochran, W D; Deeg, H J; Díaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Fruth, T; Gandolfi, D; Gillon, M; Grziwa, S; Guillot, T; Hébrard, G; Jorda, L; Léger, A; Lammer, H; Lovis, C; MacQueen, P J; Mazeh, T; Ofir, A; Ollivier, M; Pasternacki, T; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Santos, M Tadeu dos; Tingley, B; Titz-Weider, R; Weingrill, J; Wuchterl, G

    2014-01-01

    We present the discovery of a candidate multiply-transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76d are detected in the CoRoT light curve, around a main sequence K1V star of r=15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7$\\pm$0.4 and 5.0$\\pm$0.5 R_earth respectively. Several radial velocities serve to provide an upper limit of 5.7 M_earth for the 5.11~d signal, and to tentatively measure a mass of 28$^{+11}_{-11}$ M_earth for the object transiting with a 11.76~d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serve to estimate the probability that the observations are caused by transiting Neptune-sized planets as $>$26$\\times$ higher than a blend scenario involving only one transiting planet, and $>$900$\\times$ higher than a scenario involving two blends and no planets....

  11. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; Hori, Y.; Suzuki, R.; Burrows, A.; Henning, T.; Turner, E. L.; McElwain, M. W.; Moro-Martin, A.; Suenaga, T.; Takahashi, Y. H.; Kwon, J.; Lucas, P.; Abe, L.; Brandner, W.; Grady, C. A.; Serabyn, E.

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  12. SOPHIE velocimetry of $\\textit{Kepler}$ transit candidates XII. KOI-1257 b: a highly-eccentric 3-month period transiting exoplanet

    CERN Document Server

    Santerne, A; Deleuil, M; Havel, M; Correia, A C M; Almenara, J -M; Alonso, R; Arnold, L; Barros, S C C; Behrend, R; Bernasconi, L; Boisse, I; Bonomo, A S; Bouchy, F; Bruno, G; Damiani, C; Díaz, R F; Gravallon, D; Guillot, T; Labrevoir, O; Montagnier, G; Moutou, C; Rinner, C; Santos, N C; Abe, L; Audejean, M; Bendjoya, P; Gillier, C; Gregorio, J; Martinez, P; Michelet, J; Montaigut, R; Poncy, R; Rivet, J -P; Rousseau, G; Roy, R; Suarez, O; Vanhuysse, M; Verilhac, D

    2014-01-01

    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the $\\textit{Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d $\\pm$ 3 s and a high eccentricity of 0.772 $\\pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $\\pm$ 0.05 Msun and 0.70 $ \\pm $ 0.07 Msun for the primary and secondary (respectively). This binary system is constrained thanks to a self-consistent modelling of the $\\textit{Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations as well as the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By...

  13. Astrometric exoplanet detection with Gaia

    Energy Technology Data Exchange (ETDEWEB)

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á. [Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544 (United States); Lindegren, Lennart [Lund Observatory, Lund, Box 43, SE-22100 Sweden (Sweden)

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  14. MEPHISTO - Mapping the Exoplanet Population via High-Contrast Observations

    Science.gov (United States)

    Apai, Daniel

    The surprising recent discovery of four large-separation super-Jupiters highlighted how little we know about the giant exoplanet population beyond 5 AU. The HR8799bcd system includes three 7-10 jupiter-mass planets at separations > 24 AU. This system is not simply the result of a scaled-up version of the Solar System formation, but suggests a qualitatively different way of super-jupiter formation, perhaps efficient only in initially massive disks. At the same time, these spectacular images demonstrated the opportunity high-contrast imaging has to offer in answering three fundamental questions: 1)How frequent are gas giants and super-Jupiters as a function of host star mass? 2)What are the planet mass and semi-major axis distributions? 3)How frequent are HR8799-like multiple super-jupiter systems? In addition to answering these questions, most large-separation giant planets discovered from ground-based observations today will also be ideal targets for JWST for in-depth spectroscopic characterization. To study the properties of the large-separation giant exoplanet population we developed new high-contrast imaging techniques that work in the 3-4 micron atmospheric window. These ground-based observations reach the most favorable contrasts and sensitivities to giant planets and also remain sensitive to few Gyr-old planets, in contrast to shorter- wavelength observations. We demonstrated the advantage of these techniques in technical papers, on-sky published surveys, on the HR8799bcd planets and by confirming the nature of the planet candidate around Beta Pictoris b (results in press in Science). Here we propose to utilize these well-tested, powerful techniques to significantly extend our sensitive imaging surveys to image all 138 known southern stars around which we are capable of detecting at least 5 Jupiter-mass planets on separations smaller than 70 AU, analogs to the HR8799bcd system. Our goal is to provide a statistically well sampled range of spectral type and

  15. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  16. Spectra as Windows into Exoplanet Atmospheres

    CERN Document Server

    Burrows, Adam

    2013-01-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability, This puts a premium on obtaining spectra, and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Though not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focussing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists that, by rapid trial and error, is fast establishing a solid future foundation for a robust sc...

  17. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    CERN Document Server

    Kuzuhara, M; Kudo, T; Janson, M; Kandori, R; Brandt, T D; Thalmann, C; Spiegel, D; Biller, B; Carson, J; Hori, Y; Suzuki, R; Burrows, A; Henning, T; Turner, E L; McElwain, M W; Moro-Martin, A; Suenaga, T; Takahashi, Y H; Kwon, J; Lucas, P; Abe, L; Brandner, W; Egner, S; Feldt, M; Fujiwara, H; Goto, M; Grady, C A; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S S; Hodapp, K W; Ishii, M; Iye, M; Knapp, G R; Matsuo, T; Mayama, S; Miyama, S; Morino, J -I; Nishikawa, J; Nishimura, T; Kotani, T; Kusakabe, N; Pyo, T -S; Serabyn, E; Suto, H; Takami, M; Takato, N; Terada, H; Tomono, D; Watanabe, M; Wisniewski, J P; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary ...

  18. Exoplanet Caught on the Move

    Science.gov (United States)

    2010-06-01

    observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would

  19. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    Science.gov (United States)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  20. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy

    Science.gov (United States)

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.

    2010-01-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  1. Warm Spitzer Photometry of the Transiting Exoplanets CoRoT-1 and CoRoT-2 at Secondary Eclipse

    CERN Document Server

    Deming, Drake; Agol, Eric; Desert, Jean-Michel; Burrows, Adam; Fortney, Jonathan J; Charbonneau, David; Cowan, Nicolas B; Laughlin, Gregory; Langton, Jonathan; Showman, Adam P; Lewis, Nikole K

    2010-01-01

    We measure secondary eclipses of the hot giant exoplanets CoRoT-1 at 3.6 and 4.5 microns, and CoRoT-2 at 3.6 microns, both using Warm Spitzer. We find that the Warm Spitzer mission is working very well for exoplanet science. For consistency of our analysis we also re-analyze archival cryogenic Spitzer data for secondary eclipses of CoRoT-2 at 4.5 and 8 microns. We compare the total data for both planets, including optical eclipse measurements by the CoRoT mission, and ground-based eclipse measurements at 2 microns, to existing models. Both planets exhibit stronger eclipses at 4.5 than at 3.6 microns, which is often indicative of an atmospheric temperature inversion. The spectrum of CoRoT-1 is best reproduced by a 2460K blackbody, due either to a high altitude layer that strongly absorbs stellar irradiance, or an isothermal region in the planetary atmosphere. The spectrum of CoRoT-2 is unusual because the 8 micron contrast is anomalously low. Non-inverted atmospheres could potentially produce the CoRoT-2 spect...

  2. Enabling Participation In Exoplanet Science

    Science.gov (United States)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  3. The history of exoplanet detection.

    Science.gov (United States)

    Perryman, Michael

    2012-10-01

    I summarize the early developments of the more quantitative aspects of exoplanet detection. After a brief overview of the observational methods currently applied to exoplanet searches and a summary of the first true exoplanet detections resulting from these various techniques, the more relevant historical background is organized according to the observational techniques that are currently most relevant.

  4. Atmospheric Circulation of Exoplanets

    CERN Document Server

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  5. Transiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet

    OpenAIRE

    Csizmadia, Szilard; Moutou, C; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S; Alonso, R.; Almenara, J. -M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.

    2011-01-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 M[SUB]Jup[/SUB] and a radius of 1.02 ± 0.07 R[SUB]Jup[/SUB], while its mean density is 2.82 ± 0.38 g/cm[SUP]3[/SUP]. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well...

  6. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Science.gov (United States)

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  7. Exoplanet's Atmospheres Characteristics vs. Exoplanet's Orbital Elements

    Science.gov (United States)

    Molaverdikhani, Karan

    2009-10-01

    400 years after Galileo Galilei was detected Jovian system, we know about 400 exoplanets in other stellar systems. But we identify just about their major properties like some of orbital elements, planet's radii or density. Also, there are many scientists who interested in searching for life or habitability on these planets. They are working in different ways such as planetary formation, planetary orbital stability or immigration, HabStars, composition of atmospheres, most probable zone in sky for exoplanets detection, etc. In this research we distinct and defined some main characteristics of terrestrial planet's atmospheres with surveying on solar system's planets and matching with current theorems on atmosphere formation. On the other hand, we were modeled Mars, Venus, Titan, single Hadley Earth and virtual Venus with different tilt angel (applying Global Circulation Modeling) to finding a critical limit on Polar Vortex formation in our last research. With extension this method on hypothetical terrestrial planets in constraint mass between 0.7 to 2.5 Earth's mass on Green Belt and applying host stars from 0.5 to 1.5 Sun's mass, we found some limitations on planet's atmosphere formation and estimation values of atmosphere's main characteristics.

  8. The Optical Design of CHARIS: An Exoplanet IFS for the Subaru Telescope

    Science.gov (United States)

    Peters-Limbach, Mary; Groff, Tyler; Kasdin, N. Jeremy; Driscoll, Dave; Galvin, Michael; Foster, Allen; Carr, Michael; LeClerc, Dave; Fagan, Rad; McElwain, Michael; Knapp, Gillian; Brandt, Timothy; Janson, Markus; Guyone, Olivier; Jovanovic, Nemanja; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2013-01-01

    High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138×138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 micrometers) and will feature two spectral resolution modes of R is approximately 18 (low-res mode) and R is approximately 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.

  9. An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

    DEFF Research Database (Denmark)

    Tinetti, Giovanna; Tennyson, Jonathan; Tessenyi, Marcell;

    2012-01-01

    The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a 1.2 m class telescope. The mission is currently being studied...

  10. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuhara, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kudo, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Thalmann, C. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam (Netherlands); Biller, B.; Henning, T. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); McElwain, M. W., E-mail: m.kuzuhara@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  11. WASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP

    CERN Document Server

    Faedi, F; Barros, S C C; Brown, D; Cameron, A Collier; Doyle, A P; Gillon, M; Chew, Y Gomez Maqueo; Hebrard, G; Lendl, M; Liebig, C; Smalley, B; Triaud, A H M J; West, R G; Wheatley, P J; Alsubai, K A; Anderson, D R; Armstrong, D J; Bento, J; Bochinski, J; Bouchy, F; Busuttil, R; Fossati, L; Fumel, A; Haswell, C A; Hellier, C; Holmes, S; Jehin, E; Kolb, U; McCormac, J; Miller, G R M; Moutou, C; Norton, A J; Parley, N; Queloz, D; Skillen, I; Smith, A M S; Udry, S; Watson, C

    2012-01-01

    We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \\mj and radius 1.653$^{+0.090}_{-0.083}$ \\rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \\mj and $0.672^{+0.049}_{-0.046}$ \\mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \\rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \\rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively...

  12. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

    OpenAIRE

    Akeson, R. L.; Chen, X; Ciardi, D.; Crane, M.; Good, J.; Harbut, M.; Jackson, E; Kane, S.R.; Laity, A. C.; Leifer, S; Lynn, M.; McElroy, D. L.; Papin, M.; Plavchan, P.; Ramirez, S. V.

    2013-01-01

    We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial ...

  13. Using SPICA Space Telescope to characterize Exoplanets

    CERN Document Server

    Goicoechea, J R; Tinetti, G; Nakagawa, T; Enya, K; Tamura, M; Ferlet, M; Isaak, K G; Wyatt, M; Aylward, A D; Barlow, M; Beaulieu, J P; Boccaletti, A; Cernicharo, J; Cho, J; Claudi, R; Jones, H; Lammer, H; Léger, A; Martín-Pintado, J; Miller, S; Najarro, F; Pinfield, D; Schneider, J; Selsis, F; Stam, D M; Tennyson, J; Viti, S; White, G

    2008-01-01

    We present the 3.5m SPICA space telescope, a proposed Japanese-led JAXA-ESA mission scheduled for launch around 2017. The actively cooled ( 18 um). SPICA is one of the few space missions selected to go to the next stage of ESA's Cosmic Vision 2015-2025 selection process. In this White Paper we present the main specifications of the three instruments currently baselined for SPICA: a mid-infrared (MIR) coronagraph (~3.5 to ~27 um) with photometric and spectral capabilities (R~200), a MIR wide-field camera and high resolution spectrometer (R~30,000), and a far-infrared (FIR ~30 to ~210 um) imaging spectrometer - SAFARI - led by a European consortium. We discuss their capabilities in the context of MIR direct observations of exo-planets (EPs) and multiband photometry/high resolution spectroscopy observations of transiting exo-planets. We conclude that SPICA will be able to characterize the atmospheres of transiting exo-planets down to the super-Earth size previously detected by ground- or space-based observatorie...

  14. Directed follow-up strategy of low-cadence photometric surveys in Search of transiting exoplanets - I. Bayesian approach for adaptive scheduling

    CERN Document Server

    Dzigan, Yifat

    2011-01-01

    We propose a novel approach to utilize low-cadence photometric surveys for exoplanetary transit search. Even if transits are undetectable in the survey database alone, it can still be useful for finding preferred times for directed follow-up observations that will maximize the chances to detect transits. We demonstrate the approach through a few simulated cases. These simulations are based on the Hipparcos Epoch Photometry data base, and the transiting planets whose transits were already detected there. In principle, the approach we propose will be suitable for the directed follow-up of the photometry from the planned Gaia mission, and it can hopefully significantly increase the yield of exoplanetary transits detected, thanks to Gaia.

  15. Mass-radius relationships of rocky exoplanets

    CERN Document Server

    Sohl, F; Rauer, H

    2012-01-01

    Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planet's mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.

  16. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.;

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in......We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0...

  17. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  18. Exoplanet Transits Registered at the Universidad de Monterrey Observatory. Part I: HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b

    CERN Document Server

    Sada, Pedro V

    2016-01-01

    Forty transits of the exoplanets HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b were recorded with the 0.36m telescope at the Universidad de Monterrey Observatory. The images were captured with a standard Johnson-Cousins Rc and Ic and Sloan z' filters and processed to obtain individual light curves of the events. These light curves were successfully combined for each system to obtain a resulting one of higher quality, but with a slightly larger time sampling rate. A reduction by a factor of about four in per-point scatter was typically achieved, resulting in combined light curves with a scatter of ~1 mmag. The noise characteristics of the combined light curves were verified by comparing Allan variance plots of the residuals. The combined light curves for each system, along with radial velocity measurements from the literature when available, were modeled using a Monte Carlo method to obtain the essential parameters that characterize the systems. Our results for all these systems confirm the derived t...

  19. Detecting Exomoons Around Self-luminous Giant Exoplanets Through Polarization

    CERN Document Server

    Sengupta, Sujan

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time re...

  20. Discriminating Between Cloudy, Hazy and Clearsky Exoplanets Using Refraction

    CERN Document Server

    Misra, Amit

    2014-01-01

    We propose a method to distinguish between cloudy, hazy and clearsky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detectio...

  1. HARPS Observes the Earth Transiting the Sun — A Method to Study Exoplanet Atmospheres Using Precision Spectroscopy on Large Ground-based Telescopes

    Science.gov (United States)

    Yan, F.; Fosbury, R.; Petr-Gotzens, M.; Pallé, E.; Zhao, G.

    2015-09-01

    Exoplanetary transits offer the opportunity to measure the transmission of long, tangential pathlengths through their atmospheres. Since the fraction of the observed stellar light taking these paths is very small, transit photometric and spectrophotometric measurements of light curves require very high levels of measurement stability, favouring the use of intrinsically stable space telescopes. By studying the Rossiter-McLaughlin effect on the radial velocity of the transited star, pure, high-precision radial velocity measurements can be used to estimate the changes in planetary atmospheric transmission with wavelength: a promising method for future studies of small planets with very large ground-based telescopes since it removes the requirement for extreme photometric stability. This article describes a successful feasibility experiment using the HARPS instrument to measure reflected moonlight during the penumbral phases of a Lunar eclipse, effectively providing an observation of an Earth transit.

  2. Exoplanet Transmission Spectroscopy using KMOS

    CERN Document Server

    Parviainen, Hannu; Thatte, Niranjan; Barstow, Joanna K; Evans, Thomas M; Gibson, Neale

    2015-01-01

    KMOS (K-Band Multi Object Spectrograph) is a novel integral field spectrograph installed in the VLT's ANTU unit. The instrument offers an ability to observe 24 2.8"$\\times$2.8" sub-fields positionable within a 7.2' patrol field, each sub-field producing a spectrum with a 14$\\times$14-pixel spatial resolution. The main science drivers for KMOS are the study of galaxies, star formation, and molecular clouds, but its ability to simultaneously measure spectra of multiple stars makes KMOS an interesting instrument for exoplanet atmosphere characterization via transmission spectroscopy. We set to test whether transmission spectroscopy is practical with KMOS, and what are the conditions required to achieve the photometric precision needed, based on observations of a partial transit of WASP-19b, and full transits of GJ 1214b and HD 209458b. Our analysis uses the simultaneously observed comparison stars to reduce the effects from instrumental and atmospheric sources, and Gaussian processes to model the residual system...

  3. CHEOPS: CHaracterising ExOPlanet Satellite

    Science.gov (United States)

    Isaak, K. G.

    2015-10-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. CHEOPS will provide the unique capability of determining radii to ~10% accuracy for a subset of those planets in the super-Earth to Neptune mass range. The high photometric precision of CHEOPS will be achieved using a photometer covering the 0.4 - 1.1um waveband and designed around a single frame-transfer CCD which is mounted in the focal plane of a 30 cm equivalent aperture diameter, f/5 on-axis Ritchey-Chretien telescope. Key to reaching the required performance is rejection of straylight from the Earth that is achieved using a specially designed optical baffle. CHEOPS is the first S-class mission in ESA's Cosmic Vision 2015-2025, and is currently planned to be launch-ready by the end of 2017. The mission is a partnership between Switzerland and ESA's science programme, with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. In this presentation I will give a scientific and technical overview of the mission, as well as an update on the status of the project.

  4. Trawling for transits in a sea of noise: A Search for Exoplanets by Analysis of WASP Optical Lightcurves and Follow-up (SEAWOLF)

    CERN Document Server

    Gaidos, E; Lepine, S; Colon, K D; Maravelias, G; Narita, N; Chang, E; Beyer, J; Fukui, A; Armstrong, J D; Zezas, A; Fulton, B J; Mann, A W; West, R G; Faedi, F

    2013-01-01

    Studies of transiting Neptune-size planets orbiting close to nearby bright stars can inform theories of planet formation because mass and radius and therefore mean density can be accurately estimated and compared with interior models. The distribution of such planets with stellar mass and orbital period relative to their Jovian-mass counterparts can test scenarios of orbital migration, and whether "hot" (period < 10d) Neptunes evolved from "hot" Jupiters as a result of mass loss. We searched 1763 late K and early M dwarf stars for transiting Neptunes by analyzing photometry from the Wide Angle Search for Planets and obtaining high-precision ($<10^{-3}$) follow-up photometry of stars with candidate transit signals. One star in our sample (GJ 436) hosts a previously reported hot Neptune. We identified 92 candidate signals among 80 other stars and carried out 148 observations of predicted candidate transits with 1-2 m telescopes. Data on 70 WASP signals rules out transits for 39 of them; 28 other signals a...

  5. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    OpenAIRE

    Venot Olivia; Fray Nicolas; Bénilan Yves; Gazeau Marie-Claire; Hébrard Eric; Larcher Gwenaelle; Schwell Martin; Dobrijevic Michel; Selsis Franck

    2014-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are se...

  6. The CoRoT mission's exoplanet program

    Directory of Open Access Journals (Sweden)

    Deeg H.J.

    2013-04-01

    Full Text Available The CoRoT space observatory was launched at the end of 2006 and has been delivering scientific data from early 2007 until its recent interruption, on 2 Nov. 2012, leading to the discovery of over 30 transiting planets. Here we give an overview over the most relevant results from CoRoT's exoplanet detection program.

  7. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.;

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  8. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    DEFF Research Database (Denmark)

    Pätzold, M.; Endl, M.; Csizmadia, Sz.;

    2012-01-01

    CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observ...

  9. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    DEFF Research Database (Denmark)

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.;

    2015-01-01

    in the characterization of host stars and their planetary systems. Examples include the precise estimation of the fundamental properties of stellar hosts, the obliquity determination of planetary systems, or the orbital eccentricity determination via asterodensity profiling. The Transiting Exoplanet Survey Satellite...... and planetary populations, we investigate the asteroseismic yield of the mission, placing particular emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done both for the cohort of target stars (observed at a 2-min cadence), which will mainly involve low...

  10. Relativity and Exoplanets: Gravitational Microlensing, Doppler Beaming, and More

    Science.gov (United States)

    Gaudi, Scott

    2016-03-01

    Perhaps surprisingly, the theories of both special and general relativity play important roles in several areas of exoplanet research. I will review the most important and intriguing of these applications. The most obvious case is gravitational microlensing, which has become a fairly routine method of finding planets, and is poised to become even more important in the next decade. I will also briefly survey the numerous other areas where relativity plays a role in exoplanet theory and observations, including photometric Doppler beaming, general relativistic precession, transits of compact objects, and even (potentially) gravitational wave experiments.

  11. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Santos, N. C.; Mancini, L.; Figueira, P.; Ciceri, S.; Henning, Th.

    2015-05-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyzeits transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp = 1.37+0.48-0.46 MJup), with an estimated radius of Rp = 1.65+0.59-0.56 RJup (uncertainties provided in this work are 3σ unless specified). This translates into a sub-Jupiter density. The planet revolves every ~7.8 days in a slightly eccentric orbit (e = 0.123+0.037-0.036) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b = 1.076+0.112-0.086), which is one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planetary transits with large impact parameters (and in particular grazing transits) can be used to detect and analyze interesting configurations, such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios will periodically modify the transit properties (depth, duration, and time of mid-transit), which could be detectable with sufficiently accurate photometry. Short-cadence photometric data (at the 1-min level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b. This system could then be an excellent target for the forthcoming missions TESS and CHEOPS, which will provide the required photometric precision and cadence to study

  12. Transiting exoplanets from the CoRoT space mission - XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    CERN Document Server

    Rouan, D; Moutou, C; Deleuil, M; Fridlund, M; Ofir, A; Havel, M; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Bonomo, A; Bordé, P; Bouchy, F; Cabrera, J; Cavarroc, C; Csizmadia, Sz; Deeg, H; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Léger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Ollivier, M; Pätzold, M; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \\pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 \\pm 0.3 MJup, a radius of Rpl = 1.05 \\pm 0.13 RJup, a density of \\approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 \\pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass M\\star = 1.14 \\pm 0.08 M\\odot, a radius R\\star = 1. 61 \\pm 0.18 R\\odot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the r...

  13. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    Very Large Telescope Finds Planet-Sized Transiting Star Summary An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey. The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days. This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets. In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers. PR Photo 06a/05: Brightness "Dip" and Velocity Variations of OGLE-TR-122. PR Photo 06b/05: Properties of Low-Mass Stars and Planets. PR Photo 06c/05: Comparison Between OGLE-TR-122b, Jupiter and the Sun. The OGLE Survey When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star's light from our view [1]. These "planetary transits" are of great interest as they allow astronomers to measure in a unique way the mass and the radius of exoplanets. Several surveys are therefore underway which attempt to find these faint signatures of other worlds. One of these programmes is the OGLE survey which was originally devised to detect microlensing

  14. Lightest exoplanet yet discovered

    Science.gov (United States)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  15. The search for exomoons and the characterization of exoplanet atmospheres

    CERN Document Server

    Campanella, Giammarco

    2009-01-01

    Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. A review on the current situation of exoplanet characterization is presented in Chapter 3. We focus on the characterization of transiting planets orbiting very close to their parent star since for them we can already probe their atmospheric constituents. By contrast, the second part of the Chapter is dedicated to the search for extraterrestrial life, both within and beyond the Solar System. The characteristics of the Habitable Zone and the markers for the presence of life (biosignatures) are detailed. In Chapter 4 ...

  16. EChO's view on gas giant exoplanets atmospheres

    CERN Document Server

    Parmentier, Vivien; de Wit, Julien

    2014-01-01

    The last decade has seen the discovery of more than a thousand exoplanets but, more excitingly, probing their atmospheres has become possible. With current data we caught a glimpse of the diversity of exoplanet atmospheres that will be revealed in the next years. However, numerous questions concerning their chemical composition, thermal structure, and atmospheric dynamics remain to be answered. More observations of higher quality are needed. The Exoplanet Characterisation Observatory (EChO) is a space-based observatory dedicated to the characterization of exoplanets atmospheres proposed to the ESA cosmic vision program. With its large spectral coverage (4-16 {\\mu}m) and high spectral resolution (\\Delta{\\lambda}/{\\lambda}>300 below 5 {\\mu}m and \\Delta{\\lambda}/{\\lambda}>30 above 5 {\\mu}m) EChO will provide spectrally resolved transit lightcurves, secondary eclipses lightcurves, and full phase curves of numerous exoplanets with an unprecedented signal to noise ratio. In this technical note we review some of tod...

  17. Doppler tomography of transiting exoplanets: A prograde, low-inclined orbit for the hot Jupiter CoRoT-11b

    CERN Document Server

    Gandolfi, Davide; Endl, Michael; Lanza, Antonino F; Damiani, Cilia; Alonso, Roi; Cochran, William D; Deleuil, Magali; Fridlund, Malcolm; Hatzes, Artie P; Guenther, Eike W

    2012-01-01

    We report the detection of the Doppler shadow of the transiting hot Jupiter CoRoT-11b. Our analysis is based on line-profile tomography of time-series, Keck/HIRES high-resolution spectra acquired during the transit of the planet. We measured a sky-projected, spin-orbit angle of 0.1 +/- 2.6 degrees, which is consistent with a very low-inclined orbit with respect to the stellar rotation axis. We refined the physical parameters of the system using a Markov chain Monte Carlo simultaneous fitting of the available photometric and spectroscopic data. An analysis of the tidal evolution of the system shows how the currently measured obliquity and its uncertainty translate into an initial absolute value of less than about 10 degrees on the zero-age main sequence, for an expected average modified tidal quality factor of the star Q'* > 4 x 10^6. This is indicative of an inward migration scenario that would not have perturbed the primordial low obliquity of CoRoT-11b. Taking into account the effective temperature and mass...

  18. Kepler Observations of Three Pre-launch Exoplanet Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet

    Science.gov (United States)

    Howell, Steve B.; Rowe, Jason F.; Sherry, William; von Braun, Kaspar; Ciardi, David R.; Bryson, Stephen T.; Feldmeier, John J.; Horch, Elliott; van Belle, Gerard T.

    2010-12-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R Jupiter in a 3.9 day orbit.

  19. Geoengineering on exoplanets

    Science.gov (United States)

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  20. Characterization of exoplanet hosts

    Directory of Open Access Journals (Sweden)

    Valenti Jeff A.

    2013-04-01

    Full Text Available Spectroscopic analysis of exoplanet hosts and the stellar sample from which they are drawn provides abundances and other properties that quantitively constrain models of planet formation. The program Spectroscopy Made Easy (SME determines stellar parameters by fitting observed spectra, though line lists must be selected wisely. For giant planets, it is now well established that stars with higher metallicity are more likely to have detected companions. Stellar metallicity does not seem to affect the formation and/or migration of detectable planets less massive than Neptune, especially when considering only the most massive planet in the system. In systems with at least one planet less than 10 times the mass of Earth, the mass of the most massive planet increases dramatically with host star metallicity. This may reflect metallicity dependent timescales for core formation, envelope accretion, and/or migration into the detection zone.

  1. Structure of exoplanets

    Science.gov (United States)

    Spiegel, David S.; Fortney, Jonathan J.; Sotin, Christophe

    2014-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  2. The Structure of Exoplanets

    CERN Document Server

    Spiegel, David S; Sotin, Christophe

    2013-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our Solar System are merely possible outcomes of planetary system formation and evolution, and conceivably not even terribly common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are known to, and speculated to, exist in exoplanetary systems -- from mostly degenerate objects that are more than 10 times as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of the Earth.

  3. Exploring exoplanet populations with NASA's Kepler Mission.

    Science.gov (United States)

    Batalha, Natalie M

    2014-09-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  4. Exploring Exoplanet Populations with NASA's Kepler Mission

    CERN Document Server

    Batalha, Natalie M

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star-type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first three years of data, 100 of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane) which is improving as follow-up observations continue. Dynamical (e.g. velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting wit...

  5. Atmospheric Circulation of Terrestrial Exoplanets

    OpenAIRE

    Showman, Adam P.; Wordsworth, Robin D.; Merlis, Timothy M.; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical a...

  6. Transiting exoplanets from the CoRoT space mission XXV. CoRoT-27b: a massive and dense planet on a short-period orbit

    CERN Document Server

    Parviainen, H; Deleuil, M; Moutou, C; Deeg, H J; Ferraz-Mello, S; Samuel, B; Csizmadia, Sz; Pasternacki, T; Wuchterl, G; Havel, M; Fridlund, M; Agnus, R; Tingley, B; Aigrain, S; Almenara, J M; Alonso, R; Baglin, A; Barros, S; Bordé, A S P; Bouchy, F; Cabrera, J; Díaz, R; Dvorak, R; Erikson, A; Guillot, T; Hatzes, A; Hébrard, G; Mazeh, T; Montagnier, G; Ofir, A; Ollivier, M; Pätzold, M; Rauer, H; Rouan, D; Santerne, A; Schneider, J

    2014-01-01

    We report the discovery of a massive and dense transiting planet CoRoT-27b on a 3.58 day orbit around a 4.2 Gyr-old G2~star. The planet candidate was identified from the CoRoT photometry, and was confirmed as a planet with ground-based spectroscopy. The confirmation of the planet candidate is based on radial velocity observations combined with imaging to rule out blends. The characterisation of the planet and its host star is carried out using a Bayesian approach where all the data (CoRoT photometry, radial velocities, and spectroscopic characterisation of the star) are used jointly. The Bayesian analysis includes a study whether the assumption of white normally distributed noise holds for the CoRoT photometry, and whether the use of a non-normal noise distribution offers advantages in parameter estimation and model selection. CoRoT-27b has a mass of $10.39 \\pm 0.55$ $\\mathrm{M}_{\\rm Jup}$, a radius of $1.01 \\pm 0.04$ $\\mathrm{R}_{\\rm Jup}$, a mean density of $12.6_{-1.67}^{+1.92}$ $\\mathrm{g\\,cm^{-3}}$, and ...

  7. The NASA/IPAC/NExScI Star and Exoplanet Database

    OpenAIRE

    Berriman, G. B.; Ali, B.; Baker, R; von Braun, K.; Chiu, N-M.; Ciardi, D. R.; Good, J.; Kane, S.R.; Kong, M.; Laity, A. C.; McElroy, D. L.; Monkewitz, S.; Payne, A N; Ramirez, S.; Schmitz, M.

    2009-01-01

    The NASA/IPAC/NExScI Star and Exoplanet Database (NStED) is a general purpose stellar archive which supports NASA planet-finding and planet-characterization goals, stellar astrophysics, and the planning of NASA and other space missions. There are two principal components of NStED: a database of 140,000 nearby stars and exoplanet-hosting stars, and an archive dedicated to high precision photometric surveys for transiting exoplanets (NStED-ETSS). We present summaries of these components. The NS...

  8. Results from the Exoplanet Search Programmes with BEST and TEST

    CERN Document Server

    Eislöffel, J; Rauer, H; Voss, H; Erikson, A; Eigmueller, P; Günther, E; Eisloeffel, Jochen; Hatzes, Artie P.; Rauer, Heike; Voss, Holger; Erikson, Anders; Eigmueller, Philipp; Guenther, Eike

    2006-01-01

    Thueringer Landessternwarte Tautenburg (TLS) has started to operate a small dedicated telescope - the Tautenburg Exoplanet Search Telescope (TEST) - searching for transits of extrasolar planets in photometric time series observations. In a joint effort with the Berlin Exoplanet Search Telescope (BEST) operated by the Institut fuer Planetenforschung of the "Deutsches Zentrum fuer Luft- und Raumfahrt (DLR)" at the Observatoire de Haute-Provence (OHP), France, two observing sites are used to optimise transit search. Here, we give a short overview of these systems and the data analysis. We describe a software pipeline that we have set up to identify transit events of extrasolar planets and variable stars in time series data from these and other telescopes, and report on some first results.

  9. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  10. The NASA Exoplanet Exploration Program

    Science.gov (United States)

    Hudgins, Douglas M.; Blackwood, Gary H.; Gagosian, John S.

    2015-12-01

    The NASA Exoplanet Exploration Program (ExEP) is chartered to implement the NASA space science goals of detecting and characterizing exoplanets and to search for signs of life. The ExEP manages space missions, future studies, technology investments, and ground-based science that either enables future missions or completes mission science. The exoplanet science community is engaged by the Program through Science Definition Teams and through the Exoplanet Program Analysis Group (ExoPAG). The ExEP includes the space science missions of Kepler, K2 , and the proposed WFIRST-AFTA that includes dark energy science, a widefield infrared survey, a microlensing survey for outer-exoplanet demographics, and a coronagraph for direct imaging of cool outer gas- and ice-giants around nearby stars. Studies of probe-scale (medium class) missions for a coronagraph (internal occulter) and starshade (external occulter) explore the trades of cost and science and provide motivation for a technology investment program to enable consideration of missions at the next decadal survey for NASA Astrophysics. Program elements include follow-up observations using the Keck Observatory, which contribute to the science yield of Kepler and K2, and include mid-infrared observations of exo-zodiacal dust by the Large Binocular Telescope Interferometer which provide parameters critical to the design and predicted science yield of the next generation of direct imaging missions. ExEP includes the NASA Exoplanet Science Institute which provides archives, tools, and professional education for the exoplanet community. Each of these program elements contribute to the goal of detecting and characterizing earth-like planets orbiting other stars, and seeks to respond to rapid evolution in this discovery-driven field and to ongoing programmatic challenges through engagement of the scientific and technical communities.

  11. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides accurate and calibrated recovery of exoplanet spectra. We will produce a complete archive of all reduced GPI data products (supplementing the existing Gemini archive of raw data) for use by our collaboration, and release that archive to the public on an 18-month cycle. Most importantly, we will execute the GPI observations, initially through classical telescope visits, transitioning to remote and queue modes as our techniques are refined. As the first direct-imaging planet search with statistical depth comparable to

  12. Exoplanet Science in the National Science Olympiad

    Science.gov (United States)

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  13. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    OpenAIRE

    Venot, O.; Fray, N.; Bénilan, Y.; Gazeau, M.-C.; Hébrard, E.; Larcher, G.; Schwell, M.; Dobrijevic, M.; Selsis, F.

    2013-01-01

    Context. Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section da...

  14. A Statistical Analysis of Exoplanets in Their Habitable Zones

    Science.gov (United States)

    Adams, Arthur; Kane, S. R.

    2014-01-01

    The Kepler mission has detected a wealth of planets through planetary transits since its launch in 2009. An important step in the continued study of exoplanets is to characterize planets based on their orbital properties and compositions. As the Kepler mission has progressed the data sensitivity to planetary transits at longer orbital periods has increased. This allows for an enhanced probability of detecting planets which lie in the Habitable Zones (HZs) of their host stars. We present the results of statistical analyses of Kepler planetary candidates to study the percentage of orbital time spent in the HZ as a function of planetary parameters, including planetary mass, radius, and orbital eccentricity. We compare these results to the confirmed exoplanet population.

  15. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    Science.gov (United States)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  16. ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

    CERN Document Server

    McDonald, I; Penny, M; Beaulieu, J -P; Batista, V; Novati, S Calchi; Cassan, A; Fouque, P; Mao, S; Marquette, J B; Rattenbury, N; Robin, A C; Tisserand, P; Osorio, M R Zapatero

    2014-01-01

    The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's V...

  17. Kepler Observations of Three Pre-Launch Exoplanet Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet

    CERN Document Server

    Howell, Steve B; Sherry, William; von Braun, Kaspar; Ciardi, David R; Bryson, Stephen T; Feldmeier, John J; Horch, Elliott; van Belle, Gerard T

    2010-01-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's {\\it Kepler} mission. {\\it Kepler} observations of them were obtained during Quarter 1 of the {\\it Kepler} mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the {\\it Kepler} mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the {\\it Kepler} light curves and pixel data, as well as medium resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion while the other is a K0 star plus a late M-dwarf/brown...

  18. Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    CERN Document Server

    Cabrera, J; Montagnier, G; Fridlund, M; Eiff, M Ammler-von; Chaintreuil, S; Damiani, C; Deleuil, M; Ferraz-Mello, S; Ferrigno, A; Gandolfi, D; Guillot, T; Guenther, E W; Hatzes, A; Hébrard, G; Klagyivik, P; Parviainen, H; Pasternacki, Th; Pätzold, M; Sebastian, D; Santos, M Tadeu dos; Wuchterl, G; Aigrain, S; Alonso, R; Almenara, J -M; Armstrong, J D; Auvergne, M; Baglin, A; Barge, P; Barros, S C C; Bonomo, A S; Bordé, P; Bouchy, F; Carpano, S; Chaffey, C; Deeg, H J; Díaz, R F; Dvorak, R; Erikson, A; Grziwa, S; Korth, J; Lammer, H; Lindsay, C; Mazeh, T; Moutou, C; Ofir, A; Ollivier, M; Pallé, E; Rauer, H; Rouan, D; Samuel, B; Santerne, A; Schneider, J

    2015-01-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g,Teff,v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical...

  19. Radial velocity eclipse mapping of exoplanets

    CERN Document Server

    Nikolov, Nikolay

    2015-01-01

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetrie...

  20. Broadband Eclipse Spectra of Exoplanets are Featureless

    CERN Document Server

    Hansen, C J; Cowan, N B

    2014-01-01

    Spectral retrieval methods leverage features in emission spectra to constrain the atmospheric composition and structure of transiting exoplanets. Most of the observed emission spectra consist of broadband photometric observations at a small number of wavelengths. We compare the Bayesian Information Criterion (BIC) of blackbody fits and spectral retrieval fits for all planets with eclipse measurements in multiple thermal wavebands, typically hot Jupiters with 2-4 observations. If the published error bars are taken at face value, then eight planets are significantly better fit by a spectral model than by a blackbody. In this under-constrained regime, however, photometric uncertainties directly impact one's ability to constrain atmospheric properties. By considering the handful of planets for which eclipse measurements have been repeated and/or reanalyzed, we obtain an empirical estimate of systematic uncertainties for broadband eclipse depths obtained with the Spitzer Space Telescope: sigma_sys = 5E-4. When thi...

  1. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    Science.gov (United States)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland

  2. EChOSim: The Exoplanet Characterisation Observatory software simulator

    CERN Document Server

    Pascale, E; MacTavish, C J; Papageorgiou, A; Amaral-Rogers, A; Varley, R; de Foresto, V Coudé; Griffin, M J; Ollivier, M; Sarkar, S; Spencer, L; Swinyard, B M; Tessenyi, M; Tinetti, G

    2014-01-01

    EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability EChO has to detect and characterize the atmospheres of transiting exoplanets, and through this revolutionize the knowledge we have of the Milky Way and of our place in the Galaxy. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers for exoplanet transits, including instruments on the Hubble Space Telescope and Spitzer, or ground-based and balloon borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to ass...

  3. The asteroseismic potential of TESS: exoplanet-host stars

    CERN Document Server

    Campante, T L; Kuszlewicz, J S; Bouma, L; Chaplin, W J; Huber, D; Christensen-Dalsgaard, J; Kjeldsen, H; Bossini, D; North, T S H; Appourchaux, T; Latham, D W; Pepper, J; Ricker, G R; Stassun, K G; Vanderspek, R; Winn, J N

    2016-01-01

    New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the ta...

  4. The SPICA coronagraphic instrument (SCI) for the study of exoplanets

    CERN Document Server

    Enya, K; Haze, K; Aono, K; Nakagawa, T; Matsuhara, H; Kataza, H; Wada, T; Kawada, M; Fujiwara, K; Mita, M; Takeuchi, S; Komatsu, K; Sakai, S; Uchida, H; Mitani, S; Yamawaki, T; Miyata, T; Sako, S; Nakamura, T; Asano, K; Yamashita, T; Narita, N; Matsuo, T; Tamura, M; Nishikawa, J; Kokubo, E; Hayano, Y; Oya, S; Fukagawa, M; Shibai, H; Baba, N; Murakami, N; Itoh, Y; Honda, M; Okamoto, B; Ida, S; Takami, M; Abe, L; Guyon, O; Bierden, P; Yamamuro, T; 10.1016/j.asr.2011.03.010

    2011-01-01

    We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27$\\mu$m, and 10$^{-6}$, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels...

  5. SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    CERN Document Server

    Christille, Jean Marc; Borsa, Francesco; Busonero, Deborah; Calcidese, Paolo; Claudi, Riccardo; Damasso, Mario; Giacobbe, Paolo; Molinari, Emilio; Pace, Emanuele; Riva, Alberto; Sozzetti, Alessandro; Toso, Giorgio; Tresoldi, Daniela

    2016-01-01

    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of sys- tematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precisi...

  6. Scalable Gaussian Processes and the search for exoplanets

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  7. The Observational Effects and Signatures of Tidally Distorted Solid Exoplanets

    CERN Document Server

    Saxena, Prabal; Summers, Michael

    2014-01-01

    Our work examines the detectability of tidally distorted solid exoplanets in synchronous rotation. Previous work has shown that tidally distorted shapes of close-in gas giants can give rise to radius underestimates and subsequently density overestimates for those planets. We examine the assumption that such an effect is too minimal for rocky exoplanets and find that for smaller M Class stars there may be an observationally significant tidal distortion effect at very close-in orbits. We quantify the effect for different stellar types and planetary properties using some basic assumptions. Finally, we develop a simple analytic expression to test if there are detectable bulge signatures in the photometry of a system. We find that close in for smaller M Class stars there may be an observationally significant signature that may manifest itself in both in-transit bulge signatures and ellipsoidal variations.

  8. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit K.; Meadows, Victoria S. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  9. Astrology in the Era of Exoplanets

    OpenAIRE

    Lund, Michael B.

    2016-01-01

    The last two decades have seen the number of known exoplanets increase from a small handful to nearly 2000 known exoplanets, thousands more planet candidates, and several upcoming missions that are expected to further increase the population of known exoplanets. Beyond the strictly scientific questions that this has led to regarding planet formation and frequency, this has also led to broader questions such as the philosophical implications of life elsewhere in the universe and the future of ...

  10. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck; 10.1051/0004-6361/201220945

    2013-01-01

    UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Aims. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We also investigate the influence of these new data on the photochemistry of some exoplanets. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We implemented the mea...

  11. HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...

  12. Atmospheric Circulation of Terrestrial Exoplanets

    CERN Document Server

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  13. Multiplicity-Study of Exoplanet Host Stars

    OpenAIRE

    Mugrauer, M.; Neuhäuser, R.; Ginski, C.; Eisenbeiss, T.

    2005-01-01

    We carry out a systematic search campaign for wide companions of exoplanet host stars to study their multiplicity and its influence on the long-term stability and the orbital parameters of the exoplanets. We have already found 6 wide companions, raising the number of confirmed binaries among the exoplanet host stars to 20 systems. We have also searched for wide companions of Gl86, the first known exoplanet host star with a white dwarf companion. Our Sofi/NTT observations are sensitive to subs...

  14. Abundances in stars with exoplanets

    OpenAIRE

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  15. Resource Letter Exo-1: Exoplanets

    OpenAIRE

    Perryman, Michael

    2013-01-01

    This Resource Letter gives an introduction to the main topics in exoplanet research. It is intended to serve as a guide to the field for upper-division undergraduate and graduate students, both theoretical and experimental, and for workers in other fields of physics and astronomy who wish learn about this new discipline. Topics include historical background, detection methods, host star properties, theories of planet formation and evolution, their interiors and atmospheres, their relationship...

  16. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  17. VLT Detects First Superstorm on Exoplanet

    Science.gov (United States)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  18. Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution

    OpenAIRE

    Udry, S.; Lovis, C.; Bouchy, F.; Cameron, A. Collier; Henning, T; Mayor, M.; Pepe, F.; Piskunov, N.; Pollacco, D.; Queloz, D.; Quirrenbach, A.; Rauer, H.; Rebolo, R.; Santos, N. C.; Snellen, I.

    2014-01-01

    Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope...

  19. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    Science.gov (United States)

    2009-09-01

    "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass

  20. A Research-Informed Approach to Teaching About Exoplanet Detection in STEM Classrooms

    Science.gov (United States)

    Brissenden, Gina; Wallace, C. S.; Prather, E. E.; Traub, W. A.; Greene, W. M.; Biferno, A. A.

    2014-01-01

    JPL’s NASA Exoplanet Exploration Program’s (ExEP) Public Engagement Program, in collaboration with the Center for Astronomy Education (CAE), is engaged in a research and curriculum development program to bring the science of exoplanet detection into STEM classrooms. In recent years, there has been a significant increase in the number of astronomers pursuing research related to exoplanets, along with a significant increase in interest amongst students and the general public regarding the topic of exoplanets. CAE has previously developed a curriculum unit (including Think-Pair-Share questions and a Lecture-Tutorial) to help students develop a deeper understanding of the Doppler method for detecting extrasolar planets. To date, there is a nearly nonexistent research base on students’ conceptual and reasoning difficulties related to the science of the transit and gravitational microlensing methods for detecting extrasolar planets. Appropriate for physical science classrooms from middle school to the introductory college level, the learner-centered active engagement activities we are developing are going through an iterative research and assessment process to ensure that they enable students to achieve increased conceptual understandings and reasoning skills in these areas. In this talk, we will report on our development process for two new Lecture-Tutorials that help students learn about the transit and gravitational microlensing methods for finding exoplanets.

  1. Eccentricity from transit photometry

    DEFF Research Database (Denmark)

    Van Eylen, Vincent; Albrecht, Simon

    2015-01-01

    Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. Knowing the eccentricity distribution in systems of small...... and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....

  2. Exploring Equilibrium Chemistry for Hot Exoplanets

    Science.gov (United States)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  3. Using direct imaging to investigate the formation and migration histories of gas giant exoplanets

    Science.gov (United States)

    Ngo, Henry

    2016-10-01

    Gas giant exoplanets are found around their host stars at orbital separations spanning more than four orders of magnitude (0.01 to 100 AU). However, it is not known whether the planets at the extreme ends of this range could have formed in situ or if they instead formed closer to ice lines between 1-10 AU and then migrated to their present day locations. In this study, we use two direct imaging surveys to explore the potential origins of hot Jupiters and to characterize the population of gas giant planets beyond the ice line. In our first survey, we focus on the role of stellar companions in hot Jupiter formation and migration. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing migration via Kozai-Lidov oscillations. In addition, we find that hot Jupiter hosts are three times more likely to have a stellar companion between 50-2000 AU than field stars, suggesting that binary star systems may be favorable environments for gas giant planet formation. In our second study, we present the results from the first year of a two-year direct imaging planet survey of 200 young M-dwarf stars. By imaging in L-band (3.8 micron) and taking advantage of the new 80 milliarcsecond inner working angle "vortex" coronagraph on Keck NIRC2, we are sensitive to young planets with masses between 1-10 Jupiter masses with projected separations between 1-10 AU. We can compare the semi-major axis distribution of directly imaged planets beyond 10 AU to that of intermediate period gas giants from radial velocity surveys and determine whether or not these two populations form a continuous distribution. If so, this would imply these populations share common formation (core accretion) and migration channels.

  4. Exoplanets with JWST: degeneracy, systematics and how to avoid them

    Science.gov (United States)

    Barstow, Joanna K.; Irwin, Patrick G. J.; Kendrew, Sarah; Aigrain, Suzanne

    2016-07-01

    The high sensitivity and broad wavelength coverage of the James Webb Space Telescope will transform the field of exoplanet transit spectroscopy. Transit spectra are inferred from minute, wavelength-dependent variations in the depth of a transit or eclipse as the planet passes in front of or is obscured by its star, and the spectra contain information about the composition, structure and cloudiness of exoplanet atmospheres. Atmospheric retrieval is the preferred technique for extracting information from these spectra, but the process can be confused by astrophysical and instrumental systematic noise. We present results of retrieval tests based on synthetic, noisy JWST spectra, for clear and cloudy planets and active and inactive stars. We find that the ability to correct for stellar activity is likely to be a limiting factor for cloudy planets, as the effects of unocculted star spots may mimic the presence of a scattering slope due to clouds. We discuss the pros and cons of the available JWST instrument combinations for transit spectroscopy, and consider the effect of clouds and aerosols on the spectra. Aerosol high in a planet's atmosphere obscures molecular absorption features in transmission, reducing the information content of spectra in wavelength regions where the cloud is optically thick. We discuss the usefulness of particular wavelength regions for identifying the presence of cloud, and suggest strategies for solving the highly-degenerate retrieval problem for these objects.

  5. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Science.gov (United States)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  6. Bayesian analysis of exoplanet and binary orbits

    OpenAIRE

    Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas

    2012-01-01

    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.

  7. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  8. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition

    NARCIS (Netherlands)

    R. van Lieshout; M. Min; C. Dominik

    2014-01-01

    Context. Recently, two exoplanet candidates have been discovered, KIC 12557548b and KOI-2700b, whose transit profiles show evidence of a comet-like tail of dust trailing the planet, thought to be fed by the evaporation of the planet’s surface. Aims. We aim to put constraints on the composition of th

  9. Insolation patterns on eccentric exoplanets

    Science.gov (United States)

    Dobrovolskis, Anthony R.

    2015-04-01

    Several studies have found that synchronously-rotating Earth-like planets in the habitable zones of M-dwarf stars should exhibit an "eyeball" climate pattern, with a pupil of open ocean facing the parent star, and ice everywhere else. Recent work on eccentric exoplanets by Wang et al. (Wang, Y., Tian, F., Hu, Y. [2014b] Astrophys. J. 791, L12) has extended this conclusion to the 2:1 spin-orbit resonance as well, where the planet rotates twice during one orbital period. However, Wang et al. also found that the 3:2 and 5:2 half-odd resonances produce a zonally-striped climate pattern with polar icecaps instead. Unfortunately, they used incorrect insolation functions for the 3:2 and 5:2 resonances whose long-term time averages are essentially independent of longitude. This paper presents the correct insolation patterns for eccentric exoplanets with negligible obliquities in the 0:1, 1:2, 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, and 4:1 spin-orbit resonances. I confirm that the mean insolation is distributed in an eyeball pattern for integer resonances; but for half-odd resonances, the mean insolation takes a "double-eyeball" pattern, identical over the "eastern" and "western" hemispheres. Presuming that liquids, ices, clouds, albedo, and thermal emission are similarly distributed, this has significant implications for the observation and interpretation of potentially habitable exoplanets. Finally, whether a striped ball, eyeball, or double-eyeball pattern emerges, the possibility exists that long-term build-up of ice (or liquid) away from the hot spots may alter the planet's inertia tensor and quadrupole moments enough to re-orient the planet, ultimately changing the distribution of liquid and ice.

  10. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  11. Exoplanet Forecast: Hot and Wet

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data from NASA's Spitzer Space Telescope tells astronomers that a toasty gas exoplanet, or a planet beyond our solar system, contains water vapor. Spitzer observed the planet, called HD 189733b, cross in front of its star at three different infrared wavelengths: 3.6 microns; 4.5 microns and 8 microns (see lime-colored dots). For each wavelength, the planet's atmosphere absorbed different amounts of the starlight that passed through it. The pattern by which this absorption varies with wavelength matches known signatures of water, as shown by the theoretical model in blue.

  12. VLT Captures First Direct Spectrum of an Exoplanet

    Science.gov (United States)

    2010-01-01

    receive from distant objects into its different colours (or "wavelengths"). However, where we distinguish five or six rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. This makes spectroscopy, the recording of spectra, an important investigative tool in astronomy. [2] In 2004, astronomers used NACO on the VLT to obtain an image and a spectrum of a 5 Jupiter mass object around a brown dwarf - a "failed star". It is however thought that the pair probably formed together, like a petite stellar binary, instead of the companion forming in the disc around the brown dwarf, like a star-planet system (see eso0428, eso0515 and eso0619). [3] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (several hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star. More information This research was presented in a paper in press as a Letter to the Astrophysical Journal ("Spatially resolved spectroscopy of the exoplanet HR 8799 c", by M. Janson et al.). The team is composed of M. Janson

  13. Making FORS2 fit for exoplanet observations (again)

    CERN Document Server

    Boffin, H M J; Gonzalez, O A; Moehler, S; Sedaghati, E; Gibson, N; Ancker, M E van den; Smoker, J; Anderson, J; Hummel, C; Dobrzycka, D; Smette, A; Rupprecht, G

    2015-01-01

    For about three years, it was known that precision spectrophotometry with FORS2 suffered from systematic errors that made quantitative observations of planetary transits impossible. We identified the Longitudinal Atmospheric Dispersion Compensator (LADC) as the most likely culprit, and therefore engaged in a project to exchange the LADC prisms with the uncoated ones from FORS1. This led to a significant improvement in the depth of FORS2 zero points, a reduction in the systematic noise, and should make FORS2 again competitive for transmission spectroscopy of exoplanets.

  14. The barycentric motion of exoplanet host stars: tests of solar spin-orbit coupling

    CERN Document Server

    Perryman, M A C

    2010-01-01

    Empirical evidence suggests a tantalising but unproven link between various indicators of solar activity and the barycentric motion of the Sun. The latter is exemplified by transitions between regular and more disordered motion modulated by the motions of the giant planets, and rare periods of retrograde motion with negative orbital angular momentum. An examination of the barycentric motion of exoplanet host stars, and their stellar activity cycles, has the potential of proving or disproving the Sun's motion as an underlying factor in the complex patterns of short- and long-term solar variability indices, by establishing whether such correlations exist in other planetary systems. A variety of complex patterns of barycentric motions of exoplanet host stars is demonstrated, depending on the number, masses and orbits of the planets. Each of the behavioural types proposed to correlate with solar activity are also evident in exoplanet host stars: repetitive patterns influenced by massive multiple planets, epochs o...

  15. The Host Stars of Keplers Habitable Exoplanets: Superflares, Rotation and Activity

    CERN Document Server

    Armstrong, D J; Broomhall, A -M; Brown, D J A; Lund, M N; Osborn, H P; Pollacco, D L

    2015-01-01

    We embark on a detailed study of the lightcurves of Keplers most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the lightcurve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166AU to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  16. Age consistency between exoplanet hosts and field stars

    CERN Document Server

    Bonfanti, Andrea; Nascimbeni, Valerio

    2015-01-01

    Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive and metal-rich stars. Nevertheless, we suspect that observational biases could impact also transiting-planet hosts. This paper aims at evaluating how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of $\\log{R'_{HK}}$ and $v\\sin{i}$ and the evaluation of the stellar evolutionary speed in the Hertz...

  17. Highlights in the study of exoplanet atmospheres.

    Science.gov (United States)

    Burrows, Adam S

    2014-09-18

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

  18. Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution

    CERN Document Server

    Udry, S; Bouchy, F; Cameron, A Collier; Henning, T; Mayor, M; Pepe, F; Piskunov, N; Pollacco, D; Queloz, D; Quirrenbach, A; Rauer, H; Rebolo, R; Santos, N C; Snellen, I; Zerbi, F

    2014-01-01

    Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A hig...

  19. How Many Exoplanets Does it Take to Constrain the Origin of Mercury?

    Science.gov (United States)

    Rogers, Leslie

    2016-01-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury (Rappaport et al. 2013). In contrast, Dressing et al. (2015) have noted that, to date, all confirmed transiting small (exoplanets with masses measured to better than 20% precision have mean densities that are consistent with Earth-like bulk compositions, though significant compositional dispersion is also admitted within the observational uncertainties. This presentation will describe the application of hierarchical Bayesian models to constrain the underlying distribution of rocky exoplanet iron contents from a sample of noisy mass-radius measurements coupled to rocky planet interior structure models. In addition to deriving constraints on the distribution of iron-enhanced exo-Mercuries from the exoplanet mass-radius measurements in hand, we also apply this approach to simulated data sets to predict how the constraints should improve as increasing numbers of exoplanets are characterized. The work outlines an observational pathway toward using exoplanets to place Mercury into context.

  20. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    Science.gov (United States)

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone.

  1. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  2. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  3. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Superstellar Metallicity

    Science.gov (United States)

    Skemer, Andrew J.; Morley, Caroline V.; Zimmerman, Neil T.; Skrutskie, Michael F.; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R.; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R.; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ˜500 K temperature that bridges the gap between the first directly imaged planets (˜1000 K) and our own solar system's Jupiter (˜130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: Teff = 544 ± 10 K, g < 600 m s-2, [M/H] = 0.60 ± 0.12, cloud opacity parameter of fsed = 2-5, R = 0.96 ± 0.07 RJup, and log(L) = -6.13 ± 0.03 L⊙, implying a hot start mass of 3-30 Mjup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT

  4. Astrology in the Era of Exoplanets

    CERN Document Server

    Lund, Michael B

    2016-01-01

    The last two decades have seen the number of known exoplanets increase from a small handful to nearly 2000 known exoplanets, thousands more planet candidates, and several upcoming missions that are expected to further increase the population of known exoplanets. Beyond the strictly scientific questions that this has led to regarding planet formation and frequency, this has also led to broader questions such as the philosophical implications of life elsewhere in the universe and the future of human civilization and space exploration. One additional realm that hasn't been adequately considered, however, is that this large increase in exoplanets would also impact claims regarding astrology. In this paper we look at the distribution of planets across the sky and along the Ecliptic, as well as the current and future implications of this planet distribution.

  5. Walking on Exoplanets: Is Star Wars Right?

    Science.gov (United States)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  6. Walking on exoplanets: Is Star Wars right?

    CERN Document Server

    Ballesteros, Fernando J

    2016-01-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation, but also challenging our theories with new unexpected properties.

  7. Balloon Exoplanet Nulling Interferometer (BENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  8. Exoplanets and their Host Stars

    Science.gov (United States)

    Schmitt, J.

    2016-06-01

    Among the most fundamental astrophysical discoveries are clearly the detections of many thousands of ``extrasolar'' planets orbiting their hosts. The majority of these new planetary systems have properties dramatically different from those in our solar system. The large distances to extrasolar planets imply that they can only be observed together with their hosts. Modern observations have shown that stars and planets are not merely accidental celestial neighbors bound by the force of gravity, rather they influence each other in a variety of ways. This also and specifically applies to the X-ray properties of exoplanet systems which I will review in my talk and give some ideas for future work in this area.

  9. Mapping Directly Imaged Giant Exoplanets

    CERN Document Server

    Kostov, Veselin B

    2012-01-01

    With the increasing number of directly imaged giant exoplanets the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time--resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. We address and discuss the following questions: a) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot--coverage, spot colors, spot spectra; b) what is the optimal configuration of instrument/wavelen...

  10. Exploring exoplanet populations with NASA’s Kepler Mission

    Science.gov (United States)

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  11. Exoplanet Characterization and the Search for Life

    OpenAIRE

    Kasting, James; Traub, W.; Roberge, A.; Leger, A.; Schwartz, A.; Wootten, A.; Vosteen, A.; A. Lo; Brack, A.; Tanner, A.; Coustenis, A.; Lane, B; Oppenheimer, B.; Mennesson, B.; Lopez, B.

    2009-01-01

    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one a...

  12. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Super-Stellar Metallicity

    CERN Document Server

    Skemer, Andrew J; Zimmerman, Neil T; Skrutskie, Michael F; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R; De Rosa, Robert J; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E

    2015-01-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar System's Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we w...

  13. Exoplanets and the Rossiter-McLaughlin Effect

    CERN Document Server

    Winn, J N

    2006-01-01

    A transiting planet eclipses part of the rotating stellar surface, thereby producing an anomalous Doppler shift of the stellar spectrum. Here I review how this "Rossiter-McLaughlin Effect" can be used to characterize exoplanetary systems. In particular, one can measure the angle on the sky between the orbital axis and the stellar rotation axis. This may help to discriminate among migration theories. Measurements have been made for 4 exoplanets, and in all cases the spin and orbital axes are fairly well-aligned. In the future, the Rossiter-McLaughlin effect may also be important as an alternative means of probing exoplanetary atmospheres, and for confirming the transits of objects identified by the satellite missions Corot and Kepler.

  14. Transiting exoplanets from the CoRoT space missionXIX. CoRoT-19b: A low density planet orbiting an old inactive F9V-star

    CERN Document Server

    Guenther, E W; Gazzano, J -C; Mazeh, T; Rouan, D; Gibson, N; Csizmadia, Sz; Aigrain, S; Alonso, R; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Bruntt, H; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Deeg, H J; Deleuil, M; Dreizler, S; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jehin, E; Jorda, L; Lammer, H; Leger, A; Moutou, C; Nortmann, L; Ollivier, M; Ofir, A; Pasternacki, Th; Paetzold, M; Parviainen, H; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tal-Or, L; Tingley, B; Weingrill, J; Wuchterl, G

    2011-01-01

    Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbi...

  15. Detection and initial characterisation of an exoplanet atmosphere with small aperture telescopes

    Science.gov (United States)

    Bernt, I.; Müller, M.; Strassmeier, K. G.; Granzer, T.

    2013-09-01

    In the recent years atmospheres of exoplanets have been studied with space-based telescopes like the HST or large aperture ground-based telescopes like the Gran Telescopio Canarias. But as the number of suitable exoplanets is rising, comparative studies of atmospheres with a statistically meaningful amount of targets will follow, for which the observational time with large telescopes is limited and expensive. Our aim is to investigate whether it is possible to detect and initially characterise the atmosphere of an exoplanet with small aperture telescopes using chromatic variations in transit depths. We collected multi-color transits in the years 2011 to 2013 using the robotic 1.2m-telescope STELLA on Tenerife as well as the Nordic Optical Telescope and the 70cm-telescope at the Leibniz Institute for Astrophysics Potsdam. The highly inflated Hot Jupiter HAT-P-32 b was chosen as target for our pilot study for its favorable large atmospheric scale height and therefore enhanced atmospheric detectability. Models of the atmospheric spectra of HAT-P-32 b indicate that the STELLA-data can be used to distinguish between a dusty and a cloud-free atmosphere using the gradient in transit depth of the observations in the blue band and in the visible band. Here we want to present our project together with the first results of the transit depth analysis.

  16. Relation between Brown Dwarfs and Exoplanets

    CERN Document Server

    Torres, Lauren Melissa Flor; Schröeder, Klauss-Peter; Caretta, César A; Jack, Dennis

    2016-01-01

    One of the most debated subjects in Astronomy since the discovery of exoplanets is how can we distinguish the most massive of such objects from very-low mass stars like Brown Dwarfs (BDs)? We have been looking for evidences of a difference in physical characteristics that could be related to different formation processes. Using a new diagnostic diagram that compares the baryonic gravitational potential (BGP) with the distances from their host stars, we have classified a sample of 355 well-studied exoplanets according to their possible structures. We have then compared the exoplanets to a sample of 87 confirmed BDs, identifying a range in BGP that could be common to both objects. By analyzing the mass-radius relations (MRR) of the exoplanets and BDs in those different BGP ranges, we were able to distinguish different characteristic behaviors. By comparing with models in the literature, our results suggest that BDs and massive exoplanets might have similar structures dominated by liquid metallic hydrogen (LMH).

  17. Frontiers of Exoplanet Atmosphere Characterization

    Science.gov (United States)

    Kreidberg, Laura

    2016-01-01

    Exoplanet atmosphere characterization has the potential to reveal the origins, nature, and even habitability of distant worlds. In this dissertation talk, I will present work that is a step toward realizing that potential for a diverse group of four extrasolar planets. I will discuss the results of intensive observational campaigns with the Hubble and Spitzer Space Telescopes to study the atmospheres of the super-Earth GJ 1214b and the hot Jupiters WASP-43b, WASP-12b, and WASP-103b. For GJ 1214b, I measured an unprecedentedly precise near-infrared transmission spectrum that definitively reveals the presence of clouds in the planet's atmosphere. For WASP-43b and WASP-12b, I also obtained very precise spectra. These exhibit water features at high confidence (>7 sigma). The retrieved water abundance for WASP-43b extends the well-known Solar System trend of decreasing atmospheric metallicity with increasing planet mass. The detection of water for WASP-12b marks the first spectroscopic identification of a molecule in the planet's atmosphere and implies that it has solar composition, ruling out carbon-to-oxygen ratios greater than unity. For WASP-103b, I will present preliminary results from the new technique of phase-resolved spectroscopy that constrain the planet's temperature structure, dynamics, and energy budget. Taken together, these results provide a foundation for comparative planetology beyond the Solar System and the investigation of Earth-like, potentially habitable planets with future observing facilities.

  18. Observed Exoplanets and Intelligent Life

    Science.gov (United States)

    Cole, G. H. A.

    2006-05-01

    If intelligent life were common in the Universe, should we not be aware of it on Earth through contact with advanced space ships and automatic probes? Would we not at least expect to intercept communication signals between space travellers? That this is not found has led to much speculation in the past. Recent discoveries of planets around other stars (called here exoplanets) and, separately, recent discoveries in the evolution of life on Earth, including Homo sapiens, allow this question to be considered again but now with more information than before. This is the subject of the present paper. The study involves aspects of physics and chemistry in combination with biological studies. It is concluded here that the places where technologically capable intelligent life might be expected to be found in our Galaxy are so few that any such “centres of civilisation” must be separated by large distances, probably in excess of 50 light years. If true, this would make the different centres essentially isolated and would suggest that each manifestation of advanced intelligent life is a purely local development. This would agree with our experience of aloneness. Nevertheless, the number of centres throughout the Universe would still be astronomically large, even if each galaxy had only one centre. An hypothesis is proposed which could account for the existence of such centres in this form.

  19. Ammonia, Water Clouds and Methane Abundances of Giant Exoplanets and Opportunities for Super-Earth Exoplanets

    CERN Document Server

    Hu, Renyu

    2014-01-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. The exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. We study the science return from direct-imaging exoplanet missions, focusing on the exoplanet atmospheric compositions. First, the study shows that a low-resolution (R=70) reflection spectrum of a giant exoplanet at 600 - 1000 nm, for a moderate signal-to-noise ratio of 20, will allow measurements of both the pressure of the uppermost cloud deck and the mixing ratio of methane, if the uppermost cloud deck is located at the pressure level of 0.6 - 1.5 bars. Further increasing the signal-to-noise ratio can improve the measurement range of the cloud deck pressure to 0.2 - 4 bars. The strong and the weak absorption...

  20. Do have nanosatellites a role in detecting exoplanets?

    CERN Document Server

    Weiss, Werner W; Rowe, Jason

    2012-01-01

    In December 2012, Austria will launch its first two satellites: UniBRITE and BRITE-Austria. This is the first pair of three, forming a network called BRITE-Constellation. The other pairs being contributed by Canada and Poland. The primary goal of BRITE-Constellation is the exploration of short term intensity variations of bright stars (V>6 mag) for a few years. For each satellite pair, one will employ a blue filter and the other a red filter. With the discovery of the first exoplanet in 1992, more than 800 have been detected since. The high-precision photometry from the BRITE instrument will enable a transit search for exoplanets around bright stars. To estimate the capability of BRITE to detect planets, we include in our calculations technical constraints, such as photometric noise levels for stars accessible by BRITE, the duty cycle and duration of observations. The most important parameter is the fraction of stars harboring a planet. Our simulation is based on 2695 stars distributed over the entire sky. Ke...

  1. A lucky imaging multiplicity study of exoplanet host stars II

    CERN Document Server

    Ginski, C; Seeliger, M; Buder, S; Errmann, R; Avenhaus, H; Mouillet, D; Maire, A -L; Raetz, S

    2016-01-01

    The vast majority of extrasolar planets are detected by indirect detection methods such as transit monitoring and radial velocity measurements. While these methods are very successful in detecting short-periodic planets, they are mostly blind to wide sub-stellar or even stellar companions on long orbits. In our study we present high resolution imaging observations of 63 exoplanet hosts carried out with the lucky imaging instrument AstraLux at the Calar Alto 2.2m telescope as well as with the new SPHERE high resolution adaptive optics imager at the ESO/VLT in the case of a known companion of specific interest. Our goal is to study the influence of stellar multiplicity on the planet formation process. We detected and confirmed 4 previously unknown stellar companions to the exoplanet hosts HD197037, HD217786, Kepler-21 and Kepler-68. In addition, we detected 11 new low-mass stellar companion candidates which must still be confirmed as bound companions. We also provide new astrometric and photometric data points ...

  2. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    CERN Document Server

    Misra, Amit; Koehler, Matthew C; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (...

  3. The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars

    CERN Document Server

    France, Kevin; Linsky, Jeffrey L; Roberge, Aki; Stocke, John T; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M

    2012-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line fluxes comprise ~37-75% of the tota...

  4. Transiting exoplanets from the CoRoT space mission. XXI. CoRoT-19b: a low density planet orbiting an old inactive F9V-star

    DEFF Research Database (Denmark)

    Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.;

    2012-01-01

    Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is gener...

  5. Constraining exoplanet mass from transmission spectroscopy.

    Science.gov (United States)

    de Wit, Julien; Seager, Sara

    2013-12-20

    Determination of an exoplanet's mass is a key to understanding its basic properties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semimajor axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet's mass solely from its transmission spectrum. We find good agreement between the mass retrieved for the hot Jupiter HD 189733b from transmission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric characterization.

  6. vsini observations of potential exoplanet parent stars

    Science.gov (United States)

    Stankov, A.; Schulz, R.; Erd, C.; Ho, T.; Stüwe, J.; Smit, H.

    2013-09-01

    We present spectroscopic measurements for a sample of 19 stars with spectral types F, G, and K, suitable to host exoplanets. The relative strengths of the Ca II H and K emission lines were measured and from these the projected rotational velocities, v sin i, will be determined. Theory states that the v sin i value is smaller if the observed star hosts exoplanets [1]. This is valid for stars later than spectreal type F 5 [2]. The v sin i information can be used to prioritize a target star catalog for a project that is aiming at discovering new exoplanets. Here we describe this project in more detail and show first results for selected target stars.

  7. I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate.

    OpenAIRE

    Kite, Edwin Stephen

    2011-01-01

    This thesis describes work related to long-term climate stability, on Mars and exoplanets.Mars is the only planet known to record a major transition in planetary habitability. The evidence for surface temperatures near the melting point of water on Early Mars is difficult to explain, because theory predicts a faint young Sun. Seasonal snowmelt need not require high annual mean temperatures, but surface water ice tends to migrate away from the warmer regions of the planet where melting is ener...

  8. Atmospheric Chemistry of Venus-like Exoplanets

    CERN Document Server

    Schaefer, Laura

    2010-01-01

    We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibira between the atmosphere and lithosphere, as on Venus. The results of our calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the surface. These results will be useful in planning future observations of the atmospheres of terrestrial-sized exoplanets by current and proposed space observatories such as the Hubble Space Telescope (HST), Spitzer, James Webb Space Telescope (JWST), Terrestrial Planet Finder, and Darwin.

  9. A Semi-Analytical Model of Visible-Wavelength Phase Curves of Exoplanets and Applications to Kepler-7 b and Kepler-10 b

    CERN Document Server

    Hu, Renyu; Seager, Sara; Lewis, Nikole; Showman, Adam P

    2015-01-01

    Kepler has detected numerous exoplanet transits by precise measurements of stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler-7 b and the rocky planet Kepler-10 b using the model. In general, we find that a hot exoplanet's visible-wavelength phase curve having a significant phase offset c...

  10. Characterizing Exoplanet Atmospheres: From Light-curve Observations to Radiative-transfer Modeling

    CERN Document Server

    Cubillos, Patricio E

    2016-01-01

    Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve mode...

  11. A New Analysis of the Exoplanet Hosting System HD 6434

    CERN Document Server

    Hinkel, Natalie R; Pilyavsky, Genady; Boyajian, Tabetha S; James, David J; Naef, Dominique; Fischer, Debra A; Udry, Stephane

    2015-01-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a M_p*sin(i) = 0.44 M_J mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ~6 hrs, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9m and 1.0m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry P...

  12. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    Science.gov (United States)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  13. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    Science.gov (United States)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  14. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    T. Barclay; . et al.; S. Hekker

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of Ear

  15. LEECH: LBTI Exozodi Exoplanet Common Hunt

    Science.gov (United States)

    Skemer, A.

    2014-03-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4- meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reducing the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 microns) with LMIRcam, as opposed to the shorter wavelength near-infrared bands (1-2.4 microns) of other similar surveys. This portion of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. The goals of LEECH are to (1) discover new exoplanets, (2) characterize the atmospheres of newly discovered exoplanets, (3) characterize the architectures of nearby planetary systems, and (4) establish meaningful constraints on the prevalence of wideseparation exoplanets.

  16. Jupiter as an exoplanet: UV to NIR transmission spectrum reveals hazes, a Na layer and possibly stratospheric H2O-ice clouds

    CERN Document Server

    Montañes-Rodriguez, P; Palle, E; Lopez-Puertas, M; Garcia-Melendo, E

    2015-01-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. But the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here we show the UV-VIS-IR transmission spectrum of Jupiter, as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter's shadow i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere, and strong absorption features from CH4. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H2O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore...

  17. WASP-30b: a 61 Mjup brown dwarf transiting a V=12, F8 star

    CERN Document Server

    Anderson, D R; Hellier, C; Lendl, M; Maxted, P F L; Pollacco, D; Queloz, D; Smalley, B; Smith, A M S; Todd, I; Triaud, A H M J; West, R G; Barros, S C C; Enoch, B; Gillon, M; Lister, T A; Pepe, F; Ségransan, D; Street, R A; Udry, S

    2010-01-01

    We report the discovery of a 61-Jupiter-mass brown dwarf, which transits its F8V, rotationally-synchronised host star, WASP-30, every 4.16 days. From a range of age indicators, we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 \\pm 0.02 RJup) for the companion that is consistent with that predicted (0.914 RJup) by a model of a 1-Gyr-old, non-irradiated brown dwarf with a dusty atmosphere.

  18. WASP-31b: a low-density planet transiting a late-F-type star

    CERN Document Server

    Anderson, D R; Hellier, C; Lendl, M; Lister, T A; Maxted, P F L; Queloz, D; Smalley, B; Smith, A M S; Triaud, A H M J; West, R G; Brown, D J A; Gillon, M; Pepe, F; Pollacco, D; Segransan, D; Street, R A; Udry, S

    2010-01-01

    We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass.

  19. Zodical Exoplanets in Time: Are These Worlds Flat?

    Science.gov (United States)

    Mann, Andrew; Rizzuto, Aaron; Newton, Elisabeth; Gaidos, Eric; Kraus, Adam; Dalba, Paul

    2016-08-01

    Over the past decade, Spitzer has helped to revolutionize our understanding of exoplanet atmospheres. By extending the reach of transmission spectroscopy (change in transit depth with wavelength) past 3 microns, Spitzer has provided unique constraints on the composition of the atmospheres of transiting planets. Such studies of super-Earth and Neptune size planets with both the Hubble Space Telescope and Spitzer have generally found featureless atmospheres, consistent with high clouds or a haze layer. This finding motivates more questions; how and when do these atmospheres form, how do they sustain themselves, and how long do they persist? Some answers could be found by comparing the atmospheres of similar planets with a range of ages from infancy (0-20 Myr) to adolescence (100-1000 Myr) to maturity (more than 1 Gyr). The mature part of this comparison is starting to become complete with many older super-Earth to Neptune size systems undergoing detailed study. However, even among the known young and adolescent systems, few were known to transit and none were amenable to transmission spectroscopy. Observations of young stars by the K2 mission has changed the landscape. From this data our team has identified and confirmed two transiting planets that will promote studies of exoplanet evolution. The first, K2-25b, orbits an M4.5 in the Hyades cluster (650 Myr), and the second, K2-33b, orbits an M3.5 pre-main sequence star in the Upper Scorpius OB association (11 Myr). We propose to observe 6 transits of the former and 5 of the latter with Spitzer/IRAC 3.6 and 4.5 micron bands. In combination with our K2 and ground-based data we can construct low-resolution transmission spectra of each planet in the key regions of atmospheric differentiation. This will provide the first insight into the atmospheres of young, small planets, determine when featureless atmospheres first appear, and provide constraints on the evolution of planetary atmospheres.

  20. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  1. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    CERN Document Server

    Ehrenreich, David; Wheatley, Peter J; Etangs, Alain Lecavelier des; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-01-01

    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is su...

  2. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-06-25

    Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

  3. Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star

    CERN Document Server

    Csizmadia, Sz; Gandolfi, G; Deleuil, M; Bouchy, M; Fridlund, M; Szabados, L; Parviainen, H; Cabrera, J; Aigrain, S; Alonso, R; Almenara, J M; Baglin, A; Bordé, P; Bonomo, A S; Deeg, H J; Dıaz, R F; Erikson, A; Ferraz-Mello, S; Santos, M Tadeu dos; Guenther, E W; Guillot, T; Grziwa, S; Hébrard, G; Klagyivik, P; Ollivier, M; Pätzold, M; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Mazeh, T; Wuchterl, G; Carpano, S; Ofir, A

    2015-01-01

    We report the detection of a rare transiting brown dwarf with a mass of 59 M_Jup and radius of 1.1 R_Jup around the metal-rich, [Fe/H] = +0.44, G9V star CoRoT-33. The orbit is eccentric (e = 0.07) with a period of 5.82 d. The companion, CoRoT-33b, is thus a new member in the so-called brown dwarf desert. The orbital period is within 3% to a 3:2 resonance with the rotational period of the star. CoRoT-33b may be an important test case for tidal evolution studies. The true frequency of brown dwarfs close to their host stars (P < 10 d) is estimated to be approximately 0.2% which is about six times smaller than the frequency of hot Jupiters in the same period range. We suspect that the frequency of brown dwarfs declines faster with decreasing period than that of giant planets.

  4. A Large Hubble Space Telescope Survey of Low-Mass Exoplanets

    Science.gov (United States)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; Lothringer, Joshua; McCullough, Peter R.; Dragomir, Diana; Morley, Caroline; Kempton, Eliza

    2016-10-01

    The discovery of short-period planets with masses and radii between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. From the Kepler mission, we know that these "super-Earths" or "sub-Neptunes" orbit at least 40% of stars, likely representing the most common outcome of planet formation. Despite this ubiquity, we know little about their typical compositions and formation histories. In this talk, we will shed new light on these worlds by presenting the multiple the main results from our 124-orbit HST transit spectroscopy survey to probe the chemical compositions of low-mass exoplanets. We will report on multiple molecular detections. Our unprecedented HST survey provides the first comprehensive look at this intriguing new class of planets by covering seven planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth-mass planet near the habitable zone of its host star.

  5. Combining Photometry from Kepler and TESS to Improve Short-Period Exoplanet Characterization

    Science.gov (United States)

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-01-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  6. Optical transmission photometry of the highly inflated exoplanet WASP-17b

    CERN Document Server

    Bento, J; Copperwheat, C M; Fortney, J J; Dhillon, V S; Hickman, R; Littlefair, S P; Marsh, T R; Parsons, S G; Southworth, J

    2013-01-01

    We present ground-based high-precision observations of the transit of WASP-17b using the multi-band photometer ULTRACAM on ESO's NTT in the context of performing transmission spectrophotometry of this highly inflated exoplanet. Our choice of filters (SDSS u', g' and r' bands) is designed to probe for the presence of opacity sources in the upper atmosphere. We find evidence for a wavelength dependence in the planet radius in the form of enhanced absorption in the SDSS r' band, consistent with a previously detected broad sodium feature. We present a new independent measurement of the planetary radius at Rpl = 1.97 +/- 0.06 Rjup, which confirms this planet as the most inflated exoplanet known to date. Our measurements are most consistent with an atmospheric profile devoid of enhanced TiO opacity, previously predicted to be present for this planet.

  7. Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

    CERN Document Server

    Swift, Jonathan J; Johnson, John A; Wright, Jason T; McCrady, Nate; Wittenmyer, Robert A; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S; Herzig, Erich; Myles, Justin; Blake, Cullen H; Eastman, Jason; Beatty, Thomas G; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew

    2014-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance...

  8. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  9. High resolution transmission spectrum of the Earth's atmosphere -- Seeing Earth as an exoplanet using a lunar eclipse

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Wang, Wei; Wang, Liang; Liu, Yujuan; Pallé, Enric

    2014-01-01

    With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satell...

  10. A Novel Approach to Atmospheric Retrieval for Small Exoplanets

    Science.gov (United States)

    Lustig-Yaeger, Jacob; Meadows, Victoria; Line, Michael; Crisp, David

    2015-11-01

    Retrieval of environmental parameters from the spectra of sub-Neptune and terrestrial extrasolar planets is extremely challenging due to the observational difficulty, the inherent complexity of planetary processes, and the likely diversity of environments for these small objects. The best retrieval techniques will use observations of the star-planet system along with knowledge of planetary processes gleaned from objects in the Solar System to constrain retrieved environmental parameters.We present ongoing work of the Virtual Planetary Laboratory (VPL) to develop a versatile terrestrial atmosphere retrieval suite capable of capturing a wide range of terrestrial planet processes while employing robust statistics. Our novel approach is to produce fits to observed spectra that discriminate between degenerate solutions by considering limitations on planetary environments derived from known physics and chemistry. The forward model leverages the SMART 1-D line-by-line, fully multiple-scattering and widely validated radiative transfer model (Meadows & Crisp 1996) as the primary workhorse for computing transit transmission, thermal emission, and reflectance spectroscopy. Following the approach of the CHIMERA code (Line et al 2013; 2014), we employ a variety of inverse models for the problem of parameter estimation. Here we present preliminary results using optimal estimation for terrestrial and sub-Neptune planets. The model is being validated against synthetic, Solar System, and existing exoplanet observations.This model will be used to explore the capabilities of key telescope architectures, to understand information loss when planets are viewed as a point source, and to provide a data analysis framework for future sub-Neptune, super-Earth, and Earth analog exoplanet observations.

  11. Characterizing the Parents: Exoplanets Around Cool Stars

    CERN Document Server

    von Braun, Kaspar; van Belle, Gerard T; Mann, Andrew; Kane, Stephen R

    2014-01-01

    The large majority of stars in the Milky Way are late-type dwarfs, and the frequency of low-mass exoplanets in orbits around these late-type dwarfs appears to be high. In order to characterize the radiation environments and habitable zones of the cool exoplanet host stars, stellar radius and effective temperature, and thus luminosity, are required. It is in the stellar low-mass regime, however, where the predictive power of stellar models is often limited by sparse data volume with which to calibrate the methods. We show results from our CHARA survey that provides directly determined stellar parameters based on interferometric diameter measurements, trigonometric parallax, and spectral energy distribution fitting.

  12. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  13. Exoplanet Characterization and the Search for Life

    CERN Document Server

    Kasting, J; Roberge, A; Leger, A; Schwartz, A; Wooten, A; Vosteen, A; Lo, A; Brack, A; Tanner, A; Coustenis, A; Lane, B; Oppenheimer, B; Mennesson, B; Lopez, B; Grillmair, C; Beichman, C; Cockell, C; Hanot, C; McCarthy, C; Stark, C; Marois, C; Aime, C; Angerhausen, D; Montes, D; Wilner, D; Defrere, D; Mourard, D; Lin, D; Kite, E; Chassefiere, E; Malbet, F; Tian, F; Westall, F; Illingworth, G; Vasisht, G; Serabyn, G; Marcy, G; Bryden, G; White, G; Laughlin, G; Torres, G; Hammel, H; Ferguson, H; Shibai, H; Rottgering, H; Surdej, J; Wiseman, J; Ge, J; Bally, J; Krist, J; Monnier, J; Trauger, J; Horner, J; Catanzarite, J; Harrington, J; Nishikawa, J; Stapelfeldt, K; von Braun, K; Biazzo, K; Carpenter, K; Balasubramanian, K; Kaltenegger, L; Postman, M; Spaans, M; Turnbull, M; Levine, M; Burchell, M; Ealey, M; Kuchner, M; Marley, M; Dominik, M; Mountain, M; Kenworthy, M; Muterspaugh, M; Shao, M; Zhao, M; Tamura, M; Kasdin, N; Haghighipour, N; Kiang, N; Elias, N; Woolf, N; Mason, N; Absil, O; Guyon, O; Lay, O; Borde, P; Fouque, P; Kalas, P; Lowrance, P; Plavchan, P; Hinz, P; Kervella, P; Chen, P; Akeson, R; Soummer, R; Waters, R; Barry, R; Kendrick, R; Brown, R; Vanderbei, R; Woodruff, R; Danner, R; Allen, R; Polidan, R; Seager, S; MacPhee, S; Hosseini, S; Metchev, S; Kafka, S; Ridgway, S; Rinehart, S; Unwin, S; Shaklan, S; Brummelaar, T ten; Mazeh, T; Meadows, V; Weiss, W; Danchi, W; Ip, W; Rabbia, Y

    2009-01-01

    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.

  14. Statistical Signatures of Panspermia in Exoplanet Surveys

    Science.gov (United States)

    Lin, Henry W.; Loeb, Abraham

    2015-09-01

    A fundamental astrobiological question is whether life can be transported between extrasolar systems. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: a smoking gun signature of panspermia would be the detection of large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as ∼25 biologically active exoplanets could yield a 5σ detection of panspermia. Detectability of position-space correlations is possible unless the timescale for life to become observable once seeded is longer than the timescale for stars to redistribute in the Milky Way.

  15. Exoplanet Science with E-ELT/METIS

    Science.gov (United States)

    Quanz, S. P.

    2015-10-01

    METIS - the Mid-infrared E-ELT Imager and Spectrograph - is foreseen as one of the first instruments for the 39-m European Extremely Large Telescope (E-ELT). It will provide diffraction limited imaging and spectroscopy in the L, M, N and Q band and also feature a high-dispersion integral field unit in the L and M band. While being a multi-purpose instrument with a broad and diverse science case, exoplanets are one of the driving science topics for METIS. In this talk I will highlight a few areas in exoplanet research, where METIS will be uniquely positioned to deliver breakthrough results early in the era of ground-based ELTs. In fact, it might be METIS that takes the first image of a small and possibly rocky planet around a nearby star.

  16. Light scattering from exoplanet oceans and atmospheres

    CERN Document Server

    Zugger, Michael E; Williams, Darren M; Kane, Timothy J; Philbrick, C Russell

    2010-01-01

    Orbital variation in polarized and unpolarized reflected starlight from exoplanets could eventually be used to detect liquid water on planet surfaces. Exoplanets with rough surfaces, or those dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 degrees, whereas ocean-covered planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 degrees. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 degrees; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach...

  17. Understanding Young Exoplanet Analogs with WISE

    Science.gov (United States)

    Rice, Emily

    We propose to tackle outstanding questions about the fundamental properties of young brown dwarfs, which are atmospheric analogs to massive gas giant exoplanets, using public archive data from the Wide-field Infrared Survey Explorer (WISE) combined with our extensive dataset of optical and near-infrared observations, including spectra, proper motions, and parallaxes. Using WISE data we will construct color-color diagrams, color- magnitude diagrams, and spectral energy distributions for our sample of candidate young brown dwarfs. We will fully characterize the spectral properties of the candidates and evaluate their membership in nearby young moving groups in order to obtain independent age estimates. The practical outcomes of this project will allow the research community to use observed colors and spectra to reliably constrain the properties - including effective temperature, gravity, and dust/cloud properties - of both brown dwarfs and gas giant exoplanets. We will also search for new young brown dwarfs in the WISE archive using colors and proper motions. The expanded sample of young brown dwarfs will be used to create a self-contained feedback loop to identify and address the shortcomings of cool atmosphere models and low-mass evolutionary tracks, both of which are already being used to infer the properties of massive exoplanets. Disentangling the effects of physical parameters on the observed properties of young brown dwarfs is directly relevant to studies of exoplanets. Direct observations of exoplanets are currently very limited, and young brown dwarfs are the laboratories in which we can solve existing problems before the onslaught of new observations from instruments capable of directly imaging exoplanets, including the Gemini Planet Imager, Project 1640 at the Palomar Observatory, SPHERE on the VLT, and the James Webb Space Telescope. This project addresses the goal of the NASA Science Mission Directorate to discover how the universe works; in particular

  18. Statistical Signatures of Panspermia in Exoplanet Surveys

    CERN Document Server

    Lin, Henry W

    2015-01-01

    A fundamental astrobiological question is whether life arose spontaneously on earth or was transported here from an extrasolar system. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: panspermia predicts large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as $\\sim 25$ biologically active exoplanets could yield a $5\\sigma$ detection of panspermia.

  19. Dispatch Scheduling to Maximize Exoplanet Detection

    Science.gov (United States)

    Johnson, Samson; McCrady, Nate; MINERVA

    2016-01-01

    MINERVA is a dedicated exoplanet detection telescope array using radial velocity measurements of nearby stars to detect planets. MINERVA will be a completely robotic facility, with a goal of maximizing the number of exoplanets detected. MINERVA requires a unique application of queue scheduling due to its automated nature and the requirement of high cadence observations. A dispatch scheduling algorithm is employed to create a dynamic and flexible selector of targets to observe, in which stars are chosen by assigning values through a weighting function. I designed and have begun testing a simulation which implements the functions of a dispatch scheduler and records observations based on target selections through the same principles that will be used at the commissioned site. These results will be used in a larger simulation that incorporates weather, planet occurrence statistics, and stellar noise to test the planet detection capabilities of MINERVA. This will be used to heuristically determine an optimal observing strategy for the MINERVA project.

  20. Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    CERN Document Server

    Wang, Ji; Barclay, Thomas; Picard, Alyssa; Ma, Bo; Bowler, Brendan P; Schmitt, Joseph R; Boyajian, Tabetha S; Jek, Kian J; LaCourse, Daryll; Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Lintott, Chris; Schawinski, Kevin; Simister, Dean Joseph; Gregoire, Boscher; Babin, Sean P; Poile, Trevor; Jacobs, Thomas Lee; Jebson, Tony; Omohundro, Mark R; Schwengeler, Hans Martin; Sejpka, Johann; Terentev, Ivan A; Gagliano, Robert; Paakkonen, Jari-Pekka; Berge, Hans Kristian Otnes; Winarski, Troy; Green, Gerald R; Schmitt, Allan R

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4". We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive a...

  1. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  2. Thermal Tides in Short Period Exoplanets

    OpenAIRE

    Arras, Phil; Socrates, Aristotle

    2009-01-01

    Time-dependent insolation in a planetary atmosphere induces a mass quadrupole upon which the stellar tidal acceleration can exert a force. This "thermal tide" force can give rise to secular torques on the planet and orbit as well as radial forces causing eccentricity evolution. We apply this idea to the close-in gas giant exoplanets ("hot Jupiters"). The response of radiative atmospheres is computed in a hydrostatic model which treats the insolation as a time-dependent heat source, and solves...

  3. Advances in exoplanet science from Kepler.

    Science.gov (United States)

    Lissauer, Jack J; Dawson, Rebekah I; Tremaine, Scott

    2014-09-18

    Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASA's Kepler space telescope. Kepler has discovered most of the known exoplanets, the smallest planets to orbit normal stars and the planets most likely to be similar to Earth. Most importantly, Kepler has provided us with our first look at the typical characteristics of planets and planetary systems for planets with sizes as small as, and orbits as large as, those of Earth.

  4. The far future of exoplanet direct characterization.

    Science.gov (United States)

    Schneider, Jean; Léger, Alain; Fridlund, Malcolm; White, Glenn J; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Liseau, René; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Franck; Beichman, Charles; Danchi, William; Kaltenegger, Lisa; Lunine, Jonathan; Stam, Daphne; Tinetti, Giovanna

    2010-01-01

    We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.

  5. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ehlmann, Bethany L., E-mail: hury@mit.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  6. The far future of exoplanet direct characterization

    CERN Document Server

    Schneider, Jean; Fridlund, Malcolm; White, Glenn; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Liseau, Rene; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Roettgering, Huub; Selsis, Franck; Beichman, Charles; Danchi, William; Kaltenegger, Lisa; Lunine, Jonathan; Stam, Daphne; Tinetti, Giovanna

    2009-01-01

    In this outlook we describe what could be the next steps of the direct characterization of habitable exoplanets after first the medium and large mission projects and investigate the benefits of the spectroscopic and direct imaging approaches. We show that after third and fourth generation missions foreseeable for the next 100 years, we will face a very long era before being able to see directly the morphology of extrasolar organisms.

  7. Mass-radius relationships for exoplanets

    CERN Document Server

    Swift, Damian; Hicks, Damien; Hamel, Sebastien; Caspersen, Kyle; Schwegler, Eric; Collins, Gilbert; Ackland, Graeme

    2010-01-01

    For planets other than Earth, and in particular for exoplanets, interpretation of the composition and structure depends largely on a comparison of the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation for different layers within the planet, which is based heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We summarize current techniques for predicting and measuring equations of state, and calculate mass-radius relations for key materials for which the equation of state is reasonably well established, and for Fe-rock combinations. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. CoRoT-7b probably has a rocky mantle over an Fe-based core. The core is likely to be proportionately smaller than the Earth's. GJ 1214b lies between the mass-radius curves for H_2Oand CH_...

  8. Theoretical Spectra of Terrestrial Exoplanet Surfaces

    CERN Document Server

    Hu, Renyu; Seager, Sara

    2012-01-01

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7 - 13 \\mu m and 15 - 25 \\mu m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high-resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K band and J band geometric albedos (A_g (K)-A_g (J)): A_g (K)-A_g (J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as oliv...

  9. Two Exoplanets Discovered at Keck Observatory

    CERN Document Server

    Valenti, J A; Marcy, G W; Johnson, J A; Henry, G W; Wright, J T; Howard, A W; Giguere, M; Isaacson, H

    2009-01-01

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).

  10. Electron densities and alkali atoms in exoplanet atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [GSMA, Université de Reims Champagne Ardenne, CNRS UMR 7331, Reims, 51687 France (France); Koskinen, T.; Yelle, R. V., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  11. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    Science.gov (United States)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  12. Electron densities and alkali atoms in exoplanet atmospheres

    CERN Document Server

    Lavvas, Panayotis; Yelle, Roger V

    2014-01-01

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458 b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations though result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2 b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of cl...

  13. A map of the large day-night temperature gradient of a super-Earth exoplanet

    CERN Document Server

    Demory, Brice-Olivier; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenkovic, Vlada; Benneke, Bjorn; Kane, Stephen; Queloz, Didier

    2016-01-01

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths (exoplanets with masses of one to ten times that of Earth) have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 +- 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase c...

  14. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion

    CERN Document Server

    Sing, David K; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; Etangs, Alain Lecavelier des; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2015-01-01

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1 to 1.7 {\\mu}m). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse...

  15. The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

    CERN Document Server

    Galicher, Raphael; Macintosh, Bruce; Zuckerman, Ben; Barman, Travis; Konopacky, Quinn; Song, Inseok; Patience, Jenny; Lafreniere, David; Doyon, Rene; Nielsen, Eric L

    2016-01-01

    Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 years. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2,279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05[+2.80-0.70]% of stars harbor at least one giant planet between 0.5 and 14...

  16. Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

    CERN Document Server

    Barstow, Joanna K; Aigrain, Suzanne; Fletcher, Leigh N; Irwin, Patrick G J; Varley, Ryan; Pascale, Enzo

    2014-01-01

    We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim (Waldmann & Pascale 2014) to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of Barstow et al. (2013a). To correctly retrieve the temperature structure and composition of the atmosphere to within 2 {\\sigma}, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiti...

  17. Transiting exoplanets from the CoRoT space mission

    DEFF Research Database (Denmark)

    Ollivier, M.; Gillon, M.; Santerne, A.;

    2012-01-01

    Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 ± 0.1. We discuss this value and also deri...

  18. Algol: An Early Candidate for a Transiting Exoplanet

    Science.gov (United States)

    French, Linda M.; Stuart, I.

    2008-09-01

    Virtually every astronomy text credits John Goodricke (1764-1786) with the discovery of the period of variability of the star Algol (β Per) and with the explanation of its variation (eclipses by an unseen stellar companion). Today, Algol is considered a prototype of an eclipsing binary star. In actuality, John Goodricke worked in collaboration with his neighbor, mentor, and distant relative, Edward Pigott. As observed by Hoskin1, the observing journals2 of the two clearly show that the eclipse explanation originated with Edward. Both originally used the term "planet” to describe the eclipsing body. However, in Goodricke's 1783 paper describing Algol, he writes: "....I should imagine it could hardly be accounted for otherwise than either by the interposition of a large body revolving round Algol, or some kind of motion of its own, whereby part of its body, covered with spots or such like matter...."3 Goodricke was later to soften his stance still further after the two discovered several other variable stars; his last published work4 mentions only starspots as an explanation for the light variation of Algol. Although the physics of the time would not have allowed Goodricke and Pigott to distinguish between a star and a planet as the unseen companion, the eighteenth-century astronomers showed great prescience in realizing that the eclipses of Algol were just that. Their mental leap, at a time when astronomers were just beginning to think seriously of discovering planets around other stars, should not go unremembered by modern planetary scientists. Footnotes 1 Hoskin, M. (1982). In Stellar Astronomy, Science History Publications Ltd., Chalfont St. Giles, England. 2 Goodricke and Pigott journals. York City Archives, York, England. 3 Goodricke, J. G. (1783). Phil. Soc. Roy. Soc. London 73, 474-482. 4 Goodricke, J. G. (1786). Phil. Soc. Roy. Soc. London 76, 48-61.

  19. Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs

    OpenAIRE

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed ...

  20. ARIEL - The Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    Science.gov (United States)

    Eccleston, P.; Tinetti, G.

    2015-10-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS, plus ground based surveys, will increase the number of known systems to tens of thousands. Of all these exoplanets we know very little; i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail. A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over 3.5 years. The ESA Cosmic Vision M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution. The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the

  1. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; Walkowicz, Lucianne M.

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  2. Search for a circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates

    CERN Document Server

    Garai, Z; Budaj, J; Stellingwerf, R F

    2014-01-01

    A unique short-period Mercury-size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum-planetary material - comet-like tail. Close-in exoplanets, like KIC012557548b, are subjected to the greatest planet-star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet-like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet-like tails similar to KIC012557548b and for long-term orbital period variations. We are curious about frequency of comet-like tail formation among short-period Kepler exoplanet candidates. We concentrate on a sample of 20 close-in candidates with a period similar to KIC012557548b from the Kepler mission.

  3. Weighing Rocky Exoplanets with Improved Radial Velocimetry

    Science.gov (United States)

    Xuesong Wang, Sharon; Wright, Jason; California Planet Survey Consortium

    2016-01-01

    The synergy between Kepler and the ground-based radial velocity (RV) surveys have made numerous discoveries of small and rocky exoplanets, opening the age of Earth analogs. However, most (29/33) of the RV-detected exoplanets that are smaller than 3 Earth radii do not have their masses constrained to better than 20% - limited by the current RV precision (1-2 m/s). Our work improves the RV precision of the Keck telescope, which is responsible for most of the mass measurements for small Kepler exoplanets. We have discovered and verified, for the first time, two of the dominant terms in Keck's RV systematic error budget: modeling errors (mostly in deconvolution) and telluric contamination. These two terms contribute 1 m/s and 0.6 m/s, respectively, to the RV error budget (RMS in quadrature), and they create spurious signals at periods of one sidereal year and its harmonics with amplitudes of 0.2-1 m/s. Left untreated, these errors can mimic the signals of Earth-like or Super-Earth planets in the Habitable Zone. Removing these errors will bring better precision to ten-year worth of Keck data and better constraints on the masses and compositions of small Kepler planets. As more precise RV instruments coming online, we need advanced data analysis tools to overcome issues like these in order to detect the Earth twin (RV amplitude 8 cm/s). We are developing a new, open-source RV data analysis tool in Python, which uses Bayesian MCMC and Gaussian processes, to fully exploit the hardware improvements brought by new instruments like MINERVA and NASA's WIYN/EPDS.

  4. The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystems

    Science.gov (United States)

    Focardi, M.; Pace, E.; Colomé, J.; Ribas, I.; Rataj, M.; Ottensamer, R.; Farina, M.; Di Giorgio, A. M.; Wawer, P.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Morgante, G.; Artigues, B.; Sierra-Roig, C.; Gesa, L.; Eccleston, P.; Crook, M.; Micela, G.

    2016-07-01

    The ARIEL mission has been proposed to ESA by an European Consortium as the first space mission to extensively perform remote sensing on the atmospheres of a well defined set of warm and hot transiting gas giant exoplanets, whose temperature range between ~600 K and 3000 K. ARIEL will observe a large number (~500) of warm and hot transiting gas giants, Neptunes and super-Earths around a range of host star types using transit spectroscopy in the ~2-8 μm spectral range and broad-band photometry in the NIR and optical. ARIEL will target planets hotter than 600 K to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk and elemental composition. One of the major motivations for exoplanet characterisation is to understand the probability of occurrence of habitable worlds, i.e. suitable for surface liquid water. While ARIEL will not study habitable planets, its major contribution to this topic will results from its capability to detect the presence of atmospheres on many terrestrial planets outside the habitable zone and, in many cases, characterise them. This represents a fundamental breakthrough in understanding the physical and chemical processes of a large sample of exoplanets atmospheres as well as their bulk properties and to probe in-space technology. The ARIEL infrared spectrometer (AIRS) provides data on the atmospheric composition; these data are acquired and processed by an On-Board Data Handling (OBDH) system including the Cold Front End Electronics (CFEE) and the Instrument Control Unit (ICU). The Telescope Control Unit (TCU) is also included inside the ICU. The latter is directly connected to the Control and Data Management Unit (CDMU) on board the Service Module (SVM). The general hardware architecture and the application software of the ICU are described. The Fine Guidance Sensor (FGS) electronics and the Cooler Control Electronics are also presented.

  5. Collaboration and Competition in Exoplanet Research

    Science.gov (United States)

    Beichman, Charles

    2009-01-01

    Collaboration and competition are strong driving forces in the modern search for exoplanets, appears between individuals, agencies and nations as well as between observing techniques and theoretical interpretation. I will argue that these forces, taken in balance, are beneficial to the field and are partly responsible for the rapid progress in the search for planets and ultimately the search for life beyond the solar system. Specific examples will include indirect detection of Earth analogs from ground and space and the direct detection of gas giant and terrestrial planets.

  6. Terrestrial exoplanets: diversity, habitability and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Selsis, Franck [CRAL: Centre de Recherche Astrophysique de Lyon (CNRS), Universite de Lyon, Ecole Normale Superieure de Lyon, 46 allee d' Italie, F-69007 Lyon (France); Kaltenegger, Lisa [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Paillet, Jimmy [ESTEC SCI-SA, Keplerlaan 1, PO Box 299, 2200AG Noordwijk (Netherlands)], E-mail: franck.selsis@ens-lyon.fr, E-mail: lkaltene@cfa.harvard.edu, E-mail: jpaillet@rssd.esa.int

    2008-08-15

    After a decade rich in giant exoplanet detections, observation techniques have now reached the sensitivity to gain information on the physical structure and chemical content of some of the detected planets and also to find planets of less than 10 M{sub +}. The detection and characterization of Earth-like planets is approaching rapidly and dedicated space observatories are already in operation (CoRoT) or in the development phase (Kepler, Darwin and TPF-I/C). In this paper, we explore the domain of terrestrial planets, emphasizing habitable worlds. We discuss the possibility of performing a spectral characterization of their properties using the next generation of astronomical instruments.

  7. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  8. The bulk composition of exo-planets

    CERN Document Server

    Gaensicke, Boris; Dufour, Patrick; Farihi, Jay; Jura, Michael; Kilic, Mukremin; Melis, Carl; Veras, Dimitri; Xu, Siyi; Zuckerman, Ben

    2015-01-01

    Priorities in exo-planet research are rapidly moving from finding planets to characterizing their physical properties. Of key importance is their chemical composition, which feeds back into our understanding of planet formation. For the foreseeable future, far-ultraviolet spectroscopy of white dwarfs accreting planetary debris remains the only way to directly and accurately measure the bulk abundances of exo-planetary bodies. The exploitation of this method is limited by the sensitivity of HST, and significant progress will require a large-aperture space telescope with a high-throughput ultraviolet spectrograph.

  9. Brown Dwarfs at the Exoplanet Mass Boundary

    Science.gov (United States)

    Faherty, J. K.; Cruz, K. L.; Rice, E. L.; Riedel, A.

    2014-10-01

    Young brown dwarfs and directly-imaged exoplanets have enticingly similar photometric and spectroscopic characteristics, indicating that their cool, low gravity atmospheres should be studied in concert. Similarities between the peculiar shaped H band, near and mid-IR photometry as well as location on color magnitude diagrams provide important clues about how to extract physical properties of planets from current brown dwarf observations. Our team has assigned >30 brown dwarfs to 10-150 Myr nearby moving groups. In so doing, we have discovered important diversity among this extremely low-mass (10 - 30 M_{Jup}) age-calibrated sample indicating that cloud properties play a critical role in their observables.

  10. Young Brown Dwarfs as Giant Exoplanet Analogs

    CERN Document Server

    Faherty, Jacqueline K; Rice, Emily L; Riedel, Adric

    2013-01-01

    Young brown dwarfs and directly-imaged exoplanets have enticingly similar photometric and spectroscopic characteristics, indicating that their cool, low gravity atmospheres should be studied in concert. Similarities between the peculiar shaped H band, near and mid-IR photometry as well as location on color magnitude diagrams provide important clues about how to extract physical properties of planets from current brown dwarf observations. In this proceeding we discuss systems newly assigned to 10-150 Myr nearby moving groups, highlight the diversity of this uniform age-calibrated brown dwarf sample, and reflect on their implication for understanding current and future planetary data.

  11. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Christopher J. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); McCullough, P. R., E-mail: christopher.j.burke@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ{sub rv} ∼ 0.6 m s{sup –1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ{sub phot} ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ{sub rv} ∼ 2.0 m s{sup –1} precision radial velocity survey has comparable efficiency to a transit survey with σ{sub phot} ∼ 2300 ppm.

  12. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b

    CERN Document Server

    Etangs, A Lecavelier des; Wheatley, P J; Dupuy, H; Ehrenreich, D; Vidal-Madjar, A; Hébrard, G; Ballester, G E; Désert, J -M; Ferlet, R; Sing, D K

    2012-01-01

    Atmospheric escape has been detected from the exoplanet HD 209458b through transit observations of the hydrogen Lyman-alpha line. Here we present spectrally resolved Lyman-alpha transit observations of the exoplanet HD 189733b at two different epochs. These HST/STIS observations show for the first time, that there are significant temporal variations in the physical conditions of an evaporating planetary atmosphere. While atmospheric hydrogen is not detected in the first epoch observations, it is observed at the second epoch, producing a transit absorption depth of 14.4+/-3.6% between velocities of -230 to -140 km/s. Contrary to HD 209458b, these high velocities cannot arise from radiation pressure alone and require an additional acceleration mechanism, such as interactions with stellar wind protons. The observed absorption can be explained by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g/s, a stellar wind with a velocity of 190 km/s and a temperature of ~10^5K. An X-ray flare from the a...

  13. New Exoplanet Surveys in the Canadian High Arctic at 80 Degrees North

    CERN Document Server

    Law, Nicholas M; Murowinski, Richard; Carlberg, Raymond; Ngan, Wayne; Salbi, Pegah; Ahmadi, Aida; Steinbring, Eric; Halman, Mark; Graham, James

    2012-01-01

    Observations from near the Eureka station on Ellesmere Island, in the Canadian High Arctic at 80 degrees North, benefit from 24-hour darkness combined with dark skies and long cloud-free periods during the winter. Our first astronomical surveys conducted at the site are aimed at transiting exoplanets; compared to mid-latitude sites, the continuous darkness during the Arctic winter greatly improves the survey's detection efficiency for longer-period transiting planets. We detail the design, construction, and testing of the first two instruments: a robotic telescope, and a set of very wide-field imaging cameras. The 0.5m Dunlap Institute Arctic Telescope has a 0.8-square-degree field of view and is designed to search for potentially habitable exoplanets around low-mass stars. The very wide field cameras have several-hundred-square-degree fields of view pointed at Polaris, are designed to search for transiting planets around bright stars, and were tested at the site in February 2012. Finally, we present a concep...

  14. Transits Probabilities Around Hypervelocity and Runaway Stars

    CERN Document Server

    Fragione, Giacomo

    2016-01-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. In this paper, we explore the possibility of detecting planetary transits around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multi-planetary transit is $10^{-3}\\lesssim P\\lesssim 10^{-1}$. We therefore need to observe $\\sim 10-1000$ high-velocity stars to spot a transit. We predict that the European Gaia satellite, along with TESS, could spot such transits.

  15. Exoplanet Searches by Future Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Maccone C.

    2011-02-01

    Full Text Available The search for exoplanets could benefit from gravitational lensing if we could get to 550 AU from the Sun and beyond. This is because the gravitational lens of the Sun would highly intensify there any weak electromagnetic wave reaching the solar system from distant planets in the Galaxy (see Maccone 2009. The gravitational lens of the Sun, however, has a drawback: the solar Corona. Electrons in the Corona make electromagnetic waves diverge and this pushes the focus out to distances higher than 550 AU. Jupiter is the second larger mass in the solar system after the Sun, but in this focal game not only the mass matters: rather, what really matters is the ratio between the radius of the body squared and the mass of the body. In this regard, Jupiter qualifies as the second best choice for a space mission, requiring the spacecraft to reach 6,077 AU. In this paper, we study the benefit of exoplanet searches by deep space missions.

  16. The Frequency of Low-mass Exoplanets

    CERN Document Server

    O'Toole, S J; Tinney, C G; Butler, R P; Marcy, G W; Carter, B; Bailey, J; Wittenmyer, R A

    2009-01-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search - an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD16417b), and here we reconfirm the detection of HD4308b. Further, we have Monte-Carlo simulated the data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. The simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as sma...

  17. Debris Disks in Kepler Exoplanet Systems

    CERN Document Server

    Lawler, S M

    2011-01-01

    The Kepler Mission recently identified systems hosting candidate extrasolar planets, many of which are super-Earths. Realizing these rocky planetary systems are candidates to host extrasolar asteroid belts, we use mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) to search for emission from dust in these systems. We find excesses around eight stars, indicating the presence of warm to hot dust (~100-500 K), corresponding to orbital distances of 0.1-10 AU for these solar-type stars. The strongest detection, KOI 1099, demands ~500 K dust interior to the orbit of its exoplanet candidate. One star, KOI 904, may host very hot dust (~1200 K, corresponding to 0.02 AU). We find the fraction of these exoplanet-bearing stars with warm excesses (~3%) is consistent with the fraction found for solar-type field stars. It is difficult to explain the presence of dust so close to the host stars, corresponding to dust rings at radii <0.3 AU; both the collisional and Poynting-Robertson drag timescales to r...

  18. The exoplanets analogy to the Multiverse

    CERN Document Server

    Kinouchi, Osame

    2015-01-01

    The idea of a Mutiverse is controversial, although it is a natural possible solution to particle physics and cosmological fine-tuning problems (FTPs). Here I explore the analogy between the Multiverse proposal and the proposal that there exist an infinite number of stellar systems with planets in a flat Universe, the Multiplanetverse. Although the measure problem is present in this scenario, the idea of a Multiplanetverse has predictive power, even in the absence of direct evidence for exoplanets that appeared since the 90s. We argue that the fine-tuning of Earth to life (and not only the fine-tuning of life to Earth) could predict with certainty the existence of exoplanets decades or even centuries before that direct evidence. Several other predictions can be made by studying only the Earth and the Sun, without any information about stars. The analogy also shows that theories that defend that the Earth is the unique existing planet and that, at the same time, is fine-tuned to life by pure chance (or pure phy...

  19. PynPoint Code for Exoplanet Imaging

    CERN Document Server

    Amara, Adam; Akeret, Joel

    2014-01-01

    We announce the public release of PynPoint, a Python package that we have developed for analysing exoplanet data taken with the angular differential imaging observing technique. In particular, PynPoint is designed to model the point spread function of the central star and to subtract its flux contribution to reveal nearby faint companion planets. The current version of the package does this correction by using a principal component analysis method to build a basis set for modelling the point spread function of the observations. We demonstrate the performance of the package by reanalysing publicly available data on the exoplanet beta Pictoris b, which consists of close to 24,000 individual image frames. We show that PynPoint is able to analyse this typical data in roughly 1.5 minutes on a Mac Pro, when the number of images is reduced by co-adding in sets of 5. The main computational work parallelises well as a result of a reliance on SciPy and NumPy functions. For this calculation the peak memory load is 6Gb, ...

  20. Exoplanets finding, exploring, and understanding alien worlds

    CERN Document Server

    Kitchin, Chris

    2012-01-01

    Since 1992 there has been an explosion in the discovery of planets orbiting stars other than the Sun. There are now around 600 alien planets that we know about and that number is likely to break through the 1,000 ‘barrier’ within a couple of years. The recent launch of the Kepler space telescope specifically to look for new worlds opens the prospect of hundreds, maybe thousands, of further exoplanets being found. Many of these planets orbits stars that are not too different from the Sun, but they are so close in to their stars that their surfaces could be flooded with seas of molten lead – or even molten iron. Others orbit so far from their stars that they might as well be alone in interstellar space. A planet closely similar to the Earth has yet to be detected, but that (to us) epoch-making discovery is just a matter of time. Could these alien worlds could provide alternative homes for humankind, new supplies of mineral resources and might they might already be homes to alien life? Exoplanets: Finding,...

  1. Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    CERN Document Server

    Plavchan, Peter; Gaudi, Scott; Crepp, Justin; Xavier, Dumusque; Furesz, Gabor; Vanderburg, Andrew; Blake, Cullen; Fischer, Debra; Prato, Lisa; White, Russel; Makarov, Valeri; Marcy, Geoff; Stapelfeldt, Karl; Haywood, Raphaëlle; Collier-Cameron, Andrew; Quirrenbach, Andreas; Mahadevan, Suvrath; Anglada, Guillem; Muirhead, Philip

    2015-01-01

    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust...

  2. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    Science.gov (United States)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  3. Using Kepler Candidates to Examine the Properties of Habitable Zone Exoplanets

    CERN Document Server

    Adams, Arthur D

    2016-01-01

    An analysis of the currently known exoplanets in the habitable zones (HZs) of their host stars is of interest in both the wake of the NASA Kepler mission and with prospects for expanding the known planet population through future ground- and space-based projects. In this paper we compare the empirical distributions of the properties of stellar systems with transiting planets to those with transiting HZ planets. This comparison includes two categories: confirmed/validated transiting planet systems, and Kepler planet and candidate planet systems. These two categories allow us to present quantitative analyses on both a conservative dataset of known planets and a more optimistic and numerous sample of Kepler candidates. Both are subject to similar instrumental and detection biases, and vetted against false positive detections. We examine whether the HZ distributions vary from the overall distributions in the Kepler sample with respect to planetary radius as well as stellar mass, effective temperature, and metalli...

  4. M dwarf stars in the light of (future) exoplanet searches

    CERN Document Server

    Rojas-Ayala, B; Mann, A W; Lépine, S; Gaidos, E; Bonfils, X; Helling, Ch; Henry, T J; Rogers, L A; von Braun, K; Youdin, A

    2012-01-01

    We present a brief overview of a splinter session on M dwarf stars as planet hosts that was organized as part of the Cool Stars 17 conference. The session was devoted to reviewing our current knowledge of M dwarf stars and exoplanets in order to prepare for current and future exoplanet searches focusing in low mass stars. We review the observational and theoretical challenges to characterize M dwarf stars and the importance of accurate fundamental parameters for the proper characterization of their exoplanets and our understanding on planet formation.

  5. Exoplanet atmosphere. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy.

    Science.gov (United States)

    Stevenson, Kevin B; Désert, Jean-Michel; Line, Michael R; Bean, Jacob L; Fortney, Jonathan J; Showman, Adam P; Kataria, Tiffany; Kreidberg, Laura; McCullough, Peter R; Henry, Gregory W; Charbonneau, David; Burrows, Adam; Seager, Sara; Madhusudhan, Nikku; Williamson, Michael H; Homeier, Derek

    2014-11-14

    Exoplanets that orbit close to their host stars are much more highly irradiated than their solar system counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18(-0.12)(+0.07) and an altitude dependence in the hot-spot offset relative to the substellar point.

  6. Observations of Extrasolar Planet Transits: What's next?

    Science.gov (United States)

    Rauer, H.

    2014-03-01

    Transits of extrasolar planets are a goldmine for our understanding of the physical nature of planets beyond the Solar System. Measurements of radii from transit observations combined with mass determinations from radial velocity spectroscopy, or transit timing variations, have provided the first indications to the planetary composition and interior structure. It turns out that planets show a much richer diversity than found in our own planetary system, considering e.g. the so-called 'super-Earths', 'mini-Neptunes', and inflated giant planets. Transiting exoplanets also allow for spectroscopic observations of their atmospheres, either during transit or near secondary eclipse. Exoplanets showing transits have therefore been identified as key observables, not only for planet detection, but in particular for investigating further planetary nature. As a result, a new generation of instruments (space- and groundbased) for exoplanet transit observations is already in the construction phase and is planned for the near future. Most of these target specifically stars bright enough for spectroscopic follow-up observations, a èlesson learned' from past transit surveys. A clear goal for future investigations of habitable planets is the detection and characterization of terrestrial planets which potentially could harbor life. This talk will review the status and in particular the future of transit observations, with a focus on rocky planets in the habitable zone of their host stars.

  7. Exoplanet Habitability: Effects of Planetesimal Carbon Chemistry

    Science.gov (United States)

    Johnson, Torrence; Mousis, Olivier; Lunine, Jonathan; Madhusudhan, Nikku

    2014-05-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the 'habitable zone'. TVJ

  8. MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, CA 94550 (United States); Nettelmann, N. [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Ackland, G. J. [Centre for Science at Extreme Conditions, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2012-01-01

    For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These

  9. Exomol: Molecular Line Lists for Exoplanet and Other Atmospheres

    Science.gov (United States)

    Tennyson, Jonathan

    2013-06-01

    Spectral characterization of astrophysical objects cool enough to form molecules in their atmospheres (cool stars, extrosolar planets and planetary discs) requires considerable amounts of fundamental molecular data. The existing molecular line lists (with some exceptions) are generally not sufficiently accurate and complete. The ExoMol project is actively generating comprehensive line lists for all molecules likely to be observable in exoplanet atmospheres in the foreseeable future. This is a huge undertaking which will mean providing in excess of 10^{11} spectral lines for a large variety of molecular species, see Tennyson and Yurchenko (Mon. Not. R. Astron. Soc., 425, 21 (2012)) The physics of molecular absorptions is complex and varies between different classes of absorbers. The project is therefore be divided into following topics (a) diatomic, (b) triatomics, (c) tetratomics, (d) methane and (e) larger molecules. Special techniques are being developed to treat each case. The majority of diatomic systems to be tackled are open shell species involving a transition metal atom; the opacity is provided by the transitions between the many low lying electronic states of the system. The calculation of rotation-vibration line lists for closed-shell triatomic systems is now relatively straightforward provided enough care is taken in deriving the potential energy and dipole surfaces. An H_2S line list is nearing completion and studies on C_3 have started. Accurate rotation-vibration line lists for hot tetratomic molecules such as ammonia (complete), phosphine (nearing completion), acetylene (initial study published), hydrogen peroxide (initial study complete), SO_3 (room temperature line list complete) and formaldehyde, test what is computationally possible at present. An inital line list for hot (1000 K) methane has been completed and is being improved. Work on systems larger than this is just commencing. Data from this project can be accessed at www.exomol.com.

  10. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    CERN Document Server

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  11. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    CERN Document Server

    Narita, Norio; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium(IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current ...

  12. Scientific Return of Coronagraphic Exoplanet Imaging and Spectroscopy Using WFIRST

    CERN Document Server

    Burrows, Adam

    2014-01-01

    In this study, we explore and review the scientific potential for exoplanet characterization by a high-contrast optical coronagraph on WFIRST/AFTA. We suggest that the heterogeneity in albedo spectra and planet/star flux ratios as a function of orbital distance, planet mass, and composition expected for the giant exoplanets at separations from their primaries accessible to WFIRST will provide unique constraints on giant planet atmospheres, evolution, aerosol and cloud properties, and general theory. Such exoplanets are not merely extrapolations of Jupiter and Saturn, but are likely to occupy a rich continuum of varied behaviors. Each in themselves and jointly, optical spectra, photometry, and polarization measurements of a diverse population of giant exoplanets in the solar neighborhood has the potential to reveal a multitude of fundamental features of their gas-giant chemistry, atmospheres, and formation. Such a campaign will enrich our understanding of this class of planets beyond what is possible with even...

  13. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  14. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury. PMID:23426260

  15. EChO - Exoplanet Characterisation Observatory

    CERN Document Server

    Tinetti, G; Henning, T; Meyer, M; Micela, G; Ribas, I; Stam, D; Swain, M; Krause, O; Ollivier, M; Pace, E; Swinyard, B; Aylward, A; van Boekel, R; Coradini, A; Encrenaz, T; Snellen, I; Zapatero-Osorio, M R; Bouwman, J; Cho, J Y-K; Foresto, V Coudé du; Guillot, T; Lopez-Morales, M; Mueller-Wodarg, I; Palle, E; Selsis, F; Sozzetti, A; Ade, P A R; Achilleos, N; Adriani, A; Agnor, C B; Afonso, C; Prieto, C Allende; Bakos, G; Barber, R J; Barlow, M; Bernath, P; Bezard, B; Bordé, P; Brown, L R; Cassan, A; Cavarroc, C; Ciaravella, A; Cockell, C O U; Coustenis, A; Danielski, C; Decin, L; De Kok, R; Demangeon, O; Deroo, P; Doel, P; Drossart, P; Fletcher, L N; Focardi, M; Forget, F; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gaulme, P; Hernández, J I González; Grasset, O; Grassi, D; Grenfell, J L; Griffin, M J; Griffith, C A; Grözinger, U; Guedel, M; Guio, P; Hainaut, O; Hargreaves, R; Hauschildt, P H; Heng, K; Heyrovsky, D; Hueso, R; Irwin, P; Kaltenegger, L; Kervella, P; Kipping, D; Koskinen, T T; Kovács, G; La Barbera, A; Lammer, H; Lellouch, E; Leto, G; Morales, M Lopez; Valverde, M A Lopez; Lopez-Puertas, M; Lovis, C; Maggio, A; Maillard, J P; Prado, J Maldonado; Marquette, J B; Martin-Torres, F J; Maxted, P; Miller, S; Molinari, S; Montes, D; Moro-Martin, A; Moses, J I; Mousis, O; Tuong, N Nguyen; Nelson, R; Orton, G S; Pantin, E; Pascale, E; Pezzuto, S; Pinfield, D; Poretti, E; Prinja, R; Prisinzano, L; Rees, J M; Reiners, A; Samuel, B; Sanchez-Lavega, A; Forcada, J Sanz; Sasselov, D; Savini, G; Sicardy, B; Smith, A; Stixrude, L; Strazzulla, G; Tennyson, J; Tessenyi, M; Vasisht, G; Vinatier, S; Viti, S; Waldmann, I; White, G J; Widemann, T; Wordsworth, R; Yelle, R; Yung, Y; Yurchenko, S N

    2011-01-01

    A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature str...

  16. Detectability of Planetesimal Impacts on Giant Exoplanets

    CERN Document Server

    Flagg, Laura; Matthews, Keith

    2015-01-01

    The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wavelengths from 2 - 4 microns is revealed. Jupiter's reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 microns. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiter's atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 microns, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month.

  17. A sub-Mercury-sized exoplanet

    CERN Document Server

    Barclay, Thomas; Lissauer, Jack J; Huber, Daniel; Fressin, Francois; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-01-01

    Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Kepler space telescope has allowed us to detect planets that are the size of Earth and somewhat smaller, but no previous planets have been found that are smaller than those we see in our own Solar System. Here we report the discovery of a planet significantly smaller than Mercury. This tiny planet is the innermost of three planets that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of Earth's Moon, and highly irradiated surface, Kepler-37b is probably a rocky planet with no atmosphere or water, similar to Mercury.

  18. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  19. Thermal Tides in Short Period Exoplanets

    CERN Document Server

    Arras, Phil

    2009-01-01

    Time-dependent insolation in a planetary atmosphere induces a mass quadrupole upon which the stellar tidal acceleration can exert a force. This "thermal tide" force can give rise to secular torques on the planet and orbit as well as radial forces causing eccentricity evolution. We apply this idea to the close-in gas giant exoplanets ("hot Jupiters"). The response of radiative atmospheres is computed in a hydrostatic model which treats the insolation as a time-dependent heat source, and solves for thermal radiation using flux-limited diffusion. Fully nonlinear numerical simulations are compared to solutions of the linearized equations, as well as analytic approximations, all of which are in good agreement. We find generically that thermal tide density perturbations {\\it lead} the semi-diurnal forcing. As a result thermal tides can generate asynchronous spin and eccentricity. Our results are as follows: (1) Departure from synchronous spin is significant for hot Jupiters, and increases with orbital period. (2) O...

  20. Climate instability on tidally locked exoplanets

    CERN Document Server

    Kite, Edwin S; Manga, Michael

    2011-01-01

    Feedbacks that can destabilize the climates of synchronously-rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable-zone (HZ) planets maintain stable surface liquid water over geological time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering,and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf HZ rocky planets, are expected to be tidally locked. We investigate two feedbacks that can destabilize climate on tidally-locked planets. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate increases when the pressure decreases, a positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. (2) When decreases in pressure increase the surface area above the melting point (through red...

  1. Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

    Science.gov (United States)

    Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew

    2015-04-01

    The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b-a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.

  2. Two nearby sub-Earth-sized exoplanet candidates in the GJ 436 system

    CERN Document Server

    Stevenson, Kevin B; Lust, Nate B; Lewis, Nikole K; Montagnier, Guillaume; Moses, Julianne I; Visscher, Channon; Blecic, Jasmina; Hardy, Ryan A; Cubillos, Patricio; Campo, Christopher J

    2012-01-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 +/- 0.04 times that of Earth (R_{\\oplus}). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 +/- 8x10^{-6} days. We also report evidence of a 0.65 +/- 0.06 R_{\\oplus} exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed, UCF-1.01 and UCF-1.02 would be called GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g/cm^3, we predict both candidates to have similar masses (~0.28 Earth-masses, M_{\\oplus}, 2.6 Mars-masses) and surface gravities of ~0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T_{eq}, where emitted and absorbed radiati...

  3. Exoplanet Photometry and Spectroscopy with HII/L2

    Science.gov (United States)

    Tamura, M.

    2000-12-01

    With the recent discovery of extrasolar planets (exoplanets) around nearby stars by indirect methods, one of the next goals of the exoplanet study is to directly detect the giant exoplanets and to make photometry and spectroscopy. The next decade will be the time to move from discovery to characterization of exoplanet systems. This, however, requires all of high sensitivity, high spatial resolution, and high dynamic range observations at infrared wavelengths, which will be difficult to achieve from the ground. In this paper, we describe a coronagraphic camera and spectrometer for the HII/L2 mission for mid- and far-infrared astronomy and show the photometry and spectroscopy of exoplanets to be one of the most important scientific aims for this mission. The proposed HII/L2 coronagraph will cover the wavelength between 4 and 27 micron, optimized at 5 micron. The plate scale is about 0.06 arcsec, covering a field-of-view of about 1 arcmin by 1 arcmin with a 1024x1024 array detector. Occulting masks of diameter greater than 0.72 arcsec will be available, which enables the observations of exoplanets beyond ~2 AU around nearby (d~5 pc) stars. The coronagraph greatly takes advantage of the single (non-segmented) mirror of the HII/L2 telescope design. A high-efficiency Ge or CdTe grism with a resolution of a few hundreds will be installed for the coronagraphic spectroscopy of the exoplanet atmosphere. Rich spectral features at mid-infrared wavelengths enable us to study various atmospheric components and to make a comparative study of the exoplanets and our solar system planets.

  4. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    OpenAIRE

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C.; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosol...

  5. MOLECULAR-KINETIC SIMULATIONS OF ESCAPE FROM THE EX-PLANET AND EXOPLANETS: CRITERION FOR TRANSONIC FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert E.; Volkov, Alexey N.; Erwin, Justin T. [Engineering Physics, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2013-05-01

    The equations of gas dynamics are extensively used to describe atmospheric loss from solar system bodies and exoplanets even though the boundary conditions at infinity are not uniquely defined. Using molecular-kinetic simulations that correctly treat the transition from the continuum to the rarefied region, we confirm that the energy-limited escape approximation is valid when adiabatic expansion is the dominant cooling process. However, this does not imply that the outflow goes sonic. Rather large escape rates and concomitant adiabatic cooling can produce atmospheres with subsonic flow that are highly extended. Since this affects the heating rate of the upper atmosphere and the interaction with external fields and plasmas, we give a criterion for estimating when the outflow goes transonic in the continuum region. This is applied to early terrestrial atmospheres, exoplanet atmospheres, and the atmosphere of the ex-planet, Pluto, all of which have large escape rates.

  6. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. H. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China); Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut Astrophysique de Paris, F-75014 Paris (France)

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  7. Kepler's optical phase curve of the exoplanet HAT-P-7b.

    Science.gov (United States)

    Borucki, W J; Koch, D; Jenkins, J; Sasselov, D; Gilliland, R; Batalha, N; Latham, D W; Caldwell, D; Basri, G; Brown, T; Christensen-Dalsgaard, J; Cochran, W D; DeVore, E; Dunham, E; Dupree, A K; Gautier, T; Geary, J; Gould, A; Howell, S; Kjeldsen, H; Lissauer, J; Marcy, G; Meibom, S; Morrison, D; Tarter, J

    2009-08-01

    Ten days of photometric data were obtained during the commissioning phase of the Kepler mission, including data for the previously known giant transiting exoplanet HAT-P-7b. The data for HAT-P-7b show a smooth rise and fall of light from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 parts per million in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in photometric precision to the detection of a transiting Earth-size planet for which the mission was designed.

  8. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Science.gov (United States)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface. PMID:27027283

  9. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Science.gov (United States)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  10. TWINKLE – A Low Earth Orbit Visible and Infrared Exoplanet Spectroscopy Observatory

    Science.gov (United States)

    Tessenyi, Marcell; Savini, Giorgio; Tinetti, Giovanna; Tennyson, Jonathan; Dhesi, Mekhi; Joshua, Max

    2016-10-01

    Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS).Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a low-Earth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs - between 0.4 and 4.5µm - with resolving power R~300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes.The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.

  11. Lightning climatology of exoplanets and brown dwarfs guided by Solar system data

    Science.gov (United States)

    Hodosán, G.; Helling, Ch.; Asensio-Torres, R.; Vorgul, I.; Rimmer, P. B.

    2016-10-01

    Clouds form on extrasolar planets and brown dwarfs where lightning could occur. Lightning is a tracer of atmospheric convection, cloud formation and ionization processes as known from the Solar system, and may be significant for the formation of prebiotic molecules. We study lightning climatology for the different atmospheric environments of Earth, Venus, Jupiter and Saturn. We present lightning distribution maps for Earth, Jupiter and Saturn, and flash densities for these planets and Venus, based on optical and/or radio measurements from the World Wide Lightning Location Network and Sferics Timing and Ranging Network radio networks, the Lightning Imaging Sensor/Optical Transient Detector satellite instruments, the Galileo, Cassini, New Horizons and Venus Express spacecraft. We also present flash densities calculated for several phases of two volcano eruptions, Eyjafjallajökull's (2010) and Mt Redoubt's (2009). We estimate lightning rates for sample, transiting and directly imaged extrasolar planets and brown dwarfs. Based on the large variety of exoplanets, six categories are suggested for which we use the lightning occurrence information from the Solar system. We examine lightning energy distributions for Earth, Jupiter and Saturn. We discuss how strong stellar activity may support lightning activity. We provide a lower limit of the total number of flashes that might occur on transiting planets during their full transit as input for future studies. We find that volcanically very active planets might show the largest lightning flash densities. When applying flash densities of the large Saturnian storm from 2010/11, we find that the exoplanet HD 189733b would produce high lightning occurrence even during its short transit.

  12. Watching the Sun to Improve Exoplanet Detection

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    Looking for stars that wobble is one of the key ways by which we detect exoplanets: the gravitational pull of planets cause tiny variations in stars radial velocities. But our ability to detect Earth twins is currently limited by our ability to distinguish between radial-velocity variations caused by exoplanets, and those caused by noise from the star itself. A team of scientists has recently proposed that the key to solving this problem may be to examine our own star.Precision Amid NoiseThe radial-velocity technique works well for detecting large planets on close orbits, but detecting an Earth twin requires being able to detect star motion on the order of 10 cm/s! This precision is hard to reach, because activity on the stellar surface i.e., sunspots, plages (bright spots), or granulation can also cause variations in the measured radial velocity for the star, obscuring the signature of a planet.Because the stars were examining arent resolved, we cant track the activity on their surfaces so how can we better understand the imprint that stellar activity has on radial-velocity measurements? A team of scientists has come up with a clever approach: examine the Sun as though it were a distant star.Wealth of InformationThe team, led by Xavier Dumusque (Branco-Weiss Fellow at the Harvard-Smithsonian Center for Astrophysics) and David F. Phillips (Harvard-Smithsonian Center for Astrophysics), has begun a project to observe the Sun with a ground-based solar telescope. The telescope observes the full disk of the Sun and feeds the data into the HARPS-N spectrograph in Spain, a spectrograph normally used for radial-velocity measurements of other stars in the hunt for exoplanets.But the team has access to other data about the Sun, too: information from satellites like the Solar Dynamics Observatory and SORCE about the solar activity and total irradiance during the time when the spectra were taken. Dumusque and collaborators have combined all of this information, during a week

  13. HAT-P-55b: A Hot Jupiter Transiting a Sun-like Star

    CERN Document Server

    Juncher, D; Hartman, J D; Bakos, G Á; Bieryla, A; Kovács, T; Boisse, I; Latham, D W; Kovács, G; Bhatti, W; Csubry, Z; Penev, K; de Val-Borro, M; Falco, E; Torres, G; Noyes, R W; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.

  14. Age consistency between exoplanet hosts and field stars

    Science.gov (United States)

    Bonfanti, A.; Ortolani, S.; Nascimbeni, V.

    2016-01-01

    Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims: This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods: Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of log{R'HK} and vsini, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density ρ⋆ allows us to compute stellar luminosity even if the distance is not available, by combining ρ⋆ with the spectroscopic log g. Results: The median value of the TPH ages is 5 Gyr. Even if this sample is not very large, however the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5) Gyr and 4.8 Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. An analysis of MS stars of the solar neighbourhood belonging to the same spectral types bring to an age distribution similar to the previous ones and centered around solar age value. Therefore, the age of our Sun is consistent with the age distribution of solar neighbourhood stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered

  15. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  16. Direct Imaging of Planet Transit Events

    CERN Document Server

    van Belle, Gerard T; Boyajian, Tabetha; Schaefer, Gail

    2014-01-01

    Exoplanet transit events are attractive targets for the ultrahigh-resolution capabilities afforded by optical interferometers. The intersection of two developments in astronomy enable direct imaging of exoplanet transits: first, improvements in sensitivity and precision of interferometric instrumentation; and second, identification of ever-brighter host stars. Efforts are underway for the first direct high-precision detection of closure phase signatures with the CHARA Array and Navy Precision Optical Interferometer. When successful, these measurements will enable recovery of the transit position angle on the sky, along with characterization of other system parameters, such as stellar radius, planet radius, and other parameters of the transit event. This technique can directly determine the planet's radius independent of any outside observations, and appears able to improve substantially upon other determinations of that radius; it will be possible to extract wavelength dependence of that radius determination,...

  17. Science enabled by ATHENA: Solar system targets and exoplanets

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    ATHENA studies of the solar system will offer some of the deepest insights in the complex workings of planetary magnetospheres and exospheres; ATHENA will answer many of the questions that have only started to be tackled by Chandra and XMM-Newton and will add in a major way to our understanding of the interactions of space plasmas with magnetised and un-magnetised bodies in the solar system. The non-dispersive character of X-IFU spectroscopy will enable Jupiter's auroral and disk X-ray emissions, and that from the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; it will also enable surface composition analysis through fluorescence spectra of the Galilean satellites. ATHENA will establish how planetary exospheres, such as that of Mars, and comets respond to the interaction with the solar wind, in a detailed and global way that other observatories or in situ measurements cannot provide. With its remarkably improved sensitivity over current X-ray telescopes, ATHENA will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. ATHENA will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by ATHENA over that achievable by XMM-Newton or Chandra.

  18. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, Bastien [Ecole Polytechnique, Palaiseau, France. (France); Burrows, Adam, E-mail: bastien.le-bihan@polytechnique.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Science, Peyton Hall Princeton University, Princeton, NJ 08544 (United States)

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  19. A Search for Additional Planets in the NASA EPOXI Observations of the Exoplanet System GJ 436

    CERN Document Server

    Ballard, Sarah; Charbonneau, David; Deming, Drake; Holman, Matthew J; Fabrycky, Daniel; A'Hearn, Michael F; Wellnitz, Dennis D; Barry, Richard K; Kuchner, Marc J; Livengood, Timothy A; Hewagama, Tilak; Sunshine, Jessica M; Hampton, Don L; Lisse, Carey M; Seager, Sara; Veverka, Joseph F

    2009-01-01

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits, or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.0 R_Earth interior to GJ 436b with 95% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. H...

  20. Direct evidence for an evolving dust cloud from the exoplanet KIC 12557548 b

    CERN Document Server

    Bochinski, Jakub J; Marsh, Tom R; Dhillon, Vikram S; Littlefair, Stuart P

    2015-01-01

    We present simultaneous multi-color optical photometry using ULTRACAM of the transiting exoplanet KIC 12557548 b (also known as KIC 1255 b). This reveals, for the first time, the color dependence of the transit depth. Our g and z transits are similar in shape to the average Kepler short-cadence profile, and constitute the highest-quality extant coverage of individual transits. Our Night 1 transit depths are 0.85 +/- 0.04% in z; 1.00 +/- 0.03% in g; and 1.1 +/- 0.3% in u. We employ a residual-permutation method to assess the impact of correlated noise on the depth difference between the z and g bands and calculate the significance of the color dependence at 3.2{\\sigma}. The Night 1 depths are consistent with dust extinction as observed in the ISM, but require grain sizes comparable to the largest found in the ISM: 0.25-1{\\mu}m. This provides direct evidence in favor of this object being a disrupting low-mass rocky planet, feeding a transiting dust cloud. On the remaining four nights of observations the object ...

  1. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  2. CARBON AND OXYGEN ABUNDANCES IN THE HOT JUPITER EXOPLANET HOST STAR XO-2B AND ITS BINARY COMPANION

    International Nuclear Information System (INIS)

    With the aim of connecting the compositions of stars and planets, we present the abundances of carbon and oxygen, as well as iron and nickel, for the transiting exoplanet host star XO-2N and its wide-separation binary companion XO-2S. Stellar parameters are derived from high-resolution, high signal-to-noise spectra, and the two stars are found to be similar in their Teff, log g, iron ([Fe/H]), and nickel ([Ni/H]) abundances. Their carbon ([C/H]) and oxygen ([O/H]) abundances also overlap within errors, although XO-2N may be slightly more C-rich and O-rich than XO-2S. The C/O ratios of both stars (∼0.60 ± 0.20) may also be somewhat larger than solar (C/O ∼ 0.50). The XO-2 system has a transiting hot Jupiter orbiting one binary component but not the other, allowing us to probe the potential effects planet formation might have on the host star composition. Additionally, with multiple observations of its atmosphere the transiting exoplanet XO-2b lends itself to compositional analysis, which can be compared to the natal chemical environment established by our binary star elemental abundances. This work sets the stage for determining how similar or different exoplanet and host star compositions are, and the implications for planet formation, by discussing the C/O ratio measurements in the unique environment of a visual binary system with one star hosting a transiting hot Jupiter.

  3. The influence of the Extreme Ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exoplanets

    CERN Document Server

    Guo, J H

    2015-01-01

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distribution (SED), we tested the influences of stellar EUV SEDs on the physical and chemical properties of the escaping atmosphere. We apply our model to study four exoplanets, HD\\,189733b, HD\\,209458b, GJ \\,436b, and Kepler-11b. We found that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter ($\\lambda$), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400-900${\\AA}$), which pushes the transition of H/H$^{+}$ to low al...

  4. The discovery of a new ELL variable star in Centaurus and possibility of detecting new exoplanets using the FRAM telescope

    Science.gov (United States)

    Pintr, Pavel; Vápenka, David; Mašek, Martin

    2015-01-01

    We report on the discovery of a new variable star during the search for new exoplanets in the Centaurus constellation from the archive of the FRAM telescope, operated by the FRAM team at Los Leones, near Malargüe, Argentina. The star is catalogued as GSC 08630-01117 (11h 36m 10s -53° 12' 15.04"). From the light curve, the star should be an ELL-type variable. We computed the period P = 0.6311+/- 0.0002 days. The maximum is 13.07 +/- 0.02 mag and minimum is 13.22 +/-0.02 mag (in the Johnson V filter) with an amplitude of about 0.15 mag. We registered this star in the CzeV catalogue and in the VSX catalogue as new variable star CzeV603. The FRAM telescope observed several transits of known exoplanets. These observations show the ability to detect new exoplanets using the FRAM telescope.

  5. Robo-AO Kepler Planetary Candidate Survey II: Adaptive Optics Imaging of 969 Kepler Exoplanet Candidate Host Stars

    CERN Document Server

    Baranec, Christoph; Law, Nicholas M; Morton, Tim; Riddle, Reed; Atkinson, Dani; Schonhut, Jessica; Crepp, Justin

    2016-01-01

    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high-angular-resolution visible-light laser-adaptive-optics imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to $\\Delta m \\approx 6$ that contribute to Kepler's measured light curves. We found 203 companions within $\\sim$4" of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby-star probability for this sample of Kepler planet candidate host stars to be 10.6% $\\pm$ 1.1% a...

  6. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  7. Twinkle Twinkle Little Star - Speckle Imaging for Exoplanet Characterization

    Science.gov (United States)

    Howell, Steve B.; Scott, Nic; Horch, Elliott

    2016-06-01

    The NASA K2 mission is finding many high-value exoplanets and world-wide follow-up is ensuing. The NASA TESS mission will soon be launched, requiring additional ground-based observations as well. As a part of the NASA-NSFNN-EXPLORE program to enable exoplanet research, our group is building two new speckle interferometry cameras for the Kitt Peak WIYN 3.5-m telescope and the Gemini-N 8-m telescope. Modeled after the successful DSSI visitor instrument that has been used at these telescopes for many years, speckle observations provide the highest resolution images available today from any ground- or space-based single telescope. They are the premier method through which small, rocky exoplanets can be validated. Available for public use in early 2017, WIYNSPKL and GEMSPKL will obtain simultaneous images in two filters with fast EMCCD readout, "speckle" and “wide-field” imaging modes, and user support for proposal writing, observing, and data reduction. We describe the new cameras, their design, and their benefits for exoplanet follow-up, characterization, and validation. Funding for this project comes from the NASA Exoplanet Exploration Program and NASA HQ.

  8. ESPRESSO: The next European exoplanet hunter

    CERN Document Server

    Pepe, F; Cristiani, S; Rebolo, R; Santos, N C; Dekker, H; Mégevand, D; Zerbi, F M; Cabral, A; Di Marcantonio, P; Abreu, M; Affolter, M; Aliverti, M; Prieto, C Allende; Amate, M; Avila, G; Baldini, V; Bristow, P; Broeg, C; Cirami, R; Coelho, J; Conconi, P; Coretti, I; Cupani, G; D'Odorico, V; De Caprio, V; Delabre, B; Dorn, R; Figueira, P; Fragoso, A; Galeotta, S; Genolet, L; Gomes, R; Hernández, J I González; Hughes, I; Iwert, O; Kerber, F; Landoni, M; Lizon, J -L; Lovis, C; Maire, C; Mannetta, M; Martins, C; Monteiro, M; Oliveira, A; Poretti, E; Rasilla, J L; Riva, M; Tschudi, S Santana; Santos, P; Sosnowska, D; Sousa, S; Spanó, P; Tenegi, F; Toso, G; Vanzella, E; Viel, M; Osorio, M R Zapatero

    2014-01-01

    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coud\\'e Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coud\\'e trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm/s level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sen...

  9. Probing exoplanet clouds with optical phase curves.

    Science.gov (United States)

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  10. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  11. Remotely detecting really tiny particles around exoplanets

    Science.gov (United States)

    Brown, A. J.

    2013-12-01

    Scattering by particles significantly smaller than the wavelength is no doubt an important physical process in (exo)planetary atmospheres, on planetary surfaces, and in protoplanetary disks. A number of observations of spectral bluing (referred to as 'negative slopes' or 'spectral bluing' or 'Rayleigh scattering') in observations of planetary surfaces and atmospheres have been reported in the literature, however, the necessary theoretical modeling of this phenomenon has not yet achieved maturity. This presentation will describe recent work to bridge this gap, by examining the effect of grain size and optical index on the albedo of small conservative and absorbing particles as a function of wavelength. The basic conditions necessary for spectral bluing or reddening to be observed in real-world situations are identified. We find that any sufficiently monomodal size distribution of scattering particles will cause spectral bluing in some part of the EM spectrum regardless of its optical index. The implications for exoplanet observations will be discussed, and if any observations of spectral bluing have already been made, please feel free to contact the first author. References Brown, Adrian J. "On the effects of size factor on albedo versus wavelength for light scattered by small particles under Mie and Rayleigh regimes." arXiv preprint arXiv:1307.5096 (2013).

  12. True Masses of Radial-Velocity Exoplanets

    CERN Document Server

    Brown, Robert A

    2015-01-01

    We explore the science power of space telescopes used to estimate the true masses of known radial-velocity exoplanets by means of astrometry on direct images. We translate a desired mass accuracy (+/10% in our example) into a minimum goal for the signal-to-noise ratio, which implies a minimum exposure time. When the planet is near a node, the mass measurement becomes difficult if not impossible, because the apparent separation becomes decoupled from the inclination angle of the orbit. The combination of this nodal effect with considerations of solar and anti-solar pointing restrictions, photometric and obscurational completeness, and image blurring due to orbital motion, severely limits the observing opportunities, often to only brief intervals in a five-year mission. We compare the science power of four missions, two with external star shades, EXO-S and WFIRST-S, and two with internal coronagraphs, EXO-C and WFIRST-C. The star shades out-perform the coronagraph in this science program by about a factor of th...

  13. Thermodynamic Limits on Magnetodynamos in Rocky Exoplanets

    CERN Document Server

    Gaidos, Eric; Manga, Michael; Hernlund, John

    2010-01-01

    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron "snow" will condense near or at the top of these cores, and the net transfer of latent heat upwards will suppress convection and a dynamo. More massive planet...

  14. Probing exoplanet clouds with optical phase curves

    CERN Document Server

    Munoz, A Garcia

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve -- from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the...

  15. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  16. Results of the 2015 Spitzer Exoplanet Data Challenge: Repeatability and Accuracy of Exoplanet Eclipse Depths

    Science.gov (United States)

    Ingalls, James G.; Krick, Jessica E.; Carey, Sean J.; Stauffer, John R.; Grillmair, Carl J.; Lowrance, Patrick

    2016-06-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. At infrared wavelengths secondary eclipses and phase curves are powerful tools for studying a planet’s atmosphere. Extracting information about atmospheres, however, is extremely challenging due to the small differential signals, which are often at the level of 100 parts per million (ppm) or smaller, and require the removal of significant instrumental systematics. For the IRAC 3.6 and 4.5μm InSb detectors that remain active on post-cryogenic Spitzer, the interplay of residual telescope pointing fluctuations with intrapixel gain variations in the moderately under sampled camera is the largest source of time-correlated noise. Over the past decade, a suite of techniques for removing this noise from IRAC data has been developed independently by various investigators. In summer 2015, the Spitzer Science Center hosted a Data Challenge in which seven exoplanet expert teams, each using a different noise-removal method, were invited to analyze 10 eclipse measurements of the hot Jupiter XO-3 b, as well as a complementary set of 10 simulated measurements. In this contribution we review the results of the Challenge. We describe statistical tools to assess the repeatability, reliability, and validity of data reduction techniques, and to compare and (perhaps) choose between techniques.

  17. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    Science.gov (United States)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  18. Utilitarian Opacity Model for Aggregate Particles in Protoplanetary Nebulae and Exoplanet Atmospheres

    Science.gov (United States)

    Cuzzi, Jeffrey N.; Estrada, Paul R.; Davis, Sanford S.

    2014-02-01

    As small solid grains grow into larger ones in protoplanetary nebulae, or in the cloudy atmospheres of exoplanets, they generally form porous aggregates rather than solid spheres. A number of previous studies have used highly sophisticated schemes to calculate opacity models for irregular, porous particles with sizes much smaller than a wavelength. However, mere growth itself can affect the opacity of the medium in far more significant ways than the detailed compositional and/or structural differences between grain constituents once aggregate particle sizes exceed the relevant wavelengths. This physics is not new; our goal here is to provide a model that provides physical insight and is simple to use in the increasing number of protoplanetary nebula evolution and exoplanet atmosphere models appearing in recent years, yet quantitatively captures the main radiative properties of mixtures of particles of arbitrary size, porosity, and composition. The model is a simple combination of effective medium theory with small-particle closed-form expressions, combined with suitably chosen transitions to geometric optics behavior. Calculations of wavelength-dependent emission and Rosseland mean opacity are shown and compared with Mie theory. The model's fidelity is very good in all comparisons we have made except in cases involving pure metal particles or monochromatic opacities for solid particles with sizes comparable to the wavelength.

  19. The MUSCLES Treasury Survey: Temporally- and Spectrally-Resolved Irradiance from Low-mass Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Parke Loyd, R. O.; Youngblood, Allison; Linsky, Jeffrey; MUSCLES Treasury Survey Team

    2016-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to near-UV; 5 - 3200 Ang) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential "biomarker" gases. It has been shown that the atmospheric signatures of potentially habitable planets around low-mass stars may be significantly different from planets orbiting Sun-like stars owing to the different UV spectral energy distribution. I will present results from a panchromatic survey (Hubble/Chandra/XMM/optical) of M and K dwarf exoplanet hosts, the MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems). We reconstruct the Lyman-alpha and extreme-UV (100-900 Ang) radiation lost to interstellar attenuation and create 5 Angstrom to 5 micron stellar irradiance spectra; these data will be publically available as a High-Level Science Product on MAST. We find that all low-mass exoplanet host stars exhibit significant chromospheric/transition region/coronal emission -- no "UV inactive" M dwarfs are observed. The F(far-UV)/F(near-UV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, increases by ~3 orders of magnitude as the habitable zone moves inward from 1 to 0.1 AU, while the incident far-UV (912 - 1700 Ang) and XUV (5 - 900 Ang) radiation field strengths decrease by factors of a few across this range. Far-UV flare activity is common in 'optically inactive' M dwarfs; statistics from the entire sample indicate that large UV flares (E(300 - 1700 Ang) >= 10^31 erg) occur several times per day on typical M dwarf exoplanet hosts.

  20. Surveying Nearby M dwarfs with Gaia: A Treasure Trove for Exoplanet Astrophysics

    Science.gov (United States)

    Sozzetti, A.; Tinetti, G.; Lattanzi, M. G.; Micela, G.; Morbidelli, R.; Giacobbe, P.

    2011-10-01

    Cool, nearby M dwarfs within a few tens of parsecs from the Sun are today becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and thanks to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs in the vicinity of the Sun, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of actual M stars within 30 pc from the Sun. The stellar reservoir is carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU).We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and spaceborne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of detected (transiting and non-transiting) planets aroundM stars, for the purpose of spectroscopic characterization of their atmospheres with dedicated observatories in space

  1. The Gaia Astrometric Survey of Nearby M Dwarfs: A Treasure Trove for Exoplanet Astrophysics

    Science.gov (United States)

    Sozzetti, Alessandro; Giacobbe, P.; Lattanzi, M. G.; Micela, G.; Tinetti, G.

    2011-09-01

    Cool, nearby M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of already known dM stars within 30 pc from the Sun, carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU). We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. These results will help in evaluating the complete expected Gaia planet population around late-type stars. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and space-borne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of (transiting and non-transiting) planets around M stars, for spectroscopic characterization of their atmospheres with

  2. Characterising exoplanets and their environment with UV transmission spectroscopy

    CERN Document Server

    Fossati, L; Ehrenreich, D; Haswell, C A; Kislyakova, K G; Lammer, H; Etangs, A Lecavelier des; Alibert, Y; Ayres, T R; Ballester, G E; Barnes, J; Bisikalo, D V; Collier, A; Cameron,; Czesla, S; Desert, J -M; France, K; Guedel, M; Guenther, E; Helling, Ch; Heng, K; Homstrom, M; Kaltenegger, L; Koskinen, T; Lanza, A F; Linsky, J L; Mordasini, C; Pagano, I; Pollacco, D; Rauer, H; Reiners, A; Salz, M; Schneider, P C; Shematovich, V I; Staab, D; Vidotto, A A; Wheatley, P J; Wood, B E; Yelle, R V

    2015-01-01

    Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exoplanet observations formed by a dozen "golden systems" for which observations will be available from the UV to the infrared. Only in this way we will be able to fully exploit JWST observations for exoplanet science, one of the key JWST science case.

  3. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    Science.gov (United States)

    Hu, Renyu

    2015-12-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  4. PULSE: The Palomar Ultraviolet Laser for the Study of Exoplanets

    CERN Document Server

    Baranec, Christoph; Burruss, Rick S; Bowler, Brendan P; van Dam, Marcos; Riddle, Reed; Shelton, J Christopher; Truong, Tuan; Roberts, Jennifer; Milburn, Jennifer; Tesch, Jonathan

    2014-01-01

    The Palomar Ultraviolet Laser for the Study of Exoplanets (PULSE) will dramatically expand the science reach of PALM-3000, the facility high-contrast extreme adaptive optics system on the 5-meter Hale Telescope. By using an ultraviolet laser to measure the dominant high spatial and temporal order turbulence near the telescope aperture, one can increase the limiting natural guide star magnitude for exquisite correction from mV < 10 to mV < 16. Providing the highest near-infrared Strehl ratios from any large telescope laser adaptive optics system, PULSE uniquely enables spectroscopy of low-mass and more distant young exoplanet systems, essential to formulating a complete picture of exoplanet populations.

  5. M Dwarf Exoplanet Survey by the Falcon Telescope Network

    Science.gov (United States)

    Carlson, Randall E.

    2016-10-01

    The Falcon Telescope Network (FTN) consists of twelve automated 20-inch telescopes located around the globe. We control it at the US Air Force Academy in Colorado Springs, Colorado from the Cadet Space Operations Center. We have installed 10 of the 12 sites and anticipate full operational capability by the beginning of 2017. The network's worldwide geographic distribution provides advantages. The primary mission of the FTN is Space Situational Awareness and studying Near Earth Objects. However, we are employing the FTN with its 11' x 11' field-of-view for a five-year, M dwarf exoplanet survey. Specifically, we are searching for Earth-radius exoplanets. We describe the FTN, design considerations going into the FTN's M dwarf exoplanet survey including automated operations, and initial results of the survey.

  6. Spectral Signatures of WFIRST-AFTA Exoplanet Coronagraphy Targets

    Science.gov (United States)

    Lewis, Nikole K.; Marley, Mark S.; Lupu, Roxana E.; Fortney, Jonathan J.; Morley, Caroline; Greene, Thomas P.; Robinson, Tyler D.; Visscher, Channon; Freedman, Richard; Line, Michael R.; Traub, Wesley A.

    2016-01-01

    A key component of the WFIRST-AFTA mission is high contrast imaging of planets and debris disks around nearby stars. It is expected that the WFIRST-AFTA mission will be able to characterize around a dozen exoplanets, many of which are already known to exist from current radial velocity surveys. These planets will possess a broad range of atmospheric properties, including a number of possible cloud species and atmospheric compositions. In preparation for the WFIRST-AFTA mission, our team is constructing a library of relevant theoretical spectra and performing spectral retrieval analyses to assess the robustness with which WFIRST-AFTA will be able to characterize exoplanet atmospheres. Here we present our initial findings for a subset of the known exoplanet population that will likely be prime targets for the WFIRST-AFTA mission.

  7. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, & Binary Stars

    CERN Document Server

    Hinkley, Sasha

    2011-01-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Fu...

  8. Exomol: Molecular Line Lists for Exoplanet and Other Atmospheres

    Science.gov (United States)

    Tennyson, J.; Barber, R. J.; Azzam, A.; Down, M.; Hill, C.; Yurchenko, S. N.

    2011-06-01

    Spectral characterization of astrophysical objects cool enough to form molecules in their atmospheres (cool stars, extrosolar planets and planetary discs) requires considerable amount of fundamental molecular data. The existing molecular line lists (with some exceptions) are however not sufficiently accurate and complete. We present a new (five years) European Union project ExoMol aimed at bridging this gap: ExoMol will generate comprehensive line lists for all molecules likely to be observable in exoplanet atmospheres in the foreseeable future. This is a huge undertaking which will mean providing in excess of 1011 spectral lines for a large variety of molecular species. %Although the calculation of a rotation-vibration line list for molecules %with three atoms is becoming more routine, the issues involved in %calculating such lists for larger species are formidable. %This will also require developing new procedures, particularly to deal with %the larger molecules of interest which, up until now, have been considered %to be beyond the sort of detailed study anticipated here. The physics of molecular absorptions is complex and varies between different classes of absorbers. The project will therefore be divided into following topics (a) diatomic, (b) triatomics, (c) tetratomics, (d) methane and (e) larger molecules. Each of which will require special techniques will be required in each case. The majority of diatomic systems to be tackled are open shell species involving a transition metal atom; the opacity is provided by the transitions between the many low lying electronic states of the system. The calculation of rotation-vibration line lists for closed-shell triatomic systems is now relatively straightforward provided enough care is taken in deriving the potential energy surface. For H_2S calculations are in progress: the unusual properties of the dipole moment will also require careful treatment. Accurate rotation-vibration line lists for hot tetratomic molecules

  9. Benchmarking the power of amateur observatories for the TTV exoplanets detection

    CERN Document Server

    Baluev, Roman V; Shaidulin, Vakhit Sh; Sokova, Iraida A; Jones, Hugh R A; Tuomi, Mikko; Anglada-Escudé, Guillem; Benni, Paul; Colazo, Carlos A; Schneiter, Matias E; D'Angelo, Carolina S Villarreal; Burdanov, Artem Yu; Fernández-Lajús, Eduardo; Baştürk, Özgür; Hentunen, Veli-Pekka; Shadick, Stan

    2015-01-01

    We perform an analysis of ~80000 photometric measurements for the following 10 stars hosting transiting planets: WASP-2, -4, -5, -52, Kelt-1, CoRoT-2, XO-2, TrES-1, HD 189733, GJ 436. Our analysis includes mainly transit lightcurves from the Exoplanet Transit Database, public photometry from the literature, and some proprietary photometry privately supplied by other authors. Half of these lightcurves were obtained by amateurs. From this photometry we derive 306 transit timing measurements, as well as improved planetary transit parameters. Additionally, for 5 of these 10 stars we present a set of radial velocity measurements obtained from the spectra stored in the HARPS and HARPS-N archives using the HARPS-TERRA pipeline. Our analysis of these TTV and RV data did not reveal significant hints of additional orbiting bodies in almost all of the cases. In the WASP-4 case, we found hints of marginally significant TTV signals having amplitude 10-20 sec, although their parameters are model-dependent and uncertain, wh...

  10. Non-detection of Previously Reported Transits of HD 97658b with MOST Photometry

    DEFF Research Database (Denmark)

    Dragomir, Diana; Matthews, Jaymie M.; Howard, Andrew W.;

    2012-01-01

    The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 ± 0.28 R ⊕. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its atmosp...... out transits for a planet with radius larger than 2.09 R ⊕, corresponding to the reported 3σ lower limit. We also report new radial velocity measurements which continue to support the existence of an exoplanet with a period of 9.5 days, and obtain improved orbital parameters.......The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 ± 0.28 R ⊕. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its...

  11. Asteroseismology of Exoplanet-Host Stars in the Kepler Era

    CERN Document Server

    Campante, Tiago L

    2015-01-01

    New insights on stellar evolution and stellar interior physics are being made possible by asteroseismology, the study of stars by the observation of their natural, resonant oscillations. Asteroseismology is making significant contributions to our understanding of solar-type stars, in great part due to the exquisite data that have been made available by NASA's Kepler space telescope. Of particular interest is the synergy between asteroseismology and exoplanetary science. Herein I will review recent contributions from asteroseismology to the determination of fundamental properties of Kepler exoplanet-host stars and stress its potential in constraining the spin-orbit alignment of exoplanet systems.

  12. THERMODYNAMIC LIMITS ON MAGNETODYNAMOS IN ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron 'snow' will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of 'ocean' planets with ∼10% mass in an upper mantle of water (ice).

  13. Kepler Stars with Multiple Transiting Planet Candidates

    Science.gov (United States)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  14. What asteroseismology can do for exoplanets: Kepler-410A b is a Small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    CERN Document Server

    Van Eylen, Vincent; Aguirre, Victor Silva; Arentoft, Torben; Kjeldsen, Hans; Albrecht, Simon; Chaplin, William J; Isaacson, Howard; Pedersen, May G; Jessen-Hansen, Jens; Tingley, Brandon W; Christensen-Dalsgaard, Joergen; Aerts, Conny; Campante, Tiago L; Bryson, Stephen T

    2013-01-01

    We confirm the Kepler planet candidate Kepler-410b (KOI-42b) as a Neptune sized exoplanet on a 17.8 day, eccentric orbit around the bright (Kp = 9.4) star Kepler-410A. This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. Via asteroseismology we determine the following stellar and planetary parameters with high precision; M$_\\star = 1.214 \\pm 0.033$ M$_\\odot$, R$_\\star = 1.352 \\pm 0.010$ R$_\\odot$, Age = $2.76 \\pm 0.54$ Gyr, planetary radius ($2.838 \\pm 0.054$ R$_\\oplus$), and orbital eccentricity ($0.17^...

  15. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38200 La Laguna (Spain); López-Puertas, Manuel [Departamento de Astrofísica, Universidad de La Laguna, Av., Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna (Spain); García-Melendo, E., E-mail: pmr@iac.es [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18080 Granada (Spain)

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  16. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    CERN Document Server

    North, Thomas S H; Gilliland, Ronald L; Huber, Daniel; Campante, Tiago L; Handberg, Rasmus; Lund, Mikkel N; Veras, Dimitri; Kuszlewicz, James S; Farr, Will M

    2016-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation, and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESS missions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune sized planets should be detectable around low luminosity red giant branch stars.

  17. A Large Hubble Space Telescope Survey of Low-Mass Exoplanets

    Science.gov (United States)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; Lothringer, Joshua; Dragomir, Diana; Fortney, Jonathan J.; Howard, Andrew; McCullough, Peter R.; Kempton, Eliza; Morley, Caroline

    2016-06-01

    The discovery of short-period planets with masses and radii between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. From the Kepler mission, we now know that these “super-Earths” or "sub-Neptunes" orbit at least 40% of stars, likely representing the most common outcome of planet formation. Despite this ubiquity, we know little about their typical compositions and formation histories. Spectroscopic transit observations combined with powerful atmospheric retrieval tools can shed new light on these mysterious worlds. In this talk, we will present the main results from our 124-orbit Hubble Space Telescope survey to reveal the chemical diversity and formation histories of super-Earths. This unprecedented HST survey provides the first comprehensive look at this intriguing new class of planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth mass planet near the habitable zone of its host star.

  18. The James Webb Space Telescope and its Potential for Exoplanet Science

    Science.gov (United States)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST s optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit imaging and spectroscopy and direct imaging. We also review the recent discovery of Fomalhaut B and implications for debris disk imaging nd exoplanet detection with JWST.

  19. Characterization of exoplanet atmospheres using high-dispersion spectroscopy with the E-ELT and beyond

    Directory of Open Access Journals (Sweden)

    Snellen Ignas

    2013-04-01

    Full Text Available Ground-based high-dispersion (R ∼ 100,000 spectroscopy provides unique information on exoplanet atmospheres, inaccessible from space - even using the JWST or other future space telescopes. Recent successes in transmission- and dayside spectroscopy using CRIRES on the Very Large Telescope prelude the enormous discovery potential of high-dispersion spectrographs on the E-ELT, such as METIS in the thermal infrared, and HIRES in the optical/near-infrared. This includes the orbital inclination and masses of hundred(s of non-transiting planets, line-by-line molecular band spectra, planet rotation and global wind patterns, longitudinal spectral variations, and possibly isotopologue ratios. Thinking beyond the E-ELT, we advocate that ultimately a systematic search for oxygen in atmospheres of nearby Earth-like planets can be conducted using large arrays of relatively low-cost flux collector telescopes equipped with high-dispersion spectrographs.

  20. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.