WorldWideScience

Sample records for jupiter europa orbiter

  1. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  2. Return to Europa: Overview of the Jupiter Europa orbiter mission

    Science.gov (United States)

    Clark, K.; Boldt, J.; Greeley, R.; Hand, K.; Jun, I.; Lock, R.; Pappalardo, R.; van Houten, T.; Yan, T.

    2011-08-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter's icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the EJSM; JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO). The JEO mission concept uses a single orbiter flight system that would travel to Jupiter by means of a multiple-gravity-assist trajectory and then perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months.The JEO mission would investigate various options for future surface landings. The JEO mission science objectives, as defined by the international EJSM Science Definition Team, include:Europa's ocean: Characterize the extent of the ocean and its relation to the deeper interior.Europa's ice shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange.Europa's chemistry: Determine global surface compositions and chemistry, especially as related to habitability.Europa's geology: Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ

  3. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  4. The EJSM Jupiter Europa Orbiter: Planning Payload

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Boldt, J.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.

    2008-09-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to understand the viability of an approach to meet the measurement objectives, perform in the radiation environment and meet the planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA.

  5. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  6. The EJSM Jupiter-Europa Orbiter: Mission Overview

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.; Petropoulis, A.; Jun, I.; Boldt, J.; Kinnison, J.

    2008-09-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address key components of the complete EJSM science objectives and would be designed to function alone or in conjunction with the ESA-led Jupiter Ganymede Orbiter and JAXA-led Jupiter Magnetospheric Orbiter. The JEO mission concept uses a single orbiter flight system which would travel to Jupiter to perform a multi-year study of the Jupiter system and Europa, including 2.5-3 years of Jupiter system science and a comprehensive Europa orbit phase of upt ot a year. This abstract describes the design concept of this mission.

  7. Radiation Environment for the Jupiter Europa Orbiter

    Science.gov (United States)

    Jun, Insoo

    2008-09-01

    One of the major challenges for the Jupiter Europa Orbiter (JEO) mission would be that the spacecraft should be designed to survive an intense radiation environment expected at Jupiter and Europa. The proper definition of the radiation environments is the important first step, because it could affect almost every aspects of mission and spacecraft design. These include optimizing the trajectory to minimize radiation exposure, determining mission lifetime, selecting parts, materials, detectors and sensors, shielding design, etc. The radiation environments generated for the 2008 JEO study will be covered, emphasizing the radiation environment mainly responsible for the total ionizing dose (TID) and displacement damage dose (DDD). The latest models developed at JPL will be used to generate the TID and DDD environments. Finally, the major radiation issues will be summarized, and a mitigation plan will be discussed.

  8. Jupiter Europa Orbiter Architecture Definition Process

    Science.gov (United States)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  9. The EJSM Jupiter-Europa Orbiter: Science Objectives

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.-P.

    2008-09-01

    Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). We focus here on the science objectives and heritage of JEO.

  10. The Jupiter Ganymede Orbiter : An ESA Contribution to the Europa-Jupiter System Mission

    Science.gov (United States)

    Drossart, Pierre; Blanc, M.; Lebreton, J. P.; Pappalardo, R. T.; Greeley, R.; Fujimoto, M.; EJSM/Jupiter Science Definition Team

    2008-09-01

    In the framework of an outer planets mission, under study after the NASA-Juno mission, the Europa-Jupiter System Mission (EJSM) would combine a fleet of up to three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planets investigations. Scientific targets of EJSM will focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system : Jupiter's atmosphere and interior, magnetosphere and magnetodisk. .In combination with a Jupiter Europa Orbiter (JEO likely provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO likely provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a direct launch in 2020 with a transfer time to Jupiter of 6 years. After the orbit insertion around Jupiter, a first phase ( 2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude ( 200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede ( 1 year). In-depth comparative study of inner (Io and Europa) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the relative geological evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  11. The EJSM Jupiter-Europa Orbiter: Planning Payload

    Science.gov (United States)

    Tan-Wang, G.; Pappalardo, R. T.; Boldt, J.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lock, R. E.; van Houten, T.; Ludwinski, J.

    2008-12-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to demonstrate the viability of meeting the measurement objectives, performing while in the background radiation environment, and the ability to meet stringent planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA. The JEO planning payload consists of a notional set of remote sensing instruments, fields-and-plasma instruments, and both X-band and Ka band telecommunications systems which provide Doppler and range data for accurate orbit reconstruction. For JEO, the sensor portions of the instruments are located on the nadir facing deck of the spacecraft while a shared chassis houses the electronics portion of the instruments making optimal use of radiation shielding mass. A spacecraft supplied 10 meter boom is deployed for use by the JEO Magnetometer. All instruments are co-aligned and nominally nadir pointing for simplification of spacecraft operations. Instrument articulation required for target motion compensation, limb viewing or other purposes will be implemented within the instrument. Spacecraft telemetry and telecommand interfaces are nominally Spacewire for high-bandwidth instruments and Mil-Std-1553 for low-bandwidth instruments. Instrument power is provided by a

  12. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM (Europa Jupiter System Mission)

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Tsuda, Yuichi; Funase, Ryu; Mori, Osamu

    2010-05-01

    Europa Jupiter System Mission (EJSM) is an international mission to explore and Jupiter, its satellites and magnetospheric environment in 2020s. EJSM consists of (1) The Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. JMO will have magnetometers, low-energy plasma spectrometers, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast and huge rotating magnetosphere to clarify the energy procurement from Jovian rotation to the magnetosphere, to clarify the interaction between the solar wind the magnetosphere. Especially when JEO and JGO are orbiting around Europa and Ganymede, respectively, JMO will measure the outside condition in the Jovian magnetosphere. JMO will clarify the characteristics of the strongest accelerator in the solar system with the investigation of the role of Io as a source of heavy ions in the magnetosphere. JAXA started a study of a solar power sail for deep space explorations. Together with a solar sail (photon propulsion), it will have very efficient ion engines where electric power is produced solar panels within the sail. JAXA has already experienced ion engine in the successful Hayabusa mission, which was launched in 2003 and is still in operation in 2010. For the purpose of testing solar power sail technology, an engineering mission IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) will be launched in 2010 together with Venus Climate Orbiter PLANET-C. The shape of the IKAROS' membrane is square, with a diagonal distance of 20m. It is made of polyimide film only 0.0075mm

  13. Current Status of the EJSM Jupiter Europa Orbiter Flagship Mission Design

    Science.gov (United States)

    Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-12-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Joint Jupiter Science Definition Team (JJSDT) is defining the science content for the Jupiter Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a putative warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5-3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  14. Current Status of the Jupiter Europa Orbiter (JEO): Science & Science Implementation

    Science.gov (United States)

    Pappalardo, Robert T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A.; Lebreton, J.; Prockter, L.; Joint Jupiter Science Definition Team

    2008-09-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  15. Current Status of the Jupiter Europa Orbiter (JEO): Science and Science Implementation

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.; Prockter, L.; JEO Definition Team

    2008-12-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  16. Current Status of the EJSM Jupiter Europa Orbiter: Mission Design and Architecture

    Science.gov (United States)

    Grunthaner, Paula; Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; Van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-09-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Jupiter Joint Science Definition Team (JJSDT) is defining the science content for the Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5 to 3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  17. Space Radiation Effects and Reliability Consideration for the Proposed Jupiter Europa Orbiter

    Science.gov (United States)

    Johnston, Allan

    2011-01-01

    The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.

  18. Proton radiation testing of laser optical components for NASA Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Thomes, W. Joe, Jr.; Cavanaugh, John F.; Ott, Melanie N.

    2011-09-01

    The Jupiter Europa Orbiter (JEO) is NASA's element of the joint Europa Jupiter System Mission (EJSM). Based on current trajectories, the spacecraft will spend a significant amount of time in the Jovian radiation belts. Therefore, research endeavors are underway to study the radiation effects on the various parts and components needed to implement the instruments. Data from these studies will be used for component selection and system design to ensure reliable operation throughout the mission duration. The radiation environment en route to Jupiter is nothing new for NASA designed systems, however, the long durations orbiting Jupiter and Europa present new challenges for radiation exposure. High-energy trapped electrons and protons at Jupiter dominate the expected radiation environment. Therefore, most of the initial component level radiation testing is being conducted with proton exposure. In this paper we will present in-situ monitoring of the optical transmission of various laser optical components during proton irradiation. Radiation induced optical attenuation of some components is less than would be expected, based on the authors experiences, and is attributed to the interaction of the protons with the materials. The results are an encouraging first step in screening these optical materials for spaceflight in a high radiation environment.

  19. The Europa Jupiter System Mission

    Science.gov (United States)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  20. Stability of Frozen Orbits Around Europa

    Science.gov (United States)

    Cardoso Dos Santos, Josué; Vilhena de Moraes, R.; Carvalho, J. S.

    2013-05-01

    Abstract (2,250 Maximum Characters): A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter IcyMoon Explorer (JUICE, ESA). In this work we are formulating theories and constructing computer programs to be used in the design of aerospace tasks as regards the stability of artificial satellite orbits around planetary satellites. The studies are related to translational motion of orbits around planetary satellites considering polygenic perturbations due to forces, such as the nonspherical shape of the central body and the perturbation of the third body. The equations of motion will be developed in closed form to avoid expansions in eccentricity and inclination. For a description of canonical formalism are used the Delaunay canonical variables. The canonical set of equations, which are nonlinear differential equations, will be used to study the stability of orbits around Europa. We will use a simplified dynamic model, which considers the effects caused by non-uniform distribution of mass of Europa (J2, J3 and C22) and the gravitational attraction of Jupiter. Emphasis will be given to the case of frozen orbits, defined as having almost constant values of eccentricity, inclination, and argument of pericentre. An approach will be used to search for frozen orbits around planetary satellites and study their stability by applying a process of normalization of Hamiltonian. Acknowledges: FAPESP

  1. THE JOINT ESA-NASA EUROPA JUPITER SYSTEM MISSION (EJSM)

    Science.gov (United States)

    Lebreton, J.; Pappalardo, R. T.; Blanc, M.; Bunce, E. J.; Dougherty, M. K.; Erd, C.; Grasset, O.; Greeley, R.; Johnson, T. V.; Clark, K. B.; Prockter, L. M.; Senske, D. A.

    2009-12-01

    The joint "Europa Jupiter System Mission" (EJSM) is an international mission under study in collaboration between NASA and ESA. Its goal is to study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces. Europa and Ganymede are two primary targets of the mission. The reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The two primary goals of the mission are i) to determine whether the Jupiter system harbors habitable worlds and ii) to characterize the processes within the Jupiter system. The science objectives addressing the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressing the second goal are to: i) understand the Jovian satellite system, especially as context for Europa and Ganymede; ii) evaluate the structure and dynamics of the Jovian atmosphere; iii) characterize processes of the Jovian magnetodisk/magnetosphere; iv) determine the interactions occurring in the Jovian system; and v) constrain models for the origin of the Jupiter system. Both spacecraft would carry a complement of 11-12 instruments launch separately in 2020 and use a Venus-Earth-Earth Gravity Assist (VEEGA

  2. Europa--Jupiter's Icy Ocean Moon

    Science.gov (United States)

    Lowes, L.

    1999-01-01

    Europa is a puzzle. The sixth largest moon in our solar system, Europa confounds and intrigues scientists. Few bodies in the solar system have attracted as much scientific attention as this moon of Jupiter because of its possible subsurface ocean of water. The more we learn about this icy moon, the more questions we have.

  3. Plans and Combined Operations of the Flight Elements of the Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Erd, Christian; Clark, K.; Ejsm System Teams

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, where ESA would provide the Jupiter Ganymede Orbiter (JGO) and NASA would provide the Jupiter Europa Orbiter (JEO). Both spacecraft are foreseen to be launched in 2020, allowing for a joint exploration of the Jovian system, and the Galilean moons. The planning of the development, implementation and combined science phase will be described in the poster.

  4. Japanese mission plan for Jupiter system: The Jupiter magnetospheric orbiter and the Trojan asteroid explorer

    Science.gov (United States)

    Sasaki, S.; Fujimoto, M.; Yano, H.; Takashima, T.; Kasaba, Y.; Takahashi, Y.; Kimura, J.; Funase, R.; Mori, O.; Tsuda, Y.; Campagnola, S.; Kawakatsu, Y.

    2011-10-01

    In the future Jupiter system study, Coordinated observation of Jovian magnetosphere is one of the important targets of the mission in addition to icy satellites, atmosphere, and interior of Jupiter. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetospheric Orbiter), in addition to JGO (Jupiter Ganymede Orbiter) by ESA and JEO (Jupiter Europa Orbiter) by NASA. We will combine JMO with a proposed solar sail mission of JAXA for Jupiter and one of Trojan asteroids. Since Trojan asteroids could be representing raw solid materials of Jupiter or at least outer solar system bodies, involvement of Trojan observation should enhance the quality of Jupiter system exploration.

  5. The EJSM Jupiter-Ganymede Orbiter

    Science.gov (United States)

    Blanc, M.; Lebreton, J.-P.; Stankov, A.; Greeley, R.; Pappalardo, R. T.; Fujimoto, M.

    2008-09-01

    The Europa-Jupiter System Mission (EJSM), currently subject of a joint study by NASA, ESA and JAXA, would combine a fleet of three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planet investigations. Scientific targets of EJSM focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system: Jupiter's atmosphere and interior, magnetosphere and magnetodisk.. In combination with a Jupiter Europa Orbiter (JEO that would be provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO that would be provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a launch in 2020 with a transfer time to Jupiter of ~6 years. After the orbit insertion around Jupiter, a first phase (~2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude (~200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede (~1 year). In depth comparative study of inner (Io and Europe) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the geologic relative evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  6. Europa Jupiter System Mission (EJSM): Exploration Of The Jovian System And Its Icy Satellites

    Science.gov (United States)

    Grasset, Olivier; Pappalardo, R.; Greeley, R.; Blanc, M.; Dougherty, M.; Bunce, E.; Lebreton, J.; Prockter, L.; Senske, D.; EJSM Joint Science Definition Team

    2009-09-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) Determine whether the Jupiter system harbors habitable worlds and (2) Characterize the processes that are operating within the Jupiter system. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with orbiters developed by NASA and ESA (future contributions by JAXA and Russia are also possible). The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and "stand-alone” measurements.

  7. Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Okada, Tatsuaki; Kawakatsu, Yasuhiro; Tsuda, Yuichi; Kawaguchi, Jun-Ichiro; Funase, Ryu; Mori, Osamu; Morimoto, Mutsuko; Ikoma, Masahiro; Naganuma, Takeshi; Yamaji, Atsushi; Hussmann, Hauke; Kurita, Kei; Working Group, Jupiter

    EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter). In February 2009, EJSM is prioritized as the first candidate of outer planet flagship mission and mission study continues in the course of Cosmic Vision. The expected launch time of EJSM will be expected in 2020. Currently we are seeking a possibility to combine JMO with a proposed solar sail mission of JAXA for Jupiter and one of Trojan asteroids.

  8. Surface Irradiation of Jupiter's Moon Europa

    Science.gov (United States)

    Rubin, M.; Tenishev, V.; Combi, M. R.; Jia, X.; Hansen, K. C.; Gombosi, T. I.

    2010-12-01

    Jupiter’s moon Europa has a complex and tightly coupled interaction with the Jovian magnetosphere. Neutral gas of the moon’s exosphere is ionized and picked up by the corotating plasma that sweeps past Europa at a relative velocity of almost 100 km/s. This pick-up process alters the magnetic and electric field topology around Europa, which in turn affects the trajectories of the pick-up ions as well as the thermal and hot magnetospheric ions that hit the moon’s icy surface. In turn these surface-impinging ions are the responsible source for the sputtered neutral atmosphere, which itself is again crucial for the exospheric mass loading of the surrounding plasma. We use the magnetohydrodynamics (MHD) model BATSRUS to model the interaction of Europa with the Jovian magnetosphere. The model accounts for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination [Kabin et al. (J. Geophys. Res., 104, A9, 19,983-19,992, 1999)]. The derived magnetic and electric fields are then used in our Test Particle Monte Carlo (TPMC) model to integrate individual particle trajectories under the influence of the Lorentz force. We take the measurements performed by Galileo’s Energetic Particle Detector (EPD) [Williams et al. (Sp. Sci. Rev. 60, 385-412, 1992) and Cooper et al. (Icarus 149, 133-159, 2001)] and the Plasma Analyzer (PLS) [Paterson et al. (J. Geophys. Res., 104, A10, 22,779-22,791, 1999)] as boundary conditions. Using a Monte Carlo technique allows to individually track ions in a wide energy range and to individually calculate their energy deposition on the moon’s surface. The sputtering yield is a function of incident particle type, energy, and mass. We use the measurements performed by Shi et al. (J. Geophys. Res., 100, E12, 26,387-26,395, 1995) to turn the modeled impinging ion flux into a neutral gas production rate at the surface. We will show preliminary results of this work with application to the missions to the Jupiter system

  9. Science of the Joint ESA-NASA Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Blanc, Michel; Greeley, Ron

    2010-05-01

    The Europa Jupiter System Mission (EJSM), an international joint mission under study by NASA and ESA, has the overarching theme to investigate the emergence of habitable worlds around gas giants. Jupiter's diverse Galilean satellites—three of which are believed to harbor internal oceans—are the key to understanding the habitability of icy worlds. To this end, the reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a coordinated exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO carry sets of complementary instruments, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. Encompassed within the overall mission theme are two science goals, (1) Determine whether the Jupiter System harbors habitable worlds and (2) Characterize the processes within the Jupiter System. The science objectives addressed by the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressed by the second goal are to: i) understand the

  10. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    Science.gov (United States)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  11. Detection of an oxygen atmosphere on Jupiter's moon Europa.

    Science.gov (United States)

    Hall, D T; Strobel, D F; Feldman, P D; McGrath, M A; Weaver, H A

    1995-02-23

    Europa, the second large satellite out from Jupiter, is roughly the size of Earth's Moon, but unlike the Moon, it has water ice on its surface. There have been suggestions that an oxygen atmosphere should accumulate around such a body, through reactions which break up the water molecules and form molecular hydrogen and oxygen. The lighter H2 molecules would escape from Europa relatively easily, leaving behind an atmosphere rich in oxygen. Here we report the detection of atomic oxygen emission from Europa, which we interpret as being produced by the simultaneous dissociation and excitation of atmospheric O2 by electrons from Jupiter's magnetosphere. Europa's molecular oxygen atmosphere is very tenuous, with a surface pressure about 10(-11) that of the Earth's atmosphere at sea level.

  12. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  13. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    Science.gov (United States)

    Prockter, L. M.

    2012-04-01

    Coauthors: R. T. Pappalardo (1), F. Bagenal (2), A. C. Barr (3), B. G. Bills (1), D. L. Blaney (1), D. D. Blankenship (4), W. Brinckerhoff (5), J. E. P. Connerney (5), K. Hand (1), T. Hoehler (6), W. Kurth (7), M. McGrath (8), M. Mellon (9), J. M. Moore (6), D. A. Senske (1), E. Shock (10), D. E. Smith (11), T. Gavin (1), G. Garner (1), T. Magner (12), B. C. Cooke (1), R. Crum (1), V. Mallder (12), L. Adams (12), K. Klaasen (1), G. W. Patterson (12), and S. D. Vance (1); 1: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; 2: University of Colorado, Boulder, CO, USA; 3: Brown University, Providence, RI, USA; 4: University of Texas Institute for Geophysics, Austin, TX, USA; 5: NASA Goddard Space Flight Center, Greenbelt, MD, USA; 6: NASA Ames Research Center, Mountain View, CA, USA; 7: University of Iowa, Iowa City, IA, USA; 8: NASA Marshall Space Flight Center, Huntsville, AL, USA; 9: Southwest Research Institute, Boulder, CO, USA; 10: Arizona State University, Tempe, AZ, USA; 11: Massachusetts Institute of Technology, Cambridge, MA, USA; 12: Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. Introduction: Assessment of Europa's habitability requires understanding whether the satellite possesses the three "ingredients" for life: water, chemistry, and energy. The National Research Council's Planetary Decadal Survey [1] placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept [2] is incompatible with NASA's projected planetary science budget. Thus, in April 2011, NASA enlisted a small Europa Science Definition Team (ESDT) to consider Europa mission options that might be more feasible over the next decade from a programmatic perspective. The ESDT has studied three Europa mission concepts: a Europa orbiter, a Europa multiple-flyby mission, and a Europa lander. These share an overarching goal: Explore Europa to investigate its habitability

  14. The Europa Jupiter System Mission: Synergistic Science Enabled by JEO and JGO

    Science.gov (United States)

    Senske, D. A.; Pappalardo, R. T.; Prockter, L. M.; Lebreton, J.; Greeley, R.; Bunce, E. J.; Dougherty, M. K.; Grasset, O.; Titov, D.

    2010-12-01

    The Europa Jupiter System Mission (EJSM), a joint mission under study by NASA and ESA, has the overarching theme: The emergence of habitable worlds around gas giants. This mission would consist of two major flight elements, the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The science which could be achieved by EJSM centers around three goals: (1) Explore Europa to investigate its habitability (JEO-focus); (2) Characterize Ganymede as a planetary object including its potential habitability (JGO-focus) and (3) Explore the Jupiter system as an archetype for gas giants (JEO + JGO). The last goal would be addressed primarily during the tour phase of the mission, lasting upwards of 2.5-years, whereby each spacecraft would perform multiple, Galilean satellite fly-bys and make measurements of Jupiter and the Jupiter system. The EJSM Jupiter baseline tour would provide abundant opportunities to perform coordinated Jupiter system science, including fields and particles/magnetometer observations; Jupiter atmosphere monitoring; Io monitoring; spacecraft-to-spacecraft radio occultations of various targets; Galilean satellite flybys; and distant observations of the Galilean moons, small moons, and rings. In realm of understanding the Jovian environment, fields and particles/magnetometer measurements could be carried out nearly continuously, providing unique multipoint measurements of the time-dependent three-dimensional structure of the magnetosphere. In terms of understanding the structure and dynamics of the Jupiter atmosphere, it would be possible to perform coordinated, long-duration (20+ hours), observations over regular periods to monitor weather and understand the behavior of individual storm systems. In a similar manner, regular monitoring of volcanic activity at Io would make it possible to assess the variability in levels of volcanic activity, characterize plume structure, and aid in determining heat flow and transport. Unique

  15. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    Science.gov (United States)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  16. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    Science.gov (United States)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  17. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  18. The vertical thickness of Jupiter's Europa gas torus from charged particle measurements

    Science.gov (United States)

    Kollmann, P.; Paranicas, C.; Clark, G.; Roussos, E.; Lagg, A.; Krupp, N.

    2016-09-01

    Measurements and modeling suggest the presence of a neutral gas torus collocated with the orbit of Jupiter's moon Europa. Here we use data from the CMS instrument that is part of the Energetic Particles Detector (EPD) on board the Galileo spacecraft to characterize the distribution of 130 keV protons. Near the orbit of Europa this distribution has a minimum around 70° in equatorial pitch angle. We reproduce this with a model assuming that the protons are lost via charge exchange with a gas torus. Since the pitch angle characterizes whether the protons remain mostly in the dense center of the torus or continuously bounce through it, we can determine the latitudinal extent of the torus. We find that the full thickness where its density falls to 1/e of its maximum has to be ≲2RJ and is closer to ≈1RJ.

  19. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Yano, Hajime; Takashima, Takeshi; Kasaba, Yasumasa; Funase, Ryu; Tsuda, Yuichi; Kawaguchi, Junichiro; Kawakatsu, Yasuhiro; Mori, Osamu; Morimoto, Mutsuko; Yoshida, Fumi; Takato, Naruhisa

    The international mission to explore the Jovian system is planned as Europa Jupiter System Mission (EJSM) aiming at the launch in 2020. EJSM consists of (1) the Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. In JAXA, a mission plan combining Trojan asteroid explorer with JMO started. According to the mission plan, as the main spacecraft flies by Jupiter, it will deploy the JMO satellite around Jupiter. Then the main will target one (or two) Trojan asteroids. JMO is a spin-stabilized satellite which will have magnetometers, low-energy plasma spectrome-ters, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast-rotating huge mag-netosphere to clarify the energy procurement from the rotation of Jupiter to the magnetosphere and to clarify the interaction between the solar wind and the magnetosphere. JAXA started the study of a solar power sail for deep space explorations. In addition to the function of a solar sail (photon propulsion), the solar power sail system has very efficient ion engines where electric power is produced solar panels within the sail. Currently we are studying a mission to Jupiter and Trojan asteroids using a large (100m-scale) solar power sail that can transfer large payload as far as Jupiter. Trojan asteroids, which orbit around Jupiter's Lagrangian points, are primitive bodies with information of the early solar system as well as raw solid materials of Jovian system. Proposed instruments for the Trojan spacecraft are cameras, IR spectrometers, XRS, a laser altimeter, and a small surface rover

  20. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  1. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    Science.gov (United States)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  2. The Jupiter Ganymede Orbiter mission and spacecraft architecture

    Science.gov (United States)

    Boulade, Sebastien; Maliet, Eric; Saks, Noah; Lang, Rainer; Kemble, Steve

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, featuring two planetary orbiters in Jovian environment. It will study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces, with a resolution and coverage far beyond what was achieved by Galileo. It will determine their internal structure and the existence of subsurface oceans. It will study the Laplace resonance and its role in maintaining tidal heating. Constraints for the habitability of Europa over geologic timescales will be inferred from monitoring Io and Europa in the visible and infrared combined with precise determination of the satellites' orbital positions. To meet these science objectives, the EJSM mission will optimize the role of each platform. NASA-supplied Jupiter Europa Orbiter (JEO) will focus on the two "rocky" inner Galilean satellites, Io and Europa. Following a similar approach, ESA-procured Jupiter Ganymede Orbiter (JGO) will focus on the two "icy" outer Galilean satellites, Ganymede and Callisto. With these two orbiters around Europa and Ganymede, it will be possible to perform an in-depth comparison, to understand the origin of their geophysical dichotomy and to better understand the unique characteristics of Europa which may make it habitable. Coordination of observations between JEO and JGO could also bring important synergistic science. As part of this EJSM mission, the JGO spacecraft is now one of the candidates for the "L1" launch slot in the ESA Cosmic Vision 2015/2025 plan, with a foreseen launch in 2020. All studies candidate for this L mission concepts currently undergo parallel assessment studies until end of 2010, when two mission concepts will be selected for definition studies, until 2012. Eventually, the first L mission will be selected for industrial implementation starting in 2013. The mission scenario for JGO is based on a launch in 2020 with Ariane 5

  3. Improving Tidal Measurements about Europa Using the Properties of Unstable Periodic Orbits

    Science.gov (United States)

    Boone, Dylan; Scheeres, D. J.

    2012-10-01

    The NASA Jupiter Europa Orbiter mission requires a circular, near-polar orbit to measure Europa's Love numbers, geophysical coefficients which give insight into whether a liquid ocean exists. This type of orbit about planetary satellites is known to be unstable. The effects of Jupiter's tidal gravity are seen in changes in Europa's gravity field and surface deformation, which are sensed through doppler tracking over time and altimetry measurements respectively. These two measurement types separately determine the h and k Love numbers, a combination of which bounds how thick the ice shell of Europa is and whether liquid water is present. This work shows how the properties of an unstable periodic orbit about Europa generate preferred measurement directions in the orbit determination process for estimating science parameters. We generate an error covariance over seven days for the orbiter state and science parameters and then disperse the orbit initial conditions in a Monte Carlo simulation according to this covariance. The dispersed orbits are shown to have a bias toward longer lifetimes and we discuss this as an effect of the stable and unstable manifolds of the periodic orbit. The stable manifold represents contraction forward in time and the unstable manifold represents expansion forward in time. However, using an epoch formulation of a square-root information filter, measurements aligned with the unstable manifold mapped back in time add more information to the orbit determination process than measurements aligned with the stable manifold. This corresponds to a contraction in the uncertainty of the estimate of the desired parameters, including the Love numbers. Low altitude, near-polar periodic orbits with these characteristics are discussed along with the estimation results for the Love numbers, orbiter state, and orbit lifetime. These results are applicable to other measurements and planetary satellites since the mathematical model is the same.

  4. Space Weathering Perspectives on Europa Amidst the Tempest of the Jupiter Magnetospheric System

    Science.gov (United States)

    Cooper, J. F.; Hartle, R. E.; Lipatov, A. S.; Sittler, E. C.; Cassidy, T. A.; Ip. W.-H.

    2010-01-01

    Europa resides within a "perfect storm" tempest of extreme external field, plasma, and energetic particle interactions with the magnetospheric system of Jupiter. Missions to Europa must survive, functionally operate, make useful measurements, and return critical science data, while also providing full context on this ocean moon's response to the extreme environment. Related general perspectives on space weathering in the solar system are applied to mission and instrument science requirements for Europa.

  5. Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter

    Science.gov (United States)

    Mason, Lee S.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).

  6. Jumping Jupiter can explain Mercury's orbit

    CERN Document Server

    Roig, Fernando; DeSouza, Sandro Ricardo

    2016-01-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).

  7. Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter

    Science.gov (United States)

    2003-01-01

    The papers presented at this conference primarily discuss instruments and techniques for conducting science on Jupiter's icy moons, and geologic processes on the moons themselves. Remote sensing of satellites, cratering on satellites, and ice on the surface of Europa are given particular attention. Some papers discuss Jupiter's atmosphere, or exobiology.

  8. Jovian Tour Design for Orbiter and Lander Missions to Europa

    Science.gov (United States)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  9. Secular orbital evolution of Jupiter family comets

    Science.gov (United States)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  10. An ice crystal model for jupiter's moon Europa

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; schmidt, Karen Guldbae

    2003-01-01

    A simple model for crystal growth in the ice shell of Europa has been made in order to estimate the size of ice crystals at Europa's surface. If mass is lost from the surface of Europa due to sputtering processes, and the ice thickness is constant in time, ice crystals will be transported upwards...... in the ice shell. The crystals will therefore grow under varying conditions through the shell.The model predicts that ice crystals are 4 cm-80 m across at the surface. For the preferred parameter values, a crystal size of the order of 7 m is calculated. Udgivelsesdato: 1 june...

  11. Jupiter Icy Moons Orbiter (JIMO) Electrical Systems Testbed

    Science.gov (United States)

    Trapp, Scott J.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission will send a spacecraft to explore three of Jupiter s moons (Callisto, Ganymede, and Europa), all of which show evidence of containing vast subterranean oceans beneath their icy surfaces. The evidence of these oceans was discovered by Galileo, and the moons are believed to have the three essential ingredients for life: water, energy, and the necessary chemical elements. Galileo has shown that melted water on Europa has been in contact with the surface of the moon in geologically recent times, and may still lie relatively close to the surface. This project will also introduce a revolutionary new form of electric propulsion powered by a nuclear fission reactor. This electric propulsion is called ion propulsion. It was used on a previous mission called Deep Space 1, proving that ion propulsion works for interplanetary travel. Since JIMO will be traveling farther from the sun, solar power will be difficult to supply the electric energy demanded by the mission. Therefore a nuclear reactor and a thermo-electric converter system will be necessary. Besides making the trip to three of Jupiter's moons - one after the other - a realistic possibility, this new form of power and propulsion opens up the rest of the outer solar system for future exploration. JIMO will fulfill its goals by exploring Europa first, with subsequent trips to the moons Callisto and Ganymede in order to provide comparisons key to understanding the evolution of all three. In order to ensure the stability and proper preparation of the electrical system on JIMO, the High Power AC Power Management and Distribution (PMAD) Test Bed is being developed. The testing on.this AC PMAD will consist of electrical performance verification of candidate power system components. Examples of these components are: high power AC switchgear, high power ACDC converters, AC power distribution units, DC power distribution units, etc. Throughout the course of the summer the over

  12. "Sniffing" Jupiter's moon Europa through ground-based IR observations

    Science.gov (United States)

    Paganini, Lucas; Mumma, Michael J.; Hurford, Terry; Roth, Lorenz; Villanueva, Geronimo Luis

    2016-10-01

    The ability to sample possible plumes from the subsurface ocean in Europa represents a major step in our search for extraterrestrial life. If plumes exist, sampling the effluent material would provide insights into their chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. Most of the difficulties in detecting plumes come from the less frequent observational coverage of Europa, which contrasts strongly with the frequent Cassini flybys of Enceladus (Spencer & Nimmo 2013). Recent observations have been taken with HST/STIS in 2014/2015, but results have shown no evident confirmation of the 2012 plume detection (Roth et al. 2014, 2015). Future in situ observations (Europa Mission) will provide definitive insights, but not before the spacecraft's arrival in ~2025, thus an interim approach is needed to inform such space mission planning and to complement existing observations at other wavelengths.In 2015, we initiated a strong campaign to build a comprehensive survey of possible plumes on Europa through high-resolution IR spectroscopy with Keck/NIRSPEC. We were awarded 10 nights out of 15 total nights available for Key Strategic Mission Support projects for the 2016A, 2016B, 2017A, and 2017B semesters under NASA time with the Keck Observatory. In 2016A, we observed Europa during 10 half-nights and will continue to do so for another 10 half-nights in 2017A. We target a serendipitous search of gaseous activity from Europa to confirm and constrain the chemical composition of possible Europan plumes that can aid the investigation of physical processes underlying (or on) its surface. Ultimately, we seek to: (1) provide information that can inform planning for NASA's Europa mission, (2) further our current understanding of Europa's gas environment, and (3) complement studies that are currently underway with other facilities (like the Hubble Space Telescope). In this presentation, we will discuss preliminary results

  13. A multifluid magnetohydrodynamic simulation of the interaction between Jupiter's magnetosphere and its moon Europa

    Science.gov (United States)

    Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.

    2015-12-01

    Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.

  14. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  15. Modeling the Neutral Gas and Plasma Environment of Jupiter's Moon Europa

    Science.gov (United States)

    Rubin, Martin; Tenishev, Valeriy; Hansen, Kenneth; Jia, Xianzhe; Combi, Michael; Gombosi, Tamas

    Jupiter's moon Europa has a thin gravitationally bound neutral atmosphere, which is mostly created through sputtering of high-energy ions impacting on its icy surface. The interaction of Europa with the Jovian magnetosphere is simulated using the magnetohydrodynamics (MHD) model BATSRUS. We start from the model by Kabin et al. [JGR, Vol. 104, No. A9, (1999)], which accounts for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination. The derived magnetic field topology and plasma speeds are used to calculate the Lorentz force for our test particle Monte Carlo model. We use this model to simulate Europa's plasma and neutral environment by tracking particles created on the moon's surface by sputtering or sublimation, through dissociation and/or ionization in the atmosphere, or entering the system from Jupiter's magnetosphere as high energy ions. Neutral particle trajectories are followed by solving the equation of motion in Europa's gravity field whereas the ion population is additionally subject to the Lorentz force. We will show preliminary results of this work with application to the missions to the Jupiter system currently under consideration by NASA (JEO) and ESA (JGO).

  16. Tidal reorientation and the fracturing of Jupiter's moon Europa

    Science.gov (United States)

    Mcewen, A. S.

    1986-01-01

    The lineaments on Europa are discussed in terms of the orientation of the lineaments relative to the tensile stress trajectories due to tidal distortions and to nonsynchronous rotation. The cracks are noticeable by their darker albedo compared to the presumed water ice surrounding them. The stress trajectories for tidal distortion of a thin elastic shell are superimposed on Mercator projection maps of the lineaments. It is shown that the lineaments are mainly oriented at high angles to the tensile stress trajectories that would be expected for regularly occurring nonsynchronous rotation, i.e., extensional fractures would appear. The reorientation motions which would cause the fractures are estimated. It is suggested that the fractures occur episodically to release stresses built up on the tensile surface of the crust during the continuous nonsynchronous rotation of Europa.

  17. Europa Habitability and Extant Life Exploration with Combined Flyby-Lander-Orbiter Mission

    Science.gov (United States)

    Blanc, M.; Jones, G.; Prieto-Ballesteros, O.; Mimoun, D.; Masters, A.; Kempf, S.; Iess, L.; Martins, Z.; Lorenz, R.; Lasue, J.; Andre, N.; Bills, B. G.; Choblet, G.; Collins, G.; Cremonese, G.; Garnier, P.; Hand, K.; Hartogh, P.; Khurana, K. K.; Stephan, K.; Tosi, F.; Vance, S. D.; van Hoolst, T.; Westall, F.; Wolwerk, M.; Cooper, J. F.; Sittler, E. C.; Brinckerhoff, W.; Hurford, T.; Europa Initiative

    2016-10-01

    The optimal configuration for investigation of habitability and any extant life at Europa would be a combined constellation of flyby, lander, and orbiter spacecraft. The Europa Initiative is designing a small orbiter as part of this constellation.

  18. Orbit Determination Covariance Analysis for the Europa Clipper Mission

    Science.gov (United States)

    Ionasescu, Rodica; Martin-Mur, Tomas; Valerino, Powtawche; Criddle, Kevin; Buffington, Brent; McElrath, Timothy

    2014-01-01

    A new Jovian satellite tour is proposed by NASA, which would include numerous flybys of the moon Europa, and would explore its potential habitability by characterizing the existence of any water within and beneath Europa's ice shell. This paper describes the results of a covariance study that was undertaken on a sample tour to assess the navigational challenges and capabilities of such a mission from an orbit determination (OD) point of view, and to help establish a delta V budget for the maneuvers needed to keep the spacecraft on the reference trajectory. Additional parametric variations from the baseline case were also investigated. The success of the Europa Clipper mission will depend on the science measurements that it will enable. Meeting the requirements of the instruments onboard the spacecraft is an integral part of this analysis.

  19. Exploring A Thermal-Orbital Feedback Mechanism At Europa

    Science.gov (United States)

    Walker, Matthew; Mitchell, Jonathan L.; Bills, Bruce

    2016-10-01

    We present a geophysical model of the Europa system to describe it's structural, orbital, and thermal states. In doing so, we examine the potential for feedback mechanisms to occur which can produce oscillatory behavior in shell thickness, eccentricity, and heat flux, due to the coupled nature of the relevant processes. We implement a tidal heating model to describe the heat flux into the body. This model depends primarily on the shell structure as well as the orbital eccentricity. The model has the capacity to consider multilayered bodies for which the interior structure can evolve over time. Furthermore, the tidal heating model is fully three dimensionally resolved, having the ability to predict radial and lateral variations in heating throughout Europa. This allows us to predict particular locations on Europa that should have the maximum surface heat flux. This heating model is coupled to the orbital evolution as well. Tidal dissipation pulls energy out of the orbit, effectively reducing the semi-major axis and eccentricity, circularizing the orbit. This would slow, and even shut down, the tidal heating at Europa, however, the Galilean Satellites' Laplace resonance continuously transfers energy back into Europa's orbit, keeping the tidal dissipation active. We compare the tidal heat input to the heat conducted out of the ice shell, which is a function of shell thickness, among other things. Heat transfer into or out of the ice compensates any imbalance of heat. This heating, in turn, leads to structural variations of the shell. For example, if tidal heating is greater than the heat conducted out of the shell, the remaining balance goes into sensible and latent heats which thin the shell (thus increasing the surface heat output to balance that which is tidally input). Oppositely, when conducted heat output is greater than the tidal heating, the shell thickens. Shell thickness variations then result in global extension or contraction, due to the density difference

  20. Numerical investigation of mapping orbits about Jupiter's icy moons

    Science.gov (United States)

    Aiello, John

    2005-01-01

    A proposed mission that would orbit Callisto, Ganymede, and Europa will require low altitude, high inclination orbits for gravity and surface mapping. This paper explores the dynamics of these orbits by direct propagation against an ephemeris model. Initial conditions within the context of a mapping mission's likely requirements are considered. The results complement the analytical studies and reveal additional dependencies.

  1. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora.

    Science.gov (United States)

    Roth, Lorenz; Retherford, Kurt D; Saur, Joachim; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-12-02

    We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×10(15) cm(-2). Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.

  2. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

    OpenAIRE

    Grasset, O.; Dougherty, K; Coustenis, A.; Bunce, J; Erd, C.; Titov, D.; Blanc, M.; Coates, A; Drossart, P.; Fletcher, N; Hussmann, H.; Jaumann, R.; N. Krupp; Lebreton, P; O. Prieto-Ballesteros

    2013-01-01

    Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possib...

  3. Fitting Orbits to Jupiter's Moons with a Spreadsheet.

    Science.gov (United States)

    Bridges, Richard

    1995-01-01

    Describes how a spreadsheet is used to fit a circular orbit model to observations of Jupiter's moons made with a small telescope. Kepler's Third Law and the inverse square law of gravity are observed. (AIM)

  4. A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    CERN Document Server

    Dunham, Edward W; Koch, David G; Batalha, Natalie M; Buchhave, Lars A; Brown, Timothy M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fischer, Debra; Furesz, Gabor; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kjeldsen, Hans; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Meibom, Soren; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.

  5. Europa

    DEFF Research Database (Denmark)

    Hansen, Ole Erik

    2000-01-01

    Artiklen behandler, hvordan Europa blev centrum for den globale økonomiske udvikling, og hvilken rolle nationalstaterne har spillet for Europas udvikling. Derudover behandles det, hvordan den europæiske integrationsproces kan ses som et forsøg på at genskabe Europas centrale politiske og økonomiske...

  6. Behavior of Jupiter Non-Trojan Co-Orbitals

    CERN Document Server

    Wajer, Paweł

    2012-01-01

    Searching for the non-Trojan Jupiter co-orbitals we have numerically integrated orbits of 3\\,160 asteroids and 24 comets discovered by October 2010 and situated within and close to the planet co-orbital region. Using this sample we have been able to select eight asteroids and three comets and have analyzed their orbital behavior in a great detail. Among them we have identified five new Jupiter co-orbitals: \\cu, \\sa, \\ql, \\gh, and \\Larsen, as well as we have analyzed six previously identified co-orbitals: \\hr, \\ug, \\qq, \\aee, \\wc\\ and \\ar. \\cu\\ is currently on a quasi-satellite orbit with repeatable transitions into the tadpole state. Similar behavior shows \\gh\\ which additionally librates in a compound tadpole-quasi-satellite orbit. \\ql\\ and \\Larsen\\ are the co-orbitals of Jupiter which are temporarily moving in a horseshoe orbit occasionally interrupted by a quasi-satellite behavior. \\sa\\ is moving in a pure horseshoe orbit. Orbits of the latter three objects are unstable and according to our calculations, t...

  7. Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of

    Science.gov (United States)

    1979-01-01

    Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  8. Orbits of the small inner satellites of Jupiter

    Science.gov (United States)

    Synnott, S. P.

    1984-01-01

    Voyager images led to the discovery of the three small inner satellites of Jupiter, Adrastea, Metis, and Thebe. Attention is presently given to orbital parameter estimates and associated uncertainties that have been determined from Voyager imaging data, the achievable angular accuracy of which is about 0.00005 rad.

  9. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  10. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  11. A Jupiter Ganymede Orbiter for the EJSM mission: the JGO assessment phase study by the Thales Alenia Space consortium

    Science.gov (United States)

    Poncy, Joel; Couzin, Patrice; Mercier, Manuel; Boschetti, Demis

    2010-05-01

    ESA and NASA have undertaken advanced studies of a common mission to Jupiter's system, EJSM (Europa Jupiter System Mission). This mission comprises two spacecrafts launched independently in 2020 and reaching the system in 2026. This is a one-in-a-generation opportunity for Europe to contribute significantly to the science of this part of the Solar System, and as such, all efforts shall subsequently be made to maximize the scientific return without jeopardizing the technical and programmatic feasibility of the mission. A sub-glacial ocean on Europa and potentially two others on Ganymede and Callisto, the monitoring of Io's volcanic activity, the upper atmosphere of Jupiter, its rings, its tens of irregular moons, the tides, the magnetic fields of Jupiter and Ganymede and the behaviour of the plasma, the list of science objectives is not only impressive but also generates enthusiasm in the mission. In this NASA-ESA joint mission, NASA will take charge of both Io and Europa with the Jupiter Europa Orbiter (JEO). Europe will get a fascinating share with the Jupiter Ganymede Orbiter (JGO), which will achieve the close study of the two largest and outermost Galilean moons Ganymede and Callisto and in addition, at-a-distance, the observation of the other targets mentioned above. ESA has awarded three industrial contracts for an assessment phase of JGO. As leader of one of the consortia, Thales Alenia Space is proud to present in this poster its achievements on this exciting mission. The requirements are discussed and the mission drivers identified. The main trades and the resulting architecture are recalled, along with the main selection drivers. The major system interrelated trades have covered the launcher and propulsion type, the number of regulated phases, the strategy for communications and science timeline, the need for HGA pointing, the sizing and configuration of the Solar Array, the accommodation of external appendages, the accommodation of the payload, the

  12. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  13. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  14. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  15. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo, R. T.; Bagenal, F.; Barr, A. C.; Bills, B. G.; Blaney, D. L.; Blankenship, D. D.; Connerney, J. E.; Kurth, W. S.; McGrath, M. A.; Moore, J. M.; Prockter, L. M.; Senske, D. A.; Smith, D. E.; Garner, G. J.; Magner, T. J.; Cooke, B. C.; Mallder, V.; Crum, R.

    2011-12-01

    Assessment of Europa's habitability will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes. The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept is incompatible with NASA's projected planetary science budget. Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options. In its preliminary findings, the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives. An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit. An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing. This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources. More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, which is better suited to handle larger masses and higher data volumes. Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over multiple years, avoiding an excessively high peak in the funding profile. Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We

  16. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  17. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  18. A retrograde co-orbital asteroid of Jupiter

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-01

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  19. Dynamics of Artificial Satellites around Europa

    Directory of Open Access Journals (Sweden)

    Jean Paulo dos Santos Carvalho

    2013-01-01

    Full Text Available A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA and Jupiter Icy Moon Explorer (JUICE, ESA. In this paper, we search for orbits around Europa with long lifetimes. Here, we develop the disturbing potential in closed form up to the second order to analyze the effects caused on the orbital elements of an artificial satellite around Europa. The equations of motion are developed in closed form to avoid expansions in power series of the eccentricity and inclination. We found polar orbits with long lifetimes. This type of orbits reduces considerably the maintenance cost of the orbit. We show a formula to calculate the critical inclination of orbits around Europa taking into account the disturbing potential due to the nonspherical shape of the central body and the perturbation of the third body.

  20. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  1. Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence

    Science.gov (United States)

    Kenny, Barbara H.; Tokars, Roger P.

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.

  2. Engineering a Solution to Jupiter Exploration

    Science.gov (United States)

    Clark, Karla; Magner, Thomas; Lisano, Michael; Pappalardo, Robert

    2010-01-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) explore Europa to investigate its habitability, (2) characterize Ganymede as a planetary object including its potential habitability and (3) explore the Jupiter system as an archetype for gas giants. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with conceptual orbiters developed by NASA and ESA. The baseline EJSM architecture consists of two primary elements operating simultaneously in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most importantly, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM baseline architecture would provide opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and stand

  3. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  4. Detection of a Hydrogen Corona in HST Lyα Images of Europa in Transit of Jupiter

    Science.gov (United States)

    Roth, Lorenz; Retherford, Kurt D.; Ivchenko, Nickolay; Schlatter, Nicola; Strobel, Darrell F.; Becker, Tracy M.; Grava, Cesare

    2017-02-01

    We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope on six occasions between 2014 December and 2015 March. Absorption of Jupiter’s bright hydrogen Lyα dayglow is detected in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona around Europa. Molecular constituents in Europa’s global sputtered atmosphere are shown to be optically thin to Lyα. The observations are consistent with a radially escaping H corona with maximum densities at the surface in the range of (1.5–2.2) × 103 cm‑3, confirming the abundances predicted by Monte Carlo simulations. In addition, we search for anomalies around the limb of Europa from absorption by localized high H2O abundances from active plumes. No significant local absorption features are detected. We find that an H2O plume with line-of-sight column density in the order of 1016 cm‑2, as inferred by Roth et al. would not be detectable based on the statistical fluctuations of the transit measurements, and hence is not excluded or further constrained. The presence of plumes with line-of-sight column densities of >2 × 1017 cm‑2 can be excluded at a 3-σ level during five of our six observations.

  5. Plasma IMS Composition Measurements for Europa and Ganymede

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Hartle, R.; Lipatov, A.; Mahaffy, P.; Paterson, W.; Paschalidis, N.; Coplan, M.; Cassidy, T.

    2010-01-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4n surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged.

  6. Cryogenic Ice Penetration Mechanics for Investigating the Existence of Life on the Jupiter Moon Europa Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key challenge is that ice properties at the temperatures that exist on Europa are not well characterized. Our previous studies have shown that hardness as well as...

  7. Europa Clipper: A Multiple Flyby Mission Concept to Explore Europa's Habitability

    Science.gov (United States)

    Patterson, G. W.; Pappalardo, R. T.; Prockter, L. M.; Senske, D. A.; Vance, S. D.

    2012-09-01

    Europa is a potentially habitable world that is likely to be geologically and chemically active today. Many well-defined and focused science questions regarding past and present habitability may be addressed by exploring Europa. The National Research Council's 2011 Planetary Decadal Survey placed Europa science among its highest priorities, but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept, which was prioritized in the Survey, was incompatible with NASA's projected planetary science budget. Thus, NASA initiated a study to consider more fiscally viable Europa mission scenarios. Among the options considered, a multipleflyby mission concept (now named the "Europa Clipper") was found to have exceptional science merit while also meeting the challenge from NASA and the Decadal Survey for a reduced-scope Europa mission relative to JEO.

  8. The role of Jupiter in driving Earth's orbital evolution

    CERN Document Server

    Horner, Jonathan; Koch, F Elliot

    2014-01-01

    In coming years, the first truly Earth-like planets will be discovered orbiting other stars, and the search for signs of life on these worlds will begin. However, such observations will be hugely time-consuming and costly, and so it will be important to determine which of those planets represent the best prospects for life elsewhere. One of the key factors in such a decision will be the climate variability of the planet in question - too chaotic a climate might render a planet less promising as a target for our initial search for life elsewhere. On the Earth, the climate of the last few million years has been dominated by a series of glacial and interglacial periods, driven by periodic variations in the Earth's orbital elements and axial tilt. These Milankovitch cycles are driven by the gravitational influence of the other planets, and as such are strongly dependent on the architecture of the Solar system. Here, we present the first results of a study investigating the influence of the orbit of Jupiter on the...

  9. Riding the Banzai Pipeline at Jupiter: Balancing Low Delta-V and Low Radiation to Reach Europa

    Science.gov (United States)

    McElrath, Timothy P.; Campagnola, Stefano; Strange, Nathan J.

    2012-01-01

    Europa's tantalizing allure as a possible haven for life comes cloaked in a myriad of challenges for robotic spacecraft exploration. Not only are the propulsive requirements high and the solar illumination low, but the radiation environment at Jupiter administers its inexorable death sentence on any electronics dispatched to closely examine the satellite. So to the usual trades of mass, delta-V, and cost, we must add radiation dose, which tugs the trajectory solution in a contrary direction. Previous studies have concluded that adding radiation shielding mass is more efficient than using ?V to reduce the exposure time, but that position was recently challenged by a study focusing on delivering simple landers to the Europa surface. During this work, a new trajectory option was found to occupy a strategic location in the delta-V/radiation continuum - we call it the "Banzai pipeline" due to the visual similarity with the end-on view down a breaking wave, as shown in the following figures.

  10. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    Science.gov (United States)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim

    2016-10-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  11. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    Science.gov (United States)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  12. Modeling the Europa plasma torus

    Science.gov (United States)

    Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.

    1993-12-01

    The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.

  13. Science of the Europa Multiple Flyby Mission

    Science.gov (United States)

    Pappalardo, Robert T.; Senske, David A.; Prockter, Louise; Hand, Kevin P.; Goldstein, Barry; Europa Science Team

    2016-10-01

    The Europa Multiple Flyby Mission, in formulation for launch in the 2020s, would investigate the habitability of Jupiter's moon Europa. The mission would send a solar-powered, radiation-tolerant spacecraft into an elliptical orbit about Jupiter to conduct more than 40 close flybys of Europa, most in the range 25 km-100 km. The payload comprises a suite of nine science instruments that together would support three key objectives: detailed investigation of Europa's interior, both its internal ocean (including its salinity and depth) and its ice shell (including thickness and potential water pockets within); composition of the icy surface, notably dark reddish areas that may evince linkages between the ocean and the surface; and geology at the regional and local scales, especially areas that may show signs of recent or current activity. The science objectives and project status will be summarized.

  14. Jupiter Icy Moons Explorer (JUICE): Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G...; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  15. A Pragmatic Path to Investigating Europa's Habitability

    Science.gov (United States)

    Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter; Senske; Smith; Garner; Magner; Hibbard; Cooke

    2011-01-01

    Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission

  16. Europa Imaging Highlights during GEM

    Science.gov (United States)

    1998-01-01

    During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots1.6 kilometers/pixelConamara Chaos1.6 kilometers/pixelMannan'an Crater1.6 kilometers/ pixelCilix1.6 kilometers/pixelAgenor Linea and Thrace Macula2 kilometers/pixelSouth polar terrain2 kilometers/pixelRhadamanthys Linea1.6 kilometers/pixelEuropa plume search7 kilometers/pixel1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow like features to the southwest of the mound are

  17. Jupiter - Friend or Foe? IV: The influence of orbital eccentricity and inclination

    CERN Document Server

    Horner, J

    2011-01-01

    For many years, it was assumed that Jupiter prevented the Earth from being subject to a punishing impact regime that would greatly hinder the development of life. Here, we present the 4th in a series of studies investigating this hypothesis. Previously, we examined the effect of Jupiter's mass on the impact rate experienced by Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate. We first consider scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a higher impact rate of asteroids than for more circular orbits. This is particularly pronounced at high "Jupiter" masses. For short-period comets, the same effect is clearly apparent, albeit to a lesser degree. The flux of short-period comets impacting the Earth is slightly h...

  18. Pioneer Jupiter orbiter probe mission 1980, probe description

    Science.gov (United States)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  19. Europa Imaging Highlights during GEM

    Science.gov (United States)

    1998-01-01

    During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots1.6 kilometers/pixelConamara Chaos1.6 kilometers/pixelMannan'an Crater1.6 kilometers/ pixelCilix1.6 kilometers/pixelAgenor Linea and Thrace Macula2 kilometers/pixelSouth polar terrain2 kilometers/pixelRhadamanthys Linea1.6 kilometers/pixelEuropa plume search7 kilometers/pixel1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow like features to the southwest of the mound are

  20. A new physical model of the electron radiation belts of Jupiter: on the importance of the wave-particle interaction between Io and Europa

    Science.gov (United States)

    Nénon, Quentin; Sicard-Piet, Angélica

    2017-04-01

    From 1998 to 2004, ONERA has adapted its 3D physical model of the Earth radiation belts, Salammbô, to the Jovian electron belts. An upgraded Jupiter-Salammbô model will be presented, now taking into account the gyro-resonant interaction with the plasma waves between Io and Europa. The full spectrum of the electromagnetic waves detected by the Galileo Plasma Wave Science experiment was considered. The WAPI (WAve-Particle Interaction) code, developed by ONERA and implementing the quasi-linear theory, has then been used to estimate the pitch angle and kinetic energy diffusion rates. Regarding the boundary condition, the Galileo Energetic Particle Detector (EPD) high-resolution data suggests that the electron distribution at a Mc Illwain parameter of L=9.5 is almost isotropic, with a flux ratio between equatorial electrons and those bouncing near the loss cone lower than 5 at all the observed kinetic energies. We therefore adopted an isotropic boundary condition at L=9.5 that relies on the in-situ flux measurements coming from the Pioneer 10, Pioneer 11, Voyager 1 and Galileo missions. We propose to model the radial diffusion process with a diffusion coefficient DLL = 10-10L4s-1 for L extending from 1 to 9.5. The validation of the new model against in-situ and remote (synchrotron emission) observations will be presented. We will then discuss the effect of the wave-particle interaction on the predicted in-situ fluxes. In particular, the observable depletions of the Pioneer and Voyager fluxes near the orbit of Io seem to be predominantly induced by the plasma waves and not by the sweeping effect of Io.

  1. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  2. An experimental estimate of Europa's ``ocean'' composition-independent of Galileo orbital remote sensing

    Science.gov (United States)

    Fanale, F. P.; Li, Y.-H.; De Carlo, E.; Farley, C.; Sharma, S. K.; Horton, K.; Granahan, J. C.

    2001-07-01

    We have conducted a series of experiments designed to simulate, in the laboratory, the development of any subsurface aqueous phase on Europa. In our theoretical-experimental approach we select a single natural sample (a CM meteorite) that based on cosmochemical considerations, we consider to approximately represent the bulk material that accreted to form Europa. We then subject the sample to a hot water leaching procedure designed to simulate low- to moderate-temperature aqueous alteration. The resulting leach solution was then subjected to a series of sequential fractional crystallization steps producing a series of ices and residual brines. Then all this brines and ices are multiply analyzed for Na, Ca, Mg, Sr, Ba, Fe, Mn, K, Cl, and SO4. Results were found to be remarkably consistent between brines and ices in the same stages of crystallization and also between stages. We found that any putative aqueous phase below Europa's ice crust is probably a brine with cations: Na~Mg>Ca, K>Fe and anions: SO4>>Cl. Our results are in harmony with inferences drawn from one of the two main current interpretations of the orbital spectral data but cannot definitively rule out inferences drawn from the alternative interpretation. This is so because the mineralogy of the top 200 μm may not reflect the chemical composition of bodies of brine below the solid surface owing to extensive alteration caused by magnetospheric bombardment.

  3. Plasma ion composition measurements for Europa

    Science.gov (United States)

    Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P. R.; Paschalidis, N. P.; Coplan, M. A.; Cassidy, T. A.; Richardson, J. D.; Fegley, B.; Andre, N.

    2013-11-01

    Jupiter magnetospheric interactions and surface composition, both important to subsurface ocean detection for the Galilean icy moons Europa, Ganymede, and Callisto, can be measured using plasma ion mass spectrometry on either an orbiting spacecraft or one designed for multiple flybys of these moons. Detection of emergent oceanic materials at the Europa surface is more likely than at Ganymede and Callisto. A key challenge is to resolve potential intrinsic Europan materials from the space weathering patina of iogenic species implanted onto the sensible surface by magnetospheric interactions. Species-resolved measurements of pickup ion currents are also critical to extraction of oceanic induced magnetic fields from magnetospheric interaction background dominated by these currents. In general the chemical astrobiological potential of Europa should be determined through the combination of surface, ionospheric, and pickup ion composition measurements. The requisite Ion Mass Spectrometer (IMS) for these measurements would need to work in the high radiation environment of Jupiter's magnetosphere between the orbits of Europa and Ganymede, and beyond. A 3D hybrid model of the moon-magnetosphere interaction is also needed to construct a global model of the electric and magnetic fields, and the plasma environment, around Europa. Europa's ionosphere is probably usually dominated by hot pickup ions with 100-1000 eV temperatures, excursions to a "classical" cold ionosphere likely being infrequent. A field aligned ionospheric wind driven by the electron polarization electric field should arise and be measurable.

  4. Design study for electronic system for Jupiter Orbit Probe (JOP)

    Science.gov (United States)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  5. Improved orbits of Saturn and Jupiter from the Cassini and Juno missions

    Science.gov (United States)

    Folkner, William M.; Jacobson, Robert Arthur; Jones, Dayton

    2015-08-01

    Since entering orbit about Saturn in 2004, radio tracking data of the Cassini spacecraft has provided accurate measurements of its position leading to marked improvement in the Saturn ephemeris. The Cassini spacecraft orbit period has varied between 14 and 30 days as the orbit was changed to provide views of Saturn’s rings and satellites. This relatively large orbit period has required care to separate the spacecraft orbit relative to Saturn from the orbit of Saturn relative to the Sun. The resulting estimates give a series of range measurements of Saturn relative to Earth with accuracy of ~30 m. In addition to improving the Saturn ephemeris, the range measurements have been used to place stringent upper bounds on possible deviation from General Relativity suggested by the theory of Modified Newtonian Dynamics. The Very Large Baseline Array has been used to observe Cassini and determine the right ascension and declination of Saturn approximately every year since entering orbit. The combination of range and VLBA measurements over more than one-quarter of the Saturn orbit period have resulted in Saturn ephemeris accuracy comparable to that of the inner planets.The Juno spacecraft will enter orbit about Jupiter in July 2016. Juno will be the second spacecraft to orbit Jupiter, but the first to provide a time series of ranging measurements since the Galileo spacecraft high-gain antenna failure prevented range measurements from that mission. Ranging measurements to Juno, combined with VLBA observations, will cover less than one-quarter of an orbit period. But, when combined with the accurate measurements of the Ulysses spacecraft during Jupiter flyby in February 1992, the Jupiter ephemeris accuracy is expected to be close to that of Saturn and the inner planets.

  6. A NEARLY POLAR ORBIT FOR THE EXTRASOLAR HOT JUPITER WASP-79b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, NSW 2052 (Australia); Bayliss, D.; Zhou, G.; Schmidt, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Hartman, J. D.; Bakos, G. A., E-mail: b.addison@unsw.edu.au [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States)

    2013-09-01

    We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated hot Jupiter from the Wide Angle Search for Planets (WASP) survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. We have used the Rossiter-McLaughlin effect to determine the sky-projected spin-orbit angle to be {lambda}= -106{sup +19}{sub -13} {sup o}. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet-the planet being in a nearly polar orbit. WASP-79 is consistent with other stars that have T{sub eff} > 6250 K and host hot Jupiters in spin-orbit misalignment.

  7. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  8. Detection of Solid Tides on Europa Through Ground-Tracking of a Low-Altitude, Altimeter- Equipped Orbiter

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Bardella, M.

    2007-12-01

    The possibility of detecting a global liquid ocean beneath the icy crust of Europa without the use of landers or ice penetrators rests on the measurement of the Love numbers h2 and k2. These are respectively related to the radial deformation of the surface and the consequent tidally-induced variation of the gravitational field of this icy satellite. Depending on the rigidity of the icy crust, the response of the Europan surface to the tidal forces gives an indication of the depth of a possible subsurface ocean. Previous studies in this area have addressed the detection of tidal surface deformations through the analysis of the tidally induced orbital perturbations of a Europan orbiter. As a preliminary study in preparation for future missions to Europa, as in the LAPLACE proposal to the European Space Agency, the approach followed here is to introduce the presence of an onboard altimeter. In this study we then generate synthetic measurements taken from an altimeter-equipped, low-altitude orbiter, supplemented with Earth-based tracking of the orbiter. For simplicity, ground-tracking is simulated as a range data-type. Altimeter measurements are simulated using parameters based on available models for the interior of Europa derived from Galileo mission data. Reference orbits were obtained by numerical investigations of the dynamically unstable near-Europa environment. Orbits were found to be stable over periods of approximately one to three months at altitudes of 100 km and inclinations varying from 75 degrees to 105 degrees. The measurements are consequently simulated over a period of one to two months. Under the hypothesis that Europan gravity field information of sufficient accuracy has been obtained in the first phase of the mission, the simulations address the detection of the solid tide related Love parameters h2 and k2. Results of this sensitivity study will be presented for a variety of orbital configurations with the aim to help in the design of future Europa

  9. The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter-McLaughlin effect produced by the Opposition Surge of the icy Europa

    CERN Document Server

    Molaro, Paolo; Monaco, Lorenzo; Zaggia, Simone; Lovis, Christophe

    2015-01-01

    We report on a multi-wavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 5 Jan the 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with HARPS from La Silla, Chile, and HARPS-N from La Palma, Canary Islands, were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit (Molaro et al 2013). The expected modulation in radial velocities was of about 20 cm/s but an anomalous drift as large as 38 m/s, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and BiSON observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the Opposition Surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion o...

  10. A hot Jupiter orbiting a 2-Myr-old solar-mass T Tauri star

    CERN Document Server

    Donati, JF; Malo, L; Baruteau, C; Yu, L; Hebrard, E; Hussain, G; Alencar, S; Menard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Cameron, A Collier

    2016-01-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of...

  11. The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter-McLaughlin effect produced by the opposition surge of the icy Europa

    Science.gov (United States)

    Molaro, P.; Barbieri, M.; Monaco, L.; Zaggia, S.; Lovis, C.

    2015-10-01

    We report on a multiwavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 2014 January 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with high accuracy radial velocity planetary searcher (HARPS) from La Silla, Chile and HARPS-N from La Palma, Canary Islands were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit. The expected modulation in radial velocities was of ≈20 cm s-1 but an anomalous drift as large as ≈38 m s-1, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and Birmingham Solar Oscillations Network observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the opposition surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion of the solar surface centred around the crossing Earth which can then be observed as a sort of inverse Rossiter-McLaughlin effect. in fact, a simplified model of this effect can explain in detail most features of the observed radial velocity anomalies, namely the extensions before and after the transit, the small differences between the two observatories and the presence of a secondary peak closer to Earth passage. This phenomenon, observed here for the first time, should be observed every time similar Earth alignments occur with rocky bodies without atmospheres. We predict that it should be observed again during the next conjunction of Earth and Jupiter in 2026.

  12. A paucity of proto-hot Jupiters on super-eccentric orbits

    CERN Document Server

    Dawson, Rebekah I; Johnson, John Asher

    2012-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars, unlikely to have formed in situ, are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter class of model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, disagreeing with the theoretical prediction with 98.7% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with orbital period P > 3 days produced by the stellar binary Kozai mechanism does not exceed 0.15 +0.29/-0.11. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters wi...

  13. Constraining the Europa Neutral Torus

    Science.gov (United States)

    Smith, Howard T.; Mitchell, Donald; mauk, Barry; Johnson, Robert E.; clark, george

    2016-10-01

    "Neutral tori" consist of neutral particles that usually co-orbit along with their source forming a toroidal (or partial toroidal) feature around the planet. The distribution and composition of these features can often provide important, if not unique, insight into magnetospheric particles sources, mechanisms and dynamics. However, these features can often be difficult to directly detect. One innovative method for detecting neutral tori is by observing Energetic Neutral Atoms (ENAs) that are generally considered produced as a result of charge exchange interactions between charged and neutral particles.Mauk et al. (2003) reported the detection of a Europa neutral particle torus using ENA observations. The presence of a Europa torus has extremely large implications for upcoming missions to Jupiter as well as understanding possible activity at this moon and providing critical insight into what lies beneath the surface of this icy ocean world. However, ENAs can also be produced as a result of charge exchange interactions between two ionized particles and in that case cannot be used to infer the presence of neutral particle population. Thus, a detailed examination of all possible source interactions must be considered before one can confirm that likely original source population of these ENA images is actually a Europa neutral particle torus. For this talk, we examine the viability that the Mauk et al. (2003) observations were actually generated from a neutral torus emanating from Europa as opposed to charge particle interactions with plasma originating from Io. These results help constrain such a torus as well as Europa source processes.

  14. Navigational Challenges for a Europa Flyby Mission

    Science.gov (United States)

    Martin-Mur, Tomas J.; Ionasescu, Rodica; Valerino, Powtawche; Criddle, Kevin; Roncoli, Ralph

    2014-01-01

    Jupiter's moon Europa is a prime candidate in the search for present-day habitable environments outside of the Earth. A number of missions have provided increasingly detailed images of the complex surface of Europa, including the Galileo mission, which also carried instruments that allowed for a limited investigation of the environment of Europa. A new mission to Europa is needed to pursue these exciting discoveries using close-up observations with modern instrumentation designed to address the habitability of Europa. In all likelihood the most cost effective way of doing this would be with a spacecraft carrying a comprehensive suite of instruments and performing multiple flybys of Europa. A number of notional trajectory designs have been investigated, utilizing gravity assists from other Galilean moons to decrease the period of the orbit and shape it in order to provide a globally distributed coverage of different regions of Europa. Navigation analyses are being performed on these candidate trajectories to assess the total Delta V that would be needed to complete the mission, to study how accurately the flybys could be executed, and to determine which assumptions most significantly affect the performance of the navigation system.

  15. Derivation of the collision probability between orbiting objects The lifetimes of Jupiter's outer moons

    Science.gov (United States)

    Kessler, D. J.

    1981-01-01

    A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.

  16. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I. [Department of Astronomy, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Murray-Clay, Ruth A.; Johnson, John Asher, E-mail: rdawson@berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-01-10

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories.

  17. A spin-orbit alignment for the hot Jupiter HATS-3b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Bayliss, D., E-mail: b.addison@unsw.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2014-09-10

    We have measured the alignment between the orbit of HATS-3b (a recently discovered, slightly inflated Hot Jupiter) and the spin axis of its host star. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The sky-projected spin-orbit angle of λ = 3° ± 25° was determined from spectroscopic measurements of the Rossiter-McLaughlin effect. This is the first exoplanet discovered through the HATSouth transit survey to have its spin-orbit angle measured. Our results indicate that the orbital plane of HATS-3b is consistent with being aligned to the spin axis of its host star. The low obliquity of the HATS-3 system, which has a relatively hot mid F-type host star, agrees with the general trend observed for Hot Jupiter host stars with effective temperatures >6250 K to have randomly distributed spin-orbit angles.

  18. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  19. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    Science.gov (United States)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    spacecraft itself. (2) a free-flyer released from the main craft and staying on a jupiter orbit. (3) a small autonomous satellite injected into europan orbit. (4) a penetrator of europa's surface (including instrumentation on the descent module). (5) contributions to a soft lander, if developed by nasa in an increased europa mission scenario. in this talk we will report on the conclusions of the crossed analysis between science themes and spacecraft options performed during a dedicated project workshop held in madrid on feb. 29 and march 1st, which will be the scientific and technical base for any relevant europa-related response to the upcoming esa call.

  20. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

    CERN Document Server

    Brahm, R; Bakos, G Á; Penev, K; Espinoza, N; Rabus, M; Hartman, J D; Bayliss, D; Ciceri, S; Zhou, G; Mancini, L; Tan, T G; de Val-Borro, M; Bhatti, W; Csubry, Z; Bento, J; Henning, T; Schmidt, B; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{\\star}$=1.131 $\\pm$ 0.030 M$_{\\odot}$, R$_{\\star}$=1.091$^{+0.070}_{-0.046}$ R$_{\\star}$) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $\\pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $\\pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.

  1. EJSM Radar instruments: Natural radio noise from Jupiter

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sébastien; Zarka, Philippe; Blankenship, Donald; Bruzzone, Lorenzo; Santos-Costa, Daniel; Bougeret, Jean-Louis

    2010-05-01

    Radar instruments are part of the core payload of the Europa Jupiter System Mission (EJSM) spacecraft: NASA- led JEO (Jupiter Europa Orbiter) and ESA-led JGO (Jupiter Ganymede Orbiter). At this point of the project, several frequency bands are foreseen for radar studies between 5MHz and 50MHz. While the high frequencies (40 to 50 MHz) are clean bands since natural jovian radio emissions show a high frequency cutoff at about 40 MHz, lower frequencies are right in the middle of the intense decametric (DAM) radio emissions. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. One result from these simulations is that some portion of the orbit of Europa is clean from Non-Io DAM emissions above 22 MHz. We also review the radiation belts synchrotron emission characteristics. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation.

  2. Coupling of the Matched Gravity and Electromagnetic Fields of the Sun with Jupiter and its Moons Together in Nearest Portion of Jupiter's Orbit to the Sun as the Main Cause of the Peak of Approximately 11 Yearly Solar Cycles and Hazards from Solar Storms

    Science.gov (United States)

    Gholibeigian, Kazem; Gholibeigian, Hassan

    2016-04-01

    On March 13, 1989 the entire province of Quebec Blackout by solar storm during solar cycle 22. The solar storm of 1859, also known as the Carrington event, was a powerful geomagnetic solar storm during solar cycle 10. The solar storm of 2012 during solar cycle 24 was of similar magnitude, but it passed Earth's orbit without striking the plane. All of these solar storms occurred in the peak of 11 yearly solar cycles. In this way, the White House in its project which is focusing on hazards from solar system, in a new strategy and action plan to increase protection from damaging solar emissions, should focus on coupling of the matched Gravity and Electromagnetic Fields)GEFs) of the Sun with Jupiter and its moons together. On the other hand, in solar system, the Jupiter's gravity has largest effect to the Sun's core and its dislocation, because the gravity force between the Jupiter and the Sun is 11.834 times, In addition overlapping of the solar cycles with the Jupiter's orbit period is 11.856 years. These observable factors lead us to the effect of the Jupiter and Sun gravity fields coupling as the main cause of the approximately 11 years duration for solar cycles. Its peak in each cycle is when the Jupiter is in nearest portion to the Sun in its orbit. In this way, the other planets in their coupling with Sun help to the variations and strengthening solar cycles. [Gholibeigian, 7/24/2015http://adsabs.harvard.edu/abs/2014EGU]. In other words, the both matched GEFs are generating by the large scale forced convection system inside the stars and planets [Gholibeigian et. al, AGU Fall Meeting 2015]. These two fields are couple and strengthening each other. The Jupiter with its 67 moons generate the largest coupled and matched GEFs in its core and consequently strongest effect on the Sun's core. Generation and coupling of the Jupiter's GEFs with its moons like Europa, Io and Ganymede make this planet of thousands of times brighter and many times bigger than Earth as the

  3. Europa Science Platforms and Kinetic Energy Probes

    Science.gov (United States)

    Hays, C. C.; Klein, G. A.

    2003-01-01

    This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.

  4. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    CERN Document Server

    Neveu-VanMalle, M; Anderson, D R; Brown, D J A; Cameron, A Collier; Delrez, L; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lister, T; Pepe, F; Rojo, P; Ségransan, D; Triaud, A H M J; Turner, O D; Udry, S

    2015-01-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\\pm$ 0.20 M$_{\\rm Jup}$, eccentricity 0.29 $\\pm$ 0.02 and orbiting in 421 $\\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\\pm$ 0.22 M$_{\\rm Jup}$, eccentricity 0.13 $\\pm$ 0.10 and orbiting in 572 $\\pm$ 7 days. Unlike most of the planetary systems including a hot Jupiter, these two systems with a hot Jupiter have a long period planet located at only $\\sim$1 AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect due the second planet, we use the emission in the H$\\alpha$ line and find this indicator well suited to detect the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host ...

  5. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  6. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    Science.gov (United States)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  7. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  8. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    Science.gov (United States)

    Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A.; Delrez, L.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lister, T.; Pepe, F.; Rojo, P.; Ségransan, D.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.

    2016-02-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 ± 0.20 MJup and eccentricity 0.29 ± 0.02, and it orbits in 421 ± 2 days. WASP-47 c is a planet of minimum mass 1.24 ± 0.22 MJup and eccentricity 0.13 ± 0.10, and it orbits in 572 ± 7 days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only ~1 au from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the Hα line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration. Using data collected at ESO's La Silla Observatory, Chile: HARPS on the ESO 3.6 m (Prog ID 087.C-0649 & 089.C-0151), the Swiss Euler Telescope, TRAPPIST, the 1.54-m Danish telescope (Prog CN2013A-159), and at the LCOGT's Faulkes Telescope South.Photometric lightcurve and RV tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A93

  9. Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit

    CERN Document Server

    Morbidelli, Alessandro; Gomes, Rodney; Levison, Harold F; Tsiganis, Kleomenis

    2010-01-01

    We use the current orbital structure of large (>50km) asteroids in the main asteroid belt to constrain the evolution of the giant planets when they migrated from their primordial orbits to their current ones. Minton & Malhotra (2009) showed that the orbital distribution of large asteroids in the main belt can be reproduced by an exponentially-decaying migration of the giant planets on a time scale of tau ~ 0.5My. However, self-consistent numerical simulations show that the planetesimal-driven migration of the giant planets is inconsistent with an exponential change in their semi major axes on such a short time scale (Hahn & Malhotra, 1999). In fact, the typical time scale is tau > 5My. When giant planet migration on this time scale is applied to the asteroid belt, the resulting orbital distribution is incompatible with the observed one. However, the planet migration can be significantly sped up by planet-planet encounters. Consider an evolution where both Jupiter and Saturn have close encounters with ...

  10. The Europa Clipper mission concept

    Science.gov (United States)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  11. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter's moon Europa

    Science.gov (United States)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.

    2016-09-01

    Neutral Ion Mass spectrometer (NIM) is one of the instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM, equipped with a sensitive MCP ion detector, will conduct detailed measurements of the chemical composition of Jovian icy moons exospheres. To achieve high sensitivity of the instrument, radiation effects due to the high radiation background (high-energy electrons and protons) around Jupiter have to be minimised. We investigate the performance of an Al-Ta-Al composite stack as a potential shielding against high-energy electrons. Experiments were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The facility delivers a particle beam containing e-, μ- and π- with momentum from 17.5 to 345 MeV/c (Hajdas et al., 2014). The measurements of the radiation environment generated during the interaction of primary particles with the Al-Ta-Al material were conducted with dedicated beam diagnostic methods and with the NIM MCP detector. In parallel, modelling studies using GEANT4 and GRAS suites were performed to identify products of the interaction and predict ultimate fluxes and particle rates at the MCP detector. Combination of experiment and modelling studies yields detailed characterisation of the radiation fields produced by the interaction of the incident e- with the shielding material in the range of the beam momentum from 17.5 to 345 MeV/c. We derived the effective MCP detection efficiency to primary and secondary radiation and effective shielding transmission coefficients to incident high-energy electron beam in the range of applied beam momenta. This study shows that the applied shielding attenuates efficiently high-energy electrons. Nevertheless, owing to nearly linear increase of the bremsstrahlung production rate with incident beam energy, above 130 MeV their detection rates measured by the MCP

  12. Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions

    CERN Document Server

    Ngo, Henry; Hinkley, Sasha; Crepp, Justin R; Bechter, Eric B; Batygin, Konstantin; Howard, Andrew W; Johnson, John A; Morton, Timothy D; Muirhead, Philip S

    2015-01-01

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters towards to their present day positions. Many observed short period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions fo...

  13. WASP-135b: a highly irradiated, inflated hot Jupiter orbiting a G5V star

    CERN Document Server

    Spake, Jessica J; Doyle, Amanda P; Hébrard, Guillaume; McCormac, James; Armstrong, David J; Pollacco, Don; Chew, Yilen Gómez Maqueo; Anderson, David R; Barros, Susana C C; Bouchy, François; Boumis, Panayotis; Bruno, Giovanni; Cameron, Andrew Collier; Courcol, Bastien; Davies, Guy R; Faedi, Francesca; Hellier, Coel; Kirk, James; Lam, Kristine W F; Liakos, Alexios; Louden, Tom; Maxted, Pierre F L; Osborn, Hugh P; Palle, Enric; Arranz, Jorge Prieto; Udry, Stéphane; Walker, Simon R; West, Richard G; Wheatley, Peter J

    2015-01-01

    We report the discovery of a new transiting planet from the WASP survey. WASP-135b is a hot Jupiter with a radius of 1.30 pm 0.09 Rjup, a mass of 1.90 pm 0.08 Mjup and an orbital period of 1.401 days. Its host is a Sun-like star, with a G5 spectral type and a mass and radius of 0.98 pm 0.06 Msun and 0.96 pm 0.05 Rsun respectively. The proximity of the planet to its host means that WASP-135b receives high levels of insolation, which may be the cause of its inflated radius. Additionally, we find weak evidence of a transfer of angular momentum from the planet to its star.

  14. No large population of unbound or wide-orbit Jupiter-mass planets

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K.; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-01

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)—more than known stellar populations would suggest—indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  15. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian System

    Science.gov (United States)

    Sittler, E. C., Jr.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P R.; Paschalidis, N.; Sarantos, M.; Coplan, M. A.; Cassidy, T. A.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter's magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keY, wide field-of-view (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for 10. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from 10 to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  16. Plasma IMS Composition Measurements for Europa, Ganymede, and the Jovian Systems

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Hartle, R.; Paterson ,W.; Christian, E.; Mahaffy, P.; Paschalidis, N.; Lipatov, A.; Sarantos, M.; Coplan, M.; Cassidy, T.; Wurz, P.

    2011-01-01

    NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter s magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keV, wide field-ofview (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter s magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for Io. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from Io to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We

  17. Understanding the Variability of Europa's Interaction with the Jovian Magnetosphere

    Science.gov (United States)

    Khurana, Krishan; Jia, Xianzhe; Paranicas, Chris; Cassidy, Timothy; Hansen, Kenneth

    2014-05-01

    Field and plasma observations from the vicinity of Europa by the Galileo spacecraft show that Europa's response to the corotating field and plasma impinging on it is binary in nature. Galileo successfully encountered Europa 10 times during its mission. During nine of these flybys, the interaction between Europa and Jupiter was observed to be fairly modest. The modeling of magnetic data from these flybys shows that the interaction currents were in the range of 0.5 MA and the plasma addition to the corotating flow was between 2 - 8 kg/s. However, during one of the flybys, namely E12, the field and plasma perturbations were observed to be extremely large. During this flyby, the magnetic field was observed to almost double in strength from its nominal value of 450 nT. The plasma density in the environment was also extremely high during this flyby (exceeding 800 particles/cm-3 compared to the nominal values of 50-100 particles/cm3 expected near Europa's orbit). The energetic ion fluxes on the other hand were seen to drop significantly in count presumably from ion losses and cooling in Europa's environment. In order to understand the two interaction states of Europa observed so far, we have now developed quantitative 3-D MHD models of plasma interactions of Europa with Jupiter's magnetosphere. In these models we include the effects of plasma pick-up and plasma interaction with a realistic exosphere as well as the contribution of the electromagnetic induction. We will present results of these quantitative models and show that the plasma interaction is strongest when Europa is located at the center of Jupiter's current sheet. We find that plasma mass loading rates are extremely variable over time. We will investigate various mechanisms by which such variability in mass-loading could be produced including episodically enhanced sputtering from trapped gaseous molecules in ice and enhanced plasma interaction with a vent(s) generated dense exosphere. The new model will aid

  18. WASP-41b: A Transiting Hot Jupiter Planet Orbiting a Magnetically Active G8V Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; West, R. G.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smith, A. M. S.; Udry, S.

    2011-05-01

    We report the discovery of a transiting planet with an orbital period of 3.05 days orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8 V star (V = 11.6) with a metallicity close to solar ([Fe/H] = -0.08 ± 0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the Ca ii H and K ines and photometric variability with a period of 18.4 days and an amplitude of about 1%. We use a new method to show quantitatively that this periodic signal has a low false-alarm probability. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8 Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.92 ± 0.06 MJup, 1.20 ± 0.06 RJup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  19. Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive?

    CERN Document Server

    Gundlach, B

    2016-01-01

    Surveys in the visible and near-infrared spectral range have revealed the presence of low-albedo asteroids in cometary like orbits (ACOs). In contrast to Jupiter family comets (JFCs), ACOs are inactive, but possess similar orbital parameters. In this work, we discuss why ACOs are inactive, whereas JFCs show gas-driven dust activity, although both belong to the same class of primitive solar system bodies. We hypothesize that ACOs and JFCs have formed under the same physical conditions, namely by the gravitational collapse of ensembles of ice and dust aggregates. We use the memory effect of dust-aggregate layers under gravitational compression to discuss under which conditions the gas-driven dust activity of these bodies is possible. Owing to their smaller sizes, JFCs can sustain gas-driven dust activity much longer than the bigger ACOs, whose sub-surface regions possess an increased tensile strength, due to gravitational compression of the material. The increased tensile strength leads to the passivation again...

  20. The Lick-Carnegie Exoplanet Survey: HD32963 -- A New Jupiter Analog Orbiting a Sun-like Star

    CERN Document Server

    Rowan, Dominick; Laughlin, Gregory; Vogt, Steven S; Butler, R Paul; Burt, Jennifer; Wang, Songhu; Holden, Brad; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Diaz, Matias

    2015-01-01

    We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 $\\pm$ 0.07 years and a corresponding minimum mass of 0.7 $\\pm$ 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%.

  1. Plasma IMS Composition Measurements for Europa and Ganymede

    Science.gov (United States)

    Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Lipatov, A. S.; Paschalidis, N. P.; Coplan, M. A.; Cassidy, T. A.

    2010-12-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphases on Europa and Ganymede from these respective space agencies. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter’s magnetosphere and the Galilean satellites. For NASA’s Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter’s magnetosphere and 2) infer the 4π surface composition to trace elemental and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa’s sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa’s or Ganymede’s surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA’s Astrobiology Instrument Development Program (ASTID), would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The ASTID-supported IMS, applicable to the NASA spacecraft, is designed to operate in a high radiation environment with minor and trace ion detection capability. The latter goal is achieved by measuring pickup ions at spacecraft altitudes and using a 3D hybrid model of the interaction in order to construct 3D global model of the electric and magnetic fields around these bodies. The pickup ion trajectories can then be traced back down to the surface. In the case of Europa we also show that Europa’s ionosphere is

  2. Europa Composition Using Visible to Short Wavelength Infrared Spectroscopy

    Science.gov (United States)

    Blaney, Diana L.; Dalton, J. B.; Green, R. O.; Hibbits, K.; McCord, T.; Murchie, S.; Piccioni, G.; Tosi, F.

    2010-10-01

    One of the major goals of the Jupiter Europa Orbiter (JEO) is to understand the chemistry of Europa's inorganic and organic materials. Europa's surface material composition is controlled by the original materials forming Europa and by their differentiation and chemical alterations. Material is probably still being transported to the surface by active processes in the interior. At the surface, the material is exposed to the effects of vacuum and temperature, irradiated by solar UV, and bombarded by material entrained in Jupiter's magnetic field. The materials on the surface and their distributions are evidence of the processes operating, both endogenic and exogenic. These processes include effects of a subsurface liquid ocean and its chemistry; the mechanisms of material emplacement from below; and photolysis and radiolysis. Visible to Short Wavelength Infrared (VSWIR) spectroscopy is a well-understood technique for mapping key inorganic, organic, and volatile compositions on remote surfaces such as Europa. Key spectral absorption features have been detected in both the icy and the non-icy Europa materials and many important constituents of the surface have been identified or proposed (e.g. hydrated salts, sulfuric acid hydrate, organics, CO2, H2O2, SO2). The determination of planetary surface composition from remote infrared spectroscopy depends upon adequate signal-to-noise, spectral resolution, and spatial scale to distinguish the diagnostic spectral features of the compounds of interest. For icy satellites, laboratory reference spectra obtained at the temperatures of the target bodies are also required. We have compared diagnostic spectral features in cryogenic laboratory spectra of hydrated salts relevant to Europa in order to optimize detection of these materials under realistic mission conditions. Effects of spectral resolution, signal to noise ratio, and areal mixtures are explored to determine the impacts on detection. This work was carried out at the Jet

  3. The orbital configuration of the two interacting Jupiters in HD 155358 system

    Science.gov (United States)

    Ma, Da-Zhu; Fu, Yan-Ning; Wang, Xiao-Li

    2017-09-01

    Recent observation reveals two interacting Jupiters possibly trapped in a 2:1 mean motion resonance (MMR) around the star HD 155358. For the 2:1 MMR, Beaugé et al. found that as long as the orbital decay was sufficiently slow, the trapped planets should also be in apsidal co-rotation. So it is very interesting to explore whether HD 155358 did undergo such an evolution and presents an apsidal co-rotation. Based on the existing results of spectroscopic orbital determination, the global dynamics of the system shows that the two planets are in an apsidal co-rotation if the eccentricity of the outer planet (ec) takes values very close to the lower limit of its 1σ confidence interval. This makes us conjecture that the globally minimizing solution could be missed in the previous orbital determination. Using an efficient global optimization method, we do find a better solution, reducing χ2 from 1.4 to 1.2. This new solution is significantly different from the previous one, and in particular, with smaller ec. However, the increased possibility for the system to be trapped in a 2:1 MMR with apsidal co-rotation is still not high. A set of simulations of the adiabatic convergent migration process are then performed. The results consistently indicate that the 2:1 MMR forms before apsidal co-rotation. Finally, the long-term stability of the formed system and of its resonant structure is extensively explored, and the resulting statistics are given. A conclusion is that the 2:1 MMR with apsidal co-rotation is a very stable structure.

  4. On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration

    Science.gov (United States)

    Zhang, Hui; Zhou, Ji-Lin

    2010-05-01

    We carry out a series of high-resolution (1024 × 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset & Snellgrove and Morbidelli & Crida by exploring various surface density profiles (σ), where σ vprop r -α. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as α increases and the type of MMRs depends on α as well. When 0 4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (es ) increases too high. The critical value above which instability will set in is es ~ 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  5. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b.

    Science.gov (United States)

    Hellier, Coel; Anderson, D R; Cameron, A Collier; Gillon, M; Hebb, L; Maxted, P F L; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Wilson, D M; Bentley, S J; Enoch, B; Horne, K; Irwin, J; Lister, T A; Mayor, M; Parley, N; Pepe, F; Pollacco, D L; Segransan, D; Udry, S; Wheatley, P J

    2009-08-27

    The 'hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only approximately 0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 M(Jup)), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 10(6), as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.

  6. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  7. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  8. Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to the Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star

    CERN Document Server

    Chang, Yu-Ling; Gu, Pin-Gao

    2012-01-01

    We revisit the calculation of the Ohmic dissipation in a hot Jupiter presented in Laine et al. (2008) by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modelled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced Ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small co-rotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/anti-parallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model in Laine...

  9. WASP-121 b: a hot Jupiter in a polar orbit and close to tidal disruption

    CERN Document Server

    Delrez, L; Almenara, J -M; Anderson, D R; Collier-Cameron, A; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A M S; Triaud, A H M J; Udry, S; Van Grootel, V; West, R G

    2015-01-01

    We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary nature has been statistically validated by the PASTIS software. The planet has a mass of $1.183_{-0.062}^{+0.064}$ $M_{\\mathrm{Jup}}$, a radius of 1.865 $\\pm$ 0.044 $R_{\\mathrm{Jup}}$, and transits every $1.2749255_{-0.0000025}^{+0.0000020}$ days an active F6-type main-sequence star ($V$=10.4, $1.353_{-0.079}^{+0.080}$ $M_{\\odot}$, 1.458 $\\pm$ 0.030 $R_{\\odot}$, $T_{\\mathrm{eff}}$ = 6460 $\\pm$ 140 K). A notable property of WASP-121 b is that its orbital semi-major axis is only $\\sim$1.15 times larger than its Roche limit, which suggests that the planet might be close to tidal disruption. Furthermore, its large size and extreme irradiation ($\\sim$$7.1\\:10^{9}$ erg $\\mathrm{s}^{-1} \\mathrm{cm}^{-2}$) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAPPIST telescope,...

  10. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  11. Jupiter family comets in near-Earth orbits: Are some of them interlopers from the asteroid belt?

    Science.gov (United States)

    Fernández, Julio A.; Sosa, Andrea

    2015-12-01

    We analyze a sample of 58 Jupiter family comets (JFCs) in near-Earth orbits, defined as those whose perihelion distances at the time of discovery were qdisc newcomers in the near-Earth region. Yet, a minor fraction of JFCs (less than about one third) are found to move on stable orbits for the past ∼ 104 yr, and in some cases are found to continue to be stable at 5 × 104 yr in the past. They also avoid very close encounters with Jupiter. Their orbital behavior is very similar to that of NEAs in cometary orbits. While "typical" JFCs in unstable orbits probably come from the trans-Neptunian region, the minor group of JFCs in asteroidal orbits may come from the main asteroid belt, like the NEAs. The asteroidal JFCs may have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud, which could explain their much longer physical lifetimes in the near-Earth region. In particular, we mention comets 66P/du Toit, 162P/Siding Spring, 169P/NEAT, 182P/LONEOS, 189P/NEAT, 249P/LINEAR, 300P/Catalina, and P/2003 T12 (SOHO) as the most likely candidates to have an origin in the main asteroid belt. Another interesting case is 207P/NEAT, which stays near the 3:2 inner mean motion resonance with Jupiter, possibly evolving from the Hilda asteroid zone.

  12. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  13. High Resolution Integral Field Spectroscopy of Europa's Sodium Clouds: Evidence for a Component with Origins in Iogenic Plasma.

    Science.gov (United States)

    Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.

    2015-12-01

    With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.

  14. A high obliquity orbit for the hot-Jupiter HATS-14b transiting a 5400K star

    CERN Document Server

    Zhou, G; Hartman, J D; Fulton, B J; Bakos, G Á; Howard, A W; Isaacson, H; Marcy, G W; Schmidt, B P; Brahm, R; Jordán, A

    2015-01-01

    We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface ...

  15. Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit

    Science.gov (United States)

    Crouzet, N.; McCullough, P. R.; Long, D.; Montanes Rodriguez, P.; Lecavelier des Etangs, A.; Ribas, I.; Bourrier, V.; Hébrard, G.; Vilardell, F.; Deleuil, M.; Herrero, E.; Garcia-Melendo, E.; Akhenak, L.; Foote, J.; Gary, B.; Benni, P.; Guillot, T.; Conjat, M.; Mékarnia, D.; Garlitz, J.; Burke, C. J.; Courcol, B.; Demangeon, O.

    2017-03-01

    Only a few hot Jupiters are known to orbit around fast rotating stars. These exoplanets are harder to detect and characterize and may be less common than around slow rotators. Here, we report the discovery of the transiting hot Jupiter XO-6b, which orbits a bright, hot, and fast rotating star: V = 10.25, T eff⋆ = 6720 ± 100 K, v sin i ⋆ = 48 ± 3 km s‑1. We detected the planet from its transits using the XO instruments and conducted a follow-up campaign. Because of the fast stellar rotation, radial velocities taken along the orbit do not yield the planet’s mass with a high confidence level, but we secure a 3σ upper limit M p orbit with a sky-projected obliquity {\\boldsymbol{λ }}=-20\\buildrel{\\circ}\\over{.} 7+/- 2\\buildrel{\\circ}\\over{.} 3. The rotation period of the star is shorter than the orbital period of the planet: P rot P orb = 3.77 days. Thus, this system stands in a largely unexplored regime of dynamical interactions between close-in giant planets and their host stars.

  16. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  17. Jupiter small satellite montage

    Science.gov (United States)

    2000-01-01

    A montage of images of the small inner moons of Jupiter from the camera onboard NASA's Galileo spacecraft shows the best views obtained of these moons during Galileo's 11th orbit around the giant planet in November 1997. At that point, Galileo was completing its first two years in Jupiter orbit--known as the Galileo 'prime mission'--and was about to embark on a successful two-year extension, called the Galileo Europa Mission. The top two images show the moon Thebe. Thebe rotates by approximately 50 degrees between the time these two images were taken, so that the same prominent impact crater is seen in both views; this crater, which has been given the provisional name Zethus, is near the point on Thebe that faces permanently away from Jupiter. The next two images show the moon Amalthea; they were taken with the Sun directly behind the observer, an alignment that emphasizes patterns of intrinsically bright or dark surface material. The third image from the top is a view of Amalthea's leading side, the side of the moon that 'leads' as Amalthea moves in its orbit around Jupiter. This image looks 'noisy' because it was obtained serendipitously during an observation of the Jovian satellite Io (Amalthea and Io shared the same camera frame but the image was exposed for bright Io rather than for the much darker Amalthea). The fourth image from the top emphasizes prominent 'spots' of relatively bright material that are located near the point on Amalthea that faces permanently away from Jupiter. The bottom image is a view of the tiny moon Metis. In all the images, north is approximately up, and the moons are shown in their correct relative sizes. The images are, from top to bottom: Thebe taken on November 7, 1997 at a range of 504,000 kilometers (about 313,000 miles); Thebe on November 7, 1997 at a range of 548,000 kilometers (about 340,000 miles); Amalthea on November 6, 1997 at a range of about 650,000 kilometers (about 404,000 miles); Amalthea on November 7, 1997 at a

  18. Early Formulation Model-centric Engineering on NASA's Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, Ivair; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, David

    2012-01-01

    The proposed Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions were formulated using current state-of-the-art MBSE facilities: - JPL's TeamX, Rapid Mission Architecting - ESA's Concurrent Design Facility - APL's ACE Concurrent Engineering Facility. When JEO became an official "pre-project" in Sep 2010, we had already developed a strong partnership with JPL's Integrated Model Centric Engineering (IMCE) initiative; decided to apply Architecting and SysML-based MBSE from the beginning, begun laying these foundations to support work in Phase A. Release of Planetary Science Decadal Survey and FY12 President's Budget in March 2011 changed the landscape. JEO reverted to being a pre-phase A study. A conscious choice was made to continue application of MBSE on the Europa Study, refocused for early formulation. This presentation describes the approach, results, and lessons.

  19. Stimulated Radiative Molecular Association in the Early Solar System: Orbital Radii of Satellites of Uranus, Jupiter, Neptune, and Saturn

    CERN Document Server

    Lombardi, James C

    2015-01-01

    The present investigation relates the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model is developed involving stimulated radiative molecular association (SRMA) reactions among the photons and atoms in the protosatellite disks of the planets. In this model thermal energy is extracted from each disk due to a resonance at radii where there is a match between the temperature in the disk and a photon energy. Matter accumulates at these radii, and satellites and rings are ultimately formed. Orbital radii of satellites of Uranus, Jupiter, and Neptune are related to photon energies ($E_{PM}$ values) in the spectrum of molecular hydrogen. Orbital radii of satellites of Saturn are related to photon energies ($E_{PA}$ values) in the spectrum of atomic hydrogen. The first hint that such relationships exist is found in the linearity of the graphs of orbital radii of uranian satellites vs. or...

  20. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno...

  1. What does Cassini ENA observations tell us about gas around Europa?

    Science.gov (United States)

    Brandt, Pontus; Mauk, Barry; Westlake, Joseph; Smith, Todd; Mitchell, Donald

    2015-04-01

    From about December 2000 to January 2001 the Ion and Neutral Camera (INCA) imaged Jupiter in Energetic Neutral Atoms (ENA) from a distance of about 137-250 Jovian planetary radii (RJ) over an energy range from about 10 to 300 keV. A forward model is employed to derive column densities and assumes a neutral gas-plasma model and an energetic ion distribution based on Galileo in-situ measurements. We demonstrate that Jupiter observations by INCA are consistent with a column density peaking around Europa's orbit in the range from 2x1012 cm-2 to 7x1012 cm-2, assuming H2, and are consistent with the upper limits reported from the Cassini/UVIS observations. Most of the INCA observations are consistent with a roughly azimuthally symmetric gas distribution, but some appear consistent with an asymmetric gas distribution centred on Europa, which would directly imply that Europa is the source of the gas. Although our neutral gas model assumes a Europa source, we explore other explanations of the INCA observations including: (1) ENAs are produced by charge exchange between energetic ions and neutral hydrogen originating from charge-exchanged protons in the Io plasma torus. However, estimated densities by Cheng (1986) are about one order of magnitude too low to explain the INCA observations; (2) ENAs are produced by charge exchange between energetic ions and plasma ions such as O+ and S+ originating from Io. However, that would require O+ plasma densities higher than expected to compensate for the low charge-exchange cross section between protons and O+; (3) We re-examine the INCA Point-Spread Function (PSF) to determine if the ENA emissions in the vicinity of Europa's orbit could be explained by internal scattering of ENAs originating from Jupiter's high-latitude upper atmosphere. However, the PSF was well constrained by using Jupiter from distances where it could be considered a point source.

  2. KELT-17b: A hot-Jupiter transiting an A-star in a misaligned orbit detected with Doppler tomography

    CERN Document Server

    Zhou, George; Collins, Karen A; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M; Stassun, Keivan G; Latham, David W; Kuhn, Rudolf B; Bieryla, Allyson; Lund, Michael B; Labadie-Bartz, Jonathan; Siverd, Robert J; Stevens, Daniel J; Gaudi, B Scott; Pepper, Joshua; Buchhave, Lars A; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A; Jensen, Eric L N; Cohen, David H; McLeod, Kim K; Tan, T G; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A; Berlind, Perry; Calkins, Michael L; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J; DePoy, D L; Marshall, Jennifer L; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-01-01

    We present the discovery of a hot-Jupiter transiting the V=9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.31 -0.29/+0.28 Mj, 1.645 -0.055/+0.060 Rj hot-Jupiter in a 3.08 day period orbit misaligned at -115.9 +/- 4.1 deg to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet over two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (alpha < 0.30 at 2 sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.635 -0.061/+0.066 Msun, effective temperature of 7454 +/- 49 K, and projected rotational velocity v sin I_* = 44.2 -1.3/+1.5 km/s; it is amongst the most massive, hottest, and most rapidly rotating of know...

  3. KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography

    Science.gov (United States)

    Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-11-01

    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at ‑115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}ȯ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

  4. Plasma IMS Composition Measurements for Europa and the Other Galilean Moons

    Science.gov (United States)

    Sittler, Edward; Cooper, John; Hartle, Richard; Lipatov, Alexander; Mahaffy, Paul; Paterson, William; Pachalidis, Nick; Coplan, Mike; Cassidy, Tim

    2010-01-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4 pi surface composition to trace elemental and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The composition of the global surfaces of Europa and Ganymede can be inferred from the measurement of ejected neutrals and pick-up ions using at minimum an in situ payload including MAG and IMS also fully capable of meeting Level 1 mission requirements for ocean detection and survey. Elemental and isotopic analysis of potentially extruded oceanic materials at the moon surfaces would further support the ocean objectives. These measurements should be made from a polar orbiting spacecraft about Europa or Ganymede at height 100 km. The ejecta produced by

  5. Loss rates of Europa's tenuous atmosphere

    Science.gov (United States)

    Lucchetti, Alice; Plainaki, Christina; Cremonese, Gabriele; Milillo, Anna; Cassidy, Timothy; Jia, Xianzhe; Shematovich, Valery

    2016-10-01

    Loss processes in Europa's tenuous atmosphere are dominated by plasma-neutral interactions. Based on the updated data of the plasma conditions in the vicinity of Europa (Bagenal et al. 2015), we provide estimations of the atmosphere loss rates for the H2O, O2 and H2 populations. Due to the high variability of the plasma proprieties, we perform our investigation for three sample plasma environment cases identified by Bagenal et al. as hot/low density, cold/high density, and an intermediate case. The role of charge-exchange interactions between atmospheric neutrals and three different plasma populations, i.e. magnetospheric, pickup, and ionospheric ions, is examined in detail. Our assumptions related to the pickup and to the ionospheric populations are based on the model by Sittler et al. (2013). We find that O2-O2+ charge-exchange is the fastest loss process for the most abundant atmospheric species O2, though this loss process has been neglected in previous atmospheric models. Using both the revised O2 column density obtained from the EGEON model (Plainaki et al., 2013) and the current loss rate estimates, we find that the upper limit for the volume integrated loss rate due to O2-O2+ charge exchange is in the range (13-51)×1026 s-1, depending on the moon's orbital phase and illumination conditions. The results of the current study are relevant to the investigation of Europa's interaction with Jupiter's magnetospheric plasma.

  6. Compositional Mapping of the Surfaces of Europa and Ganymede

    Science.gov (United States)

    Gruen, Eberhard; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.

    2010-10-01

    The determination of the global surface compositions of Europa and Ganymede is a prime objective of the Europa Jupiter System Mission (EJSM). Classical methods to analyze surfaces of airless planetary objects are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. All airless moons and planets are exposed to the ambient meteoroid bombardment that erodes the surface and generates ejecta particles. The Galileo dust detector (Krueger et al., Icarus, 164, 170, 2003) discovered tenuous ejecta clouds around all Galilean satellites. In-situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Depending on the altitude from which the dust measurements are taken, the position of origin on the surface can be determined with at least corresponding resolution. Since the detection rates are on the order of thousands per day, spatially resolved maps of the surface composition can be obtained. This `dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body's geological evolution. Traces of mineral or organic components in an ice matrix can be identified and quantified even at low impact speeds >1 km/s. Compositional measurements by the Cassini Cosmic Dust Analyzer of ice grains emitted from Enceladus probed the deep interior of this satellite (Postberg et al., Nature, 459, 1098, 2009). New instrumentation has been developed that meet or exceeded the capabilities in sensitivity and mass resolution of all previous dust analyzers. The deployment of such dust analyzers on the Jupiter Europa Orbiter (JEO) and the Jupiter Ganymede Orbiter (JGO) missions will provide unprecedented information on the surface compositions of these satellites and their potential activity.

  7. New horizons mapping of Europa and Ganymede.

    Science.gov (United States)

    Grundy, W M; Buratti, B J; Cheng, A F; Emery, J P; Lunsford, A; McKinnon, W B; Moore, J M; Newman, S F; Olkin, C B; Reuter, D C; Schenk, P M; Spencer, J R; Stern, S A; Throop, H B; Weaver, H A

    2007-10-12

    The New Horizons spacecraft observed Jupiter's icy satellites Europa and Ganymede during its flyby in February and March 2007 at visible and infrared wavelengths. Infrared spectral images map H2O ice absorption and hydrated contaminants, bolstering the case for an exogenous source of Europa's "non-ice" surface material and filling large gaps in compositional maps of Ganymede's Jupiter-facing hemisphere. Visual wavelength images of Europa extend knowledge of its global pattern of arcuate troughs and show that its surface scatters light more isotropically than other icy satellites.

  8. Spin-orbit alignments for Three Transiting Hot Jupiters: WASP-103b, WASP-87b, & WASP-66b

    CERN Document Server

    Addison, B C; Wright, D J; Bayliss, D

    2016-01-01

    We have measured the sky-projected spin-orbit alignments for three transiting Hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter-McLaughlin effect, with the CYCLOPS2 optical-fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky projected spin-orbit angles of $\\lambda = 3^{\\circ}\\pm33^{\\circ}$, $\\lambda = -8^{\\circ}\\pm11^{\\circ}$, and $\\lambda = -4^{\\circ}\\pm22^{\\circ}$ for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star's spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star's Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ($T_{eff}=6450\\pm120$ K and $T_{eff}=6600\\pm150$ K, respectively) mid-F stars making them similar to the majority of stars hosting planets on high obliquity orbits. Moderate spin-or...

  9. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto.

    Science.gov (United States)

    Khurana, K K; Kivelson, M G; Stevenson, D J; Schubert, G; Russell, C T; Walker, R J; Polanskey, C

    1998-10-22

    The Galileo spacecraft has been orbiting Jupiter since 7 December 1995, and encounters one of the four galilean satellites-Io, Europa, Ganymede and Callisto-on each orbit. Initial results from the spacecraft's magnetometer have indicated that neither Europa nor Callisto have an appreciable internal magnetic field, in contrast to Ganymede and possibly Io. Here we report perturbations of the external magnetic fields (associated with Jupiter's inner magnetosphere) in the vicinity of both Europa and Callisto. We interpret these perturbations as arising from induced magnetic fields, generated by the moons in response to the periodically varying plasma environment. Electromagnetic induction requires eddy currents to flow within the moons, and our calculations show that the most probable explanation is that there are layers of significant electrical conductivity just beneath the surfaces of both moons. We argue that these conducting layers may best be explained by the presence of salty liquid-water oceans, for which there is already indirect geological evidence in the case of Europa.

  10. Simulation of Na D emission near Europa during eclipse

    Science.gov (United States)

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  11. Joint Europa Mission (JEM) : A multi-scale study of Europa to characterize its habitability and search for life.

    Science.gov (United States)

    Blanc, Michel; Prieto Ballesteros, Olga; Andre, Nicolas; Cooper, John F.

    2017-04-01

    Europa is the closest and probably the most promising target to perform a comprehensive characterization of habitability and search for extant life. We propose that NASA and ESA join forces to design an ambitious planetary mission we call JEM (for Joint Europa Mission) to reach this objective. JEM will be assigned the following overarching goal: Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life in its surface, sub-surface and exosphere. Our observation strategy to address these goals will combine three scientific measurement sequences: measurements on a high-latitude, low-latitude Europan orbit providing a continuous and global mapping of planetary fields (magnetic and gravity) and of the neutral and charged environment during a period of three months; in-situ measurements at the surface, using a soft lander operating during 35 days, to search for bio-signatures at the surface and sub-surface and operate a geophysical station; measurements of the chemical composition of the very low exosphere and plumes in search for biomolecules. The implementation of these three observation sequences will rest on the combination of two science platforms equipped with the most advanced instrumentation: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and a carrier/relay/orbiter to perform the orbital survey and descent sequences. In this concept, the orbiter will perform science operations during the relay phase on a carefully optimized halo orbit of the Europa-Jupiter system before moving to its final Europan orbit. The design of both orbiter and lander instruments will have to accommodate the very challenging radiation mitigation and Planetary Protection issues. The proposed lander science platform is composed of a geophysical station and of two complementary astrobiology facilities dedicated to bio

  12. Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter

    Science.gov (United States)

    Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  13. Understanding Europa's Ice Shell and Subsurface Water Through Terestrial Analogs for Flyby Radar Sounding

    Science.gov (United States)

    Blankenship, D. D.; Grima, C.; Young, D. A.; Schroeder, D. M.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Patterson, G.; Moussessian, A.

    2015-12-01

    The recently approved NASA mission to Europa proposes to study this ice-covered moon of Jupiter though a series of fly-by observations of its surface and subsurface from a spacecraft in Jovian orbit. The science goal of this mission is to "explore Europa to investigate its habitability". One of the primary instruments in the selected scientific payload is a multi-frequency, multi-channel ice penetrating radar system. The "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" will play a critical role in achieving the mission's habitability driven science objectives, which include characterizing the distribution of any shallow subsurface water, searching for an ice-ocean interface and evaluating a spectrum of ice-ocean-atmosphere exchange hypotheses. The development of successful measurement and data interpretation techniques for exploring Europa will need to leverage knowledge of analogous terrestrial environments and processes. Towards this end, we will discuss a range of terrestrial radioglaciological analogs for hypothesized physical, chemical, and biological processes on Europa and present airborne data collected with the University of Texas dual-frequency radar system over a variety of terrestrial targets. These targets include water filled fractures, brine rich ice, water lenses, accreted marine ice, and ice surfaces with roughness ranging from firn to crevasse fields and will provide context for understanding and optimizing the observable signature of these processes in future radar data collected at Europa.

  14. Tidal response of Europa's subsurface ocean

    Science.gov (United States)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  15. WASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Gillon, M; Hellier, C; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Enoch, R; Lister, T A; Pepe, F; Pollacco, D L; Ségransan, D; Skillen, I; Udry, S

    2010-01-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WA...

  16. WASP-32b: A Transiting Hot Jupiter Planet Orbiting a Lithium-Poor, Solar-Type Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Enoch, R.; Lister, T. A.; Pepe, F.; Pollacco, D. L.; Ségransan, D.; Skillen, I.; Udry, S.

    2010-12-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V = 11.3) solar-type star (Teff = 6100 ± 100 K, [Fe/H] = -0.13 ± 0.10). The light curve of the star obtained with the WASP-South and WASP-North instruments shows periodic transitlike features with a depth of about 1% and a duration of 0.10 day every 2.72 days. The presence of a transitlike feature in the light curve is confirmed using z -band photometry obtained with Faulkes Telescope North. High-resolution spectroscopy obtained with the Coralie spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass Mp of 3.60 ± 0.07 MJup and a radius Rp = 1.19 ± 0.06 RJup. WASP-32 is one of a small group of hot Jupiters with masses greater than 3 MJup. We find that some stars with hot Jupiter companions and with masses M⋆ ≈ 1.2 M⊙, including WASP-32, are depleted in lithium and that the majority of these stars have lithium abundances similar to field stars.

  17. Coupled Evolutions of the Stellar Obliquity, Orbital Distance, and Planet's Radius due to the Ohmic Dissipation Induced in a Diamagnetic Hot Jupiter around a Magnetic T Tauri Star

    Science.gov (United States)

    Chang, Yu-Ling; Bodenheimer, Peter H.; Gu, Pin-Gao

    2012-10-01

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.

  18. Trade space evaluation of multi-mission architectures for the exploration of Europa

    Science.gov (United States)

    Alibay, F.; Strange, N. J.

    Recent cuts to NASA's planetary exploration budget have precipitated a debate in the community on whether large flagship missions to planetary bodies in the outer solar system or sequences of smaller missions as part of a long-term exploration program would be more beneficial. The work presented explores the trade between these two approaches as applied to the exploration of Europa and concentrates on identifying combinations of flyby, orbiter and/or lander missions that achieve high value at a lower cost than the Jupiter Europa Orbiter (JEO) flagship mission concept. The effects of the value attributed to the four main science objectives for Europa, which can be broadly classified as investigating the ocean, ice-shell, composition and geology, are demonstrated. The current approach proposed to complete the ocean exploration objective is shown to have conflicting requirements with the other three objectives. For missions that fully address all the science objectives, such as JEO, the ocean goal is therefore found to be the main cost driver. Instrument combinations for low-cost flyby missions are also presented, and simple lander designs able to achieve a wide range of objectives at a low additional cost are identified. Finally, the current designs for the Europa Habitability Mission (EHM) are compared to others in the trade space, based on the prioritization given to the science goals for the exploration of Europa. The current EHM flyby mission (Clipper) is found to be highly promising in terms of providing very high potential science value at a low cost.

  19. Spin-orbit angle measurements for six southern transiting planets; New insights into the dynamical origins of hot Jupiters

    CERN Document Server

    Triaud, Amaury H M J; Queloz, Didier; Anderson, David R; Gillon, Michaël; Hebb, Leslie; Hellier, Coel; Loeillet, Benoît; Maxted, Pierre F; Mayor, Michel; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard G; Wheatley, Peter J

    2010-01-01

    For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle beta between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We found that three of our targets have a projected spin-orbit angle above 90 degrees: WASP-2b: beta = 153 (+11 -15), WASP-15b: beta = 139.6 (+5.2 -4.3) and WASP-17b: beta = 148.5 (+5.1 -4.2); the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0 degrees. There is no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All orbits are close to circular, with only one firm detection of eccentricity on WASP-18b with e = 0.00848 (+0.00085 -0.00095). No long term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of bet...

  20. Spectroscopic confirmation of KOI-1299b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star

    CERN Document Server

    Ortiz, Mauricio; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J; Karjalainen, Raine; Montañes-Rodríguez, Pilar; Nespral, Davide; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric

    2014-01-01

    Context: Planets around evolved stars exhibit different properties than those orbiting main-sequence stars. One of the most notable differences is the paucity of planets orbiting at short distance from giant stars (a < 0.5 AU). Detecting these rare close-in planets can shed light on planetary system formation and evolution mechanisms. Aims: We study the Kepler object KOI-1299, an evolved star ascending the red giant branch. We aim at confirming the planetary nature of the Jupiter-like transit signal recurring every ~52.5 days, and characterizing the orbital elements of the system. Methods: We derive radial velocities from multi-epoch high-resolution spectra of KOI-1299 acquired with CAFE at the 2.2m telescope of Calar Alto Observatory and FIES at the 2.56m Nordic Optical Telescope of Roque de los Muchachos Observatory. Results: We confirm the planetary nature of the transiting object KOI-1299b. We find a planetary mass of Mp=5.86 +\\- 0.05 Mjup and an eccentricity of e=0.479 +\\- 0.004. With a semi-major axi...

  1. The Jupitor icy moons orbiter project: The scientific rationale

    Science.gov (United States)

    Creely, Ronald; Johnson, Torrence

    The Jupiter Icy Moons Orbiter (JIMO) is proposed by NASA as the next step in the exploration of the Jovian system following the successful Galileo project. JIMO would use nuclear-electric propulsion to deliver a highly capable scientific payload to Jupiter and go into orbit around Europa, Ganymede, and Callisto, and to conduct investigations of the Jovian system. In early 2003, a NASA Science Definition Team (SDT) was appointed to develop the scientific rationale and priorities for JIMO. The SDT, co-chaired by T. Johnson and R. Greeley, consisted of 38 scientists representing the broad scientific potential afforded by JIMO.This article summarizes the principal findings of the SDT.

  2. WASP-104b and WASP-106b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits

    CERN Document Server

    Smith, A M S; Armstrong, D J; Barros, S C C; Bonomo, A S; Bouchy, F; Brown, D J A; Cameron, A Collier; Delrez, L; Faedi, F; Gillon, M; Chew, Y Gómez Maqueo; Hébrard, G; Jehin, E; Lendl, M; Louden, T M; Maxted, P F L; Montagnier, G; Neveu-VanMalle, M; Osborn, H; Pepe, F; Pollacco, D; Queloz, D; Rostron, J W; Segransan, D; Smalley, B; Triaud, A H M J; Turner, O D; Udry, S; Walker, S R; West, R G; Wheatley, P J

    2014-01-01

    We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 \\pm 0.05~\\mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 \\pm 0.08~\\mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 \\pm 0.04$ and $1.09 \\pm 0.04~\\mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.

  3. WASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Hellier, C; Queloz, D; Smalley, B; Street, R A; Triaud, A H M J; West, R G; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Udry, S

    2010-01-01

    We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  4. The K2-ESPRINT Project IV: A Hot Jupiter in a Prograde Orbit with a Possible Stellar Companion

    CERN Document Server

    Hirano, Teruyuki; Kuzuhara, Masayuki; Palle, Enric; Dai, Fei; Yu, Liang; Van Eylen, Vincent; Takeda, Yoichi; Brandt, Timothy D; Narita, Norio; Velasco, Sergio; Arranz, Jorge Prieto; Sanchis-Ojeda, Roberto; Winn, Joshua N; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Fukui, Akihiko; Sato, Bun'ei; Albrecht, Simon; Ribas, Ignasi; Ryu, Tsuguru; Tamura, Motohide

    2016-01-01

    We report on the detection and early characterization of a hot Jupiter in a 3-day orbit around EPIC 212110888, a metal-rich F-type star located in the K2 Cycle 5 field. Our follow-up campaign involves precise radial velocity (RV) measurements and high-contrast imaging using multiple facilities. The absence of a bright nearby source in our high-contrast data suggests that the transit-like signals are not due to light variations from such a contaminant star. Our intensive RV measurements show that EPIC 212110888b has a mass of $1.726\\pm0.085M_J$, confirming its status as a planet. We also detect the Rossiter-McLaughlin effect for EPIC 212110888b and show that the system has a good spin-orbit alignment ($\\lambda=4_{-10}^{+11}$ degrees). High-contrast images obtained by the HiCIAO camera on the Subaru 8.2-m telescope reveal a faint companion candidate ($\\Delta m_H=6.19\\pm 0.11$) at a separation of $\\sim 0\\farcs36$. Follow-up observations are needed to confirm that the companion candidate is physically associated ...

  5. Two Jupiter-Mass Planets Orbiting HD 154672 and HD 205739

    CERN Document Server

    Lopez-Morales, Mercedes; Fischer, Debra A; Minniti, Dante; Shectman, Stephen A; Takeda, Genya; Adams, Fred C; Wright, Jason T; Arriagada, Pamela

    2008-01-01

    We report the detection of the first two planets from the N2K Doppler planet search program at the Magellan telescopes. The first planet has a mass of M sin i = 4.96 M_Jup and is orbiting the G3 IV star HD154672 with an orbital period of 163.9 days. The second planet is orbiting the F7 V star HD205739 with an orbital period of 279.8 days and has a mass of M sin i = 1.37 M_Jup. Both planets are in eccentric orbits, with eccentricities e = 0.61 and e = 0.27, respectively. Both stars are metal rich and appear to be chromospherically inactive, based on inspection of their Ca II H and K lines. Finally, the best Keplerian model fit to HD205739b shows a trend of 0.0649 m/s/day, suggesting the presence of an additional outer body in that system.

  6. A highly integrated payload suite for Europa

    Science.gov (United States)

    Bentley, M.; Kraft, S.; Steiger, R.; Varlet, F.; Voigt, D.; Falkner, P.; Peacock, A.

    The four Galilean moons have always held a public and scientific fascination due to their diverse and dynamic nature. Amongst the moons, Europa holds a special place for its potential liquid water ocean, beneath its icy crust. This prospect of water places Europa on a par with Mars in terms of its viability for harbouring life. The first hints of Europa's icy surface came from early telescopic observations, which noted an unusually high albedo. Ground based spectroscopy then demonstrated absorption features of relatively pure water ice. Imagery from Pioneer, Voyager, and more recently Galileo confirm this, with the kilometre scale resolution of Galileo showing what appear to be ice flows. The lack of cratering, pointing to a geologically recent surface, furthermore suggests that liquid water could well exist today. The Galileo Europa Mission (GEM) provided much more extensive data during its 8 close orbits, including limited areas of extremely high resolution imaging (6 m), and radio science that confirmed the differentiated nature of Europa. However, many fundamental questions remain that can best be answered by a dedicated orbiter. For example: - Does a liquid water ocean exist? What it its extent vertically and laterally? - What is the composition of the crust? - What are the geological processes operating? The importance of these most basic questions have inspired mission proposals from all of the major space agencies. In Europe, ESA have performed a study into a mission called the "Jupiter Minisat Explorer" in order to identify the key technologies that would have to be developed [1]. The key technological challenges are caused by the harsh Jovian radiation environment, the lack of solar energy available and the thermal problems of such a cold environment. Last, but not least, a payload must be designed that satisfies these requirements and is both low power and low mass. All of these factors dictate the use of a Highly Integrated Payload Suite (HIPS). Such a

  7. Pensar Europa

    Directory of Open Access Journals (Sweden)

    Sonia Reverter

    2012-02-01

    Full Text Available Como dijo el profesor Fernando Montero "hay que reconocer que Europa es una extraña entidad, a mitad camino entre los seres reales y las ficciones". Desde el mismo mito de Europa, como princesa fenicia raptada por Zeus convertido en un toro blanco y llevada a Creta, hasta el discurso actual que promueve una idea de Europa como entidad transnacional, nos hallamos frente a la realidad de Europa como cuna de ideas e idea ella misma. La reflexividad que caracteriza al pensamiento filosófico y a la racionalidad crítica vuelve su mirada hacia la misma razón que se piensa, por tanto, a sí misma. Y es en ese punto en el que la cultura europea se ha destacado y tal vez debamos admitir también, se ha desgastado. Europa, desde la racionalidad de los griegos hasta la crisis de la razón actual ha pensado sobre sí misma al preguntarse por la razón misma. Podemos decir, de alguna manera, que Europa se piensa a sí misma al pensar en la razón humana. En este número monográfico de Recerca presentamos precisamente eso, una reflexión de Europa, que es a su vez una reflexión sobre algunos de los temas no sólo abiertos en ese quehacer constante que Europa se ha convertido, sino de gran calado para lo que Europa en un futuro pueda ser.

  8. Akon - A Penetrator for Europa

    Science.gov (United States)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  9. EPIC 204129699b, a grazing transiting hot Jupiter on an 1.26-day orbit around a bright solar like star

    CERN Document Server

    Grziwa, S; Csizmadia, Sz; Fridlund, M; Parviainen, H; Deeg, H J; Cabrera, J; Djupvik, A A; Albrecht, S; Palle, E B; Pätzold, M; Béjar, V J S; Arranz, J P; Eigmüller, P; Erikson, A; Fynbo, J P U; Guenther, E W; Hatzes, A P; Kiilerich, A; Korth, J; Kuutma, T; Montanés-Rodríguez, P; Nespral, D; Nowak, G; Rauer, H; Saario, J; Sebastian, D; Slumstrup, D

    2015-01-01

    We report the discovery of EPIC 204129699b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. EPIC 204129699b is a 1.8-Jupiter-mass planet on an 1.26-day-orbit around a G7V star (M* = 0.91 Msun, R* = 0.78 Rsun). The planetary radius is poorly constrained (0.7 < Rp < 1.4 RJup ), owing to the grazing transit and the low sampling rate of the K2 photometry. The short orbital period and the brightness of the host star (V = 10.8 mag) make the system amenable to atmospheric characterization.

  10. Europa: Initial Galileo Geological Observations

    Science.gov (United States)

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  11. Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov-Kozai oscillations in stellar binaries

    Science.gov (United States)

    Anderson, Kassandra R.; Storch, Natalia I.; Lai, Dong

    2016-03-01

    Observed hot Jupiter (HJ) systems exhibit a wide range of stellar spin-orbit misalignment angles. This paper investigates the inward migration of giant planets due to Lidov-Kozai (LK) oscillations induced by a distant stellar companion. We conduct a large population synthesis study, including the octupole gravitational potential from the stellar companion, mutual precession of the host stellar spin axis and planet orbital axis, tidal dissipation in the planet and stellar spin-down in the host star due to magnetic braking. We consider a range of planet masses (0.3-5 MJ) and initial semimajor axes (1-5 au), different properties for the host star, and varying tidal dissipation strengths. The fraction of systems that result in HJs depends on planet mass and stellar type, with fHJ = 1-4 per cent (depending on tidal dissipation strength) for Mp = 1 MJ, and larger (up to 8 per cent) for more massive planets. The production efficiency of `hot Saturns' (Mp = 0.3MJ) is much lower, because most migrating planets are tidally disrupted. We find that the fraction of systems that result in either HJ formation or tidal disruption, fmig ≃ 11-14 per cent is roughly constant, having little variation with planet mass, stellar type and tidal dissipation strength. The distribution of final HJ stellar obliquities exhibits a complex dependence on the planet mass and stellar type. For Mp = (1-3)MJ, the distribution is always bimodal, with peaks around 30° and 130°. The distribution for 5MJ planets depends on host stellar type, with a preference for low obliquities for solar-type stars, and higher obliquities for more massive (1.4 M⊙) stars.

  12. Penetrators for in situ subsurface investigations of Europa

    Science.gov (United States)

    Gowen, R. A.; Smith, A.; Fortes, A. D.; Barber, S.; Brown, P.; Church, P.; Collinson, G.; Coates, A. J.; Collins, G.; Crawford, I. A.; Dehant, V.; Chela-Flores, J.; Griffiths, A. D.; Grindrod, P. M.; Gurvits, L. I.; Hagermann, A.; Hussmann, H.; Jaumann, R.; Jones, A. P.; Joy, K. H.; Karatekin, O.; Miljkovic, K.; Palomba, E.; Pike, W. T.; Prieto-Ballesteros, O.; Raulin, F.; Sephton, M. A.; Sheridan, S.; Sims, M.; Storrie-Lombardi, M. C.; Ambrosi, R.; Fielding, J.; Fraser, G.; Gao, Y.; Jones, G. H.; Kargl, G.; Karl, W. J.; Macagnano, A.; Mukherjee, A.; Muller, J. P.; Phipps, A.; Pullan, D.; Richter, L.; Sohl, F.; Snape, J.; Sykes, J.; Wells, N.

    2011-08-01

    We present the scientific case for inclusion of penetrators into the Europan surface, and the candidate instruments which could significantly enhance the scientific return of the joint ESA/NASA Europa-Jupiter System Mission (EJSM). Moreover, a surface element would provide an exciting and inspirational mission highlight which would encourage public and political support for the mission.Whilst many of the EJSM science goals can be achieved from the proposed orbital platform, only surface elements can provide key exploration capabilities including direct chemical sampling and associated astrobiological material detection, and sensitive habitability determination. A targeted landing site of upwelled material could provide access to potential biological material originating from deep beneath the ice.Penetrators can also enable more capable geophysical investigations of Europa (and Ganymede) interior body structures, mineralogy, mechanical, magnetic, electrical and thermal properties. They would provide ground truth, not just for the orbital observations of Europa, but could also improve confidence of interpretation of observations of the other Jovian moons. Additionally, penetrators on both Europa and Ganymede, would allow valuable comparison of these worlds, and gather significant information relevant to future landed missions. The advocated low mass penetrators also offer a comparatively low cost method of achieving these important science goals.A payload of two penetrators is proposed to provide redundancy, and improve scientific return, including enhanced networked seismometer performance and diversity of sampled regions.We also describe the associated candidate instruments, penetrator system architecture, and technical challenges for such penetrators, and include their current status and future development plans.

  13. Absorption of trapped particles by Jupiter's moons

    Science.gov (United States)

    Hess, W. N.; Birmingham, T. J.; Mead, G. D.

    1974-01-01

    Inclusion of absorption effects of the four innermost moons in the radial transport equations for electrons and protons in Jupiter's magnetosphere. It is found that the phase space density n at 2 Jupiter radii for electrons with equatorial pitch angles less than 69 deg is reduced by a factor of 42,000 when lunar absorption is included in the calculation. For protons with equatorial pitch angles less than 69 deg the corresponding reduction factor is 2,300,000. The effect of the satellites becomes progressively weaker for both electrons and protons as equatorial pitch angles of 90 deg are approached, because the likelihood of impacting a satellite becomes progressively smaller. The large density decreases found at the orbits of Io, Europa, and Ganymede result in corresponding particle flux decreases that should be observed by spacecraft making particle measurements in Jupiter's magnetosphere. The characteristic signature of satellite absorption should be a downward-pointing vertex in the flux versus radius curve at the L value corresponding to each satellite.

  14. Plasma IMS Composition Measurements for Europa and the Other Galilean Moons

    Science.gov (United States)

    Sittler, Edward; Cooper, John; Hartle, Richard; Lipatov, Alexander; Mahaffy, Paul; Paterson, William; Pachalidis, Nick; Coplan, Mike; Cassidy, Tim

    2010-05-01

    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4? surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged. The composition of the global surfaces of Europa and Ganymede can be inferred from the measurement of ejected neutrals and pick-up ions using at minimum an in situ payload including MAG and IMS also fully capable of meeting Level 1 mission requirements for ocean detection and survey. Elemental and isotopic analysis of potentially extruded oceanic materials at the moon surfaces would further support the ocean objectives. These measurements should be made from a polar orbiting spacecraft about Europa or Ganymede at height ~ 100 km. The ejecta produced by

  15. On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    CERN Document Server

    Zhang, Hui; Lin, D N C; Yen, D C C

    2007-01-01

    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \\textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the con...

  16. Europa the ocean moon : search for an alien biosphere

    CERN Document Server

    Greenberg, Richard

    2004-01-01

    Europa - The Ocean Moon tells the story of the Galileo spacecraft probe to Jupiter's moon, Europa. It provides a detailed description of the physical processes, including the dominating tidal forces that operate on Europa, and includes a comprehensive tour of Europa using images taken by Galileo's camera. The book reviews and evaluates the interpretative work carried out to date, providing a philosophical discussion of the scientific process of analyzing results and the pitfalls that accompany it. It also examines the astrobiological constraints on this possible biosphere, and implications for future research, exploration and planetary biological protection. Europa - The Ocean Moon provides a unique understanding of the Galileo images of Europa, discusses the theory of tidal processes that govern its icy ridged and disrupted surface, and examines in detail the physical setting that might sustain extra-terrestrial life in Europa's ocean and icy crust.

  17. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b

    Energy Technology Data Exchange (ETDEWEB)

    Zellem, Robert T.; Griffith, Caitlin A.; Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Cowan, Nicolas B. [Department of Earth and Planetary Sciences, Northwestern University, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208 (United States); Agol, Eric [Astronomy Department, University of Washington, Physics-Astronomy Building, 3910 15th Avenue NE, Seattle, WA 98195 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-16, Cambridge, MA 02138 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan, E-mail: rzellem@lpl.arizona.edu [Physics Department, Principia College, 1 Maybeck Place, Elsah, IL 62028 (United States)

    2014-07-20

    The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 μm emission was recorded with Spitzer/IRAC. Our study revises the previous 4.5 μm measurement of HD 209458b's secondary eclipse emission downward by ∼35% to 0.1391%{sub −0.0069%}{sup +0.0072%}, changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planet's dayside is shifted eastward of the substellar point by 40.°9 ± 6.°0, in agreement with circulation models predicting equatorial superrotation. HD 209458b's dayside (T{sub bright} = 1499 ± 15 K) and nightside (T{sub bright} = 972 ± 44 K) emission indicate a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH{sub 4} line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planet's atmospheric circulation.

  18. Prospects of Passive Radio Detection of a Subsurface Ocean on Europa with a Lander

    CERN Document Server

    Romero-Wolf, Andrew; Ries, Paul; Bills, Bruce G; Naudet, Charles; Scott, Bryan R; Treuhaft, Robert; Vance, Steve

    2016-01-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km - 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  19. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    Science.gov (United States)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  20. K2-31B, a Grazing Transiting Hot Jupiter on a 1.26-day Orbit around a Bright G7V Star

    Science.gov (United States)

    Grziwa, Sascha; Gandolfi, Davide; Csizmadia, Szilard; Fridlund, Malcolm; Parviainen, Hannu; Deeg, Hans J.; Cabrera, Juan; Djupvik, Amanda A.; Albrecht, Simon; Palle, Enric B.; Pätzold, Martin; Béjar, Victor J. S.; Prieto-Arranz, Jorge; Eigmüller, Philipp; Erikson, Anders; Fynbo, Johan P. U.; Guenther, Eike W.; Hatzes, Artie P.; Kiilerich, Amanda; Korth, Judith; Kuutma, Teet; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Rauer, Heike; Saario, Joonas; Sebastian, Daniel; Slumstrup, Ditte

    2016-11-01

    We report the discovery of K2-31b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. K2-31b is a 1.8-Jupiter-mass planet on a 1.26-day orbit around a G7 V star ({M}\\star =0.91 M ⊙, {R}\\star =0.78 R ⊙). The planetary radius is poorly constrained (0.7 < R p < 1.4 R Jup),15 owing to the grazing transit and the low sampling rate of the K2 photometry.16

  1. DIFFICULTY IN THE FORMATION OF COUNTER-ORBITING HOT JUPITERS FROM NEAR-COPLANAR HIERARCHICAL TRIPLE SYSTEMS: A SUB-STELLAR PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-20

    Among 100 transiting planets with a measured projected spin–orbit angle λ, several systems are suggested to be counter-orbiting. While these cases may be due to the projection effect, the mechanism that produces a counter-orbiting planet has not been established. A promising scenario for counter-orbiting planets is the extreme eccentricity evolution in near-coplanar hierarchical triple systems with eccentric inner and outer orbits. We examine this scenario in detail by performing a series of systematic numerical simulations, and consider the possibility of forming hot Jupiters (HJs), especially a counter-orbiting one under this mechanism with a distant sub-stellar perturber. We incorporate quadrupole and octupole secular gravitational interaction between the two orbits, and also short-range forces (correction for general relativity, star and inner planetary tide, and rotational distortion) simultaneously. We find that most systems are tidally disrupted and that a small fraction of the surviving planets turn out to be prograde. The formation of counter-orbiting HJs in this scenario is possible only in a very restricted parameter region, and thus is very unlikely in practice.

  2. Difficulty in the Formation of Counter-orbiting Hot Jupiters from Near-coplanar Hierarchical Triple Systems: A Sub-stellar Perturber

    Science.gov (United States)

    Xue, Yuxin; Suto, Yasushi

    2016-03-01

    Among 100 transiting planets with a measured projected spin-orbit angle λ, several systems are suggested to be counter-orbiting. While these cases may be due to the projection effect, the mechanism that produces a counter-orbiting planet has not been established. A promising scenario for counter-orbiting planets is the extreme eccentricity evolution in near-coplanar hierarchical triple systems with eccentric inner and outer orbits. We examine this scenario in detail by performing a series of systematic numerical simulations, and consider the possibility of forming hot Jupiters (HJs), especially a counter-orbiting one under this mechanism with a distant sub-stellar perturber. We incorporate quadrupole and octupole secular gravitational interaction between the two orbits, and also short-range forces (correction for general relativity, star and inner planetary tide, and rotational distortion) simultaneously. We find that most systems are tidally disrupted and that a small fraction of the surviving planets turn out to be prograde. The formation of counter-orbiting HJs in this scenario is possible only in a very restricted parameter region, and thus is very unlikely in practice.

  3. Analysis of Preferred Directions in Phase Space for Tidal Measurements at Europa

    Science.gov (United States)

    Boone, D.; Scheeres, D. J.

    2012-12-01

    The NASA Jupiter Europa Orbiter mission requires a circular, near-polar orbit to measure Europa's Love numbers, geophysical coefficients which give insight into whether a liquid ocean exists. This type of orbit about planetary satellites is known to be unstable. The effects of Jupiter's tidal gravity are seen in changes in Europa's gravity field and surface deformation, which are sensed through doppler tracking over time and altimetry measurements respectively. These two measurement types separately determine the h and k Love numbers, a combination of which bounds how thick the ice shell of Europa is and whether liquid water is present. This work shows how the properties of an unstable periodic orbit about Europa generate preferred measurement directions in position and velocity phase space for the orbit determination process. We generate an error covariance over seven days for the orbiter state and science parameters using a periodic orbit and then disperse the orbit initial conditions in a Monte Carlo simulation according to this covariance. The dispersed orbits are shown to have a bias toward longer lifetimes and we discuss this as an effect of the stable and unstable manifolds of the periodic orbit. Using an epoch formulation of a square-root information filter, measurements aligned with the unstable manifold mapped back in time add more information to the orbit determination process than measurements aligned with the stable manifold. This corresponds to a contraction in the uncertainty of the estimate of the desired parameters, including the Love numbers. We demonstrate this mapping mathematically using a representation of the State Transition Matrix involving its eigenvectors and eigenvalues. Then using the properties of left and right eigenvectors, we show how measurements in the orbit determination process are mapped in time leading to a concentration of information at epoch. We present examples of measurements taken on different time schedules to show the

  4. Considerations for a Radar System to Detect an Ocean Underneath the Icy Shell of Europa

    Science.gov (United States)

    Markus, Thorsten; Gogineni, Prasad; Green, James; Cooper, John; Fung, Shing; Taylor, William; Benson, Robert; Reinisch, Bodo; Song, Paul

    2004-01-01

    The detection of an ocean underneath Europa is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. An orbiting surface penetrating radar has the potential of providing that measurement thus yielding information regarding the possibility of life support on Europa. Radars in the MHz range have successfully monitored the kilometer-deep ice shelves of Greenland and Antarctica, including the detection of Lake Vostok (and others) below an ice sheet thickness of about 4 km. The performance of a radar system orbiting Europa will be subject to several potential complications and unknowns. Besides ionospheric dispersion and the actual depth of the ocean, which is estimated between 2 and 30 km, major unknowns affecting radar performance are the temperature profile, the amount of salt and other impurities within the ice crust as well as the surface roughness. These impurities can in part be produced at the highly irradiated surface by magnetospheric interactions and transported downward into the ice crust by geologic processes. The ionospheric interference must also be modeled from effects of these interactions on production of the thin neutral atmosphere and subsequent ionization of the neutrals. We investigated these uncertainties through radar simulations using different surface and ice characteristics over a frequency range from 10 to 50 MHz. The talk will present results from these simulations discussing potential limitations.

  5. Traveling Wave Tube (TVT) RF Power Combining Demonstration for use in the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Downey, Joseph A.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by

  6. Hubble Space Telescope observations of Europa in and out of eclipse

    Science.gov (United States)

    Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.

    2010-01-01

    Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.

  7. Tether-mission design for multiple flybys of moon Europa

    Science.gov (United States)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  8. Global Europa

    DEFF Research Database (Denmark)

    Manners, Ian

    2010-01-01

    The mythology of the European Union (EU) in world politics can be told and untold in many different ways. This article focuses on the lore or stories of who did what to whom, the ideological projection of the past onto the present and the escapist pleasure of story telling in looking at the mytho......The mythology of the European Union (EU) in world politics can be told and untold in many different ways. This article focuses on the lore or stories of who did what to whom, the ideological projection of the past onto the present and the escapist pleasure of story telling in looking...... at the mythology of ‘global Europa' - the EU in the world. It concludes with a reflection on the way in which the many diverse myths of global Europa compete for daily attention, whether as lore, ideology, or pleasure. In this respect the mythology of global Europa is part of our everyday existence, part of the EU...

  9. Europa central

    Directory of Open Access Journals (Sweden)

    Karel BARTOSEK

    2010-02-01

    Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.

  10. Moons around Jupiter

    Science.gov (United States)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this photo of Jupiter at 20:42:01 UTC on January 9, 2007, when the spacecraft was 80 million kilometers (49.6 million miles) from the giant planet. The volcanic moon Io is to the left of the planet; the shadow of the icy moon Ganymede moves across Jupiter's northern hemisphere. Ganymede's average orbit distance from Jupiter is about 1 million kilometers (620,000 miles); Io's is 422,000 kilometers (262,000 miles). Both Io and Ganymede are larger than Earth's moon; Ganymede is larger than the planet Mercury.

  11. Jupiter's Moons: Family Portrait

    Science.gov (United States)

    2007-01-01

    This montage shows the best views of Jupiter's four large and diverse 'Galilean' satellites as seen by the Long Range Reconnaissance Imager (LORRI) on the New Horizons spacecraft during its flyby of Jupiter in late February 2007. The four moons are, from left to right: Io, Europa, Ganymede and Callisto. The images have been scaled to represent the true relative sizes of the four moons and are arranged in their order from Jupiter. Io, 3,640 kilometers (2,260 miles) in diameter, was imaged at 03:50 Universal Time on February 28 from a range of 2.7 million kilometers (1.7 million miles). The original image scale was 13 kilometers per pixel, and the image is centered at Io coordinates 6 degrees south, 22 degrees west. Io is notable for its active volcanism, which New Horizons has studied extensively. Europa, 3,120 kilometers (1,938 miles) in diameter, was imaged at 01:28 Universal Time on February 28 from a range of 3 million kilometers (1.8 million miles). The original image scale was 15 kilometers per pixel, and the image is centered at Europa coordinates 6 degrees south, 347 degrees west. Europa's smooth, icy surface likely conceals an ocean of liquid water. New Horizons obtained data on Europa's surface composition and imaged subtle surface features, and analysis of these data may provide new information about the ocean and the icy shell that covers it. New Horizons spied Ganymede, 5,262 kilometers (3,268 miles) in diameter, at 10:01 Universal Time on February 27 from 3.5 million kilometers (2.2 million miles) away. The original scale was 17 kilometers per pixel, and the image is centered at Ganymede coordinates 6 degrees south, 38 degrees west. Ganymede, the largest moon in the solar system, has a dirty ice surface cut by fractures and peppered by impact craters. New Horizons' infrared observations may provide insight into the composition of the moon's surface and interior. Callisto, 4,820 kilometers (2,995 miles) in diameter, was imaged at 03:50 Universal Time on

  12. Science potential from a Europa lander.

    Science.gov (United States)

    Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M

    2013-08-01

    The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

  13. Jupiter's Water Worlds

    Science.gov (United States)

    Pappalardo, R. T.

    2004-01-01

    When the twin Voyager spacecraft cruised past Jupiter in 1979, they did more than rewrite the textbooks on the giant planet. Their cameras also unveiled the astounding diversity of the four planet-size moons of ice and stone known as the Galilean satellites. The Voyagers revealed the cratered countenance of Callisto, the valleys and ridges of Ganymede, the cracked face of Europa, and the spewing volcanoes of Io. But it would take a spacecraft named for Italian scientist Galileo, who discovered the moons in 1610, to reveal the true complexity of these worlds and to begin to divulge their interior secrets. Incredibly, the Galileo data strongly suggest that Jupiter's three large icy moons (all but rocky Io) hide interior oceans.

  14. Linking Europa's plume activity to tides, tectonics, and liquid water

    CERN Document Server

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  15. The Ultraviolet Spectrograph on the Europa Mission (Europa-UVS)

    Science.gov (United States)

    Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Steffl, A.; Davis, M. W.; Feldman, P. D.; McGrath, M. A.; Roth, L.; Saur, J.; Spencer, J. R.; Stern, S. A.; Pope, S.; Freeman, M. A.; Persyn, S. C.; Araujo, M. F.; Cortinas, S. C.; Monreal, R. M.; Persson, K. B.; Trantham, B. J.; Versteeg, M. H.; Walther, B. C.

    2015-12-01

    NASA's Europa multi-flyby mission is designed to provide a diversity of measurements suited to enrich our understanding of the potential habitability of this intriguing ocean world. The Europa mission's Ultraviolet Spectrograph, Europa-UVS, is the sixth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and, like JUICE-UVS (now under Phase B development), is largely based on the most recent of these to fly, Juno-UVS. Europa-UVS observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5° slit. Three distinct apertures send light to the off-axis telescope mirror feeding the long-slit spectrograph: i) a main entrance airglow port is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations); ii) a high-spatial-resolution port consists of a small hole in an additional aperture door, and is used for detailed observations of bright targets; and iii) a separate solar port allows for solar occultations, viewing at a 60° offset from the nominal payload boresight. Photon event time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal science data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high-voltage settings, and careful use of radiation-hard parts. The science goals of Europa-UVS are to: 1) Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole; 2) Search for and characterize active plumes in terms of global distribution, structure, composition, and variability; 3) Explore the surface composition & microphysics and their relation to endogenic & exogenic processes; and 4) Investigate how energy and mass flow in the Europa

  16. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  17. Habitability in High Radiation Environments: The Case for Gaia at Europa

    Science.gov (United States)

    Cooper, J. F.

    2004-12-01

    thin and support more direct and rapid chemical exchange between the highly irradiated surface and the ocean, but this is not required for life since deep convection can accomplish the same exchange over thousands to millions of years. Hydrocarbons are likely present both from moon formation and later delivery to the surface by impacts of cometary bodies. More recent work from Galileo suggests strong associations between spatial distributions of brine-like materials on Europa's surface and geologic structures related to convection in the ice crust, tidal heating, and the underlying ocean. The effect of the brines on convection may be analogous to thermahaline circulation in the terrestrial oceans. The detected hydrated sulfates (including briny salts and sulfuric acid hydrates) on Europa's surface can at least in part be attributed to input of iogenic sulfur from the Jovian magnetosphere and radiolytic processing. The needed conveyer belt process within Europa could then be substantially driven by surface interaction with the magnetosphere, i.e. there could be radiation-driven geology, and this could make a critical contribution to astrobiological habitability within Europa. In the sense of Gaia and with reference to Edgar Allan Poe's famous work, Europa may have a tell-tale beating heart, and future missions such as the Jupiter icy Moons Orbiter (JIMO) will need to survive, look through, and exploit the local magnetospheric, ionospheric, and atmospheric environments to sense its physical, chemical, and electromagnetic presence. References: Cooper, J. F., et al., Icarus, 149, 133-159, 2001; Chyba, C. F., Nature, 403, 381, 2000.

  18. Surface composition of Europa based on VLT observations

    Science.gov (United States)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride, chlorate, and perchlorate) is supported by linear spectral modeling of the data, while the presence of sulfate salts is challenged. The distribution of some of these species is

  19. Origin and Evolution of Europa's Oxygen Exosphere

    Science.gov (United States)

    Oza, Apurva V.; Leblanc, Francois; Schmidt, Carl; Johnson, Robert E.

    2016-10-01

    Europa's icy surface is constantly bombarded by sulfur and oxygen ions originating from the Io plasma torus. The momentum transferred to molecules in Europa's surface results in the sputtering of water ice, populating a water product exosphere. We simulate Europa's neutral exosphere using a ballistic 3D Monte Carlo routine and find that the O2 exosphere, while global, is not uniformly symmetric in Europa local time. The O2 exosphere, sourced at a rate of ~ 5 kg/s with a disk-averaged column density of NO2 ~ 2.5 x 1014 O2/cm2, preferentially accumulates towards Europa's dusk. These dawn-dusk atmospheric inhomogeneities escalate as the surface-bounded O2 dissociates into an atomic O corona via electron impact. The inhomogeneities persist and evolve throughout the satellite's orbit, implying a diurnal cycle of the exosphere, recently evidenced by a detailed HST oxygen aurorae campaign (Roth et al. 2016). We conclude that the consistently observed 50% increase in FUV auroral emission from dusk to dawn is principally driven by the day-to-night thermal diffusion of O2 coupled with the Coriolis acceleration. This leads to a dawn-to-dusk gradient, peaking at Europa's leading hemisphere. This exospheric oxygen cycle, dependent on both orbital longitude and magnetic latitude, is fundamentally due to the bulk-sputtering vector changing with respect to the subsolar and subjovian points throughout the orbit. In principle, a similar mechanism should be present at other tidally-locked, rapidly orbiting satellite exospheres.

  20. Oceans, Ice Shells, and Life on Europa

    Science.gov (United States)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  1. Tides on Europa: the membrane paradigm

    CERN Document Server

    Beuthe, Mikael

    2014-01-01

    Jupiter's moon Europa has a thin icy crust which is decoupled from the mantle by a subsurface ocean. The crust thus responds to tidal forcing as a deformed membrane, cold at the top and near melting point at the bottom. In this paper I develop the membrane theory of viscoelastic shells with depth-dependent rheology with the dual goal of predicting tidal tectonics and computing tidal dissipation. Two parameters characterize the tidal response of the membrane: the effective Poisson's ratio $\\bar\

  2. WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    CERN Document Server

    Smalley, B; Collier-Cameron, A; Doyle, A P; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet.

  3. Models of dust around Europa and Ganymede

    CERN Document Server

    Miljkovic, K; Mason, N J; Zarnecki, J C

    2012-01-01

    We use numerical models, supported by our laboratory data, to predict the dust densities of ejecta outflux at any altitude within the Hill spheres of Europa and Ganymede. The ejecta are created by micrometeoroid bombardment and five different dust populations are investigated as sources of dust around the moons. The impacting dust flux (influx) causes the ejection of a certain amount of surface material (outflux). The outflux populates the space around the moons, where a part of the ejecta escapes and the rest falls back to the surface. These models were validated against existing Galileo DDS (Dust Detector System) data collected during Europa and Ganymede flybys. Uncertainties of the input parameters and their effects on the model outcome are also included. The results of this model are important for future missions to Europa and Ganymede, such as JUICE (JUpiter ICy moon Explorer), recently selected as ESA's next large space mission to be launched in 2022.

  4. MAJIS (Moons and Jupiter Imaging Spectrometer): the VIS-NIR imaging spectrometer of the JUICE mission

    Science.gov (United States)

    Langevin, Yves; Piccioni, Giuseppe; Dumesnil, Cydalise; Filacchione, Gianrico; Poulet, Francois; MAJIS Team

    2016-10-01

    MAJIS is the VIS-NIR imaging spectrometer of JUICE. This ambitious mission of ESA's « cosmic vision » program will investigate Jupiter and its system with a specific focus on Ganymede. After a tour of more than 3 years including 2 fly-bys of Europa and up to 20 flybys of Ganymede and Callisto, the end of the nominal mission will be dedicated to an orbital phase around Ganymede with 120 days in a near-circular, near-polar orbit at an altitude of 5000 km and 130 days in a circular near-polar orbit at an altitude of 500 km. MAJIS will adress 17 of the 19 primary science objectives of JUICE, investigating the surface and exosphere of the Galilean satellites (Ganymede during the orbital phase, Europa and Callisto during close flybys, Io from a minimum distance of 570,000 km), the atmosphere / exosphere of Jupiter, small satellites and rings, and their role as sources and sinks of particles in the Jupiter magnetosphere.The main technical characteristics are the following:Spectral range : 0.5 - 5.7 µm with two overlapping channels (VIS-NIR : 0.5 - 2.35 µm ; IR : 2.25 - 5.7 µm)Spatial resolution : 0.125 to 0.15 mradSpectral sampling (VIS-NIR channel) : 2.9 to 3.45 nmSpectral sampling (IR channel) : 5.4 to 6.45 nmThe spectral and spatial resolution will be finalized in october 2016 after the selection of the MAJIS detectors.Passive cooling will provide operating temperatures noise model will be larger than 100 over most of the spectral range except for high resolution observations of icy moons at low altitude due to limitations on the integration time even with motion compensation provided by a scanner and for exospheric observations due to intrinsic low signal levels.

  5. A new concept for the exploration of Europa.

    Science.gov (United States)

    Rampelotto, Pabulo Henrique

    2012-06-01

    The Europa Jupiter System Mission (EJSM) is the major Outer Planet Flagship Mission in preparation by NASA. Although well designed, the current EJSM concept may present problematic issues as a Flagship Mission for a long-term exploration program that will occur over the course of decades. For this reason, the present work reviews the current EJSM concept and presents a new strategy for the exploration of Europa. In this concept, the EJSM is reorganized to comprise three independent missions focused on Europa. The missions are split according to scientific goals, which together will give a complete understanding of the potential habitability of Europa, including in situ life's signal measurements. With this alternative strategy, a complete exploration of Europa would be possible in the next decades, even within a politically and economically constrained environment.

  6. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  7. THE WELL-ALIGNED ORBIT OF WASP-84b: EVIDENCE FOR DISK MIGRATION OF A HOT JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D.; Brown, D. J. A.; Clark, B. J. M.; Smalley, B.; Cameron, A. Collier; Doyle, A. P.; Gillon, M.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Smith, A. M. S., E-mail: d.r.anderson@keele.ac.uk [N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw (Poland)

    2015-02-10

    We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69M{sub Jup} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P<10 d) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (T{sub eff} < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

  8. The water and oxygen exospheres of Europa and Ganymede

    Science.gov (United States)

    Plainaki, C.; Milillo, A.; Massetti, S.; Mura, A.; Saur, J.; Orsini, S.

    2013-09-01

    The exospheres of Jupiter's icy satellites Europa and Ganymede are mixtures of H2O, O2 and H2 and some minor constituents, like Na. H2O is released from the surface mainly through either direct sputtering, caused by the impact of energetic ions of Jupiter's magnetosphere, or sublimation. O2 and H2 are produced through chemical reactions among different products of H2O radiolytic decomposition. In the present study we investigate at first the Europa's exospheric characteristics under the external conditions that are likely in the Jupiter's magnetospheric environment, applying the Europa Global model of Exospheric Outgoing Neutrals (EGEON, [1]) for different configurations between the positions of Europa, Jupiter and the Sun. We show that the H2O exosphere around Europa is denser and more extended above the moon's trailing hemisphere. We find that solar illumination and preferable plasma impact direction together determine the spatial distribution of Europa's exosphere and the O2 release efficiency. We show that the modelled O2 densities are in good agreement with the analysis results from two HST observations of Europa's leading and trailing hemisphere. In order to investigate on the O2 exosphere of Ganymede, we apply the same model, making however some important modifications regarding the impacting ions precipitation regions and the satellite physical characteristics. The map of the ion precipitation to Ganymede's surface, is produced using a single-particle Monte Carlo model the simulates the trajectories of the ions inside the magnetic field, assumed to be described by the model of [2]. We present some first preliminary results on the spatial distribution of the H2O and O2 exosphere of Ganymede and discuss the escape.

  9. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  10. Doppler tomography of transiting exoplanets: A prograde, low-inclined orbit for the hot Jupiter CoRoT-11b

    CERN Document Server

    Gandolfi, Davide; Endl, Michael; Lanza, Antonino F; Damiani, Cilia; Alonso, Roi; Cochran, William D; Deleuil, Magali; Fridlund, Malcolm; Hatzes, Artie P; Guenther, Eike W

    2012-01-01

    We report the detection of the Doppler shadow of the transiting hot Jupiter CoRoT-11b. Our analysis is based on line-profile tomography of time-series, Keck/HIRES high-resolution spectra acquired during the transit of the planet. We measured a sky-projected, spin-orbit angle of 0.1 +/- 2.6 degrees, which is consistent with a very low-inclined orbit with respect to the stellar rotation axis. We refined the physical parameters of the system using a Markov chain Monte Carlo simultaneous fitting of the available photometric and spectroscopic data. An analysis of the tidal evolution of the system shows how the currently measured obliquity and its uncertainty translate into an initial absolute value of less than about 10 degrees on the zero-age main sequence, for an expected average modified tidal quality factor of the star Q'* > 4 x 10^6. This is indicative of an inward migration scenario that would not have perturbed the primordial low obliquity of CoRoT-11b. Taking into account the effective temperature and mass...

  11. Compositional Impact of Io Volcanic Emissions on Jupiter's Magnetosphere and the Icy Galilean Moons

    Science.gov (United States)

    Cooper, John; Fegley, Bruce; Lipatov, Alexander; Richardson, John; Sittler, Edward

    2011-01-01

    The magnetospheric ion population of Jupiter is dominated by the 1000 kg/s of iogenic material constantly ejected by IO volcanism as neutral gas (approx. 1 kg/s goes out as high speed dust grains), subsequent atmospheric losses to the IO torus, and radial transport of torus ions throughout the magnetosphere. As that magnetosphere is greatly distended in radial size by the iogenic plasma loading, so are surfaces of the other Galilean moons also significantly, and perhaps even dominantly, affected by iogenic plasma bombardment, e.g. at the level up to 0.2 kg/s heavy ions (mostly O and S) onto Europa as per local plasma ion measurements. In comparison, cometary impacts onto IO deliver about 0.02 kg/s of impact ejecta to Europa via ballistic transfer through the Jupiter system. The magnetosphere of this system operates as a powerful engine to produce and transport ions from the IO source to the surfaces of these other moons, and any future orbiter missions to these moons must account for surface distributions of the iogenic material and its chemical effects before real assessments can be made of sensible chemical materials otherwise arising from primordial formation and subsequent evolution of these moons. This is a fundamental problem of space weathering that must be addressed for all planetary bodies with thin atmospheres and direct surface exposure to their space plasma environments. Long-standing debates from Galileo Orbiter measurements about the origins of hydrate sulfates at Europa present examples of this problem, as to whether the sulfates arise from oceanic minerals or from iogenic sulfur chemistry. Any orbiter or landed mission to Europa for astrobiological investigations would further need to separate the potential chemical biosignatures of life or its precursors from the highly abundant background of iogenic material. Although no single ion carries a tag identifying it as of iogenic or other origin, the elemental abundance distributions of ions to be

  12. Can a future mission detect a habitable ecosystem on Europa, or Ganymede?

    Science.gov (United States)

    Chela Flores, Julian

    2010-05-01

    orbital probes in the future exploration of Jupiter's System (Gowen et al., 2009). There are alternative views on the effect of space weather on the radiation-induced S-cycles produced on the surficial molecules; but S is common to both interpretations (Carlson et al., 1999; McCord et al., 1999). The largest known S-fractionations are due to microbial reduction, and not to thermochemical processes. Besides, sulphate abiotic reductions are generally not as large as the biogenic ones (Kiyosu and Krouse, 1990). From experience with a natural population, this type of biota is able to fractionate efficiently the S-isotopes up to delta 34S of -70 per mil (Wortmann et al., 2001). Dissimilatory sulphate reducers are ubiquitous on Earth, producing the largest fractionations in the sulphur stable isotopes. These microbes are widely distributed in terrestrial anoxic environments.Consequently, sulphate reducers are the most evident candidates for the microorganisms populating a habitable Europan ecosystem. Microbial fractionation of stable S-isotopes argue in favour of penetrators for surveying the surface of not only Europa, but also of Ganymede, where surficial sulphur has been detected (McCord et al., 1997). The Europa-Jupiter System Mission (EJSM) intends to explore in the 2020s both of these satellites (Grasset et al., 2009). According to our hypothesis we predict that penetrators (supplied with mass spectrometry) should yield different results for fractionated sulphur. The icy patches on Europa should give substantial depletions of delta 34S, while measurements on Ganymede should give significantly lower values for the depletion of delta 34S. (Since the largest of the Galilean satellites lacks an ocean-core interface, according to our hypothesis it would not support life.) These diverging results—a large minus delta 34S for the Europan sulphur patches, and a small minus delta 34S for the Ganymede surficial sulphur—would provide a clear test for the hypothesis that a

  13. Featured Image: Active Cryovolcanism on Europa?

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    Nighttime thermal image from the Galileo Photopolarimeter-Radiometer, revealing a thermal anomaly around the region where the plumes were observed. [Sparks et al. 2017]This image shows a 1320 900 km, high-resolution Galileo/Voyager USGS map of the surface of Europa, one of Jupiters moons. In March 2014, observations of Europa revealed a plume on its icy surface coming from somewhere within the green ellipse. In February 2016, another plume was observed, this time originating from somewhere within the cyan ellipse. In addition, a nighttime thermal image from the Galileo Photopolarimeter-Radiometer has revealed a thermal anomaly a region of unusually high temperature near the same location. In a recent study led by William Sparks (Space Telescope Science Institute), a team of scientists presents these observations and argues that they provide mounting evidence of active water-vapor venting from ongoing cryovolcanism beneath Europas icy surface. If this is true, then Europas surface is active and provides access to the liquid water at depth boosting the case for Europas potential habitability and certainly making for an interesting target point for future spacecraft exploration of this moon. For more information, check out the paper below!CitationW. B. Sparks et al 2017 ApJL 839 L18. doi:10.3847/2041-8213/aa67f8

  14. Heat transfer of ascending cryomagma on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Marsh, Bruce D.

    2016-06-01

    Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.

  15. WASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Brown, D. J. A.; Gillon, M.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Ségransan, D.; Udry, S.; West, R. G.; Wheatley, P. J.

    2015-03-01

    We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 MJup; 1.46 RJup) in a 4.9-day, near-aligned (λ = 12.7 ± 4.2°) orbit around CD-24 102 (V = 10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91 MJup; 1.21 RJup) in a 3.4-day, near-aligned (λ = 8 ± 18°) orbit around a V = 12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7+ 2-1 Gyr and 6000 ± 100 K for WASP-20; 5+ 3-2 Gyr and 6100 ± 150 K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. Based on observations made with: the WASP-South (South Africa) and SuperWASP-North (La Palma) photometric survey instruments; the C2 and EulerCam cameras and the CORALIE spectrograph, all mounted on the 1.2-m Euler-Swiss telescope (La Silla); the HARPS spectrograph on the ESO 3.6-m telescope (La Silla) under programs 072.C-0488, 082.C-0608, 084.C-0185, and 085.C-0393; and LCOGT's Faulkes Telescope North (Maui) and Faulkes Telescope South (Siding Spring).Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61

  16. Transiting exoplanets from the CoRoT space mission. XVIII. CoRoT-18b: a massive hot Jupiter on a prograde, nearly aligned orbit

    Science.gov (United States)

    Hébrard, G.; Evans, T. M.; Alonso, R.; Fridlund, M.; Ofir, A.; Aigrain, S.; Guillot, T.; Almenara, J. M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Cabrera, J.; Carone, L.; Carpano, S.; Cavarroc, C.; Csizmadia, Sz.; Deeg, H. J.; Deleuil, M.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Gandolfi, D.; Gibson, N.; Gillon, M.; Guenther, E.; Hatzes, A.; Havel, M.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Mazeh, T.; Moutou, C.; Ollivier, M.; Parviainen, H.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Wuchterl, G.

    2011-09-01

    We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 ± 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass Mp = 3.47 ± 0.38 MJup, a radius Rp = 1.31 ± 0.18 RJup, and a density ρp = 2.2 ± 0.8 g cm-3. It orbits a G9V star with a mass M⋆ = 0.95 ± 0.15 M⊙, a radius R⋆ = 1.00 ± 0.13 R⊙, and arotation period Prot = 5.4 ± 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the Rossiter-McLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity ψ = 20° ± 20° (sky-projected value λ = -10° ± 20°), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator. The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.Table 2 is available in electronic form at http://www.aanda.org

  17. WASP-78b and WASP-79b: two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    Science.gov (United States)

    Smalley, B.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, , C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2012-11-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V = 12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V = 10.1 host star (CD-30 1812) every 3.662 days. Planetary parameters have been determined using a simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements. For WASP-78b a planetary mass of 0.89 ± 0.08 MJup and a radius of 1.70 ± 0.11 RJup is found. The planetary equilibrium temperature of TP = 2350 ± 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. WASP-79b its found to have a planetary mass of 0.90 ± 0.08 MJup, but with a somewhat uncertain radius due to lack of sufficient TRAPPIST photometry. The planetary radius is at least 1.70 ± 0.11 RJup, but could be as large as 2.09 ± 0.14 RJup, which would make WASP-79b the largest known exoplanet. Photometric data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A61Table 1 is available in electronic form at http://www.aanda.org

  18. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Science.gov (United States)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  19. Two Moons Meet over Jupiter

    Science.gov (United States)

    2007-01-01

    This beautiful image of the crescents of volcanic Io and more sedate Europa was snapped by New Horizons' color Multispectral Visual Imaging Camera (MVIC) at 10:34 UT on March 2, 2007, about two days after New Horizons made its closest approach to Jupiter. The picture was one of a handful of the Jupiter system that New Horizons took primarily for their artistic, rather than scientific value. This particular scene was suggested by space enthusiast Richard Hendricks of Austin, Texas, in response to an Internet request by New Horizons scientists for evocative, artistic imaging opportunities at Jupiter. This image was taken from a range of 4.6 million kilometers (2.8 million miles) from Io and 3.8 million kilometers (2.4 million miles) from Europa. Although the moons appear close in this view, a gulf of 790,000 kilometers (490,000 miles) separates them. The night side of Io is illuminated here by light reflected from Jupiter, which is out of the frame to the right. Europa's night side is completely dark, in contrast to Io, because that side of Europa faces away from Jupiter. Here, Io steals the show with its beautiful display of volcanic activity. Three volcanic plumes are visible. Most conspicuous is the enormous 300-kilometer (190-mile) -high plume from the Tvashtar volcano at the 11 o'clock position on Io's disk. Two much smaller plumes are barely visible: one from the volcano Prometheus, at the 9 o'clock position on the edge of Io's disk, and one from the volcano Amirani, seen between Prometheus and Tvashtar along Io's terminator (the line dividing day and night). The plumes appear blue because of the scattering of light by tiny dust particles ejected by the volcanoes, similar to the blue appearance of smoke. In addition, the contrasting red glow of hot lava can be seen at the source of the Tvashtar plume. The images are centered at 1 degree north, 60 degrees west on Io, and 0 degrees north, 149 degrees west on Europa. The color in this image was generated using

  20. Jupiter - friend or foe?

    Science.gov (United States)

    Horner, J.; Jones, B. W.

    2007-08-01

    Throughout both popular science and academia, there is a pervasive belief that Jupiter has acted as a celestial shield, reducing the impact rate on the Earth, and making the planet a significantly more conducive site for the evolution and survival of life. This old idea has, however, undergone little detailed scrutiny. In the first of a series of studies aimed at a better understanding of this idea, we examine the variation in the impact rate on the Earth which results from bodies moving inwards from the Edgeworth- Kuiper belt as a function of the mass of a giant planet in Jupiter's orbit. The results are not entirely what would be expected under the "Jupiter Shield" paradigm.

  1. Understanding Jupiter's Interior

    CERN Document Server

    Militzer, Burkhard; Wahl, Sean M; Hubbard, William

    2016-01-01

    This article provides an overview of how models of giant planet interiors are constructed. We review measurements from past space missions that provide constraints for the interior structure of Jupiter. We discuss typical three-layer interior models that consist of a dense central core and an inner metallic and an outer molecular hydrogen-helium layer. These models rely heavily on experiments, analytical theory, and first-principle computer simulations of hydrogen and helium to understand their behavior up to the extreme pressures ~10 Mbar and temperatures ~10,000 K. We review the various equations of state used in Jupiter models and compare them with shock wave experiments. We discuss the possibility of helium rain, core erosion and double diffusive convection may have important consequences for the structure and evolution of giant planets. In July 2016 the Juno spacecraft entered orbit around Jupiter, promising high-precision measurements of the gravitational field that will allow us to test our understandi...

  2. Jupiter's Rings: Sharpest View

    Science.gov (United States)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  3. A Preliminary Jupiter Model

    CERN Document Server

    Hubbard, W B

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses, and a hydrogen-helium-rich envelope with...

  4. A Preliminary Jupiter Model

    Science.gov (United States)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  5. Broad search for trajectories from Earth to Callisto-Ganymede-JOI double-satellite-aided capture at Jupiter from 2020 to 2060

    Science.gov (United States)

    Lynam, Alfred E.

    2016-01-01

    Employing multiple gravity-assist flybys of Jupiter's Galilean moons can save a substantial amount of \\varDelta V when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \\varDelta V cost, while allowing the spacecraft to remain above the worst of Jupiter's radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto-Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto-Ganymede-JOI capture throughout the search space from 2020-2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author's opinion, are excellent candidates for use on NASA's planned Europa Clipper mission.

  6. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  7. Small Friends of Hot Jupiters

    Science.gov (United States)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  8. Warm Jupiters are less lonely than hot Jupiters: close neighbours

    CERN Document Server

    Huang, Chelsea X; Triaud, Amaury H M J

    2016-01-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions, between systems that contain hot Jupiters (periods inward of 10 days) and those that host warm Jupiters (periods between 10 and 200 days). Hot Jupiters as a whole, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to $2 R_{\\rm Earth}$). Restricting ourselves to inner companions, our limits reach down to $1 R_{\\rm Earth}$. In stark contrast, half of the warm Jupiters are closely flanked by small companions. Statistically, the companion fractions for hot and warm Jupiters are mutually exclusive, in particular in regard to inner companions. The high companion fraction of warm Jupiters also yields clue to their formation. The warm Jupiters that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those ...

  9. New Observations of UV Emissions from Europa

    Science.gov (United States)

    McGrath, Melissa; Sparks, William

    2009-01-01

    The recent top prioritization of the Europa Jupiter System Mission for the next outer solar system flagship mission is refocusing attention on Europa and the other Galilean satellites and their contextual environments in the Jupiter system. Surface sputtering by magnetospheric plasma generates a tenuous atmosphere for Europa, dominated by 02 gas. This tenuous gas is in turn excited by plasma electrons, producing ultraviolet and visible emissions. Two sets of imaging observations have been published to date, UV images from the Hubble Space Telescope, and visible eclipse images from Cassini. Three additional sets of HST UV observations were acquired in February 2007, April 2007 and June 2009. The signal to noise ratio in these data are not high, however, given the paucity of data and its increasing importance in terms of planning for EJSM, we have attempted to extract as much new information as possible from these data. This talk will summarize our analysis to date, and discuss them in terms of existing models, which attempt to explain the image morphology either in terms of the underlying source production and loss processes, or in terms of the plasma interaction with the exosphere.

  10. Life on Europa?

    Science.gov (United States)

    Shylaja, B. S.

    1997-06-01

    The notion of life has always fascinated curious minds. From prehistoric days, fancy voyages to other colonies and visits from non-earthly beings have been creatively imagined. Apart from science fictions, the last few centuries saw many observational investigations of "cities of Moon", "colonies of Mars" and so on. However, the sophisticated tools of the modern era quickly put a full stop to these developments revealing that the other planets are not hospitable, and infact hostile for a life form like ours to exist there. That explains why in the last few decades the efforts shifted to observing the satellites of large planets. The anxiety grew with the knowledge of their atmospheric structure, chemical composition and volcanic activity. Detection of water, albeit frozen, was a welcome surprise. The flyby of Voyager and Pioneer provided ample evidence for the presence of water, one of the most important ingredients for the germination of the seed of life. The detection of the fossil of a microorganism on a stone believed to have fallen from Mars, boosted the scientists zeal to pursue the research, although the date for life on Mars (more than 3 billion years ago) is not very convincing. Last year, many scientists, from different branches like astrophysics, geology, oceanography, biology and astrogeology discussed the possibilities of life elsewhere in the universe. The focal point was not Mars, but Europa, one of the Galilean satellites of Jupiter. Their studies based on Voyager images supported the possibility of liquid water beneath the frozen sheets of ice. However, heat is also an essential parameter. Europa, being at a distance five times the sun-earth separation can have only 1/25th the warmth of the earth. Then, where does it get the necessary warmth from? There are other important sources of heat in many of these satellites that lie concealed from our view. They are the volcanoes. If present, can these keep the water warm below the ice sheets? The unmanned

  11. Transiting exoplanets from the CoRoT space mission - XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    CERN Document Server

    Rouan, D; Moutou, C; Deleuil, M; Fridlund, M; Ofir, A; Havel, M; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Bonomo, A; Bordé, P; Bouchy, F; Cabrera, J; Cavarroc, C; Csizmadia, Sz; Deeg, H; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Léger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Ollivier, M; Pätzold, M; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \\pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 \\pm 0.3 MJup, a radius of Rpl = 1.05 \\pm 0.13 RJup, a density of \\approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 \\pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass M\\star = 1.14 \\pm 0.08 M\\odot, a radius R\\star = 1. 61 \\pm 0.18 R\\odot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the r...

  12. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovács, G; Sipöcz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martín, E L; Snellen, I; Barnes, J; Bayo, A M; Campbell, D A; Catalan, S; Gálvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2012-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J=16 were constructed for 60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01+-0.35 Mj and a planetary radius of 1.49+-0.17 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj.

  13. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star [ERRATUM

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovacs, G; Sipocz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martin, E L; Snellen, I; Barnes, J; Campbell, D A; Catalan, S; Galvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2014-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The h...

  14. HAT-P-34b-HAT-P-37b: Four Transiting Planets More Massive than Jupiter Orbiting Moderately Bright Stars

    Science.gov (United States)

    Bakos, G. Á.; Hartman, J. D.; Torres, G.; Béky, B.; Latham, D. W.; Buchhave, L. A.; Csubry, Z.; Kovács, G.; Bieryla, A.; Quinn, S.; Szklenár, T.; Esquerdo, G. A.; Shporer, A.; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Howard, A. W.; Marcy, G. W.; Sato, B.; Penev, K.; Everett, M.; Sasselov, D. D.; Fűrész, G.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2012-07-01

    We report the discovery of four transiting extrasolar planets (HAT-P-34b-HAT-P-37b) with masses ranging from 1.05 to 3.33 M J and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 M J), has a high eccentricity of e = 0.441 ± 0.032 at a period of P = 5.452654 ± 0.000016 days, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A289Hr) and NASA (N167Hr and N029Hr). Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  15. Transiting exoplanets from the CoRoT space mission. XX. CoRoT-18b: a massive hot jupiter on a prograde, nearly aligned orbit

    CERN Document Server

    Hebrard, G; Alonso, R; Fridlund, M; Ofir, A; Aigrain, S; Guillot, T; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Csizmadia, Sz; Deeg, H J; Deleuil, M; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gibson, N; Gillon, M; Guenther, E; Hatzes, A; Havel, M; Jorda, L; Lammer, H; Leger, A; Llebaria, A; Mazeh, T; Moutou, C; Ollivier, M; Parviainen, H; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-18b, a massive hot jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric follow-up ground-based observations. The planet has a mass M_p = 3.47 +/- 0.38 M_Jup, a radius R_p = 1.31 +/- 0.18 R_Jup, and a density rho_p = 2.2 +/- 0.8 g/cm3. It orbits a G9V star with a mass M_* = 0.95 +/- 0.15 M_Sun, a radius R_* = 1.00 +/- 0.13 R_Sun, and a rotation period P_rot = 5.4 +/- 0.4 days. The age of the system remains uncertain, stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possible significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected...

  16. Jupiter Eruptions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  17. A Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    CERN Document Server

    Tsapras, Y; Street, R A; Han, C; Bozza, V; Gould, A; Dominik, M; Beaulieu, J -P; Udalski, A; Jørgensen, U G; Sumi, T; Bramich, D M; Browne, P; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Snodgrass, C; Steele, I A; Alsubai, K A; Andersen, J M; Novati, S Calchi; Damerdji, Y; Diehl, C; Elyiv, A; Giannini, E; Hardis, S; Harpsøe, K; Hinse, T C; Juncher, D; Kerins, E; Korhonen, H; Liebig, C; Mancini, L; Mathiasen, M; Penny, M T; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Tregloan-Reed, J; Vilela, C; Kozłowski, J Wambsganss S; Kubiak, M; Pietrukowicz, P; Pietrzyński, G; Poleski, R; Skowron, J; Soszyński, I; Szymański, M K; Ulaczyk, K; Albrow, Łukasz Wyrzykowski M D; Bachelet, E; Barry, R; Batista, V; Bhattacharya, A; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Kane, S R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Pollard, K R; Williams, A; Wouters, D; Christie, G; DePoy, D L; Dong, S; Drummond, J; Gaudi, B S; Henderson, C B; Hwang, K H; Jung, Y K; Kavka, A; Koo, J -R; Lee, C -U; Maoz, D; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Shvartzvald, Y; Tan, T G; Yee, J C; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yonehara, P C M Yock A

    2013-01-01

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\\pm 0.43\\ M_{\\rm J}$ planet orbiting a $0.44\\pm 0.07\\ M_{\\odot}$ early M-type star. The distance to the lens is $4.97\\pm 0.29$\\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  18. A super-jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    Energy Technology Data Exchange (ETDEWEB)

    Tsapras, Y.; Street, R. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Choi, J.-Y.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V. [Dipartimento di Fisica " E. R. Caianiello," Università di Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano (Italy); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Dominik, M.; Browne, P.; Horne, K.; Hundertmark, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Beaulieu, J.-P. [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Jørgensen, U. G. [Niels Bohr Institute, Astronomical Observatory, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Bramich, D. M.; Kains, N. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Ipatov, S.; Alsubai, K. A. [Qatar Foundation, P.O. Box 5825, Doha (Qatar); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool CH41 1LD (United Kingdom); Collaboration: RoboNet Collaboration; MiNDSTEp Collaboration; OGLE Collaboration; PLANET Collaboration; μFUN Collaboration; MOA Collaboration; and others

    2014-02-10

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M {sub J} planet orbiting a 0.44 ± 0.07 M {sub ☉} early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  19. EPIC 212803289: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion

    CERN Document Server

    Smith, A M S; Barragán, O; Bowler, B; Csizmadia, Sz; Endl, M; Fridlund, M C V; Grziwa, S; Guenther, E; Hatzes, A P; Nowak, G; Albrecht, S; Alonso, R; Cabrera, J; Cochran, W D; Deeg, H J; Eigmüller, Ph; Erikson, A; Hidalgo, D; Hirano, T; Johnson, M C; Korth, J; Mann, A; Narita, N; Nespral, D; Palle, E; Pätzold, M; Prieto-Arranz, J; Rauer, H; Ribas, I; Tingley, B; Wolthoff, V

    2016-01-01

    We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19$\\pm$ 0.04) orbit around EPIC 212803289, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20$\\pm$0.05) subgiant, with mass $1.60^{+0.14}_{-0.10}~M_\\odot$ and radius $3.1\\pm 0.1~R_\\odot$. The planet has a mass of $0.97\\pm0.09~M_{\\rm Jup}$ and a radius $1.29\\pm0.05~R_{\\rm Jup}$. A measured systemic radial acceleration of $-2.12\\pm0.04~{\\rm m s^{-1} d^{-1}}$ offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.

  20. Surface Penetrating Radar Simulations for Jupiter's Icy Moons

    Science.gov (United States)

    Markus, Thorsten; Gogineni, S. P.; Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, F.

    2003-01-01

    The icy moons of Jupiter (Europa, Callisto, and Ganymede) are of similar overall composition but show different surface features as a result of different sub-surface processes. Furthermore, each of these moons could have a liquid ocean of water buried underneath the icy crust, but their depth can only be speculated. For Europa, estimates put the thickness of the ice shell anywhere between 2-30 km, with'a few models predicting up to 100 km. Much of the uncertainties are due to the largely unknown temperature gradients and levels of water impurities across different surface layers. One of the most important geological processes is the possible transportation of heat by ice convection. If the ice is convecting, then an upper limit of about 20 km is set for the depth of the ocean underneath. Convection leads to a sharp increase in temperature followed by a thick region of nearly constant temperature. If ice is not convecting, then an exponentially increasing temperature profile is expected. The crust is thought to be a mixture of ice and rock, and although the exact percentage of rock is not known, it is expected to be low. Additionally, the ice crust could contain salt, similar to sea ice on Earth. The exact amount of salt and how that amount changes with depth is also unknown. In preparation for the Jupiter Icy Moons Orbiter (JIMO) mission, we performed simulations for a surface-penetrating radar investigating signatures for different possible surface and sub-surface structures of these moons in order to estimate the applicability of using radar with a frequency range between 1 and 50 MHz. This includes simulations of power requirements, attenuation losses, layer resolutions for scenarios with and without the presence of a liquid ocean underneath the ice, cases of convecting and non-convecting ice, different impurities within the ice, and different surface roughnesses.

  1. Featured Image: Mapping Jupiter with Hubble

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Zonal wind profile for Jupiter, describing the speed and direction of its winds at each latitude. [Simon et al. 2015]This global map of Jupiters surface (click for the full view!) was generated by the Hubble Outer Planet Atmospheres Legacy (OPAL) program, which aims to createnew yearly global maps for each of the outer planets. Presented in a study led by Amy Simon (NASA Goddard Space Flight Center), the map above is the first generated for Jupiter in the first year of the OPAL campaign. It provides a detailed look at Jupiters atmospheric structure including the Great Red Spot and allowed the authors to measure the speed and direction of the wind across Jupiters latitudes, constructing an updated zonal wind profile for Jupiter.In contrast to this study, the Juno mission (which will be captured into Jupiters orbit today after a 5-year journey to Jupiter!) will be focusing more on the features below Jupiters surface, studying its deep atmosphere and winds. Some of Junos primary goals are to learn about Jupiters composition, gravitational field, magnetic field, and polar magnetosphere. You can follow along with the NASATV livestream as Juno arrives at Jupiter tonight; orbit insertion coverage starts at 10:30 EDT.CitationAmy A. Simon et al 2015 ApJ 812 55. doi:10.1088/0004-637X/812/1/55

  2. JUICE: A European Mission to Jupiter and its Icy Moons

    Science.gov (United States)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  3. Evidence for a subsurface ocean on Europa

    Science.gov (United States)

    Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.

    1998-01-01

    Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.

  4. HATS-11b AND HATS-12b: Two Transiting Hot Jupiters Orbiting Subsolar Metallicity Stars Selected for the K2 Campaign 7

    Science.gov (United States)

    Rabus, M.; Jordán, A.; Hartman, J. D.; Bakos, G. Á.; Espinoza, N.; Brahm, R.; Penev, K.; Ciceri, S.; Zhou, G.; Bayliss, D.; Mancini, L.; Bhatti, W.; de Val-Borro, M.; Csbury, Z.; Sato, B.; Tan, T.-G.; Henning, T.; Schmidt, B.; Bento, J.; Suc, V.; Noyes, R.; Lázár, J.; Papp, I.; Sári, P.

    2016-10-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V = 14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000+/- 0.060 {M}⊙ , a radius of 1.444+/- 0.057 {R}⊙ and an effective temperature of 6060+/- 150 K, while its companion is a 0.85+/- 0.12 {M}{{J}}, 1.510+/- 0.078 {R}{{J}} planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V = 12.8 F-star. HATS-12 has a mass of 1.489+/- 0.071 {M}⊙ , a radius of 2.21+/- 0.21 {R}⊙ , and an effective temperature of 6408+/- 75 K. For HATS-12b, our measurements indicate that this is a 2.38+/- 0.11 {M}{{J}}, 1.35+/- 0.17 {R}{{J}} planet in a circular orbit. Both host stars show subsolar metallicities of -0.390+/- 0.060 dex and -0.100+/- 0.040 dex, respectively, and are (slightly) evolved stars. In fact, HATS-11 is among the most metal-poor and, HATS-12, with a {log}{g}\\star of 3.923+/- 0.065, is among the most evolved stars hosting a hot-Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively). The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on

  5. Jupiter's Grand Attack

    Science.gov (United States)

    Batygin, Konstantin

    2017-06-01

    The statistics of extrasolar planetary systems indicate that the default mode of planetary formation generates planets with orbital periods shorter than 100 days, and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System, which contains no planets interior to Mercury's 88-day orbit, is unusual. Extra-solar planetary detection surveys also suggest that planets with masses and periods broadly similar to Jupiter's are somewhat uncommon, with occurrence fraction of less than ~ 10%. In this talk, I will present calculations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5AU to a ˜ 1.5 AU and then reverses direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a 10 - 100 km planetesimals into low- order mean-motion resonances, shepherding of order 10 Earth masses of this material into the a ˜ 1 AU region while exciting substantial orbital eccentricity (e ˜ 0.2 - 0.4). We argue that under these conditions, a collisional cascade will ensue, generating a planetesimal disk that would have flushed any preexisting short-period super-Earth-like planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  6. Orbital Evolution of Impact Ejecta from Ganymede

    Science.gov (United States)

    Alvarellos, Jose Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2002-11-01

    We have numerically computed the orbital evolution of ˜10 3 particles representing high-speed ejecta from Gilgamesh, the largest impact basin on Ganymede. The integration includes the four Galilean satellites, Jupiter (including J2 and J4), Saturn, and the Sun. The integrations last 100,000 years. The particles are ejected at a variety of speeds and directions, with the fastest particles ejected at 1.4 times the escape speed vesc≡ 2GM G/R G of Ganymede. Ejecta with speeds v0.96 vesc, most particles escape Ganymede and achieve orbits about Jupiter. Eventually most (˜71%) of the jovicentric particles hit Ganymede, with 92% of these hitting within 1000 years. The accretion rate scales as 1/ t. Their impact sites are randomly distributed, as expected for planetocentric debris. We estimate that most of the resulting impact craters are a few kilometers across and smaller. The rest of the escaping ejecta are partitioned as follows: ˜3% hit Io; ˜10% hit Europa; ˜13% hit Callisto; 2% reach heliocentric space; and less than ˜1% hit Jupiter. Only two particles survived the entire 10 5-year integration. Ejecta from large impact events do not appear to be a plausible source of large craters on the Galilean satellites; however, such ejecta may account for the majority of small craters.

  7. Seismic detectability of meteorite impacts on Europa

    Science.gov (United States)

    Tsuji, Daisuke; Teanby, Nicholas

    2016-04-01

    Europa, the second of Jupiter's Galilean satellites, has an icy outer shell, beneath which there is probably liquid water in contact with a rocky core. Europa, may thus provide an example of a sub-surface habitable environment so is an attractive object for future lander missions. In fact, the Jupiter Icy Moon Explorer (JUICE) mission has been selected for the L1 launch slot of ESA's Cosmic Vision science programme with the aim of launching in 2022 to explore Jupiter and its potentially habitable icy moons. One of the best ways to probe icy moon interiors in any future mission will be with a seismic investigation. Previously, the Apollo seismic experiment, installed by astronauts, enhanced our knowledge of the lunar interior. For a recent mission, NASA's 2016 InSight Mars lander aims to obtain seismic data and will deploy a seismometer directly onto Mars' surface. Motivated by these works, in this study we show how many meteorite impacts will be detected using a single seismic station on Europa, which will be useful for planning the next generation of outer solar system missions. To this end, we derive: (1) the current small impact flux on Europa from Jupiter impact rate models; (2) a crater diameter versus impactor energy scaling relation for ice by merging previous experiments and simulations; (3) scaling relations for seismic signals as a function of distance from an impact site for a given crater size based on analogue explosive data obtained on Earth's icy surfaces. Finally, resultant amplitudes are compared to the noise level of a likely seismic instrument (based on the NASA InSight mission seismometers) and the number of detectable impacts are estimated. As a result, 0.5-3.0 local/regional small impacts (i.e., direct P-waves through the ice crust) are expected to be detected per year, while global-scale impact events (i.e., PKP-waves refracted through the mantle) are rare and unlikely to be detected by a short duration mission. We note that our results are

  8. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  9. Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    CERN Document Server

    Fridlund, M; Alonso, R; Deleuil, M; Gandolfi, D; Gillon, M; Bruntt, H; Alapini, A; Csizmadia, Sz; Guillot, T; Lammer, H; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Ferraz-Mello, S; Guenther, E; Gondoin, P; Hartog, R den; Hatzes, A; Jorda, L; Leger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Stecklum, B; Tingley, B; Weingrill, J; Wuchterl, G

    2010-01-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.

  10. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Nordestgaard, Børge; Ridker, Paul M; MacFadyen, Jean G;

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  11. Super-Eccentric Migrating Jupiters

    CERN Document Server

    Socrates, Aristotle; Dong, Subo; Tremaine, Scott

    2011-01-01

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e=0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e>0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is \\dot a \\propto a^0.5 and consequently the number distribution satisfies dN/dlog a\\propto a^0.5. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  12. SUPER-ECCENTRIC MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Socrates, Aristotle; Katz, Boaz; Dong Subo; Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2012-05-10

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is a-dot {proportional_to}a{sup 1/2} and consequently the number distribution satisfies dN/d log a{proportional_to}a{sup 1/2}. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  13. EUROPA Multiple-Flyby Trajectory Design

    Science.gov (United States)

    Buffington, Brent; Campagnola, Stefano; Petropoulos, Anastassios

    2012-01-01

    As reinforced by the 2011 NRC Decadal Survey, Europa remains one of the most scientifically intriguing targets in planetary science due to its potential suitability for life. However, based on JEO cost estimates and current budgetary constraints, the Decadal Survey recommended-and later directed by NASA Headquarters-a more affordable pathway to Europa exploration be derived. In response, a flyby-only proof-of-concept trajectory has been developed to investigate Europa. The trajectory, enabled by employing a novel combination of new mission design techniques, successfully fulfills a set of Science Definition Team derived scientific objectives carried out by a notional payload including ice penetrating radar, topographic imaging, and short wavelength infrared observations, and ion neutral mass spectrometry in-situ measurements. The current baseline trajectory, referred to as 11-F5, consists of 34 Europa and 9 Ganymede flybys executed over the course of 2.4 years, reached a maximum inclination of 15 degrees, has a deterministic delta v of 157 m/s (post-PJR), and has a total ionizing dose of 2.06 Mrad (Si behind 100 mil Al, spherical shell). The 11-F5 trajectory and more generally speaking, flyby-only trajectories-exhibit a number of potential advantages over an Europa orbiter mission.

  14. Tests of Microchannel Plate (MCP) Detector Response to MeV Electrons in Support of Juno, JUICE, and Europa Mission UVS Instrument Investigations

    Science.gov (United States)

    Retherford, K. D.; Davis, M. W.; Greathouse, T. K.; Monreal, R. M.; Blase, R. C.; Raut, U.; Steffl, A. J.; Cooke, C. M.; Siegmun, O.; Gladstone, G. R.

    2016-10-01

    We report our efforts to optimize our UV Spectrograph (UVS) instruments for operating in the intense radiation environment of Jupiter for studying the ocean worlds of Europa and Ganymede in order to share our lessons learned.

  15. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  16. Juno at Jupiter: Mission and Science

    Science.gov (United States)

    Bolton, Scott

    2016-07-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the atmosphere of Jupiter will be presented.

  17. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    Science.gov (United States)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  18. Recovery of Europa's geophysical attributes with the radio science component of a Europa Multiple-Flyby Mission

    Science.gov (United States)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2016-10-01

    NASA has approved the development of a multiple-flyby mission to Jupiter's satellite Europa. Important science questions about Europa's interior structure and sub-surface ocean can be addressed by measuring Europa's gravity field, tidal Love number, and spin state. The mission's radio science investigation will rely on tracking the Doppler shift between the spacecraft and Deep Space Network (DSN) antennas. Here, we simulate the X-band two-way coherent Doppler link between the spacecraft and DSN antennas to evaluate the precision with which geophysical parameters can be recovered. We use the project's 15F10 reference trajectory and simulate Doppler measurements within ±2 h of the spacecraft's closest approach to Europa for each one of 42 flybys. After adding noise to the simulated observables, we solve for Europa's GM, degree and order 2 gravity coefficients (J2 and C22), tidal love number k2, pole position (right ascension and declination), and spin rate. The results of our simulations show that the precision in the recovery of geophysical parameters is sufficient to answer questions related to the presence of a global ocean in some tracking scenarios but not in others. We compare our results to an independent analysis by the Europa Mission Gravity Science Working Group (GSWG, 2016).

  19. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  20. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  1. Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps?

    Science.gov (United States)

    Chela-Flores, J.; Bhattacherjee, A. B.; Dudeja, S.; Kumar, N.; Seckbach, J.

    2009-04-01

    We suggest a biogenic interpretation of the sulfur patches on the Europan icy surface. This hypothesis is testable by LAPLACE, or a later mission, in which the instrumentation on board are penetrators, or ion traps, with component selection including miniaturized mass spectrometry. The argument in favor of such instrumentation and component selection is as follows: Extreme environments with microbes can act as models for extraterrestrial life (Seckbach et al., 2008). Suggestions have ranged from Venusian environments (Sagan, 1967, Seckbach and Libby, 1970) to Mars (Grilli Caiola and Billi, 2007). Active photosynthetic microbial communities are found on Antarctica, both in and on ice, in fresh water, in saline lakes and streams and within rocks. In the dry valley lakes of Antarctica close to the McMurdo Base, microbial mats are known to selectively remove a huge quantity of sulfur (Parker et al., 1982). Lake Vostok in Antarctica possesses a perennially thick (3 to 4 km) ice-cover that precludes photosynthesis, thus making this subglacial environment a good model system for determining how a potential Europan biota might emerge, evolve and distribute itself. Jupiter's moon Europa may harbor a subsurface water ocean, which lies beneath an ice layer that might be too thick to allow photosynthesis, just as in Lake Vostok. However, disequilibrium chemistry driven by charged particles from Jupiter's magnetosphere could produce sufficient organic and oxidant molecules for an Europan biosphere (Chyba, 2000). We restrict our attention to microbial mats that could still be thriving in spite of the extreme conditions of radiation on Europa. We are especially concerned with sulfur patches discovered by the Galileo mission. In the near future there are technologies available to settle the question of habitability on Europa, such as penetrators that are currently being developed for preliminary trials nearer to the Earth—the Moon-Lite mission (Smith et al., 2008). If analogies

  2. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    Science.gov (United States)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    ultraviolet to the sub-millimetre wavelengths (MAJIS, UVS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The mission scenario will include a Jovian tour with multiple flybys of Callisto and Ganymede, the phase with more than 20 degrees inclination orbits, and two Europa flybys. The Ganymede tour will include high (5000 km) and low (500 km) almost polar orbits around the moon. The mission scenario has evolved slightly during the definition phase, reassuring that the mission will still be able to fulfil all major science objectives. The talk will give an overview of the mission status at the end of the definition phase, focusing on the evolution of science performance and payload synergies in achieving the mission goals.

  3. Overview of Juno Results at Jupiter

    Science.gov (United States)

    Bolton, Scott; Connerney, Jack; Levin, Steve

    2017-04-01

    Juno is the first mission to investigate Jupiter using a close polar orbit. The Juno science goals include the study of Jupiter interior composition and structure, deep atmosphere and its polar magnetosphere. All orbits have peri-jove at approximately 5000 km above Jupiter's visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, plasma wave antennas, ultraviolet imaging spectrograph, infrared imager and spectrometer and a visible camera. The Juno mission design, an overview of the early science results from Juno, and a description of the collaborative Earth based campaign will be presented.

  4. Farvel til Europa

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2016-01-01

    Brexit-konsekvens. Da det gik ned ad bakke for Italien efter 1492, fortsatte venezianerne med at fejre deres berømte karneval, som tiltrak besøgende fra hele Europa. Det samme kan ske for os i EU i dag. Det er heller ikke så ringe, men vi i Europa kan bare ikke påtvinge verden vores normer. Heller...

  5. The Origin of Retrograde Hot Jupiters

    Science.gov (United States)

    Naoz, Smadar; Farr, W.; Lithwick, Y.; Rasio, F.; Teyssandier, J.

    2011-09-01

    The search for extra-solar planets has led to the surprising discovery of many Jupiter-like planets in very close proximity to their host star, the so-called ``hot Jupiters'' (HJ). Even more surprisingly, many of these HJs have orbits that are eccentric or highly inclined with respect to the equator of the star, and some (about 25%) even orbiting counter to the spin direction of the star. This poses a unique challenge to all planet formation models. We show that secular interactions between Jupiter-like planet and another perturber in the system can easily produce retrograde HJ orbits. We show that in the frame of work of secular hierarchical triple system (the so-called Kozai mechanism) the inner orbit's angular momentum component parallel to the total angular momentum (i.e., the z-component of the inner orbit angular momentum) need not be constant. In fact, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter. We estimate the relative frequencies of retrograde orbits and counter to the stellar spin orbits using Monte Carlo simulations, and find that the they are consistent with the observations. The high observed incidence of planets orbiting counter to the stellar spin direction may suggest that planet--planet secular interactions are an important part of their dynamical history.

  6. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  7. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  8. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  9. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  10. Kepler constraints on planets near hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  11. Kepler constraints on planets near hot Jupiters

    CERN Document Server

    Steffen, Jason H; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  12. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  13. Making Space Travel to Jupiter Possible

    Science.gov (United States)

    Barker, Samuel P.

    2004-01-01

    From man landing on the moon to a simple satellite being launched into orbit, many incredible space accomplishments have been witnessed by us all. However, what goes un-noticed to the common man is the extensive research and testing that lasts months, years, and even decades. Much of this required research just so happens to take place in the corridors of the Glen Research Center building number 49. In the Advanced Materials division of G.R.C., a number of researchers have the responsibility of discovering which metal, ceramic, or polymer is best for a specific application. Under the guidance of mentor extraordinaire Frank Ritzert, I am involved in many critical projects dealing with refractory metals, two of which I will mention in this report. The Jupiter Icy Moons Orbiter (JIMO) project actually was under full swing back in the 50's and early 60's. To enable the 14 year trek to the icy moons of Europa, Callisto, and Ganymede, nuclear propulsion methods were selected. Due to the extreme temperature of the reactor and the extended time period, a refractory metal would need to be implemented. After years of research and progress, the program was suddenly canceled. About a decade ago, the JIMO project was re-instated and now has a goal for departure around 2014. However, a few obstacles lie in our way concerning the use of refractory metals. In certain areas of the orbiter a joint is required between the refractories and other less dense metals. Two of these joints are with nickel based super alloys. Being an intern for Frank Ritzert, the refractory metals expert, I have the opportunity to develop the best method to braze refractory metals to Nickel 201. This involves the actual brazing, electron microscopy and reporting the results. My second project involves a certain part of the orbiter where Niobium 1Zirconium, a refractory metal, is joined with Hastelloy-X a Ni based metal. Small quantities of oxygen, helium and other impurities in the Ni alloy could diffuse

  14. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    The origin of Jupiter and the Galilean satellite system is examined in the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful. These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentric family of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC which contracted gravitationally to form Jupiter some 4 1/2 billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC Supersonic turbulent convection provides the means for shedding discrete gas rings. The temperatures T (sub n) of the system of gas rings shed by the PSC and PJC vary with their respective mean orbital radii R (sub n) (n = 0, 1,2,...) according as T (sub n) proportional to R (sub n) (exp -0.9). If the planet Mercury condenses at 1640 K, so accounting for the high density of that planet via a process of chemical fractionation between iron and silicates, then T (sub n) at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H20 ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H20 ice. For

  15. Design of human missions to Mars and robotic missions to Jupiter

    Science.gov (United States)

    Okutsu, Masataka

    We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low

  16. Juno's first glimpse of Jupiter's complexity

    Science.gov (United States)

    Bolton, Scott; Levin, Steven; Bagenal, Fran

    2017-08-01

    Preliminary results from NASA's Juno mission are presented in this special issue of Geophysical Research Letters. The data were gathered by nine scientific instruments as the Juno spacecraft approached Jupiter on the dawn flank, was inserted into Jupiter orbit on 4 July 2016, and made the first polar passes close to the planet. The first results hint that Jupiter may not have a distinct core, indicate puzzling deep atmospheric convection, and reveal complex small-scale structure in the magnetic field and auroral processes that are distinctly different from those at Earth.

  17. Model Based Systems Engineering on the Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  18. Model Based Systems Engineering on the Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, Dave

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  19. Europa's Great Lakes

    Science.gov (United States)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  20. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  1. Potential for stratospheric Doppler windspeed measurements of Jupiter by sub-millimetre spectroscopy

    Science.gov (United States)

    Hurley, J.; Irwin, P. G. J.; Ellison, B. N.; de Kok, R.; Calcutt, S. B.; Teanby, N. A.; Fletcher, L. N.; Irshad, R.

    2010-09-01

    The sub-millimetre/microwave range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science, having been exclusively employed to carry out ground-based measurements. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is studied by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions 2015-2025 programme - in particular, the Europa Jupiter System Mission (EJSM), which has the European Space Agency and the National Aeronautics and Space Administration as partners. ORTIS is designed to measure atmospheric temperature, the abundance of stratospheric water vapour and other jovian gases, and is intended to be capable of retrieving vertical profiles of horizontal windspeed in the stratosphere for the first time, from Doppler-shifted emission lines measured at high spectral resolution. In this work, a preliminary study and implementation of the estimation of windspeed profiles on simulated spectra representative of Jupiter is presented, detailing the development of the retrieval algorithm, showing that a sub-millimetre instrument such as ORTIS should be able to retrieve windspeed profiles to an accuracy of about 15 m/s between 70 and 200 km/0.1-10 mb using a single near-limb measurement, for expected noise amplitudes.

  2. Io in Front of Jupiter

    Science.gov (United States)

    2000-01-01

    Jupiter's four largest satellites, including Io, the golden ornament in front of Jupiter in this image from NASA's Cassini spacecraft, have fascinated Earthlings ever since Galileo Galilei discovered them in 1610 in one of his first astronomical uses of the telescope.Images from Cassini that will be released over the next several days capture each of the four Galilean satellites in their orbits around the giant planet.This true-color composite frame, made from narrow angle images taken on Dec. 12, 2000, captures Io and its shadow in transit against the disk of Jupiter. The distance of the spacecraft from Jupiter was 19.5 million kilometers (12.1 million miles). The image scale is 117 kilometers (73 miles) per pixel.The entire body of Io, about the size of Earth's Moon, is periodically flexed as it speeds around Jupiter and feels, as a result of its non-circular orbit, the periodically changing gravitational pull of the planet. The heat arising in Io's interior from this continual flexure makes it the most volcanically active body in the solar system, with more than 100 active volcanoes. The white and reddish colors on its surface are due to the presence of different sulfurous materials. The black areas are silicate rocks.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  3. Warm Jupiters from Secular Planet–Planet Interactions

    Science.gov (United States)

    Petrovich, Cristobal; Tremaine, Scott

    2016-10-01

    Most warm Jupiters (gas-giant planets with 0.1 {{au}}≲ a≲ 1 au) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model, the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation, but are typically observed at lower eccentricities. We show that in this model the steady-state eccentricity distribution of the warm Jupiters is approximately flat, which is consistent with the observed distribution if we restrict the sample to warm Jupiters with detected outer planetary companions. The eccentricity distribution of warm Jupiters without companions exhibits a peak at e≲ 0.2 that must be explained by a different formation mechanism. Based on a population synthesis study, we find that high-eccentricity migration excited by an outer planetary companion (1) can account for ∼ 20 % of the warm Jupiters and most of the warm Jupiters with e≳ 0.4; and (2) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼ 60 % of hot Jupiters with projected obliquities ≲ 20^\\circ . Thus ∼ 20 % of the warm Jupiters and ∼ 60 % of the hot Jupiters can be produced by high-eccentricity migration. We also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  4. The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do?

    Science.gov (United States)

    Parisi, Marzia; Iess, Luciano; Finocchiaro, Stefano

    2014-05-01

    With 20 flybys of Callisto, 2 of Europa and an extended orbital phase around Ganymede, ESA's JUICE mission offers an excellent opportunity to investigate the interiors of the three Galilean satellites. All of these moons can host an internal ocean, but the evidence is compelling only for Europa, where Galileo's measurements of the induced magnetic field are not marred by an intrinsic field as for Ganymede. However, both Europa's and Ganymede's appear to be differentiated (Showman and Malhotra, 1999), and probably hosting a subsurface liquid water ocean underneath the icy surface (Khurana et al., 1998; Kivelson et al., 2002). But even for Callisto, which appears as an undifferentiated body of ice and rock (Showman and Malhotra, 1999), a global or partial subsurface ocean cannot be ruled out (Khurana et al., 1998). The determination of the interior structure of the Galilean satellites, one of the main goal of the JUICE mission, can be accomplished by a combination of gravity, altimetric and magnetic measurements. Gravity measurements are addressed by the 3GM (Geodesy and Geophysics of Jupiter and the Galilean Moons) by means of highly accurate Doppler tracking of the spacecraft from ground antennas. Precise range rate measurements are enabled by a dedicated Ka-band (32-34 GHz) transponder, heritage from the Juno and BepiColombo missions. The expected range rate accuracies are around 0.01 mm/s at 60 s integration time, at nearly all solar elongation angles. A complete cancellation of the interplanetary plasma noise is indeed possible by operating simultaneously the links at X and Ka band. The current mission profile envisages two, low altitude, orbital phases around Ganymede: a circular polar, orbit at an altitude of 500 km for the first 102 days, and circular polar orbit at an altitude of 200 km for the last 30 days. The low altitude will permit the determination of Ganymede's gravity field with a relative accuracy of about 10^-5 for both J2 and C22. The 18 tidal

  5. The meteorology of Jupiter

    Science.gov (United States)

    Ingersoll, A. P.

    1976-01-01

    From the point of view of meteorology the most important differences between Jupiter and the earth are related to the fact that Jupiter has an appreciable internal energy source and probably lacks a solid surface. The composition and vertical structure of the Jovian atmosphere is considered along with the composition of Jovian cloud particles, turbulence in Jupiter's atmosphere, data on the horizontal structure and motions of the atmosphere, and questions related to the longevity of Jupiter's clouds. Attention is given to the barotropic characteristics of Jupiter's atmosphere, the radiation balance in the atmosphere of the earth and of Jupiter, and studies of the Great Red Spot.

  6. Europa i Forandring

    DEFF Research Database (Denmark)

    Kelstrup, Morten; Martinsen, Dorte Sindbjerg; Wind, Marlene

    EUROPA I FORANDRING er en grundbog i studiet af EU, skrevet af tre af Danmarks førende EU-forskere. Denne udvidede 2. udgave dækker udviklingen frem til og med foråret 2012. Den sætter som første udgaven fokus på EU's politiske og retlige system, herunder bl.a. EU-institutionernes opbygning og fu...

  7. Europa i forandring

    DEFF Research Database (Denmark)

    Kelstrup, Morten; Martinsen, Dorte Sindbjerg; Wind, Marlene

    perspektiver i EU's udvikling, herunder perspektiverne i Brexit. EUROPA I FORANDRING er båret af den overbevisning, at man for at forstå EU må forstå den uløseligt tætte sammenhæng mellem ret og politik. Det europæiske samarbejde er baseret på en unik retsorden, som er afgørende for politikken i EU. Man kan...

  8. Kinetic modeling of the composition and dynamics of volatile's distribution in Europa's exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Tucker, O. J.; Combi, M. R.; Rubin, M.; Jia, X.; Gombosi, T. I.

    2014-12-01

    The surface-bound Europa's exosphere is tightly connected to both the Jovian magnetosphere as well as to Europa's icy surface. The neutral species in the exosphere are mostly produced by the Jovian magnetospheric ion sputtering of the water ice surface and direct ejection from Europa's plume. Here, we present results of our model study of the distribution of the neutral species in Europa's exosphere, their escape and migration over the moon's surface. The work is a part of a more global effort aimed at fully coupled understanding of the interaction between Europa's exosphere and Jovian magnetosphere. The modeled neutral species are produced via sputtering (O2 and H2O), directly ejected into the plume (H2O), or produced via photolytic or electron impact reactions (OH, O2, O, H). The computational domain extends to altitudes up to ~10 RE, which exceeds the radius of Europa's Hill sphere (~8.5 RE, Miljkovic et al., 2012). Jupiter's and Europa's gravity are taken into consideration. The modeling is performed using our kinetic Adaptive Mesh Particle Simulator (Tenishev et al., 2013), where the exospheric species are represented by a large set of the model particles governed by the same physical laws as those of the real exosphere. The calculated HI and OI brightness synthetic images are compared with those obtained with Hubble Space Telescope (Roth et al., 2014).

  9. Water generation and transport below Europa's strike-slip faults

    Science.gov (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2016-12-01

    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  10. Transiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star

    CERN Document Server

    Gandolfi, D; Alonso, R; Deleuil, M; Guenther, E W; Fridlund, M; Endl, M; Eigmüller, P; Csizmadia, Sz; Havel, M; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Deeg, H J; Dvorak, R; Eislöffel, J; Erikson, A; Ferraz-Mello, S; Gazzano, J -C; Gibson, N P; Gillon, M; Gondoin, P; Guillot, T; Hartmann, M; Hatzes, A; Jorda, L; Kabath, P; Léger, A; Llebaria, A; Lammer, H; MacQueen, P J; Mayor, M; Mazeh, T; Moutou, C; Ollivier, M; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Stecklum, B; Tingley, B; Udry, S; Wuchterl, G; 10.1051/0004-6361/201015132

    2010-01-01

    The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.

  11. New global maps of Europa's lineaments

    Science.gov (United States)

    Cremonese, Gabriele; Lucchetti, Alice; Simioni, Emanuele

    2016-10-01

    Physical models have been developed to successfully explain the orientations and locations of many fractures observed on Europa's surface. Between the different fractures located on the surface of the icy satellite global-scale lineaments are present. These features are correlated with tidal stress suggesting that they initiated at tensile cracks in response to non-synchronous rotation (Geissler et al., 1998, Geissler et al. 1999). In this work we completed a global map of all type of lineaments presented on the surface of Europa, including also cycloidal lineaments that are interpreted to be tensile cracks that form due to diurnal stresses from Europa's orbital eccentricity (Hoppa et al., 1999).We enhanced the mapping of lineaments in comparison to what previously published, tracking about 5500 lineaments located everywhere on the surface of the icy satellite. We analyze these features in terms of their orientation and location using 2D methods, such as stereo plots and rose diagrams, showing that our preliminary results are in agreement with previous studies (McEwen et al. 1986). In addition, we visualize our results taking into account the 3D information to perform a detailed analysis of lineaments constraining their orientation and behavior. The aim of this work is to characterize the mapped lineaments and investigate the timing of their formation in order to correlate our results with proposed stress pattern models.

  12. A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Shemansky, D. E.; Liu, X.; Yoshii, J. [Planetary and Space Science Division, Space Environment Technologies, Pasadena, CA 91107 (United States); Yung, Y. L. [Division of Geological and Planetary Sciences, California Institute of Technology, CA 91125 (United States); Hansen, C. J. [Planetary Science Institute, 109 S. Puerto Drive, Ivins, UT 84738 (United States); Hendrix, A. R. [Planetary Science Institute, Los Angeles, CA 91001 (United States); Esposito, L. W., E-mail: dshemansky@spacewx.com [Laboratory for Atmospheric and Space Physics, University of Colorado, CO 80303 (United States)

    2014-12-20

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ∼25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 × 10{sup 25} atoms s{sup –1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O

  13. The Pan-Pacific Planet Search. IV. Two super-Jupiters in a 3:5 resonance orbiting the giant star HD33844

    CERN Document Server

    Wittenmyer, Robert A; Butler, R P; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M I; Jenkins, J S; Brahm, R; Tinney, C G; Mengel, M W; Clark, J

    2015-01-01

    We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60\\pm$0.02 AU and $a_c=2.24\\pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96\\pm$0.12 Mjup and $M_c=1.76\\pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.

  14. Geologic mapping of Europa

    Science.gov (United States)

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  15. Consejo de Europa

    Directory of Open Access Journals (Sweden)

    Montes Fernández, Francisco José

    2014-03-01

    Full Text Available La génesis, evolución estructura, funcionamiento, financiación y una sucinta relación de actividades del Consejo de Europa es el contenido resumido de este trabajo. La importancia del Consejo es que se encuentran representados en él todos los países europeos a diferencia de la Unión donde por el momento solo están de pleno derecho los admitidos y las competencias son notablemente diferentes aquí son más sociales y mucho menos económicas

  16. Danmark og EUropa

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2015-01-01

    selvmodsigende betegnelse forklarer mange, om end ikke alle, sider af det samarbejde, der har udviklet sig gennem de sidste tres år. Med udgangspunkt i en analyse af arven fra nederlaget i 1864 og Danmarks forvandling fra en flersproget stat, det Oldenborgske monarki, til nutidens homogene nationalstat – dog......I kraft af sin geografiske placering midt i Europa og særlige politiske kultur, der skyldes den dobbelte arv fra historien, passer Danmark på en paradoksal måde til det europæiske samarbejde, der af mange grunde har udviklet sig til en uplanlagt og uforudset ’føderation af nationalstater’. Denne...

  17. High-Power Radar Sounders for the Investigation of Jupiter Icy Moons

    Science.gov (United States)

    Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.

    2005-01-01

    The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design

  18. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  19. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  20. Design for CubeSat-based dust and radiation studies at Europa

    Science.gov (United States)

    Goel, Ashish; Krishnamoorthy, Siddharth; Swenson, Travis; West, Stephen; Li, Alan; Crew, Alexander; Phillips, Derek James; Screve, Antoine; Close, Sigrid

    2017-07-01

    Europa is one of the icy moons of Jupiter and the possibility of an ocean of liquid water beneath its icy crust makes it one of the most fascinating destinations for exploration in the solar system. NASA's Europa Multiple Flyby Mission (EMFM, formerly Europa Clipper) is slated to visit the icy moon in a timeframe near the year 2022 to study the habitability of Europa. CubeSats carried along by the primary mission can supplement the measurements made, at a relatively low cost, and with the added benefits of involving students at universities in this challenging endeavor. Further, such a mission holds the key to extending the applicability of CubeSats to interplanetary missions. In this paper, we present the design of the Europa Radiation and Dust Observation Satellite (ERDOS), a 3U CubeSat designed to be deployed by the Europa Multiple Flyby Mission to carry out measurements of the radiation and dust environment, before impacting Europa's surface. We present a detailed design for a CubeSat-based secondary mission, and discuss the science goals that may be accomplished by such a mission. Further, we discuss results from a comprehensive analysis of various engineering challenges associated with an interplanetary CubeSat mission, such as radiation shielding and thermal environment control. Our results show that a short duration CubeSat-based flyby mission is feasible when the CubeSat is carried on board the primary mission until the Jovian system is reached. Such a flyby mission can provide important supplementary information to the primary mission about Europa's environment at a closer range and lead to a substantial increase in scientific knowledge about surface processes on Europa.

  1. K2-99: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion

    Science.gov (United States)

    Smith, A. M. S.; Gandolfi, D.; Barragán, O.; Bowler, B.; Csizmadia, Sz.; Endl, M.; Fridlund, M. C. V.; Grziwa, S.; Guenther, E.; Hatzes, A. P.; Nowak, G.; Albrecht, S.; Alonso, R.; Cabrera, J.; Cochran, W. D.; Deeg, H. J.; Cusano, F.; Eigmüller, Ph.; Erikson, A.; Hidalgo, D.; Hirano, T.; Johnson, M. C.; Korth, J.; Mann, A.; Narita, N.; Nespral, D.; Palle, E.; Pätzold, M.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Tingley, B.; Wolthoff, V.

    2017-01-01

    We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19 ± 0.04) orbit around K2-99, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20 ± 0.05) subgiant, with mass 1.60^{+0.14}_{-0.10} M⊙ and radius 3.1 ± 0.1 R⊙. The planet has a mass of 0.97 ± 0.09 MJup and a radius 1.29 ± 0.05 RJup. A measured systemic radial acceleration of -2.12 ± 0.04 ms-1 d-1 offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.

  2. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    Science.gov (United States)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  3. HATS-11b and HATS-12b: Two transiting Hot Jupiters orbiting sub-solar metallicity stars selected for the K2 Campaign 7

    CERN Document Server

    Rabus, M; Hartman, J D; Bakos, G Á; Espinoza, N; Brahm, R; Penev, K; Ciceri, S; Zhou, G; Bayliss, D; Mancini, L; Bhatti, W; de Val-Borro, M; Csbury, Z; Sato, B; Tan, T -G; Henning, T; Schmidt, B; Bento, J; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P

    2016-01-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V=14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000 $\\pm$ 0.060 M$_{\\odot}$, a radius of 1.444 $\\pm$ 0.057 M$_{\\odot}$ and an effective temperature of 6060 $\\pm$ 150 K, while its companion is a 0.85 $\\pm$ 0.12 M$_J$, 1.510 $\\pm$ 0.078 R$_J$ planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V=12.8 F-star. HATS-12 has a mass of 1.489 $\\pm$ 0.071 M$_{\\odot}$, a radius of 2.21 $\\pm$ 0.21 R$_{\\odot}$, and an effective temperature of 6408 $\\pm$ 75 K. For HATS-12, our measurements indicate that this is a 2.38 $\\pm$ 0.11 M$_J$, 1.35 $\\pm$ 0.17 R$_J$ planet in a circular orbit. Both host stars show sub-solar metallicity of -0.390 $\\pm$ 0.060 dex and -0.100 $\\pm$ 0.040 dex, respectively and are (slightly) evolved stars....

  4. Exogenic and endogenic albedo and color patterns on Europa

    Science.gov (United States)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  5. Towards Chemical Constraints on Hot Jupiter Migration

    CERN Document Server

    Madhusudhan, Nikku; Kennedy, Grant M

    2014-01-01

    The origin of hot Jupiters -- gas giant exoplanets orbiting very close to their host stars -- is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in-situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily expla...

  6. Analytical model of Europa's O2 exosphere

    Science.gov (United States)

    Milillo, Anna; Plainaki, Christina; De Angelis, Elisabetta; Mangano, Valeria; Massetti, Stefano; Mura, Alessandro; Orsini, Stefano; Rispoli, Rosanna

    2016-10-01

    The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predict that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non- sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines proved the presence of an asymmetric atomic Oxygen distribution, related to a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the other hand, the simple exponential density profiles cannot well depict the higher temperature/higher altitudes component originating by radiolysis. It would thus be important to have a suitable and user-friendly model able to describe the major exospheric characteristics to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the two-component profiles and the asymmetries due to diverse configurations among Europa, Jupiter and the Sun. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model (Plainaki et al. 2013) to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics. As an example a discussion on the exospheric temperatures in different configurations and space regions is given.

  7. Hubble Gallery of Jupiter's Galilean Satellites

    Science.gov (United States)

    1995-01-01

    This is a Hubble Space Telescope 'family portrait' of the four largest moons of Jupiter, first observed by the Italian scientist Galileo Galilei nearly four centuries ago. Located approximately one-half billion miles away, the moons are so small that, in visible light, they appear as fuzzy disks in the largest ground-based telescopes. Hubble can resolve surface details seen previously only by the Voyager spacecraft in the early 1980s. While the Voyagers provided close-up snapshots of the satellites, Hubble can now follow changes on the moons and reveal other characteristics at ultraviolet and near-infrared wavelengths.Over the past year Hubble has charted new volcanic activity on Io's active surface, found a faint oxygen atmosphere on the moon Europa, and identified ozone on the surface of Ganymede. Hubble ultraviolet observations of Callisto show the presence of fresh ice on the surface that may indicate impacts from micrometeorites and charged particles from Jupiter's magnetosphere.Hubble observations will play a complementary role when the Galileo spacecraft arrives at Jupiter in December of this year.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  9. terrestres en Europa

    Directory of Open Access Journals (Sweden)

    M. Vilà

    2006-01-01

    Full Text Available Los impactos ecológicos de las especies introducidas constituyen uno de los aspectos menos investigados de la ecología de las invasiones, especialmente en Europa. La mayor parte de los estudios realizados se han restringido a especies que tienen un impacto económico inmediato. Hemos revisado la literatura centrada en los efectos de plantas y animales vertebrados terrestres invasores sobre especies nativas y ecosistemas receptores en Europa. Las plantas invasoras pueden interferir con las especies nativas por competencia o mediante la producción de sustancias alelopáticas. A escala de comunidad, el impacto más estudiado ha sido la disminución de la biodiversidad y el desplazamiento local de alguna de ellas. Las plantas invasoras también pueden interferir con niveles tróficos superiores; tal es el caso de la competencia por polinizadores. A escala de ecosistema, las invasoras pueden modificar los ciclos de nutrientes (por ejemplo, especies fijadoras de N, la disponibilidad de agua, e incluso alterar los regímenes de perturbación. En el caso de la invasión por vertebrados, si la especie ocupa el mismo nicho ecológico que una especie nativa, una de las dos puede llegar a interferir con la otra. Normalmente, estas interferencias entre especies son causadas por competencia por el alimento u por otros recursos, depredación directa o transferencia de patógenos. Los vertenrados invasores también pueden provocar alteraciones considerables en la estructura de la vegetación y en la sucesión.

  10. High Latitude Mottling on Jupiter

    Science.gov (United States)

    2000-01-01

    The familiar banded appearance of Jupiter at low and middle latitudes gradually gives way to a more mottled appearance at high latitudes in this striking true color image taken Dec. 13, 2000, by NASA's Cassini spacecraft.The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes.The cause of this difference is not understood. One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures. Further analysis of Cassini images, including analysis of sequences taken over a span of time, should help us understand the cause of equator-to-pole differences in cloud organization and evolution.By the time this picture was taken, Cassini had reached close enough to Jupiter to allow the spacecraft to return images with more detail than what's possible with the planetary camera on NASA's Earth-orbiting Hubble Space Telescope. The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on Jupiter is almost full

  11. Jupiter System Observer

    Science.gov (United States)

    Senske, Dave; Kwok, Johnny

    2008-01-01

    This slide presentation reviews the proposed mission for the Jupiter System Observer. The presentation also includes overviews of the mission timeline, science goals, and spacecraftspecifications for the satellite.

  12. Digitalisierung des Kulturellen Erbes (Europas)

    NARCIS (Netherlands)

    Gruber, Marion

    2011-01-01

    Gruber, M. R. (2011, 13 December). Digitalisierung des Kulturellen Erbes (Europas). Guest lecture at the IPMZ - Institute of Mass Communication and Media Research, Devision Media Change & Innovation, University of Zurich, Switzerland.

  13. The Search for a Habitable Europa: Radar, Water and an Active Ice Shell

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Young, D. A.; Schroeder, D. M.; Greenbaum, J. S.

    2011-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for detecting these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successful at the Moon and Mars.

  14. Warm Jupiters Are Less Lonely than Hot Jupiters: Close Neighbors

    Science.gov (United States)

    Huang, Chelsea; Wu, Yanqin; Triaud, Amaury H. M. J.

    2016-07-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions between systems that contain hot Jupiters (HJs) (periods inward of 10 days) and those that host warm Jupiters (WJs) (periods between 10 and 200 days). HJs, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to 2 R Earth). Restricting ourselves to inner companions, our limits reach down to 1 R Earth. In stark contrast, half of the WJs are closely flanked by small companions. Statistically, the companion fractions for hot and WJs are mutually exclusive, particularly in regard to inner companions. The high companion fraction of WJs also yields clues to their formation. The WJs that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those of the low-mass close-in planetary systems abundantly discovered by the Kepler mission. This, and other arguments, lead us to propose that these WJs are formed in situ. There are indications that there may be a second population of WJs with different characteristics. In this picture, WASP-47b could be regarded as the extending tail of the in situ WJs into the HJ region and does not represent the generic formation route for HJs.

  15. Controlled photomosaic map of Europa Je 15 M CMN

    Science.gov (United States)

    ,

    2002-01-01

    This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the Voyager 1 and 2 spacecraft.

  16. The Capture of Jupiter Trojans

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Vokrouhlicky, D.

    2013-09-01

    The origin of Jupiter Trojans remained mysterious for decades. Particularly, it was difficult to explain the excitation of the inclinations of the Trojan population [1]. In 2005, Morbidelli et al. [2] proposed a scenario of capture from the trans-Neptunian disk, in the framework of the so-called "Nice model" [3,4]. This scenario explained in a natural way the observed orbital distribution of Trojans. The Nice model, however, evolved in the years, in order to satisfy an increasingly large number of constraints. It now appears that the dynamical evolution of the giant planets was different from that envisioned in [2]. Here, we assess again the process of capture of Trojans within this new evolution. We show that (6-8)×10 - 7 of the original trans-Neptunian planetesimals are captured in the Trojan region, with an orbital distribution consistent with the one observed. Relative to [2], the new capture mechanism has the potential of explaining the asymmetry between the L4 and L5 populations. Moreover, the resulting population of Trojans is consistent with that of the Irregular Satellites of Jupiter, which are captured in the same process; a few bodies from the main asteroid belt could also be captured in the Trojan cloud.

  17. In Pursuit of Analogs for Europa's Dynamics & Potential Habitats

    Science.gov (United States)

    Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.

    2010-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.

  18. Voyage to Jupiter.

    Science.gov (United States)

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  19. Electrodynamic tethers for exploration of Jupiter and its icy moons

    OpenAIRE

    Sanmartín Losada, Juan Ramón

    2006-01-01

    Use of electrodynamic bare tethers in exploring the Jovian system by tapping its rotational energy for power and propulsion is studied. The position of perijove and apojove in elliptical orbits, relative to the synchronous orbit at 2.24 times Jupiter’s radius, is exploited to conveniently make the induced Lorentz force to be drag or thrust, while generating power, and navigating the system. Capture and evolution to a low elliptical orbit near Jupiter, and capture into low circular orbits at m...

  20. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    CERN Document Server

    Almenara, J M; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R F; Deleuil, M; Barros, S C C; Boisse, I; Bonomo, A; Montagnier, G; Santerne, A

    2015-01-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of $2.86\\pm0.35~{\\rm M_{Jup}}$ and a radius of $1.13^{+0.26}_{-0.18}~{\\rm R_{Jup}}$, and it orbits a G0, metallic ([Fe/H]=$0.35\\pm0.15$) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of $T_{eq}=1000 \\pm 45$ K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of $2.82\\pm 0.52~{\\rm M_{Jup}}$ and a radius of $1.45\\pm0.16~{\\rm R_{Jup}}$, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the ...

  1. Europa's small impactor flux and seismic detection predictions

    Science.gov (United States)

    Tsuji, Daisuke; Teanby, Nicholas A.

    2016-10-01

    Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a

  2. Periodic changes of the activity of processes in Jupiter's atmosphere

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-10-01

    Variations of the Earth jovimagnetic latitude on Jupiter are preferred in solar-driven changes of reflective properties of clouds and haze on Jupiter. Because of the orbit eccentricity (e=0,048450) the northern hemisphere receives 21% greater solar energy flow to the atmosphere, because Jupiter is in the perihelia near the time of the summer solstice. Results of our studies showed that the ratio of the brightness of the northern and southern tropical and temperate regions is evident factor of the photometric activity of the Jupiter's atmospheric processes. The obtained from the analysis of observational data for the period from 1962 to 2015 existence of variations of activity factor of the planet hemispheres with a period of 11.86 years has allowed us to talk about an existence of the seasonal reconstruction of the physical parameters of Jupiter's atmosphere.

  3. Directly Imaging Tidally Powered Migrating Jupiters

    CERN Document Server

    Dong, Subo; Socrates, Aristotle

    2012-01-01

    We show that ongoing direct imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct imaging surveys. These planets, with years-long orbits, are presently migrating to "feed" the "hot Jupiters" in steady state. Their existence is expected from a class of "high-e" migration mechanisms, in which gas giants are excited to highly eccentric orbits and then shrink their semi-major axis by factor of ~ 10-100 due to tidal dissipation at successive close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the planet atmosphere, the planet likely radiates steadily at luminosity ~2-3 orders of magnitude larger than that of our Jupiter during a typical Gyr migration time scale. Their large orbital separations and expected high planet-to-star flux ratios in IR make ...

  4. Europa: Perspectives on an Ocean World

    Science.gov (United States)

    Singer, K. N.; McKinnon, W. B.; Pappalardo, R. T.; Khurana, K. K.

    2009-12-01

    over the age of the surface. From a dynamical perspective, it is not implausible that Europa, like Io, is evolving away from a geologically recent state of higher eccentricity and greater tidal dissipation. While total shell thickness is unlikely to vary significantly over local or regional scales, the brittle lithosphere thickness certainly does. And it may simply have been the limited data return from Galileo, in type and quantity, that prevented the discovery of Enceladus-like activity there. We have come a long way from the criticisms of one of Galileo’s contemporaries, who argued that the moons of Jupiter could not even exist. Not only do they exist, but one of these moons, Europa, bears more than a passing resemblance to a smaller but more water-rich Earth. In time, this ocean world should offer a test of one of Science’s greatest questions: whether there was a second, independent origin of life.

  5. Active formation of 'chaos terrain' over shallow subsurface water on Europa.

    Science.gov (United States)

    Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M

    2011-11-16

    Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.

  6. The Q Values of the Galilean Satellites and their Tidal Contributions to the Deceleration of Jupiter's Rotation

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Cheng-Zhi Zhang

    2004-01-01

    The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.

  7. Jupiter Environment Tool

    Science.gov (United States)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  8. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    CERN Document Server

    Shara, Michael M; Mardling, Rosemary A

    2014-01-01

    Explaining the origin and evolution of exoplanetary "hot Jupiters" remains a significant challenge. One possible mechanism for their production is planet-planet interactions, which produces hot Jupiters from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters can be formed in star clusters? Our N-body simulations of planetary systems inside star clusters answer this question in the affirmative, and show that hot Jupiter formation is not a rare event. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters' orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32 b, HAT-P-2 b, HD 80606 b and GJ 876 d. If stellar perturbations formed these hot Jupiters then our simulations predict that these very hot, inner planets are sometimes acc...

  9. New Views of Jupiter's Rings

    Science.gov (United States)

    Burns, J. A.

    1998-09-01

    Jupiter's rings are the archetype of ethereal planetary rings (very-low optical-depth bands containing micron-sized "dust"). As a result of much improved observations by Galileo (Ockert-Bell* -- most citations are et al. and Icarus in press* or this meeting) and Keck (de Pater*), we now understand the nature of such rings. The ring has three components: a 104 km-thick toroidal halo (1.4-1.7 RJ; normal optical depth t = 10-6), a thin main ring (1.7-1.8 RJ; t = 10-6), and a pair of exterior gossamer rings (1.8-3.5RJ; t = 10-7). The main ring has patchy ( 20-30 percent) brightness. The ring is reddish and its particles satisfy a -2.5 differential power-law size distribution. Because particle lifetimes are brief, the rings must be continually regenerated, by collisions into parent bodies, which may be unseen or may be the known small ring-moons (Thomas*, Simonelli). The gossamer ring seems to be collisional ejecta derived from the ring-moons Amalthea and Thebe, and evolving inward by Poynting-Robertson drag (Burns). The particles drift through many electromagnetic resonances, clustering around synchronous orbit, which produce jumps in the particles' inclinations (Hamilton). The main ring is probably debris from Adrastea and Metis, which orbit in the equatorial plane. The halo particles are driven vertically by electromagnetic forces, which may be resonant (Schaffer & Burns) or not (Horanyi & Cravens). When halo orbits become highly distorted, particles are lost into Jupiter. Similar faint rings may be attendant to all small, close-in satellites (Showalter).

  10. A Look Inside the Juno Mission to Jupiter

    Science.gov (United States)

    Grammier, Richard S.

    2008-01-01

    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  11. 莲花Europa S

    Institute of Scientific and Technical Information of China (English)

    刘磊; arns(摄影)

    2007-01-01

    在开发Europa S之初,莲花公司提出了一个对于熟悉莲花车型风格的车迷们很陌生的理念。他们要求新的Europa S不但要保持灵活、快速且充满激情的一贯犀利风格。而且还要为驾乘者提供较高的舒适性

  12. The Escaping Upper Atmospheres of Hot Jupiters

    Science.gov (United States)

    Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph

    2017-01-01

    Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.

  13. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    Science.gov (United States)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  14. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  15. Inferno on Jupiter

    Institute of Scientific and Technical Information of China (English)

    诸葛勤

    1994-01-01

    The initial sketchy reports began filtering into the U. S. by E-maillate Saturday afternoon. First a Spanish observatory announced that it hadspotted a plume of gas billowing up from the edge of Jupiter. Then a

  16. Modelling of Jupiter's Innermost Radiation Belt

    Science.gov (United States)

    Mihalov, J. D.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    In order to understand better source and loss processes for energetic trapped protons near Jupiter, a modification of de Pater and Goertz' finite difference diffusion calculations for Jovian equatorial energetic electrons is made to apply to the case of protons inside the orbit of Metis. Explicit account is taken of energy loss in the Jovian ring. Comparison of the results is made with Galileo Probe measurements.

  17. DIRECTLY IMAGING TIDALLY POWERED MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Dong Subo; Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-01-10

    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.

  18. Inmigraciones en Europa

    Directory of Open Access Journals (Sweden)

    Cebrián, Juan A.

    2012-12-01

    Full Text Available In an interval of only six decades 1950-2010, we have witnessed the five centuries old emigration process interruption that has shaped modern European history. At the end of World War II begins an intense opposite migration flow from former European colonies to their historic metropolis, which had also incorporated other areas that never had that relationship of dependency. This phenomenon is undoubtedly the most important contemporary social process that has taken place in Europe. Such a transformation could only occur by the confluence of important complementary factors. In separate sections of this article we present the main causes of recent immigrations in Europe and what flows within Europe and from other continents can be identified. Second, we explore the key aspects of immigration: demographics, gender and labor market. Then, we study the problems of integration in the host societies and immigration policies that facilitate it. We ended our discussion with references to the singular case of Spain.

    En un intervalo de sólo seis décadas 1950-2010, hemos sido testigos de la interrupción del proceso multisecular emigratorio que ha marcado toda la historia moderna europea. Al término de la Segunda Guerra Mundial comienza un intenso reflejo de movilidad opuesta, desde las antiguas colonias europeas hacia su metrópoli histórica, que se ha contagiado también a otras áreas que nunca tuvieron esa relación de dependencia. Este fenómeno constituye, sin duda, el proceso social contemporáneo más importante que ha tenido lugar en Europa. Una transformación así sólo ha podido ocurrir por la confluencia de importantes factores complementarios. En diferentes apartados de este artículo exponemos las principales causas de la inmigración reciente en Europa y qué flujos intraeuropeos y procedentes de otros continentes pueden identificarse. En segundo término, nos interesamos por los aspectos claves del fenómeno inmigratorio

  19. Kind of Blue - Europa Blues

    DEFF Research Database (Denmark)

    Mortensen, Tore; Kirkegaard, Peter

    2009-01-01

    Bidraget reflekterer over sammenhænge mellem to værker fra det musikalske og litterære område. Det drejer sig om Miles Davis' Kind of Blue fra 1959 og Arne Dahls krimi, Europa Blues fra 2001. Den grundlæggende indfaldsvinkel er det performative, den frie, men samtidigt disciplinerede musikalske...

  20. Tilting Saturn without tilting Jupiter: Constraints on giant planet migration

    CERN Document Server

    Brasser, R

    2015-01-01

    The migration and encounter histories of the giant planets in our Solar System can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn's spin axis to the current obliquity if the product of the migration time scale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today's obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance...

  1. Europa Explorer Operational Scenarios Development

    Science.gov (United States)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  2. Habitability potential of satellites around Jupiter and Saturn

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  3. JunoCam's Imaging of Jupiter

    Science.gov (United States)

    Orton, Glenn; Hansen, Candice; Momary, Thomas; Caplinger, Michael; Ravine, Michael; Atreya, Sushil; Ingersoll, Andrew; Bolton, Scott; Rogers, John; Eichstaedt, Gerald

    2017-04-01

    Juno's visible imager, JunoCam, is a wide-angle camera (58° field of view) with 4 color filters: red, green and blue (RGB) and methane at 889 nm, designed for optimal imaging of Jupiter's poles. Juno's elliptical polar orbit offers unique views of Jupiter's polar regions with spatial scales as good as 50 km/pixel. At closest approach ("perijove") the images have spatial scale down to ˜3 km/pixel. As a push-frame imager on a rotating spacecraft, JunoCam uses time-delayed integration to take advantage of the spacecraft spin to extend integration time to increase signal. Images of Jupiter's poles reveal a largely uncharted region of Jupiter, as nearly all earlier spacecraft except Pioneer 11 have orbited or flown by close to the equatorial plane. Poleward of 64-68° planetocentric latitude, Jupiter's familiar east-west banded structure breaks down. Several types of discrete features appear on a darker, bluish-cast background. Clusters of circular cyclonic spirals are found immediately around the north and south poles. Oval-shaped features are also present, ranging in size down to JunoCam's resolution limits. The largest and brightest features usually have chaotic shapes; animations over ˜1 hour can reveal cyclonic motion in them. Narrow linear features traverse tens of degrees of longitude and are not confined in latitude. JunoCam also detected optically thin clouds or hazes that are illuminated beyond the nightside ˜1-bar terminator; one of these detected at Perijove lay some 3 scale heights above the main cloud deck. Tests have been made to detect the aurora and lightning. Most close-up images of Jupiter have been acquired at lower latitudes within 2 hours of closest approach. These images aid in understanding the data collected by other instruments on Juno that probe deeper in the atmosphere. When Jupiter was too close to the sun for ground-based observers to collect data between perijoves 1 and 2, JunoCam took a sequence of routine images to monitor large

  4. Hot Jupiters and Super-Earths

    CERN Document Server

    Mustill, Alexander James; Johansen, Anders

    2016-01-01

    We explore the role of dynamics in shaping planetary system multiplicities, focussing on two particular problems. (1) We propose that the lack of close-in super-Earths in hot Jupiter systems is a signature of the migration history of the hot Jupiters and helps to discriminate between different mechanisms of migration. We present N-body simulations of dynamical migration scenarios where proto-hot Jupiters are excited to high eccentricities prior to tidal circularisation and orbital decay. We show that in this scenario, the eccentric giant planet typically destroys planets in the inner system, in agreement with the observed lack of close super-Earth companions to hot Jupiters. (2) We explore the role of the dynamics of outer systems in affecting the multiplicities of close-in systems such as those discovered by Kepler. We consider specifically the effects of planet--planet scattering and Kozai perturbations on an exterior giant planet on the architecture of the inner system, and evaluate the ability of such sce...

  5. Jupiter's Dynamic Magnetosphere

    Science.gov (United States)

    Vogt, M. F.; Bunce, E. J.; Kronberg, E. A.; Jackman, C. M.

    2014-12-01

    Jupiter's magnetosphere is a highly dynamic environment. Hundreds of reconnection events have been identified in Jupiter's magnetotail through analysis of magnetic field and particle measurements collected by the Galileo spacecraft. Quasi-periodic behavior, suggestive of reconnection, has been intermittently observed on a ~2-3 day time scale in several data sets, including magnetic field dipolarizations, flow bursts, auroral polar dawn spots, and the hectometric radio emission. In this paper we review the present state of knowledge of Jovian magnetospheric dynamics. Throughout the discussion, we highlight similarities and differences to Saturn's magnetosphere. For example, recent analysis of plasmoid signatures at both Jupiter and Saturn has established the role of tail reconnection in the overall mass and flux transport in the outer planet magnetospheres. The results for both Jupiter and Saturn suggest that the observed mass loss rate due to tail reconnection and plasmoid release is insufficient to account for the mass input rate from the moons Io and Enceladus, respectively. We also present new analysis in which we use the Michigan mSWiM propagated solar wind MHD model to estimate the solar wind conditions upstream of Jupiter. This information allows us to determine whether reconnection events occur preferentially during certain solar wind conditions, or whether there is evidence that the solar wind modulates the quasi-periodicity seen in the field dipolarizations and flow bursts.

  6. Colors and Properties of Jupiter's Greeks and Trojans

    Science.gov (United States)

    Chatelain, Joseph; Henry, Todd J.; French, Linda M.; Trilling, David E.

    2016-10-01

    In this Ph.D. talk, I will present the colors and properties of Jupiter Trojan asteroids examined in my dissertation research. The Jupiter Trojan asteroids are minor bodies that orbit 60 degrees in front and 60 degrees behind Jupiter. Because these orbits are stable over the lifetime of the Solar System, the properties of these objects may inform us about the conditions under which the Solar System formed. We present BVRKCIKC photometry for over 100 of the intrinsically brightest and presumably largest members of the L4 and L5 Jupiter Trojans. We use a new principal color component derived by Chatelain et al. 2016 that is indicative of taxonomic types relevant to the Jupiter Trojan asteroids. We previously found that 76% of the largest L5 Jupiter Trojans are consistent with a D-type classification, while 24% show shallower slopes more consistent with X-type and C-type classifications. Here we extend this study to the L4 cloud and compare the two populations, as well as include findings about specific objects that have resulted from these data. Specifically, multiple photometric observations hint at color variation in some objects, and our richest datasets allow for the determination of phase curves and shapes for a handful of the most compelling asteroids including a new shape model and pole solution for 1173 Anchises. Our goal is to use this study to shed light on these fascinating objects and to place the Trojans in context in the larger Solar System.

  7. Warm Jupiters from secular planet-planet interactions

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    Most warm Jupiters (gas-giant planets with $0.1~{\\rm AU}\\lesssim a \\lesssim1$ AU) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities. We show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys. The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities ($e\\lesssim 0.2$) that must be explained by a di...

  8. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

    Science.gov (United States)

    Hussmann, Hauke; Shoji, Daigo; Steinbrügge, Gregor; Stark, Alexander; Sohl, Frank

    2016-11-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers k_2 and h_2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags φ _{k_2} and φ _{h_2} of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference Δ φ = φ _{k_2}- φ _{h_2} can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities {Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system.

  9. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  10. Illuminating Hot Jupiters in caustic crossing

    CERN Document Server

    Sajadian, Sedighe

    2010-01-01

    In recent years a large number of Hot Jupiters orbiting in a very close orbit around the parent stars have been explored with the transit and doppler effect methods. Here in this work we study the gravitational microlensing effect of a binary lens on a parent star with a Hot Jupiter revolving around it. Caustic crossing of the planet makes enhancements on the light curve of the parent star in which the signature of the planet can be detected by high precision photometric observations. We use the inverse ray shooting method with tree code algorithm to generate the combined light curve of the parent star and the planet. In order to investigate the probability of observing the planet signal, we do a Monte-Carlo simulation and obtain the observational optical depth of $\\tau \\sim 10^{-8}$. We show that about ten years observations of Galactic Bulge with a network of telescopes will enable us detecting about ten Hot Jupiter with this method. Finally we show that the observation of the microlensing event in infra-re...

  11. A Search for Magnesium in Europa's Atmosphere

    CERN Document Server

    Horst, Sarah M

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  12. Global Geologic Map of Europa

    Science.gov (United States)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  13. Hot Jupiters and cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva; Mustill, Alexander J. [Department of Theoretical Physics, Universidad Autónoma de Madrid, Módulo 8, 28049 Madrid (Spain); Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Siess, Lionel, E-mail: eva.villaver@uam.es [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium)

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  14. HUBBLE PROVIDES COMPLETE VIEW OF JUPITER'S AURORAS

    Science.gov (United States)

    2002-01-01

    . Scientists are comparing the Hubble telescope images with measurements taken by NASA's Galileo spacecraft of Jupiter's magnetic field and co-rotating charged particles. They believe the data will help them understand the production of Jupiter's auroras. Both auroras clearly show vapor trails of light left by Io. These vapor trails are the white, comet-shaped streaks just outside both auroral ovals. These streaks are not part of the auroral ovals. They are caused when an invisible electrical current of charged particles (equal to about 1 million amperes), ejected from Io, flow along Jupiter's magnetic field lines to the planets north and south magnetic poles. This enormous current produces a bright but localized aurora where it enters Jupiter's atmosphere at both magnetic poles. The brightest part of both emissions (on the left in both images) pinpoints where Io's magnetic field lines leave its footprint on the planet. The trail of light following both emissions extends to the right all the way to Jupiter's edge and represents the most sensitive detection of ultraviolet emissions from Jupiter to date. These emissions are related to magnetically trapped ions and electrons that are carried by Jupiter's magnetic field along Io's orbital path, and some of these charged particles continue to be driven down into Jupiter's atmosphere for several hours after Io has passed by. The images were taken Sept. 20, 1997. The artificial colors used here have been constructed by combining images taken in two different ultraviolet band passes, with one ultraviolet color presented as blue and the other as red. In this color representation, the planet's reflected sunlight appears brown, while the auroral emissions appear white or shades of blue or red. Credits: John Clarke (University of Michigan), and NASA Co-investigators: Joe Ajello, Kent Tobiska, and John Trauger (NASA's Jet Propulsion Laboratory) Gilda Ballester (University of Michigan) Lotfi Ben jaffel (IAP Paris) Jack Connerney (NASA

  15. Jupiter's Big Bang.

    Science.gov (United States)

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  16. Radiation belts of jupiter.

    Science.gov (United States)

    Stansberry, K G; White, R S

    1973-12-07

    Predictions of Jupiter's electron and proton radiation belts are based mainly on decimeter observations of 1966 and 1968. Extensive calculations modeling radial diffusion of particles inward from the solar wind and electron synchrotron radiation are used to relate the predictions and observations.

  17. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  18. Early Results from the Juno Mission at Jupiter

    Science.gov (United States)

    Bolton, Scott; Juno Science Team

    2016-10-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrived at Jupiter July 4, 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Early results from the mission will be presented as well as an overview of planned observations.

  19. 2D-model of oxygen emissions lines for Europa

    Science.gov (United States)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  20. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    Finarelli, Margaret G.

    2004-04-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  1. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    2004-01-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  2. Origin of Domes on Europa: The Role of Thermally Induced Compositional Buoyancy,

    Science.gov (United States)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    The surface of Jupiter's moon Europa is peppered by topographic domes, interpreted as sites of intrusion and extrusion. Diapirism is consistent with dome morphology, but thermal buoyancy alone cannot produce sufficient driving pressures to create the observed dome elevations. Instead, diapirs may initiate by thermal convection that induces compositional segregation. Exclusion of impurities from warm upwellings allows sufficient buoyancy for icy plumes to create the observed surface topography, provided the ice shell has a small effective elastic thickness (0.2 to 0.5 km) and contains low-eutectic point impurities at the few percent level. This model suggests that the ice shell may be depleted in impurities over time.

  3. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  4. Simon Marius vs. Galileo: Who First Saw Moons of Jupiter?

    Science.gov (United States)

    Pasachoff, Jay M.; Van Helden, Albert

    2016-10-01

    In his almanac for 1612 and book Mundus Iovalis of 1614, Simon Marius in Germany reported his discovery of moons around Jupiter, which he started writing down in late 1609 in the Julian calendar, which translated to 8 January 1610 in the Gregorian calendar in use by Galileo in Italy. Is Marius to be believed? Galileo certainly did not. But a Dutch jury of experts about three hundred years later reported that they validated the claim that Marius independently discovered the moons of Jupiter one day after Galileo first both saw and wrote down his discovery! There is no doubt that the names Io, Europa, Ganymede, and Callisto came from Marius (to whom they were suggested by Kepler). See JMP's Journal for the History of Astronomy article, 46(2), 218-234 (2015).Marius wrote that he had been observing the moons around Jupiter since November 1609 (Julian), using a neighboring nobleman's telescope, which would mean that he actually saw the Jupiter satellites first (though publish or perish). Whether this feat was technically possible comes down to discussions of the capabilities of telescopes in the early 17th century.The quadricentennial of Marius's book was celebrated in Nuremberg with a symposium that is now in press in German with an English translation expected. One of us (AVH) has recently prepared a complete English translation of Marius's book, superseding the partial translation made 100 years ago. There is no evidence that, whether he saw what we now call the Galilean satellites first or not, Marius appreciated their cosmological significance the way that Galileo soon did. And Marius was certainly the first to publish tables of the moons of Jupiter.We thank the Chapin Library of Williams College and the Huntington Library for assistance with first editions of Marius's 1614 book, and we thank Pierre Leich of the Simon Marius Gesellschaft for his consultations.

  5. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Science.gov (United States)

    Almenara, J. M.; Damiani, C.; Bouchy, F.; Havel, M.; Bruno, G.; Hébrard, G.; Diaz, R. F.; Deleuil, M.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Montagnier, G.; Santerne, A.

    2015-03-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86 ± 0.35 MJup and a radius of 1.13 +0.26-0.18 RJup, and it orbits a G0, metallic ([ Fe/H ] = 0.35 ± 0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq = 1000 ± 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82 ± 0.52 MJup and a radius of 1.45 ± 0.16 RJup, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84 ± 0.15 MJup and requires less extra-dissipation to explain its uncommonly large radius of 1.99 ± 0.18 RJup. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46 ± 0.17 M⊙ and 1.54 ± 0.09 M⊙, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system. Based on observations made with SOPHIE on the 1.93-m telescope at the Observatoire de Haute-Provence (CNRS), France.Figures 11-14 are available in electronic form at http://www.aanda.org

  6. Tidal Dissipation and Obliquity Evolution in Hot Jupiter Systems

    CERN Document Server

    Valsecchi, Francesca

    2014-01-01

    Two formation scenarios have been proposed to explain the tight orbits of hot Jupiters. These giant planets could be formed in low-obliquity orbits via disk migration or in high-obliquity orbits via high-eccentricity migration, where gravitational interactions with a companion are at play, together with tidal dissipation. Here we target the observed misaligned hot Jupiter systems to investigate whether their current properties are consistent with high-eccentricity migration. Specifically, we study whether tidal dissipation in the star can be responsible for the observed distribution of misalignments and orbital separations. Improving on previous studies, we use detailed models for the stellar component, thus accounting for how convection (and thus tidal dissipation) depends on the host star properties. We find that the currently observed degree of misalignment increases as the amount of surface convection in the host star decreases. This trend supports the hypothesis that tides are the mechanism shaping the o...

  7. Where is the main source of Jupiter family comets situated?

    CERN Document Server

    Kazantsev, A M

    2012-01-01

    An attempt to determine spatial location of the main source of short-period comet nuclei was made. There were carried out numerical calculations for orbit evolution of Jupiter family comets, comets with middle-period orbits and bodies of Centaur group. On the basis of the calculations it was shown, that orbital evolution of the solar system small bodies is mainly going in the direction of the semi-major axes increase. It belongs to the bodies which can undergo approaches the planets, and orbital evolution of which is mainly going due to the gravitational forces. Such result is confirmed by qualitative analysis of changes of small body semi-major axes under approaches the planets. The conclusion was drawn that the main source of nuclei of Jupiter family comets is apparently situated at distances from the Sun not more than 6 AU.

  8. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    CERN Document Server

    Lithwick, Yoram

    2013-01-01

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit, and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. But in the case of the hot Jupiter, the innermost planet was Jupiter- (rather than Mercury-) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present new results comparing the inclinations of hot Jupiters thus produced with observations.

  9. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  10. The Photoeccentric Effect and Proto-Hot-Jupiters I. Measuring photometric eccentricities of individual transiting planets

    CERN Document Server

    Dawson, Rebekah I

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the origins and orbital evolution of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the "cold" Jupiters beyond the ice line to hot Jupiters at a fraction of an AU, where they are unlikely to have formed in situ. To date, all eccentricities of individual planets come from radial velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial velocity follow-up of most. Here we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations --- the "photoeccentric effect" --- even with long-cadence Kepler photometry and loosely-constrained stellar parameters. A Markov Chain Monte Carlo exploration of para...

  11. Jupiter and Super-Earth embedded in a gaseous disc

    CERN Document Server

    Podlewska, E

    2007-01-01

    In this paper we investigate the evolution of a pair of interacting planets - a Jupiter mass planet and a Super-Earth with the 5.5 Earth masses - orbiting a Solar type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet-disc interaction, leading to the Super-Earth capture in first order mean motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relatively to the Jupiter has been studied numerically by means of full 2D hydrodynamical simulations. Our main motivation is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It has been found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean motion resonances and the stability of such configurations depends on the initial planet positions and eccentricity evolution. If the initial separation of planet orbits is larger or close to that required for t...

  12. Small Inner Companions of Warm Jupiters: Lifetimes and Legacies

    CERN Document Server

    Van Laerhoven, Christa

    2014-01-01

    Although warm jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exc...

  13. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley (United States)

    2015-10-20

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.

  14. Polarized Light from Jupiter

    Science.gov (United States)

    2001-01-01

    These images taken through the wide angle camera near closest approach in the deep near-infrared methane band, combined with filters which sense electromagnetic radiation of orthogonal polarization, show that the light from the poles is polarized. That is, the poles appear bright in one image, and dark in the other. Polarized light is most readily scattered by aerosols. These images indicate that the aerosol particles at Jupiter's poles are small and likely consist of aggregates of even smaller particles, whereas the particles at the equator and covering the Great Red Spot are larger. Images like these will allow scientists to ascertain the distribution, size and shape of aerosols, and consequently, the distribution of heat, in Jupiter's atmosphere.

  15. First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere

    Science.gov (United States)

    Connerney, Jack; Oliversen, Ronald; Espley, Jared; Kotsiaros, Stavros; Joergensen, John; Joergensen, Peter; Merano, Jose; Denver, Troelz; Benn, Mathias; Bloxham, Jeremy; Bolton, Scott; Levin, Steve

    2017-04-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the opportunity to sample the Jovian environment close up (to 1.06 Jovian radii, Rj) and in polar orbit extending to the outer reaches of the Jovian magnetosphere. Jupiter's gravity and magnetic fields will be globally mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, as well as the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. The first few periapsis passes available to date revealed an extraordinary spatial variation of the magnetic field close to the planet's surface, suggesting that Juno may be sampling the field closer to the dynamo region than widely anticipated, i.e., portending a dynamo surface extending to relatively large radial distance ( 0.9Rj?). We present the first observations of Jupiter's magnetic field obtained in close proximity to the planet, and speculate on what wonders await as more longitudes are drawn across the global map (32 polar orbits separated by designed to acquire.

  16. Voyager picture of Jupiter

    Science.gov (United States)

    1998-01-01

    NASA's Voyager 1 took this picture of the planet Jupiter on Saturday, Jan. 6, the first in its three-month-long, close-up investigation of the largest planet. The spacecraft, flying toward a March 5 closest approach, was 35.8 million miles (57.6 million kilometers) from Jupiter and 371.7 million miles (598.2 million kilometers) from Earth when the picture was taken. As the Voyager cameras begin their meteorological surveillance of Jupiter, they reveal a dynamic atmosphere with more convective structure than had previously been thought. While the smallest atmospheric features seen in this picture are still as large as 600 miles (1,000 kilometers) across, Voyager will be able to detect individual storm systems as small as 3 miles (5 kilometers) at closest approach. The Great Red Spot can be seen near the limb at the far right. Most of the other features are too small to be seen in terrestrial telescopes. This picture was transmitted to the Jet Propulsion Laboratory through the Deep Space Network's tracking station at Madrid, Spain. The Voyager Project is managed for NASA by Caltech's Jet Propulsion Laboratory.

  17. Himalia, a Small Moon of Jupiter

    Science.gov (United States)

    2001-01-01

    NASA's Cassini spacecraft captured images of Himalia, the brightest of Jupiter's outer moons, on Dec. 19, 2000, from a distance of 4.4 million kilometers (2.7 million miles).This near-infrared image, with a resolution of about 27 kilometers (17 miles) per pixel, indicates that the side of Himalia facing the spacecraft is roughly 160 kilometers (100 miles) in the up-down direction. Himalia probably has a non-spherical shape. Scientists believe it is a body captured into orbit around Jupiter, most likely an irregularly shaped asteroid.In the main frame, an arrow indicates Himalia. North is up. The inset shows the little moon magnified by a factor of 10, plus a graphic indicating Himalia's size and the direction of lighting (with sunlight coming from the left). Cassini's pictures of Himalia were taken during a brief period when Cassini's attitude was stabilized by thrusters instead of by a steadier reaction-wheel system. No spacecraft or telescope had previously shown any of Jupiter's outer moons as more than a star-like single dot.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  18. Voyager 2 Jupiter Eruption Movie

    Science.gov (United States)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  19. A Day on Jupiter (Animation)

    Science.gov (United States)

    2007-01-01

    This 'movie' strings 11 images of Jupiter captured by the New Horizons Long Range Reconnaissance Imager (LORRI) on January 9, 2007, when the spacecraft was about 80 million kilometers (49.6 million miles) from the giant planet. The sequence covers a full 10-hour rotation of Jupiter, during which the moons Ganymede and Io -- as well as the shadows they cast on Jupiter -- move across the camera's field of view.

  20. Status of the Ganymede Laser Altimeter (GALA) for ESA's Jupiter Icy Moons Explorer (JUICE)

    Science.gov (United States)

    Hussmann, Hauke; Luedicke, Fabian

    2017-04-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. After several flyby's (Ganymede, Europa, Callisto) it is scheduled that the JUICE orbiter will enter first into an elliptical orbit (200 km x 10.000 km) for around 150 days and then into a circular orbit (500 km) around Ganymede for 130 days. Accordingly to the different orbits and trajectories, distances to the moons respectively, the spot size of the GALA laser varies between 21 m and 140 m. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz (nominal), respectively. For targeted observations and flybys the frequency can be switched to 50 Hz. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter telescope. The returning laser pulse is refocused onto

  1. Radio Science Concepts for Exploring the Interior Structures of Jupiter's Icy Moons

    Science.gov (United States)

    Asmar, S. W.; Anderson, J. D.; Castillo, J. C.; Folkner, W. M.; Konopliv, A. S.; Marouf, E. A.; Rappaport, N. J.; Schubert, G.; Spilker, T. R.; Tyler, G. L.; Watkins, M. M.; Yoder, C. F.

    2003-12-01

    A set of concepts are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Multi-frequency Doppler tracking and ranging of the orbiter can be used to measure the gravity harmonic coefficients of the satellites as well as their secular and dynamic potential Love numbers. These measurements will confirm the presence of a subsurface ocean and constrain the oceanic density. Under the assumption of hydrostatic equilibrium, the core's size and density will be determined. The potential tidal phase lag, a function of the viscosity profile, will be determined or limited for each body. Altimetry data produce local topography and topographic harmonic coefficients as well as the topographic Love number. Combining the gravity and topography data will determine the mean as well as the spatial variations of the crustal thickness and produce a model of the cryospheric structure. This knowledge leads to understanding the mechanisms of topographic support or compensation and any large-scale geomorphological features related to the interior. Accelerometers measure the non-gravitational forces acting on the spacecraft, a typical systematic noise type in the gravity data and, thus, improve the accuracy of the measurement. Gradiometers improve the resolution of the data by providing higher spatial resolution in the gravity field and its correlation with the topography. The resulting information will be crucial to establishing the link between surface and internal dynamics leading to identifying the terrain with easiest ocean access and to understanding the origin of the chaotic terrains and ridges. Time observations of surface features enable an examination of the difference between the obliquity and inclination which, when combined with the gravity data, provide a measurement of the moments of inertia. High stability coherent

  2. Recent Simulations of the Late Stages Growth of Jupiter

    Science.gov (United States)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  3. Emplacement of Volcanic Domes on Venus and Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  4. Europa's Ocean Can Be Sustained By Hydrothermal Plumes and Salt Transport

    Science.gov (United States)

    Travis, B. J.; Palguta, J.; Schubert, G.

    2011-12-01

    Data returned by the Galileo spacecraft provide considerable evidence that Jupiter's satellite Europa possesses a liquid ocean beneath its solid, icy outer shell. However, it is not known if that ocean has existed throughout Europa's history. Previous thermal evolution models of Europa suggest that without active tidal dissipative heating (TDH), a global liquid ocean layer would eventually freeze long before the present. However, previous models have not coupled all the various thermal and flow processes that may be operating in Europa. Recently, we have developed a whole-moon numerical model for Europa. This model couples radiogenic heating, thermal diffusion, hydrothermal convection and salt transport in mantle pore water, hydrothermal flow and transport in an ocean layer, parameterized convection in the ice shell, and change of phase between ice and liquid water. Application of our model suggests that, even without TDH active until recently, hydrothermal convection in a salty, rocky mantle can sustain flow in an ocean layer throughout Europa's post-differentiation history. The model thermal history covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no TDH (following Yoder, Nature 279: 767-770, 1979), and (iii) a final period covering the last 0.5 Gyr until present day, during which TDH is active. In our model, hydrothermal plumes develop throughout phases II and III, transporting heat and salt from Europa's silicate mantle to its ocean. The outer ice shell thickens over time, growing to about 75 km in depth. When TDH becomes active, the ice shell melts quickly to a thickness of about 10 km, and then stabilizes at roughly 20 to 25 km thickness, leaving an ocean 80 km deep. Parameterized convection in the ice shell is spatially non-uniform and changes over time, reflecting its ties to the evolving deeper ocean-mantle dynamics. A

  5. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  6. Zwischenbilanz und Verbesserungspotenziale der Europa-2020-Strategie

    DEFF Research Database (Denmark)

    Leschke, Janine

    2016-01-01

    Während die Instrumente der Economic Governance während der Krise erheblich gestärkt wurden, sind im Bereich der sozialen Dimension Europas keine Fortschritte zu verzeichnen. Die in erster Linie auf strikter überwachte und zentral gesteuerte Budgetpolitiken setzenden Verfahren im Europäischen...... Semester haben die ohnehin bestehende Nachrangigkeit sozialer Ziele in der EU weiterhin gefestigt. Dieser Beitrag zieht eine Zwischenbilanz der Europa-2020-Strategie. Der Fokus liegt auf dem Widerspruch zwischen den sozial- und beschäftigungspolitischen Zielen und den gleichzeitigen Vorgaben zur...... werden Verbesserungspotenziale der Europa-2020-Strategie diskutiert....

  7. Examining the interaction of Europa with the Jovian magnetosphere using eruptive and multifluid plasma dynamic simulations

    Science.gov (United States)

    Paty, C. S.; Dufek, J.; Payan, A. P.

    2015-12-01

    Jupiter's icy moon Europa provides a unique laboratory for understanding the physics of moon-magnetosphere interactions. Europa possesses a conductive subsurface ocean, the interaction of which with the locally varying Jovian magnetic field is expressed by the observed inductive response. This icy moon also boasts a dynamic exosphere as well as eruptive plumes, which interact with the Jovian plasma as expressed via ultraviolet aurora. We investigate a broad range of parameter space related to the interaction of this icy moon with the rapidly rotating magnetosphere of Jupiter, systematically working through and quantifying various physical effects using a multifluid plasma dynamic modeling framework. Aside from induction and interactions with the exosphere, we will also present preliminary result from incorporating a neutral plume generated by an eruptive simulation. We run conduit simulations to get at neutral gas and particle injection velocities, which are in turn used as a source for the plasma dynamic simulations. We then investigate the distribution of neutrals, ions, and charged grains as a function of altitude.

  8. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  9. The Jupiter ONERA Electron (JOE) and Jupiter ONERA Proton (JOP) specification models

    Science.gov (United States)

    Bourdarie, , S.; Sicard-Piet, A.

    2008-09-01

    The use of recent improvement in the understanding of the Jovian radiation belt structure has allowed to develop a more accurate engineering model of the Jovian electron and proton radiation belts. The basic idea was to combine the results of the Salammbô code when available (for proton and electron species) with the Divine and Garret model 1983 and/or with GIRE. The advantage of such an approach was that the resulting model is global in term of spatial and energy coverage, is optimised inside Europa orbit (the Divine and Garret model is not accurate inside Io orbit due to poor in-situ data there - note that inside Io is the region where ionizing radiation fluxes are maximum) and take advantage of the two models. The resulting JOE-JOP models will be presented, pro and cons will be listed and commented. Finally future plans to upgrade these models will be given.

  10. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  11. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  12. Processing tools refinement for the JIRAM arrival to Jupiter

    Science.gov (United States)

    Moriconi, Maria L.; Noschese, R.; Adriani, A.

    2017-05-01

    The JUNO mission, launched on August 2011 with the goal of investigating the origin and evolution of Jupiter, reached Jupiter in July 2016. The months preceding the JUNO orbit insertion have been crucial for all the instrument teams to check the status and working abilities of the respective experiments. JIRAM (Jupiter Infrared Auroral Mapper), with its imager and slit spectrometer operating over the 2-5μm spectral range will attempt to reveal the deep atmospheric composition -3 to 7 bars- in hot spots, to analyze the infrared auroral emissions of the H3 + molecules ionized by the Jovian magnetosphere currents and to detect the morphology and vertical structure of the clouds. Many different processing tools are in preparation to exploit the incoming JIRAM data. Here some results pertaining to the image quality optimization and the visualizations that can be obtained from the spectrometer data management are reported.

  13. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Science.gov (United States)

    Batygin, Konstantin; Bodenheimer, Peter H.; Laughlin, Gregory P.

    2016-10-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ˜10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we offer the contrasting view that a substantial fraction of the hot Jupiter population formed in situ via the core-accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by super-Earth-type planets, comprising 10-20 Earth masses of refractory material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ˜100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems’ lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  14. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    CERN Document Server

    Batygin, Konstantin; Laughlin, Gregory P

    2015-01-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring p...

  15. Probing for Evidence of Plumes on Europa with HST/STIS

    Science.gov (United States)

    Sparks, W. B.; Hand, K. P.; McGrath, M. A.; Bergeron, E.; Cracraft, M.; Deustua, S. E.

    2016-10-01

    Roth et al. (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa: spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb. Out of 10 observations, we found 3 in which plume activity could be implicated. Two observations showed statistically significant features at latitudes similar to Roth et al., and the third at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al. feature; however, the apparent activity appears more frequently in our data.

  16. Probing for Evidence of Plumes on Europa with HST/STIS

    CERN Document Server

    Sparks, W B; McGrath, M A; Bergeron, E; Cracraft, M; Deustua, S E

    2016-01-01

    Roth et al (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa - spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope (HST) direct images of Europa in the far ultraviolet (FUV) as it transited the smooth face of Jupiter, in order to measure absorption from gas or aerosols beyond the Europa limb. Out of ten observations we found three in which plume activity could be implicated. Two show statistically significant features at latitudes similar to Roth et al, and the third, at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al feature, however the apparent activity appears m...

  17. On the Clustering of Europa's Small Craters

    Science.gov (United States)

    Bierhaus, E. B.; Chapman, C. R.; Merline, W. J.

    2001-01-01

    We analyze the spatial distribution of Europa's small craters and find that many are too tightly clustered to result from random, primary impacts. Additional information is contained in the original extended abstract.

  18. Europa en de Terugkeer van de Geschiedenis

    NARCIS (Netherlands)

    Segers, Mathieu

    2016-01-01

    Segers onderzoekt het getroebleerde Europa van vandaag. Hij doet dit aan de vooravond van het 'thrillerjaar' 2017, waarin er verkiezingen zullen zijn in Nederland, Frankrijk en Duitsland, en een eerst besluit over de Brexit genomen zal worden.

  19. MISE: A Search for Organics on Europa

    Science.gov (United States)

    Whalen, Kelly; Lunine, Jonathan I.; Blaney, Diana L.

    2017-01-01

    NASA’s planned Europa Flyby Mission will try to assess the habitability of Jupiter’s moon, Europa. One of the selected instruments on the mission is the Mapping Imaging Spectrometer for Europa (MISE). MISE is a near-infrared imaging spectrometer that takes spectra in the 0.8-5 micron range, and it will be capable of mapping Europa’s surface chemical composition. A primary goal of the MISE instrument is to determine if Europa is capable of supporting life by searching for amino acid signatures in the infrared spectra. We present spectra of pure amino acid at MISE’s resolution, and we analyze the effect of chirality on these spectra. Lastly, we present model spectra for diluted/mixed amino acids to simulate more realistic concentrations. We show MISE can distinguish between different types of amino acids, such as isoleucine, leucine, and their enantiomers.

  20. MALDI for Europa Planetary Science and Exobiology

    Science.gov (United States)

    Wdowiak, T. J.; Agresti, D. G.; Clemett, S. J.

    2000-01-01

    TOF MS for Europa landed science can identify small molecules of the cryosphere and complex biomolecules upwelling from a subsurface water ocean. A matrix-assisted laser-desorption ionization (MALDI) testbed for cryo-ice mixtures is being developed.

  1. Three spacecraft observe Jupiter's glowing polar regions

    Science.gov (United States)

    1996-09-01

    again in 1994, when the fragments of Comet Shoemaker-Levy 9 hit Jupiter in a spectacular series of events. The explosive impacts appeared to repress the auroral activity at the time, suggesting a remarkable effect of comet dust on the charged particles creating the aurorae in Jupiter's atmosphere. The new results on variability due to other causes will help astronomers to assess that effect more confidently. They will also compare the 1994 and 1996 IUE data to see how the atmosphere of Jupiter has recovered from the impacts. In Jupiter's vicinity IUE registered ultraviolet emissions from oxygen and sulphur atoms littering the orbit of Io, and probably released by volcanic emissions from that peculiar moon. This Io Torus is highly variable too. The record of its ultraviolet emissions, both within the 1996 campaign and in comparison with earlier observations, will help the astronomers to understand the reasons for the variations. A remarkable history The close scrutiny of Jupiter and its moons was the final astronomical task of IUE, before the termination of space operations on 30 September 1996. Over the past few months the IUE science team and collaborating astronomers in Europe have fulfilled a wish-list of important observations precluded by the intense demands on their ultraviolet space observatory throughout its life of nearly nineteen years. The observations in the final science programme confirmed and extended IUE's record, as the most reliable and productive astronomical satellite that ever flew. In March of this year the spacecraft was ailing, with only one of its six gyros still functioning, which severely limited the scope of its original mission. By skillful control and spacecraft engineering it went on harvesting new data, including prolonged observations of Comet Hyakutake. The concluding campaigns that began in April targeted the gamma-ray emitting "blazar" Markarian 421, various other active galaxies, and stellar winds, as well as Jupiter. "I am sad but

  2. Jovian plasma torus interaction with Europa. Plasma wake structure and effect of inductive magnetic field: 3D Hybrid kinetic simulation

    CERN Document Server

    Lipatov, A S; Paterson, W R; Sittler, E C; Hartle, R E; Simpson, D G

    2012-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect a to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream backgr...

  3. Atmospheric Circulation on Hot Jupiters: Modeling and Observable Signatures

    Science.gov (United States)

    Rauscher, Emily Christine

    2010-12-01

    Hot Jupiters are unlike any planets in our Solar System and yet one of the most common types of extrasolar planet discovered. These gas giants orbit their parent stars with periods of a few days. Expected to be tidally locked into synchronous rotation, hot Jupiters experience intense, asymmetric heating from stellar irradiation, such that day-night temperature contrasts could reach hundreds of degrees Kelvin. This unique state of radiative forcing, as well as the slow rotation rates of these planets, places hot Jupiters within a new regime of atmospheric circulation. Hot Jupiters have also been the first type of extrasolar planet with direct detections of their atmospheres, through measurements of emitted, reflected, and transmitted light. This thesis investigates observational methods to distinguish between various atmospheric models, observational signatures of potential atmospheric variability, and presents a three dimensional model with which to study hot Jupiter circulation patterns. First, we find that eclipse mapping is a technique that can be used to image the day sides of these planets and although this is beyond the ability of current instruments, it will be achievable with future missions, such as the James Webb Space Telescope. Second, we consider the signatures of large-scale atmospheric variability in measurements of secondary eclipses and thermal orbital phase curves. For various models we predict the amount of variation in eclipse depth, and the amplitudes and detailed shapes of phase curves. Lastly, we develop a three-dimensional model of hot Jupiter atmospheric dynamics with simplified forcing and adopt a set-up nearly identical to work by another group to facilitate code inter-comparison. Our results are broadly consistent with theirs, with a transonic flow and the hottest region of the atmosphere advected eastward of the substellar point. However, we note important differences and identify areas of concern for future modeling efforts.

  4. Hydrogen peroxide on the surface of Europa

    Science.gov (United States)

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  5. Hartvig Frisch og "Pest over Europa"

    DEFF Research Database (Denmark)

    Fledelius, Karsten

    2013-01-01

    Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?......Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?...

  6. Tilting Jupiter (a bit) and Saturn (a lot) During Planetary Migration

    CERN Document Server

    Vokrouhlicky, David

    2015-01-01

    We study the effects of planetary late migration on the gas giants obliquities. We consider the planetary instability models from Nesvorny & Morbidelli (2012), in which the obliquities of Jupiter and Saturn can be excited when the spin-orbit resonances occur. The most notable resonances occur when the $s_7$ and $s_8$ frequencies, changing as a result of planetary migration, become commensurate with the precession frequencies of Jupiter's and Saturn's spin vectors. We show that Jupiter may have obtained its present obliquity by crossing of the $s_8$ resonance. This would set strict constrains on the character of migration during the early stage. Additional effects on Jupiter's obliquity are expected during the last gasp of migration when the $s_7$ resonance was approached. The magnitude of these effects depends on the precise value of the Jupiter's precession constant. Saturn's large obliquity was likely excited by capture into the $s_8$ resonance. This probably happened during the late stage of planetary ...

  7. The Manannan Impact Crater on Europa: Determination of Surface Compositions of Key Stratigraphic Units

    Science.gov (United States)

    Dalton, J. B.; Prockter, L. M.; Shirley, J. H.; Phillips, C. B.; Kamp, L.

    2011-12-01

    Mannanan is a 22-km-diameter impact crater located at 3 N, 240 W on Europa's orbital trailing side. Detailed high resolution geologic mapping by Moore et al. (2001) revealed the likely presence of extensive deposits of impact melt materials largely filling the crater floor, together with surrounding continuous ejecta deposits that may have been excavated from Europa's interior. Terrains surrounding Mannanàn include some of Europa's visibly darkest surfaces, with extensive areas of chaos, traversed by the prominent structure of Belus Linea. The Mannannàn impact crater and its surrounding areas were imaged during the C3 orbital encounter of the Galileo Mission by the orbiter's Near-Infrared Mapping Spectrometer (NIMS). This NIMS observation (C3ENLINEA01A) has not been subjected to a detailed investigation until now, possibly due to the presence of moderate levels of radiation noise. A "despiked" version of this observation has been produced using methods described in Shirley et al. (2010). In addition, new geologic mapping precisely registered to the NIMS coverage of Manannàn and its surroundings allows the extraction of high-quality near-infrared spectra that are specific to individual geologic units and morphological features. We will present linear mixture modeling solutions for the compositions of several of Manannàn's key stratigraphic units, including the crater floor deposits and the adjacent chaos and linea materials. We will interpret these results in the context of ongoing investigations of the interplay of exogenic and endogenic influences on the surface composition of Europa. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, Johns Hopkins University-Applied Physics Laboratory, and the SETI Institute under a contract with NASA. Support by NASA's Outer Planets Research program is gratefully acknowledged. Moore, J. M. and 25 others 2001. Impact Features on Europa: Results of the Galileo Europa Mission (GEM

  8. El puente Europa en Innsbruck

    Directory of Open Access Journals (Sweden)

    Schmidt, W.

    1964-10-01

    Full Text Available To link up the Central Europe and the Southern Europe road system across the Alps, a road bridge has been recently built, which runs 190 m above the bottom of the valley of the Sill river. This structure has been named the Europa Bridge. The Brenner Pass is very suitable for winter traffic by road, in spite of its height of 1370 m above sea level. The bridge deck consists of a metallic box girder. The total length of 657 ms has been divided into six spans. Three of them are 91 m long, two are 108 m long, and the central span is 198 m long. The main features of this bridge are its supports, which rise to a height far above anything so far previously attempted. The highest pile is 160 m long, from the ground to the deck. The piles are hollow inside, and have been internally divided by means of two partitions, which extend throughout the total height. Horizontal thrust is allowed for by a series of horizontal diaphragms, spaced every 20 m. Due to the accumulation, on the surface of the valley, of thick layers of surface soil carried down by the river, the foundations have had to be established at a great depth. The piles have been built with the aid of sliding formwork. The design and erection of the bridge has been done by the Vereinigte Osterreichische Eisen un Stahlwerke, AG., and the work was directed by Ing. Dipl. Josef Gruber.Para unir la red viaria de Europa Central con el Sur del Continente a través del Paso del Brenner, en los Alpes austro-italianos, se ha construido recientemente un puente para carretera—con una altura de 190 m sobre el fondo del valle del río Sill—denominado Puente de Europa. El paso trasalpino del Brenner presenta condiciones muy favorables para la circulación por carretera en invierno, a pesar de sus 1.370 m de altitud. El tablero está constituido por una viga, cajón metálica. Los 657 m de longitud total del puente propiamente dicho se han subdividido en seis tramos: tres de 81, dos de 108 y uno central de

  9. El proceso constitucional en Europa

    Directory of Open Access Journals (Sweden)

    Peter Häberle

    2014-01-01

    Full Text Available PRIMERA PARTE: EL PROCESO DE CONSTITUCIONALIZACIÓN EN EL ESTADO NACIONAL CLÁSICO (PROCEDIMIENTOS Y CONTENIDOS: DESARROLLOS CONTEXTUALES 1. El proceso constitucional clásico 2. Procedimientos de elaboración constitucional -pluralistas- más recientes: el ejemplo español (1978 Incursión A: La confrovertida vía hacia la unidad alemana: adhesión de la aún rda y/o constitución común alemana 3. Contenidos y funciones de una constitución de estado constitucional Incursión B: "Ferecho constitucional nacional europeo": el déficit español SEGUNDA PARTE: PROCESO DE ELABORACIÓN CONSTITUCIONAL NACIONAL EN EL CONTEXTO DE EUROPA, EN SENTIDO AMPLIO Y RESTRINGIDO: LA APERTURA DEL ESTADO CONSTITUCIONAL, EUROPEIZACIÓN E INTERNACIONALIZACIÓN. PROCEDIMIENTOS Y CONTENIDOS 1. La transformación del estado constitucional nacional: apertura a la cooperación regional (europea y a la cooperación mundial 2. Irradiaciones desde el plano de la ue 3. Consecuencias: conformación previa de estructuras constitucionales en el plano común europeo TERCERA PARTE: EL PROCESO CONSTITUCIONAL DE LA UE: DESDE LOS TRATADOS DE ROMA HASTA LA ACTUALIDAD (PROCEDIMIENTOS Y CONTENIDOS 1. La "vieja" CEE o bien UE/CE- procedimientos y calificación jurídica 2. Los "nuevos" procedimientos UE/CE y su cualificación jurídica: el modelo de la convención 3. Contenidos constitucionales en el plano de la UE 3.1 La carta de los derechos fundamentales de la UE (2000 como valiosa constitución parcial; su influjo e irradiación político-constitucional 3.2 17 proyectos en el banco de pruebas A. "Exhibición" y "competición" de los más jóvenes proyectos constitucionales -mi propio enfoque B. Aspectos comunes de los proyectos C. En particular: el proyecto constitucional de D.L. Garrido.(Sept/Oct. de 2002 3.3 El proyecto constitucional "definitivo" de la UE (2003: de momento, última etapa textual Incursión C: Un enfoque propio: el "jurista europeo" en el taller constitucional

  10. Europa: Characterization and interpretation of global spectral surface units

    Science.gov (United States)

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  11. Northern Belt of Jupiter

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] A four-panel frame shows a section of Jupiter's north equatorial belt viewed by NASA's Cassini spacecraft at four different wavelengths, and a separate reference frame shows the location of the belt on the planet.A fascinating aspect of the images in the four-panel frame is the small bright spot in the center of each. The images come from different layers of the atmosphere, so the spot appears to be a storm penetrating upward through several layers. This may in fact be a 'monster' thunderstorm, penetrating all the way into the stratosphere, as do some summer thunderstorms in the midwestern United States. These images were taken on Nov. 27, 2000, at a resolution of 192 kilometers (119 miles) per pixel. They have been contrast-enhanced to highlight features in the atmosphere.The top panel of the four-panel frame is an image taken in a near-infrared wavelength at which the gases in Jupiter's atmosphere are relatively non-absorbing. Sunlight can penetrate deeply into the atmosphere at this wavelength and be reflected back out, providing a view of an underlying region of the atmosphere, the lower troposphere.The second panel was taken in the blue portion of wavelengths detected by the human eye. At these wavelengths, gases in the atmosphere scatter a modest amount of sunlight, so the clouds we see tend to be at somewhat higher altitudes than in the top panel.The third panel shows near-infrared reflected sunlight at a wavelength where the gas methane, an important constituent of Jupiter's atmosphere, absorbs strongly. Dark places are regions without high-level clouds and consequently large amounts of methane accessible to sunlight. Bright regions are locations with high clouds in the upper troposphere shielding the methane below.The bottom panel was taken in the ultraviolet. At these very short wavelengths, the clear atmosphere scatters sunlight, and hazes in the stratosphere, above the troposphere, absorb sunlight. That

  12. The 3 $\\mu$m Spectrum of Jupiter's Irregular Satellite Himalia

    CERN Document Server

    Brown, M E

    2014-01-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 $\\mu$m spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 $\\mu$m absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  13. THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Rhoden, A. R., E-mail: mbrown@caltech.edu, E-mail: Alyssa.Rhoden@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2014-10-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  14. The Photoeccentric Effect and Proto Hot Jupiters II. KOI-1474.01, an eccentric planet perturbed by an unseen companion

    CERN Document Server

    Dawson, Rebekah I; Morton, Timothy D; Crepp, Justin R; Fabrycky, Daniel C; Murray-Clay, Ruth A; Howard, Andrew W

    2012-01-01

    The exoplanets known as hot Jupiters---Jupiter-sized planets with periods less than 10 days---likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. (2012) argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto hot Jupiters that have not yet tidally circularized. HEM should also create failed hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the "photoeccentric effect"), we are distilling a collection of eccentric proto and failed hot Jupiters from the Kepler Objects of Interest (KOI). Here we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e = 0.81 +0.10/-0.07, skirting the proto hot Jupiter boundary. Combining Keplerphotometry, ground-based spectroscopy, and stellar evolutio...

  15. Radiation Chemistry of Potential Europa Plumes

    Science.gov (United States)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  16. Jovian magnetospheric weathering of Europa's nonice surface material

    Science.gov (United States)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242

  17. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Gaudi, B; Bennett, D; Udalski, A; Gould, A; Christie, G; Maoz, D; Dong, S; McCormick, J; Szymanski, M; Tristram, P; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D; Han, C; Kaspi, S; Lee, C; Mallia, F; Natusch, T; Pogge, R; Park, B; Abe, F; Bond, I; Botzler, C; Fukui, A; Hearnshaw, J; Itow, Y; Kamiya, K; Korpela, A; Kilmartin, P; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N; Sako, T; Saito, T; Sato, S; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W; Yock, P; Albrow, M; Beaulieu, J; Burgdorf, M; Cook, K; Coutures, C; Dominik, M; Dieters, S; Fouque, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2007-11-08

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the first detection of a multiple-planet system with microlensing. We identify two planets with masses of {approx} 0.71 and {approx} 0.27 times the mass of Jupiter and orbital separations of {approx} 2.3 and {approx} 4.6 astronomical units orbiting a primary of mass {approx} 0.50 solar masses. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only 6 confirmed microlensing planet detections suggests that solar system analogs may be common.

  18. Hot-Jupiter Breakfasts Realign Stars

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near

  19. K2 Warm Jupiters with the LCOGT TECH collaboration

    Science.gov (United States)

    Shporer, Avi; Bayliss, Daniel; Cochran, William D.; Colón, Knicole D.; Dragomir, Diana; Palle, Enric; Potter, Stephen; Siverd, Robert; LCOGT TECH Collaboration

    2016-06-01

    Many transiting gas giant planets on short orbital periods (so called hot Jupiters) have larger radii than theoretically expected. Although several explanations have been proposed, none have completely solved this puzzle. As the number of known transiting planets grew a correlation was identified between gas giant radius and the stellar incident flux. Still, it is not clear whether this correlation is causation. Several questions remain and answering them will characterize in more detail this observed correlation and in turn the process responsible for the inflated radii, such as: Is the lack of inflated warm Jupiters a robust feature? What is the incident flux below which there are no inflated gas giants? How low in incident flux does this correlation stretch? These questions arise since there are only a small number of transiting gas giants with low incident flux, below about 108 erg/s/cm2, corresponding to orbital periods of about 10 days and longer for a Sun-like host star. Discovering and confirming more transiting warm Jupiters is the goal of this project, undertaken by the LCOGT Transiting Exoplanet CHaracterization (TECH) team. We are using K2 as our main source of transiting warm Jupiter candidates, with a few candidates discovered in each K2 campaign. LCOGT telescopes are being used for obtaining additional ground-based transit light curves, which are critical for confirming and refining the K2 transit ephemeris as outliers during ingress or egress of the few transit events observed by K2 can bias the measured ephemeris. Further ground-based follow-up data, including spectroscopy, radial velocities, and high angular resolution imaging, are obtained by facilities directly accessible by LCOGT TECH team members. In addition, once LCOGT’s Network of Robotic Echelle Spectrographs (NRES) are deployed in the near future they will allow obtaining spectroscopy and radial velocities with LCOGT facilities. On top of studying the inflated hot Jupiter conundrum

  20. Jupiter Clouds in Depth

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nmImages from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter bright near the pole

  1. Halo orbit to science orbit captures at planetary moons

    Science.gov (United States)

    Bokelmann, Kevin A.; Russell, Ryan P.

    2017-05-01

    Ballisticly connecting halo orbits to science orbits in the circular-restricted three-body problem is investigated. Two classes of terminal science orbits are considered: low-altitude, tight orbits that are deep in the gravity well of the secondary body, and high-altitude, loose orbits that are strongly perturbed by the gravity of the primary body. General analytic expressions are developed to provide a minimum bound on impulse cost in both the circular restricted and the Hill's approximations. The equations are applied to a broad range of planetary moons, providing a mission design reference. Systematic grid search methods are developed to numerically find feasible transfers from halo orbits at Europa, confirming the analytical lower bound formulas. The two-impulse capture options in the case of Europa reveal a diverse set of potential solutions. Tight captures result in maneuver costs of 425-550 m/s while loose captures are found with costs as low as 30 m/s. The terminal orbits are verified to avoid escape or impact for at least 45 days.

  2. Fingerprints of endogenous process on Europa through linear spectral modeling of ground-based observations (ESO/VLT/SINFONI)

    Science.gov (United States)

    Ligier, Nicolas; Carter, John; Poulet, François; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian

    2016-04-01

    Jupiter's moon Europa harbors a very young surface dated, based on cratering rates, to 10-50 M.y (Zahnle et al. 1998, Pappalardo et al. 1999). This young age implies rapid surface recycling and reprocessing, partially engendered by a global salty subsurface liquid ocean that could result in tectonic activity (Schmidt et al. 2011, Kattenhorn et al. 2014) and active plumes (Roth et al. 2014). The surface of Europa should contain important clues about the composition of this sub-surface briny ocean and about the potential presence of material of exobiological interest in it, thus reinforcing Europa as a major target of interest for upcoming space missions such as the ESA L-class mission JUICE. To perform the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow mineral signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa's surface), thus permitting a global scale study. Until recently, a large majority of studies only proposed sulfate salts along with sulfuric acid hydrate and water-ice to be present on Europa's surface. However, recent works based on Europa's surface coloration in the visible wavelength range and NIR spectral analysis support the hypothesis of the predominance of chlorine salts instead of sulfate salts (Hand & Carlson 2015, Fischer et al. 2015). Our linear spectral modeling supports this new hypothesis insofar as the use of Mg-bearing chlorines improved the fits whatever the region. As expected, the distribution of sulfuric acid hydrate is correlated to the Iogenic sulfur ion implantation flux distribution (Hendrix et al

  3. Jupiter Eruptions Captured in Infrared

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  4. Elliptical instability in hot Jupiter systems

    CERN Document Server

    Cébron, David; Gal, Patrice Le; Moutou, Claire; Leconte, J; Sauret, Alban

    2013-01-01

    Several studies have already considered the influence of tides on the evolution of systems composed of a star and a close-in companion to tentatively explain different observations such as the spin-up of some stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or quasi-synchronization of the stellar spin in some extreme cases. However, the nature of the mechanism responsible for the tidal dissipation in such systems remains uncertain. In this paper, we claim that the so-called elliptical instability may play a major role in these systems, explaining some systematic features present in the observations. This hydrodynamic instability, arising in rotating flows with elliptical streamlines, is suspected to be present in both planet and star of such systems, which are elliptically deformed by tides. The presence and the influence of the elliptical instability in gaseous bodies, such as stars or hot Jupiters, are most of the time neglected. In this paper, using numeri...

  5. Thermal Processes Governing Hot-Jupiter Radii

    CERN Document Server

    Spiegel, David S

    2013-01-01

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (i) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (ii) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (iii) the degree of heat redistribution to the nightside; and (iv) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more simila...

  6. Broadband Linear Polarization of Jupiter Trojans

    CERN Document Server

    Bagnulo, S; Stinson, A; Christou, A; Borisov, G B

    2016-01-01

    Trojan asteroids orbit in the Lagrange points of the system Sun-planet-asteroid. Their dynamical stability make their physical properties important proxies for the early evolution of our solar system. To study their origin, we want to characterize the surfaces of Jupiter Trojan asteroids and check possible similarities with objects of the main belt and of the Kuiper Belt. We have obtained high-accuracy broad-band linear polarization measurements of six Jupiter Trojans of the L4 population and tried to estimate the main features of their polarimetric behaviour. We have compared the polarimetric properties of our targets among themselves, and with those of other atmosphere-less bodies of our solar system. Our sample show approximately homogeneous polarimetric behaviour, although some distinct features are found between them. In general, the polarimetric properties of Trojan asteroids are similar to those of D- and P-type main-belt asteroids. No sign of coma activity is detected in any of the observed objects. A...

  7. Ice-volcanism due to tidal stress on Europa

    Institute of Scientific and Technical Information of China (English)

    LI Li; CHEN Chuxin

    2003-01-01

    Tectonism would be driven by tidal heat on Europa, and there may be ice-volcano on the surface of active Europa. We assume that ice-volcano would spurt out due to tidal stress, and calculate the velocity and height of the spurt inscale. We also find out the approximate distribution of the active volcanoes on Europa.

  8. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    Science.gov (United States)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  9. Friends of Hot Jupiters I: A Radial Velocity Search for Massive, Long-Period Companions in Hot Jupiter Systems

    CERN Document Server

    Knutson, Heather A; Montet, Benjamin T; Kao, Melodie; Ngo, Henry; Howard, Andrew W; Crepp, Justin R; Hinkley, Sasha; Bakos, Gaspar A; Batygin, Konstantin; Johnson, John Asher; Morton, Timothy D; Muirhead, Philip S

    2013-01-01

    In this paper we search for distant massive companions to known transiting hot Jupiters that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 hot Jupiters obtained using the Keck HIRES instrument, and use these observations to search for long-term radial velocity accelerations. We find new, statistically significant accelerations in seven systems, including: HAT-P-10, HAT-P-20, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 AO imaging data to place constraints on the allowed masses and orbital periods of the companions. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the short-period hot Jupiters in these systems, making them candidates for influencing the orbital evolut...

  10. Jupiter's moon Io

    Science.gov (United States)

    1979-01-01

    This picture shows a special color reconstruction of one of the erupting volcanos on Io discovered by Voyager 1 during its encounter with Jupiter on the 4th and 5th of March. The picture was taken March 4 about 5:00 p.m. from a range of about half a million kilometers showing an eruption region on the horizon. This method of color analysis allows scientists to combine data from four pictures, taken in ultraviolet, blue, green and orange light. In this picture one can see the strong change in color of the erupting plume. The region that is brighter in ultraviolet light (blue in this image) is much more extensive than the denser, bright yellow region near the center of the eruption. Scientists will use data of this type to study the amount of gas and dust in the eruption and the size of dust particles. Preliminary analysis suggests that the bright ultraviolet part of the cloud may be due to scattered light from very fine particles (the same effect which makes smoke appear bluish).

  11. Jupiter's Hot, Mushy Moon

    Science.gov (United States)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  12. Radio observations of Jupiter-family comets

    CERN Document Server

    Crovisier, J; Bockelée-Morvan, D; Colom, P

    2008-01-01

    Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may h...

  13. Rotational Properties of Jupiter Trojan 1173 Anchises

    Science.gov (United States)

    Chatelain, Joseph; Henry, Todd; French, Linda; Trilling, David

    2015-11-01

    Anchises (1173) is a large Trojan asteroid librating about Jupiter’s L5 Lagrange point. Here we examine its rotational and lightcurve properties by way of data collected over a 3.5 year observing campaign. The length of the campaign means that data were gathered for more than a quarter of Anchises' full orbital revolution which allows for accurate determinations of pole orientation and bulk shape properties for the asteroid that can then be compared to results of previous work (i.e. French 1987, Horner et al. 2012). In addition to light curves, photometric data taken during this campaign could potentially detect color differences between hemispheres as the viewing geometry changes over time. Understanding these details about a prominent member of the Jupiter Trojans may help us better understand the history of this fascinating and important group of asteroids.

  14. The Occurrence Rate of Hot Jupiters in the Kepler Field

    Science.gov (United States)

    Sinukoff, Evan; Howard, Andrew

    2013-07-01

    Using the latest Kepler data, we employ Bayesian statistical methods to measure an overall Hot Jupiter (HJ) occurrence rate of 5.8 ± 0.6 per thousand stars. We look for a deficit of HJs around cool stars with convective envelopes. Winn et al. (2010) suggest that HJs orbiting cool stars should be lost to tidal interactions with the stellar convective envelope. However, we find a slight decrease in occurrence rate around hotter stars, which have less massive convection zones. This suggests that orbital decay caused by tidal interactions with stellar convective envelopes does not typically lead to the destruction of HJs over stellar main sequence lifetimes.

  15. Migration of Jupiter-family comets and resonant asteroids to near-Earth space

    CERN Document Server

    Ipatov, S I

    2003-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 yr step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but sometimes give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit, and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits, and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. Some Jupiter-family comets can reach inclinations i>90 deg. We conclude that a significant fraction of near-Earth objects could be extinct c...

  16. Temperature Swings in a Hot Jupiter's Atmosphere

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Weather variations in the atmosphere of a planet on a highly eccentric orbit are naturally expected to be extreme. Now, a study has directly measured the wild changes in the atmosphere of a highly eccentric hot Jupiter as it passes close to its host star.Diagram of the HD 80606 system. The inset images labeled AH show the temperature distribution of the planet at different stages as it swings around its star. [de Wit et al. 2016]Eccentric OpportunityFor a hot Jupiter a gas giant that orbits close to its host star the exoplanet HD 80606 b exhibits a fairly unusual path. Rather than having a circularized orbit, HD 80606 b travels on an extremely elliptic 111-day orbit, with an eccentricity of e ~ 0.93. Since the amount of flux HD 80606 b receives from its host varies by a factor of ~850 over the course of its orbit, it stands to reason that this planet must have extreme weather swings!Now a team of scientists led by Julien de Wit (Massachusetts Institute of Technology) has reanalyzed old observations of HD 80606 and obtained new ones using the Spitzer Space Telescope. The longer observing time and new data analysis techniques allowed the team to gain new insights into how the exoplanets atmosphere responds to changes in the stellar flux it receives during its orbit.Extreme VariationsBy measuring the infrared light coming from HD 80606, de Wit and collaborators modeled the planets temperature during 80 hours of its closest approach to its host star. This period of time included the ~20 hours in which most of the planets temperature change is expected to occur, as it approaches to a distance a mere 6 stellar radii from its host.The authors find that the layer of the atmosphere probed by Spitzer heats rapidly from 500K to 1400K (thats ~440F to a scalding 2000+F!) as the planet approaches periastron.The atmosphere then cools similarly quickly as the planet heads away from the star once more.Relative infrared brightness of HD 80606 b at 4.5 and 8 m. The dip marks where

  17. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  18. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  19. Encouragement from Jupiter for Europe's Titan Probe

    Science.gov (United States)

    1996-04-01

    Huygens will transmit scientific information for 150 minutes, from the outer reaches of Titan's cold atmosphere and all the way down to its enigmatic surface. For comparison, the Jupiter Probe radioed scientific data for 58 minutes as it descended about 200 kilometres into the outer part of the atmosphere of the giant planet. The parachutes controlling various stages of Huygens' descent will rely upon a system for deployment designed and developed in Europe that is nevertheless similar to that used by the Jupiter Probe. The elaborate sequence of operations in Huygens worked perfectly during a dramatic drop test from a stratospheric balloon over Sweden in May 1995, which approximated as closely as possible to events on Titan. The performance of the American Probe at Jupiter renews the European engineers' confidence in their own descent control system, and also in the lithium sulphur-dioxide batteries which were chosen to power both Probes. "The systems work after long storage in space," comments Hamid Hassan, ESA's Project Manager for Huygens. "Huygens will spend seven years travelling to Saturn's vicinity aboard the Cassini Orbiter. The Jupiter Probe was a passenger in Galileo for six years before its release, so there is no reason to doubt that Huygens will work just as well." Huygens will enter the outer atmosphere of Titan at 20,000 kilometres per hour. A heat shield 2.7 metres in diameter will withstand the friction and slow the Probe to a speed at which parachutes can be deployed. The size of the parachute for the main phase of the descent is chosen to allow Huygens to reach the surface in about 2 hours. The batteries powering Huygens will last for about 21/2 hours. Prepared for surprises A different perspective on the Jupiter Probe comes from Jean-Pierre Lebreton, ESA's Project Scientist for Huygens. The results contradicted many preconceptions of the Galileo scientists, particularly about the abundance of water and the structure of cloud layers. Arguments

  20. Types of Hot Jupiter Atmospheres

    Science.gov (United States)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  1. Jupiter and Saturn Rotation Periods

    CERN Document Server

    Helled, Ravit; Anderson, John D

    2009-01-01

    Anderson & Schubert (2007, Science,317,1384) proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10h 32m 35s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9h 54m 29s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9h 55m 30s and 10h 32m 35s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn. We derive Jupiter and Saturn rotation periods using equilibrium theory in ...

  2. Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?

    CERN Document Server

    Cloutier, Ryan; Valencia, Diana

    2015-01-01

    Models of the dynamical evolution of the early solar system following the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant mass, which gets ejected by a gas giant during the early solar system's proposed instability phase. We investigate the likelihood of an ice giant ejection event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus respectively. We show that planetary encounters that are sufficient to eject an ice giant, often provide excessive perturbations to the orbits of Callisto and Iapetus making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite ...

  3. Confirmation of Water Plumes on Europa

    Science.gov (United States)

    Sparks, William

    Evidence was found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014a) - FUV detection of off-limb line emission from the dissociation products of water. We find additional evidence for the presence of ice plumes on Europa from HST transit imaging observations (Sparks et al 2016). The evidence for plumes remains marginal, 4-sigma, and there is considerable debate as to their reality. SOFIA can potentially resolve this issue with an unambiguous direct detection of water vapor using EXES. Detection of the fundamental vibrational mode of water vapor at 6 micron, as opposed to the atomic constituents of water, would prove that the plumes exist and inform us of their physical chemistry through quantitative consideration of the balance between water vapor and its dissociation products, hydrogen and oxygen. We propose to obtain spectra of the leading and trailing hemispheres separately, with trailing as the higher priority. These provide two very different physical environments and plausibly different degrees of activity. If the plumes of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System, and clarify an issue of major strategic importance in NASAs planning for its multi-billion dollar mission to Europa.

  4. Core ethical values: EuropaBio.

    Science.gov (United States)

    2002-01-01

    EuropaBio, the European Association for BioIndustries, represents 40 companies operating world wide and 14 national association (totaling around 600 small and medium-sized enterprises) involved in the research, development, testing, manufacturing, marketing, sales and distribution of biotechnology products and services in the fields of healthcare, agriculture, food and the environment.

  5. Hartvig Frisch og "Pest over Europa"

    DEFF Research Database (Denmark)

    Fledelius, Karsten

    2013-01-01

    Vil populistiske bevægelser i dagens Europa udhule demokratiet og skabe stater med en formel retsorden, som bliver vendt mod syndebukke og udnyttes til diskrimination af etniske, sociale og religiøse mindretal – som i 1930erne?...

  6. Cryovolcanic Emplacement of Domes on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  7. La nueva novela hispanoamericana ante Europa

    Directory of Open Access Journals (Sweden)

    Manuel Zapata Olivella

    1964-01-01

    Full Text Available Hace exactamente medio siglo -1905- Unamuno se burlaba de los escritores hispanoamericanos a quienes consumía el antojo de descubrir a Europa a los europeos en vez de describir lo que tenían ante sus ojos.

  8. L'Europa accelera sul progetto Grid

    CERN Document Server

    2003-01-01

    "Il consorzio pan-europeo Egee sta pilotando a Bruxelles la complessa operazione che dotera' l'Europa di un mercato comune delle risorse di calcolo sulla base del modello Grid (griglia di calcolo, trasporto e distribuzione di dati)" (1 page).

  9. Forschung weltweit anerkannt: lernen von Europa

    CERN Multimedia

    Lorbeere, K

    2006-01-01

    Europa is better than its reputation. On one hand, the old continent, with the CERN, has the most modern research center for particle physics of the world; in addition, international groupings of companies as Microsoft use the research laboratories in Europe and thus use the know-how of the European scientists

  10. Mitigating bias in testing the origins of warm Jupiters via constraints on transit duration variations

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-01-01

    Warm Jupiters are a mysterious class of giant planet in ~10-100 day orbits whose origins are debated. Many have intermediate eccentricities too high to have been excited by planet-disk interactions or planet-planet scattering following in situ formation or disk migration but too low for the warm Jupiter to be currently undergoing high eccentricity tidal migration. Nearby planets on mutually inclined orbits can cause modulated eccentricity oscillations that periodically drive these warm Jupiters to eccentricities large enough for tidal migration. For transiting warm Jupiters, we can place constraints on the presence of such nearby, mutually inclined perturbers from detection of or limits on transit duration variations. The transit duration variation is caused by precession of the warm Jupiter's longitude of ascending node that changes the impact parameter from transit to transit. I show that such changes are commonly of the magnitude to be detectable in the Kepler data. However, I demonstrate that allowing the impact parameter to vary from transit to transit while keeping the planet-star separation constant biases the change in impact parameter to larger values and also results in underestimated uncertainties in the planet's eccentricity via the photoeccentric effect. I present an approach for mitigating this bias when assessing constraints on transit duration variations for individual systems and statistically for the entire population of warm Jupiters to test theories for their origins.

  11. Gravimetry, rotation and angular momentum of Jupiter from the Juno Radio Science experiment

    Science.gov (United States)

    Serra, D.; Dimare, L.; Tommei, G.; Milani, A.

    2016-12-01

    Juno is a NASA space mission to Jupiter, arriving at the planet in July 2016. Through accurate Doppler tracking in X and Ka-band, the Radio Science experiment will allow to map Jupiter's gravity field, crucial for the study of the interior structure of the planet. In this paper we describe the results of numerical simulations of this experiment, performed with the ORBIT14 orbit determination software, developed by the Department of Mathematics of the University of Pisa and by the spin-off Space Dynamics Services srl. Our analysis included the determination of Jupiter's gravity field, the Love numbers, the direction of the rotation axis and the angular momentum magnitude, the latter by measuring the Lense-Thirring effect on the spacecraft. As far as the gravity field is concerned, the spherical harmonics coefficients of Jupiter's gravitational potential are highly correlated and the accuracy in the determination of the zonal coefficients of degree ℓ is degraded for ℓ > 15 . We explore the possibility of using a local model, introducing ring-shaped mascons, so as to determine the gravity field of the portion of the spherical surface bounded by latitudes 6°N and 35°N, the latitude belt observed during Juno's pericenter passes. Finally, the determination of Jupiter's angular momentum magnitude turned out to be compromised by the impossibility of separating the effects of the Lense-Thirring acceleration and of a change in Jupiter's rotation axis direction.

  12. First limits on the occurrence rate of short-period planets orbiting brown dwarfs

    Science.gov (United States)

    He, Matthias Y.; Triaud, Amaury H. M. J.; Gillon, Michaël

    2017-01-01

    Planet formation theories predict a large but still undetected population of short-period terrestrial planets orbiting brown dwarfs. Should specimens of this population be discovered transiting relatively bright and nearby brown dwarfs, the Jupiter-size and the low luminosity of their hosts would make them exquisite targets for detailed atmospheric characterization with JWST and future ground-based facilities. The eventual discovery and detailed study of a significant sample of transiting terrestrial planets orbiting nearby brown dwarfs could prove to be useful not only for comparative exoplanetology but also for astrobiology, by bringing us key information on the physical requirements and time-scale for the emergence of life. In this context, we present a search for transit-signals in archival time series photometry acquired by the Spitzer Space Telescope for a sample of 44 nearby brown dwarfs. While these 44 targets were not particularly selected for their brightness, the high precision of their Spitzer light curves allows us to reach sensitivities below Earth-sized planets for 75 per cent of the sample and down to Europa-sized planets on the brighter targets. We could not identify any unambiguous planetary signal. Instead, we could compute the first limits on the presence of planets on close-in orbits. We find that within a 1.28 d orbit, the occurrence rate of planets with a radius between 0.75 and 3.25 R⊕ is η TRAPPIST-1b systems would suggest, we estimate that 175 brown dwarfs need to be monitored in order to guarantee (95 per cent) at least one detection.

  13. Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results

    Science.gov (United States)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.

    2010-01-01

    The hybrid kinetic model supports comprehensive