WorldWideScience

Sample records for junction protein claudin-1

  1. Analysis of the distribution and expression of claudin-1 tight junction protein in the oral cavity.

    Science.gov (United States)

    Ouban, Abderrahman; Ahmed, Atif

    2015-07-01

    Claudins are the main sealing proteins of the intercellular tight junctions and play an important role in cancer cell progression and dissemination. The authors have previously shown that overexpression of claudin-1 is associated with angiolymphatic and perineural invasion, consistent with aggressive tumor behavior and with advanced stage disease in oral squamous cell carcinomas (OSCCs). Our goal in this study was to examine claudin-1 expression in a tissue microarray of OSCCs taken from multiple sites within the oral cavity. This study examined and compared the expression of claudin-1 by immunohistochemistry in 60 tissue samples (49 OSCCs and 10 cases of non-neoplastic tissue, single core per case) were analyzed for claudin-1 expression by immunohistochemistry. The tumors included SCCs from the tongue (n=28), the cheek (n=9), gingival (n=4), lip (n=3), and oral cavity (n=5). Nonmalignant normal oral mucosa from the tongue (unmatched cases, n=2). Cancer adjacent tissue samples were taken from the tongue (n=6), gingival (n=2), and palate (n=1). This study demonstrates the expression of claudin-1 protein across a sample of OSCCs originating from multiple locations in the oral cavity. The highest expression of claudin-1 was observed in well-differentiated OSCCs, whereas poorly differentiated OSCCs exhibited mostly negative staining for claudin-1. In addition, we hereby report differential pattern of expression among tumors of different sites within the oral cavity, and between benign and cancerous samples. Our understanding of the exact function and role of claudin-1 in tumorigenesis is expanding exponentially.

  2. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing.

    Science.gov (United States)

    Volksdorf, Thomas; Heilmann, Janina; Eming, Sabine A; Schawjinski, Kathrin; Zorn-Kruppa, Michaela; Ueck, Christopher; Vidal-Y-Sy, Sabine; Windhorst, Sabine; Jücker, Manfred; Moll, Ingrid; Brandner, Johanna M

    2017-06-01

    Tight junction (TJ) proteins are known to be involved in proliferation and differentiation. These processes are essential for normal skin wound healing. Here, we investigated the TJ proteins claudin-1 and occludin in ex vivo skin wound healing models and tissue samples of acute and chronic human wounds and observed major differences in localization/expression of these proteins, with chronic wounds often showing a loss of the proteins at the wound margins and/or in the regenerating epidermis. Knockdown experiments in primary human keratinocytes showed that decreased claudin-1 expression resulted in significantly impaired scratch wound healing, with delayed migration and reduced proliferation. Activation of AKT pathway was significantly attenuated after claudin-1 knockdown, and protein levels of extracellular signal-related kinase 1/2 were reduced. For occludin, down-regulation had no impact on wound healing in normal scratch assays, but after subjecting the cells to mechanical stress, which is normally present in wounds, wound healing was impaired. For both proteins we show that most of these actions are independent from the formation of barrier-forming TJ structures, thus demonstrating nonbarrier-related functions of TJ proteins in the skin. However, for claudin-1 effects on scratch wound healing were more pronounced when TJs could form. Together, our findings provide evidence for a role of claudin-1 and occludin in epidermal regeneration with potential clinical importance. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  4. The EhCPADH112 complex of Entamoeba histolytica interacts with tight junction proteins occludin and claudin-1 to produce epithelial damage.

    Directory of Open Access Journals (Sweden)

    Abigail Betanzos

    Full Text Available Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we discovered that after contact with trophozoites or trophozoite extracts (TE, EhCPADH112 and proteins forming this complex (EhCP112 and EhADH112 co-localize with occludin and claudin-1 at tight junctions (TJ. Immunoprecipitation assays revealed interaction between EhCPADH112 and occludin, claudin-1, ZO-1 and ZO-2. Overlay assays confirmed an interaction of EhCP112 and EhADH112 with occludin and claudin-1, whereas only EhADH112 interacted also with ZO-2. We observed degradation of all mentioned TJ proteins after incubation with TE. Importantly, inhibiting proteolytic activity or blocking the complex with a specific antibody not only prevented TJ protein degradation but also epithelial barrier disruption. Furthermore, we discovered that TE treatment induces autophagy and apoptosis in MDCK cells that could contribute to the observed barrier disruption. Our results suggest a model in which epithelial damage caused by E. histolytica is initiated by the interaction of EhCP112 and EhADH112 with TJ proteins followed by their degradation. Disruption of TJs then induces increased paracellular permeability, thus facilitating the entry of more proteases and other parasite molecules leading eventually to tissue destruction.

  5. Claudin-1 induced sealing of blood–brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis

    OpenAIRE

    Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; ENGELHARDT, Britta

    2011-01-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood–brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore...

  6. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions.

    Directory of Open Access Journals (Sweden)

    Hassan Nassour

    Full Text Available Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84 with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble and the cytoplasmic (NP-40 soluble location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.

  7. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions.

    Science.gov (United States)

    Nassour, Hassan; Dubreuil, J Daniel

    2014-01-01

    Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.

  8. 紧密连接蛋白claudin-1与乳腺肿瘤的相关性研究%Study on Correlation Between Tight Junction Protein Claudin-1 and Breast Neoplasms

    Institute of Scientific and Technical Information of China (English)

    庄晓明; 曹永晖; 樊祥山; 吴鸿雁

    2012-01-01

    目的 探讨紧密连接蛋白claudin-1在乳腺肿瘤组织中的表达及其与乳腺癌发生、发展的关系.方法 应用组织芯片技术和免疫组织化学法研究89例乳腺癌和37例乳腺良性病变中claudin-1的表达情况,并统计分析其与乳腺癌淋巴结转移、TNM分期和肿块最大径以及组织学分级间的关系.结果 claudin-1在乳腺癌组织中的表达强度明显弱于乳腺良性病变者(x2=19.20,P=0.000 2).在有淋巴结转移的乳腺癌组织中claudin-1表达强度明显弱于无淋巴结转移者(x2=3.85,P=0.049 7);TNM分期为Ⅲ期的乳腺癌组织中claudin-1表达强度分别弱于Ⅰ期(x2=5.29,P=0.021 4)和Ⅱ期(x2=7.46,P=0.006 3).claudin-1表达强度在肿块最大径各组间(x2=1.58,P=0.453 8)及组织学各分级之间(x2=1.02,P=0.600 5)比较差异均无统计学意义.结论 乳腺癌的发生、发展及转移可能与claudin-1的表达强度有关,可作为判断乳腺癌淋巴结转移和估计预后的参考指标之一.%Objective To investigate the expression of claudin-1 in breast tumor tissues and the relationship of development and progress of breast neoplasm. Methods The expressions of claudin-1 in 89 cases of breast cancer and 37 benign breast diseases were tested by tissue chip technology and immunohistochemistry. The relationships of claudin-1 expression to the lymph node metastasis, TNM staging, maximum diameter of the tumor, and histology grade were statistically analyzed. Results The expression of claudin-1 in the breast cancer was significantly lower than that in the benign breast disease (x2=19. 20, P=0. 000 2). The claudin-1 expression in the patients with lymph node metastasis was significantly lower than that without lymph node metastasis (x2=3. 85, P=0. 049 7). The claudin-1 expression in the stage Ⅲ of TNM staging was weaker than that in the stage Ⅰ (x2=5. 29,P=Q. 021 4) andstage Ⅱ (x2=7. 46,P=0. 006 3), respectively. There was no significant difference of the

  9. The interaction between claudin-1 and dengue viral prM/M protein for its entry.

    Science.gov (United States)

    Che, Pulin; Tang, Hengli; Li, Qianjun

    2013-11-01

    Dengue disease is becoming a huge public health concern around the world as more than one-third of the world's population living in areas at risk of infection. In an effort to assess host factors interacting with dengue virus, we identified claudin-1, a major tight junction component, as an essential cell surface protein for dengue virus entry. When claudin-1 was knocked down in Huh 7.5 cells via shRNA, the amount of dengue virus entering host cells was reduced. Consequently, the progeny virus productions were decreased and dengue virus-induced CPE was prevented. Furthermore, restoring the expression of claudin-1 in the knockdown cells facilitated dengue virus entry. The interaction between claudin-1 and dengue viral prM protein was further demonstrated using the pull-down assay. Deletion of the extracellular loop 1 (ECL1) of claudin-1 abolished such interaction, so did point mutations C54A, C64A and I32M on ECL1. These results suggest that the interaction between viral protein prM and host protein claudin-1 was essential for dengue entry. Since host and viral factors involved in virus entry are promising therapeutic targets, determining the essential role of claudin-1 could lead to the discovery of entry inhibitors with attractive therapeutic potential against dengue disease.

  10. Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin, and claudin-1 in early odontogenesis of rat molars.

    Science.gov (United States)

    João, Silvia M A; Arana-Chavez, Victor E

    2004-04-01

    Little is known about the expression of associated proteins during the assembly of tight junctions (TJs). We studied the distribution of ZO-1, occludin, and claudin-1 between differentiating ameloblasts and odontoblasts in molar tooth germs from 1- to 3-day-old rats by confocal laser scanning microscopy. Immunoreactivity for ZO-1 was strong at proximal and distal junctional complexes of differentiating ameloblasts, while it was weak and punctuate at the distal region of differentiating odontoblasts. Occludin was immunoreactive at distal and proximal complexes of early differentiating ameloblasts and at distal regions of differentiating odontoblasts. However, in more advanced stages, occludin was only evident at the proximal complex of ameloblasts. Claudin-1 was strongly detected at the proximal complex but it was weak at distal complex of late differentiating ameloblasts. Thus, our results showed that ZO-1, occludin, and claudin-1 are differentially expressed as TJs assemble for regulating polarity and/or paracellular permeability in differentiating ameloblasts and odontoblasts. Copyright 2004 Wiley-Liss, Inc.

  11. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Yuekui; Chen, Changqiong; Li, Bo; Tian, Xiaobin, E-mail: drtxb_guiyang@sina.com

    2015-10-23

    Tight junction proteins (TJPs) including Claudins, Occludin and tight junction associated protein Zonula occludens-1 (ZO-1), are the most apical component of junctional complex that mediates cell–cell adhesion in epithelial and endothelial cells. In human malignancies, TJPs are often deregulated and affect cellular behaviors of tumor cells. In this study, we investigated alternations of TJPs and related biological characteristics in human osteosarcoma (OS). Claudin1 was increased in the metastatic OS cells (KRIB and KHOS) compared with the normal osteoblast cells (hFOB1.19) or primary tumor cells (HOS and U2OS), whereas no significant difference was found in Occludin and ZO-1. Immunohistochemistry, immunofluorescence and Western blotting revealed that Claudin1 was initially localized at cell junctions of normal osteoblasts, but substantially delocalized to the nucleus of metastatic OS cells. Phenotypically, inhibition of the nucleus Claudin1 expression compromised the metastatic potential of KRIB and KHOS cells. Moreover, we found that protein kinase C (PKC) but not PKA phosphorylation influenced Claudin1 expression and cellular functions, as PKC inhibitor (Go 6983 and Staurosporine) or genetic silencing of PKC reduced Claudin1 expression and decreased the motility of KRIB and KHOS cells. Taken together, our study implied that delocalization of claudin-1 induced by PKC phosphorylation contributes to metastatic capacity of OS cells. - Highlights: • Claudin1 is increased during the malignant transformation of human OS. • Delocalization of Claudin1 in metastatic OS cells. • Silencing nuclear Claudin1 expression inhibits cell invasion of OS. • Deregulated Claudin1 is regulated by PKC.

  12. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Patricia Cuellar

    2017-08-01

    Full Text Available During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs reflected by transepithelial electrical resistance (TEER dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112 on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.

  13. Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Francescopaolo Di Cello

    Full Text Available Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA. Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+ breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.

  14. Immunocytochemical localization of claudin 1 in the maturation ameloblasts of rat incisors

    Directory of Open Access Journals (Sweden)

    Sumio eNishikawa

    2010-11-01

    Full Text Available Claudin 1 is a tight junction transmembrane protein. Its localization in the maturation ameloblasts of rat incisors was examined by immunofluorescence microscopy. Distal junction area of ruffle-ended ameloblasts (RA and the Golgi apparatus of a sub-population of smooth-ended ameloblasts (SA and RAs stained positive with anti-claudin 1 antibodies. Since it has been shown that ameloblasts repeatedly alternate between an SA and an RA morphology during enamel maturation, the presence of claudin 1 in the Golgi cisterns may indicate the presence of tight junction precursors before transportation to the junctional area.

  15. Claudin-1 is a p63 target gene with a crucial role in epithelial development.

    Directory of Open Access Journals (Sweden)

    Teresa Lopardo

    Full Text Available The epidermis of the skin is a self-renewing, stratified epithelium that functions as the interface between the human body and the outer environment, and acts as a barrier to water loss. Components of intercellular junctions, such as Claudins, are critical to maintain tissue integrity and water retention. p63 is a transcription factor essential for proliferation of stem cells and for stratification in epithelia, mutated in human hereditary syndromes characterized by ectodermal dysplasia. Both p63 and Claudin-1 null mice die within few hours from birth due to dehydration from severe skin abnormalities. These observations suggested the possibility that these two genes might be linked in one regulatory pathway with p63 possibly regulating Claudin-1 expression. Here we show that silencing of DeltaNp63 in primary mouse keratinocytes results in a marked down-regulation of Claudin-1 expression (-80%. DeltaNp63alpha binds in vivo to the Claudin-1 promoter and activates both the endogenous Claudin-1 gene and a reporter vector containing a -1.4 Kb promoter fragment of the Claudin-1 gene. Accordingly, Claudin-1 expression was absent in the skin of E15.5 p63 null mice and natural p63 mutant proteins, specifically those found in Ankyloblepharon-Ectodermal dysplasia-Clefting (AEC patients, were indeed altered in their capacity to regulate Claudin-1 transcription. This correlates with deficient Claudin-1 expression in the epidermis of an AEC patient carrying the I537T p63 mutation. Notably, AEC patients display skin fragility similar to what observed in the epidermis of Claudin-1 and p63 null mice. These findings reinforce the hypothesis that these two genes might be linked in a common regulatory pathway and that Claudin-1 may is an important p63 target gene involved in the pathogenesis of ectodermal dysplasias.

  16. Claudin-1, but not claudin-4, exhibits differential expression patterns between well- to moderately-differentiated and poorly-differentiated gastric adenocarcinoma

    Science.gov (United States)

    TOKUHARA, YASUNORI; MORINISHI, TATSUYA; MATSUNAGA, TORU; OHSAKI, HIROYUKI; KUSHIDA, YOSHIO; HABA, REIJI; HIRAKAWA, EIICHIRO

    2015-01-01

    Claudins are members of a large family of transmembrane proteins, which are essential in the formation of tight junctions and have previously been associated with the process of tumor progression. Studies have reported the aberrant expression of claudin-1 and claudin-4 in numerous types of cancer. The present study aimed to investigate the expression of claudin-1 and claudin-4 in gastric adenocarcinoma tissue. Surgically resected gastric adenocarcinoma tissue specimens were obtained from 94 patients. Protein expression levels of claudin-1 and claudin-4 were determined using immunohistochemical staining; the association between claudin-1 or claudin-4 expression and various clinicopathological parameters were then analyzed. In gastric adenocarcinoma specimens, the expression rates of claudin-1 and claudin-4 were 43.6 and 87.2%, respectively. Claudin-1 expression demonstrated a significant correlation with histological type (P<0.01) and was significantly higher in well- to moderately-differentiated gastric adenocarcinomas compared with poorly-differentiated tumors. However, no correlation was observed between claudin-4 expression in adenocarcinoma and clinicopathological parameters. In conclusion, downregulation of claudin-1 expression in poorly-differentiated gastric adenocarcinoma may be involved in the biological transformation of tumors. The present findings suggested that claudin-1 may be an important protein associated with histological type and therefore may have potential for use as a prognostic marker for gastric adenocarcinoma. Further studies are required to elucidate the precise mechanism of claudin expression and its involvement in tumor progression. PMID:26170982

  17. Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation

    OpenAIRE

    Fouzia Kiran; Kausar Humera; Gull Sana; Sarwar Muhammad T; Asad Sultan; Ijaz Bushra; Shabbiri Khadija; Ahmad Waqar; Shahid Imran; Hassan Sajida

    2011-01-01

    Abstract HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-rec...

  18. Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation.

    Science.gov (United States)

    Ahmad, Waqar; Shabbiri, Khadija; Ijaz, Bushra; Asad, Sultan; Sarwar, Muhammad T; Gull, Sana; Kausar, Humera; Fouzia, Kiran; Shahid, Imran; Hassan, Sajida

    2011-05-15

    HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-β-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-β-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-β-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.

  19. Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation

    Directory of Open Access Journals (Sweden)

    Fouzia Kiran

    2011-05-01

    Full Text Available Abstract HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-β-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-β-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-β-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.

  20. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  1. Identification of Claudin 1 Transcript Variants in Human Invasive Breast Cancer

    Science.gov (United States)

    Zelinski, Teresa; Xie, Jiuyong; Cooper, Steven; Penner, Carla; Leygue, Etienne; Myal, Yvonne

    2016-01-01

    Background The claudin 1 tight junction protein, solely responsible for the barrier function of epithelial cells, is frequently down regulated in invasive human breast cancer. The underlying mechanism is largely unknown, and no obvious mutations in the claudin 1 gene (CLDN1) have been identified to date in breast cancer. Since many genes have been shown to undergo deregulation through splicing and mis-splicing events in cancer, the current study was undertaken to investigate the occurrence of transcript variants for CLDN1 in human invasive breast cancer. Methods RT-PCR analysis of CLDN1 transcripts was conducted on RNA isolated from 12 human invasive breast tumors. The PCR products from each tumor were resolved by agarose gel electrophoresis, cloned and sequenced. Genomic DNA was also isolated from each of the 12 tumors and amplified using PCR CLDN1 specific primers. Sanger sequencing and single nucleotide polymorphism (SNP) analyses were conducted. Results A number of CLDN1 transcript variants were identified in these breast tumors. All variants were shorter than the classical CLDN1 transcript. Sequence analysis of the PCR products revealed several splice variants, primarily in exon 1 of CLDN1; resulting in truncated proteins. One variant, V1, resulted in a premature stop codon and thus likely led to nonsense mediated decay. Interestingly, another transcript variant, V2, was not detected in normal breast tissue samples. Further, sequence analysis of the tumor genomic DNA revealed SNPs in 3 of the 4 coding exons, including a rare missense SNP (rs140846629) in exon 2 which represents an Ala124Thr substitution. To our knowledge this is the first report of CLDN1 transcript variants in human invasive breast cancer. These studies suggest that alternate splicing may also be a mechanism by which claudin 1 is down regulated at both the mRNA and protein levels in invasive breast cancer and may provide novel insights into how CLDN1 is reduced or silenced in human breast

  2. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    Directory of Open Access Journals (Sweden)

    Zengyang Yu

    2015-01-01

    Full Text Available Diabetic retinopathy (DR is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC, a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg was orally administrated, the breakdown of blood retinal barrier (BRB in streptozotocin- (STZ- induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1 in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1, tumor necrosis factor α (TNFα, interleukin- (IL- 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ, IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1.

  3. Expression of intestinal mucosa tight junctions claudin proteins and mRNA in patients with irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    KONG Wu-ming; GONG Jun; DONG Lei; LU Xiao-lan; XU Jun-rong

    2007-01-01

    Objective:To investigate the changes of intestinal mucosa tight junctions(TJs)claudin-1,-3,-4 proteins and mRNA changes in patients with irritable bowel syndrome(IBS)and to elucidate their possible roles in the changes of bowel evacuation habit and formation.Methods:Claudin-1,-3,-4 proteins and mRNA were evaluated in intestinal mucosa in control group,D-IBS(diarrhea IBS)group and C-IBS (constipation IBS)group with immunohistochemical assay and Realtime-PCR.Results:It was observed that claudin-1,-3,-4 proteins were localized in the membranes of epithelial cells along the entire length of the plasma membrane including the apical end of the epithelial cells.The claudins were concentrated at the site of TJs only.Claudin-1,-3,-4 mRNA and claudin-1 protein in small intestinal mucosa and colonal mucous in D-IBS group were significantly downregulated(P<0.05).Claudin-1,-3,-4 mRNA and proteins in small intestinal mucosa and co1onal mucous in C-IBS group were significantly upregulated(P<0.05).There was no significant difference in the expression of claudin-3 protein in both small intestinal mucosa and colonal mucous between D-IBS group and control group(P>0.05).Similarly,no significantly different expression of claudin-4 protein in colonal mucous in D-IBS group was found compared with control group(P>0.05).Otherwise,the expression of claudin-4 protein in small intestinal mucosa decreased in D-IBS group(P<0.05).Conclusion:Claudin-1,-3,-4 may play a potential important role in the changes of bowel evacuation habit and formation in patients with IBS.It is not due to the localization changes of claudin proteins in TJ,but may be caused by the quantitative changes of the expression of TJ proteins and mRNA.

  4. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    Science.gov (United States)

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  5. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  6. West Nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins.

    Directory of Open Access Journals (Sweden)

    Zaikun Xu

    Full Text Available West Nile virus (WNV is a blood-borne pathogen that causes systemic infections and serious neurological disease in human and animals. The most common route of infection is mosquito bites and therefore, the virus must cross a number of polarized cell layers to gain access to organ tissue and the central nervous system. Resistance to trans-cellular movement of macromolecules between epithelial and endothelial cells is mediated by tight junction complexes. While a number of recent studies have documented that WNV infection negatively impacts the barrier function of tight junctions, the intracellular mechanism by which this occurs is poorly understood. In the present study, we report that endocytosis of a subset of tight junction membrane proteins including claudin-1 and JAM-1 occurs in WNV infected epithelial and endothelial cells. This process, which ultimately results in lysosomal degradation of the proteins, is dependent on the GTPase dynamin and microtubule-based transport. Finally, infection of polarized cells with the related flavivirus, Dengue virus-2, did not result in significant loss of tight junction membrane proteins. These results suggest that neurotropic flaviviruses such as WNV modulate the host cell environment differently than hemorrhagic flaviviruses and thus may have implications for understanding the molecular basis for neuroinvasion.

  7. The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage

    OpenAIRE

    Abigail Betanzos; Rosario Javier-Reyna; Guillermina García-Rivera; Cecilia Bañuelos; Lorenza González-Mariscal; Michael Schnoor; Esther Orozco

    2013-01-01

    Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we...

  8. One-Step Recovery of scFv Clones from High-Throughput Sequencing-Based Screening of Phage Display Libraries Challenged to Cells Expressing Native Claudin-1

    Directory of Open Access Journals (Sweden)

    Emanuele Sasso

    2015-01-01

    Full Text Available Expanding the availability of monoclonal antibodies interfering with hepatitis C virus infection of hepatocytes is an active field of investigation within medical biotechnologies, to prevent graft reinfection in patients subjected to liver transplantation and to overcome resistances elicited by novel antiviral drugs. In this paper, we describe a complete pipeline for screening of phage display libraries of human scFvs against native Claudin-1, a tight-junction protein involved in hepatitis C virus infection, expressed on the cell surface of human hepatocytes. To this aim, we implemented a high-throughput sequencing approach for library screening, followed by a simple and effective strategy to recover active binder clones from enriched sublibraries. The recovered clones were successfully converted to active immunoglobulins, thus demonstrating the effectiveness of the whole procedure. This novel approach can guarantee rapid and cheap isolation of antibodies for virtually any native antigen involved in human diseases, for therapeutic and/or diagnostic applications.

  9. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Hang Xiaomin

    2009-03-01

    Full Text Available Abstract Background It is increasingly recognized that Lactobacillus plantarum (L. plantarum has the ability to protect against Enteropathogenic Escherichia coli (EPEC-induced damage of the epithelial monolayer barrier function by preventing changes in host cell morphology, attaching/effacing (A/E lesion formation, monolayer resistance, and macromolecular permeability. However, the cellular mechanism involved in this protective effect still remained to be clarified. Methods This study was to investigate the effect of L. plantarum on the changes of Caco-2 cells responding to Enteroinvasive Escherichia coli (EIEC, the permeability of cell monolayer and the transmissivity of dextran, and the distribution and expression of the tight junction (TJ proteins, such as Claudin-1, Occludin, JAM-1 and ZO-1 were examined when infected with EIEC or adhesived of L. plantarum after infection by confocal laser scanning microscopy (CLSM, immunohistochemistry and Western blotting, the cytoskeleton protein F-actin were observed with FITC-phalloidin. Results This study demonstrated that the transepithelial electrical resistance (TER step down and dextran integrated intensity (DII step up with time after infected with EIEC, but after treating with L. plantarum, the changes of TER and DII were improved as compared with EIEC group. L. plantarum prevented the damage of expression and rearrangement of Claudin-1, Occludin, JAM-1 and ZO-1 proteins induced by EIEC, and could ameliorate the injury of cytoskeleton protein F-actin infected with EIEC. Conclusion L. plantarum exerted a protective effect against the damage to integrity of Caco-2 monolayer cells and the structure and distribution of TJ proteins by EIEC infection.

  10. Aspirin inhibits hepatitis C virus entry by downregulating claudin-1.

    Science.gov (United States)

    Yin, P; Zhang, L

    2016-01-01

    Aspirin has previously been reported to inhibit hepatitis C virus (HCV) replication. The aim of this study was to investigate whether aspirin is involved in blocking HCV entry. We found that aspirin inhibits the entry of HCVpp and infectious HCV. The level of claudin-1, an HCV receptor, is reduced by aspirin. Our results extend the anti-HCV effect of aspirin to the HCV entry step and further reinforce the anti-HCV role of aspirin.

  11. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  12. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  13. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  14. Analysis of Snail-1, E-Cadherin and Claudin-1 Expression in Colorectal Adenomas and Carcinomas

    Directory of Open Access Journals (Sweden)

    Kamil Belej

    2012-02-01

    Full Text Available We report the expression of Snail-1, E-cadherin and claudin-1 by indirect immunohistochemistry in colonic neoplasia. Snail-1 is a zinc finger transcription factor expressed in cells that already have undergone almost complete epithelial-mesenchymal transition (EMT and have already evaded from the tumor. The main mechanism by which Snail induces EMT is downregulation of E-cadherin, of which expression was shown to be frequently downregulated in many different types of tumors, where it accompanies the invasiveness and metastatic behavior of malignant cells. Moreover, Snail-1 may downregulate the expression of claudin-1, a cell-cell adhesion protein which plays a likely role in progression and dissemination during tumorigenesis. Snail-1 was expressed in both carcinoma and adenoma cells with histologically normal epithelium in the mucosa, adjacent to the tumors, without significant differences, and predominant strong intensity of staining. Statistically significant differences were revealed between normal and tumorous epithelium (p = 0.003 at the subcellular level, where the shift of the protein to the cytoplasm with combined cytoplasmic/nuclear or pure cytoplasmic expression was observed. E-cadherin expression was present in 100% of cases of both adenocarcinomas and adenomas, with prevailing strong membranous immunoreactivity and no differences between protein expression in tumors and normal mucosa. Predominating strong positivity of claudin-1 was detected in tumor cells of adenocarcinomas and adenomas. Marked differences were seen in protein localization, where membranous staining, typical for nontumorous epithelium, changed to combined membranous/cytoplasmic expression in adenocarcinomas (p = 0.0001 and adenomas (0.0002, in which cytoplasmic shift was associated with a higher degree of dysplasia. Furthermore, membranous/cytoplasmic localization was more frequent in the carcinoma group (87% in comparison with adenomas (51% (p = 0.0001. We conclude

  15. Claudin-1和MMP-2在视网膜母细胞瘤中表达及其相关性%The expression and correlation of Claudin-1 and MMP-2 in retinoblastoma

    Institute of Scientific and Technical Information of China (English)

    杨洋; 邬黎青; 程波; 雷浪

    2013-01-01

    目的:探讨Claudin-1和MMP-2蛋白在视网膜母细胞瘤中的表达变化及其与视网膜母细胞瘤组织分化、视神经浸润和临床分期的相关性。方法采用免疫组化方法(MaxVisionTM)检测Claudin-1、MMP-2蛋白在45例视网膜母细胞瘤和15例正常视网膜组织石蜡标本的表达,运用卡方检验和Spearman等级相关检验分析Clandin-1和MMP-2在视网膜母细胞瘤组织中表达的相关性。结果(1)Claudin-1蛋白在视网膜母细胞瘤组织阳性表达明显低于在正常视网膜组织;在分化型组阳性表达显著高于未分化型组,P=0.015;在未侵犯视神经组阳性表达明显高于侵犯视神经组,P<0.001;在临床Ⅰ期、Ⅱ期、Ⅲ期组中各组间表达均具有统计学差异,P<0.01;不同性别组中Claudin-1表达没有统计学差异,P=0.661。(2)MMP-2蛋白在视网膜母细胞瘤中阳性表达明显高于正常视网膜组织细胞;在分化型组阳性表达中表达低于未分化型组,表达没有统计学差异,P=0.636;在侵犯视神经组阳性表达明显高于未侵犯视神经组,P=0.011;在临床Ⅰ期组、Ⅱ期和Ⅲ期各期之间中表达均具有统计学差异,P<0.05;在不同性别组中表达没有统计学差异,P=0.58。(3)在视网膜母细胞瘤中Claudin-1表达下降和MMP-2表达上升两者呈负相关(r=-0.537,P=0.023)。结论 Claudin-1表达水平与视网膜母细胞瘤细胞分化、视神经浸润和临床分期呈正相关;MMP-2表达水平与视网膜母细胞瘤视神经浸润和临床分期呈负相关。Clandin-1和MMP-2在视网膜母细胞瘤的视神经浸润与肿瘤发展起相反作用。%Objective To study the protein expression of Claudin-1 and MMP-2 protein in retinoblastoma and their correla-tion with retinoblastoma tissue differentiation,clinical optic nerve infiltration capacity and retinoblastoma staging. Methods Im-munohistochemistry was used to analyze the expression of

  16. Examination of claudin-1 expression in patients undergoing liver transplantation owing to hepatitis C virus cirrhosis.

    Science.gov (United States)

    Zadori, G; Gelley, F; Torzsok, P; Sárváry, E; Doros, A; Deak, A P; Nagy, P; Schaff, Z; Kiss, A; Nemes, B

    2011-05-01

    The cell adhesion molecule claudin-1 (CLDN-1) is a well known co-factor for the cell entry of hepatitis C virus (HCV). We examined 24 hepatic biopsies from liver transplant patients. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry were performed according to standard procedures. RT-PCR results were shown as relative expression (ΔCT) with beta-actin as the reference gene. Immunohistochemistry results are shown by morphometry. The CLDN-1 mRNS expression rate was significantly lower when the patient displayed favorably with an unsatisfactory to antiviral therapy 0.756 ± 0.249 versus 1.304 ± 0.28 (P=.012). There was also a strong positive correlation between CLDN-1 protein expression and liver fibrosis (Pearson correlation coefficients: r=0.476; P=.034).

  17. Interleukin-6, desmosome and tight junction protein expression levels in reflux esophagitis-affected mucosa

    Institute of Scientific and Technical Information of China (English)

    Fei-Yue Li; Yan Li

    2009-01-01

    AIM: To investigate the correlation between the expression levels of interleukin (IL)-6 and proteins in tight junctions (TJs) in the esophageal mucosa of rats modeling different types of reflux esophagitis (RE), and the ability of aluminum phosphate to protect against RE-induced mucosal damage via these proteins. METHODS: Male SPF Wistar rats aged 56 d were divided randomly into acid RE, alkaline RE, mixed RE, and control groups. Various surgical procedures were performed to establish rat models of acid RE. At 14 d after the procedure, some of the rats started aluminum phosphate treatment. Transmission electron microscopy (TEM) was used to observe the morphological features of TJs and desmosomes in the esophageal epithelium. Immunohistochemical methods and Western blotting were used to measure expression of claudin 1, occludin, ZO-1, JAM-1, DSG-1 and IL-6; reverse transcription polymerase chain reaction (RTPCR) was used to measure expression of mRNA of claudin 1, occludin, ZO-1, JAM-1, DSG-1 and IL-6. RESULTS: At day 14 after the procedures, an RE model was established in all subsequently sacrificed rats of groups A, B and C. By both gross and microscopic observation, the mucosa was damaged and thickened as the disease progressed. With TEM observation, a widened intercellular space was noticed, with significantly fewer desmosomes. Immunohistochemistry showed significantly higher levels of all proteins in all RE models compared to control rats at 3 d after operation (65.5% ± 25.6% vs 20.5% ± 2.1%, P 0.05, treated vs untreated, respectively). These levels increased in the rat with alkaline RE, and this increase was accompanied by continued hyperplasia in comparison with controls (85.5% ± 25.6% vs 20.5% ± 2.1%, P < 0.05, respectively). Furthermore, the expression of TJ proteins was not correlated significantly with that of IL-6 in this group. CONCLUSION: These findings indicate that TJ proteins are highly expressed as an early molecular event involved in RE

  18. Alterations in junctional proteins, inflammatory mediators and extracellular matrix molecules in eosinophilic esophagitis.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange M; Al-Tawil, Youhanna; Gyftopoulos, Alex A; Brown, Karen L; Hansen, Molly; Butcher, Kathy F; Eidelwein, Alexandra P; Noel, Robert A; Rabon, Edd; Posta, Allison; Nakhoul, Nazih L

    2013-08-01

    Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.

  19. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    Science.gov (United States)

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  20. Expressions of claudin-4 and claudin-1 in endometrial cancer and their significance

    Institute of Scientific and Technical Information of China (English)

    Duan Zhao; Zhang Xin; Gao Ya

    2008-01-01

    Objective: To observe the expressions of claudin-4 and claudin-1 in endometrial cancer and explore their correlations with clinicopathological parameters of endometrial cancer. Methods: Immunohistochemical methods (SP)were used to detect the expressions of claudin-4 and claudin-1 in 52 tissue samples of endometrial cancer, 24 of atypical hyperplasia, 20 of pericancerous endometrium, and 19 of endometrium at proliferative phase. And then the expressions were analyzed statistically to find out the correlations with clinicopathological parameters of endometrial cancer. Results: Positive rate of claudin-4 was 36.8%, 70.8% and 90.4% in endometrium at proliferative phase, atypical hyperplasia and endometrial cancer, respectively, with significantly differences between them (P<0.05), and it was statistically different between pericancer endometrium and endometrial cancer (P<0.05). Positive rate of claudin-1 was89.5%, 66.7% and 63.5%, respectively showing a descending tendency and significantly differences betweenen dometrium at proliferative phase and endometrial caner (P<0.05), and it was also statistically significantly different between pericancer endometrium and endometrial cancer (P<0.05). The high expression rate of claudin-4 was related to invasion depth, but not to histological grading, pathological staging or lymph node metastasis of endometrial cancer,and the low expression of claudin-1 in endometrial cancer was not associated with histological grading, pathological staging, invasion depth or lymph node metastasis. Conclusion: The expression levels of claudin-4 and claudin-1 are correlated with onset and development of endometrial cancer.

  1. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions.

    Science.gov (United States)

    Ichiyasu, Hidenori; McCormack, Joanne M; McCarthy, Karin M; Dombkowski, David; Preffer, Frederic I; Schneeberger, Eveline E

    2004-06-01

    When sampling inhaled antigens, dendritic cells (DC) must penetrate the tight junction (TJ) barrier while maintaining the TJ seal. In matrix metalloproteinase (MMP)-9-deficient mice, in vivo experiments suggest that migration of DC into air spaces is impaired. To examine the underlying mechanisms, we established a well-defined in vitro model using mouse tracheal epithelial cells and mouse bone marrow DC (BMDC). Transmigration was elicited with either macrophage inflammatory protein (MIP)-1alpha or MIP-3beta in a time-dependent manner. Control MMP-9(+/+) BMDC cultured with granulocyte macrophage-colony-stimulating factor for 7 d showed a 30-fold greater transepithelial migration toward MIP-3beta than MIP-1alpha, indicating a more mature DC phenotype. MMP-9(-/-) BMDC as well as MMP-9(+/+) BMDC in the presence of the MMP inhibitor GM6001, although showing a similar preference for MIP-3beta, were markedly impaired in their ability to traverse the epithelium. Expression levels of CCR5 and CCR7, however, were similar in both MMP-9(-/-) and MMP-9(+/+) BMDC. Expression of the integral TJ proteins, occludin and claudin-1, were examined in BMDC before and after transepithelial migration. Interestingly, occludin but not claudin-1 was degraded following transepithelial migration in both MMP-9(-/-) and control BMDC. In addition, there was a > 2-fold increase in claudin-1 expression in MMP-9(-/-) as compared with control BMDC. These observations indicate that occludin and claudin-1 are differentially regulated and suggest that the lack of MMP-9 may affect claudin-1 turnover.

  2. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2010-03-01

    Full Text Available Abstract Background An increase in the intestinal permeability is considered to be associated with the inflammatory tone and development in the obesity and diabetes, however, the pathogenesis of the increase in the intestinal permeability is poorly understood. The present study was performed to determine the influence of obesity itself as well as dietary fat on the increase in intestinal permeability. Methods An obese rat strain, Otsuka Long Evans Tokushima Fatty (OLETF, and the lean counter strain, Long Evans Tokushima Otsuka (LETO, were fed standard or high fat diets for 16 weeks. Glucose tolerance, intestinal permeability, intestinal tight junction (TJ proteins expression, plasma bile acids concentration were evaluated. In addition, the effects of rat bile juice and dietary fat, possible mediators of the increase in the intestinal permeability in the obesity, on TJ permeability were explored in human intestinal Caco-2 cells. Results The OLETF rats showed higher glucose intolerance than did the LETO rats, which became more marked with the prolonged feeding of the high fat diet. Intestinal permeability in the OLETF rats evaluated by the urinary excretion of intestinal permeability markers (Cr-EDTA and phenolsulfonphthalein was comparable to that in the LETO rats. Feeding the high fat diet increased intestinal permeability in both the OLETF and LETO rats, and the increases correlated with decreases in TJ proteins (claudin-1, claudin-3, occludin and junctional adhesion molecule-1 expression in the small, but not in the large intestine (cecum or colon. The plasma bile acids concentration was higher in rats fed the high fat diet. Exposure to bile juice and the fat emulsion increased TJ permeability with concomitant reductions in TJ protein expression (claudin-1, claudin-3, and junctional adhesion molecule-1 in the Caco-2 cell monolayers. Conclusion Excessive dietary fat and/or increased levels of luminal bile juice, but not genetic obesity, are

  3. Bioengineering a Single-Protein Junction.

    Science.gov (United States)

    Ruiz, Marta P; Aragones, Albert C; Camarero, Nuria; Vilhena, J G; Ortega, Maria; Zotti, Linda Angela; Perez, Ruben; Cuevas, Juan Carlos; Gorostiza, Pau; Díez-Pérez, Ismael

    2017-10-05

    Bioelectronics moves towards designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-Azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated 2-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.

  4. Effects of Qingchang Huashig Decoction on Tight Junction Proteins in TNBS-induced Ulcerative Colitis Model Rats%清肠化湿方对TNBS诱导大鼠UC模型紧密连接蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    刘智群; 沈洪; 朱萱萱; 郝波; 朱磊; 翟金海

    2012-01-01

    Objective: To observe the effect of Qingchang Huashig Decoction ( QD) on the protein expressions and change character of occludin and claudin - 1 in colonic mucosa of rats with ulcerative colitis( UC). Methods: Rat UC model induced by trini-trobenzene - sulfonic acid ( TNBS) were randomly divided into normal group, model group, QD group and SASP group. The rats were sacrificed to get their colonic mucosa and extract the whole - cell protein after 10d of treatment. Western blot was performed to detect the protein levels of occludin and claudin - 1. Results:The relative protein expressions of occludin and claudin - 1 in the model group were all lower than those in the normal group significantly. The relative protein expressions of occludin and claudin -1 in the QD group were higher than that in the model group. The colonic configurative and histological injury score were declined. Conclusion: Qingchang Huashig Decoction can treat ulcerative colitis. One of the mechanisms may be that Qingchang Huashig Decoction can increase the relative protein expressions of occludin and claudin - 1 and restore the normal intestinal mucosal barrier function.%目的:观察三硝基苯磺酸(TNBS)法诱导大鼠溃疡性结肠炎模型结肠黏膜occludin、claudin-1蛋白的变化特点及清肠化湿方对occludin、claudin-1蛋白表达的影响.方法:采用TNBS诱导大鼠溃疡性结肠炎模型,并随机分为正常对照组、模型对照组、清肠化湿方组、SASP组,治疗10天后处死大鼠取新鲜结肠标本,观察黏膜大体形态及组织学改变,并采用Western blot法检测occludin、claudin -1蛋白表达水平.结果:模型对照组occludin、claudin -1蛋白表达均明显低于正常对照组,清肠化湿方组occludin、claudin -1的表达高于模型对照组,同时,清肠化湿方组大鼠结肠形态及组织学损伤评分均有降低.结论:清肠化湿方对UC模型大鼠具有治疗作用,增强occludin、claudin -1的表达,恢复正常的肠粘

  5. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  6. Expressions and Significance of Snail mRNA and Claudin1 mRNA in Human Gastric Carcinoma%通过组织芯片分析snail、claudin-1 mRNA表达与胃癌的关系

    Institute of Scientific and Technical Information of China (English)

    郑振洨; 张布衣; 姚根有

    2006-01-01

    目的 探讨snail mRNA和claudin-1mRNA在胃癌中的表达及其与临床病理特征及预后的关系.方法 制备组织芯片和cRNA探针,通过原位杂交检测snail和claudin1的mRNA在胃癌和正常胃粘膜组织中的表达.结果 胃癌和正常胃粘膜中snail和claudin-1的mRNA表达率差异明显.snail mRNA表达与胃癌的分化、TNM分期、脉管及淋巴结转移呈正相关;claudin1 mRNA表达与TNM分期、浸润深度、脉管及淋巴结转移呈负相关.两者均有助于判断胃癌预后,claudin1 mRNA还可作为判断胃癌预后的独立风险因素.结论 snail mRNA与claudin-1 mRNA的表达影响胃癌发展,是指导临床治疗及估计预后的有意义指标.

  7. The effect of phytic acid on tight junctions in the human intestinal Caco-2 cell line and its mechanism.

    Science.gov (United States)

    Fu, Qingxue; Wang, Huizhen; Xia, Mengxin; Deng, Bing; Shen, Hongyi; Ji, Guang; Li, Guowen; Xie, Yan

    2015-12-01

    This study investigated the effect of phytic acid (IP6), a potential absorption enhancer of flavonoid components, on tight junction (TJ) integrity in Caco-2 cell monolayers and its possible mechanisms. Transepithelial electrical resistance (TEER) across the monolayers decreased rapidly, and the flux of fluorescein sodium (a paracellular marker) increased after treating with IP6 in a concentration-dependent manner. Confocal microscopy results showed that IP6 produced a concentration-dependent attenuation in the distribution of occludin, ZO-1, and claudin-1. Immunoblot analysis revealed that IP6 could down-regulate the expression level of these TJ proteins, which resulted in the opening of TJ. Additionally, the divalent cations Ca(2+) and Mg(2+) influenced the IP6-induced distribution of occludin, ZO-1, and claudin-1 in different directions, which enhanced barrier function. In conclusion, IP6 can decrease the integrity of Caco-2 cell monolayers by modulating the TJ proteins' localization and down-regulating the expression levels of TJ proteins including claudin-1, occludin, and ZO-1; the reduction effects of divalent cations such as Ca(2+) and Mg(2+) on the regulation of TJ induced by IP6 should be addressed. The present work will offer some useful guidance for the application of IP6 in drug delivery area. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    Directory of Open Access Journals (Sweden)

    Markus Utech

    2010-01-01

    Full Text Available A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC consisting of tight junctions (TJs and adherens junctions (AJs and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ, induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells.

  9. Role of connexin43-interacting proteins at gap junctions

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2006-01-01

    Gap junctions are arrays of cell-to-cell channels that allow diffusion of small molecules between neighboring cells. The individual channels are formed by the four-transmembrane connexin (Cx) proteins. Recently, multiple proteins have been found to interact at the cytoplasmic site with the most abun

  10. Role of connexin43-interacting proteins at gap junctions

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2006-01-01

    Gap junctions are arrays of cell-to-cell channels that allow diffusion of small molecules between neighboring cells. The individual channels are formed by the four-transmembrane connexin (Cx) proteins. Recently, multiple proteins have been found to interact at the cytoplasmic site with the most

  11. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses.

    Science.gov (United States)

    Meng, Jing; Mostaghel, Elahe A; Vakar-Lopez, Funda; Montgomery, Bruce; True, Larry; Nelson, Peter S

    2011-06-01

    Testosterone and inflammation have been linked to the development of common age-associated diseases affecting the prostate gland including prostate cancer, prostatitis, and benign prostatic hypertrophy. We hypothesized that testosterone regulates components of prostate tight junctions which serve as a barrier to inflammation, thus providing a connection between age- and treatment-associated testosterone declines and prostatic pathology. We examined the expression and distribution of tight junction proteins in prostate biospecimens from mouse models and a clinical study of chemical castration, using transcript profiling, immunohistochemistry, and electron microscopy. We determined that low serum testosterone is associated with reduced transcript and protein levels of Claudin 4 and Claudin 8, resulting in defective tight junction ultrastructure in benign prostate glands. Expression of Claudin 4 and Claudin 8 was negatively correlated with the mononuclear inflammatory infiltrate caused by testosterone deprivation. Testosterone suppression also induced an autoimmune humoral response directed toward prostatic proteins. Testosterone supplementation in castrate mice resulted in re-expression of tight junction components in prostate epithelium and significantly reduced prostate inflammatory cell numbers. These data demonstrate that tight junction architecture in the prostate is related to changes in serum testosterone levels, and identify an androgen-regulated mechanism that potentially contributes to the development of prostate inflammation and consequent pathology.

  12. Transitions of protein traffic from cardiac ER to junctional SR

    OpenAIRE

    Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.

    2015-01-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca2+ release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appe...

  13. Clearance of persistent hepatitis C virus infection using a claudin-1-targeting monoclonal antibody

    Science.gov (United States)

    Mailly, Laurent; Wilson, Garrick K.; Aubert, Philippe; Duong, François H. T.; Calabrese, Diego; Leboeuf, Céline; Fofana, Isabel; Thumann, Christine; Bandiera, Simonetta; Lütgehetmann, Marc; Volz, Tassilo; Davis, Christopher; Harris, Helen J.; Mee, Christopher J.; Girardi, Erika; Chane-Woon-Ming, Béatrice; Ericsson, Maria; Fletcher, Nicola; Bartenschlager, Ralf; Pessaux, Patrick; Vercauteren, Koen; Meuleman, Philip; Villa, Pascal; Kaderali, Lars; Pfeffer, Sébastien; Heim, Markus H.; Neunlist, Michel; Zeisel, Mirjam B.; Dandri, Maura; McKeating, Jane A.; Robinet, Eric; Baumert, Thomas F.

    2015-01-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer1. Cell entry of HCV2 and other pathogens3-5 is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model6 we show that a monoclonal antibody specific for TJ protein claudin-17 eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection via host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy. PMID:25798937

  14. Alteration in synaptic junction proteins following traumatic brain injury.

    Science.gov (United States)

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  15. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    Science.gov (United States)

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  16. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network

    Science.gov (United States)

    Springler, Alexandra; Hessenberger, Sabine; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways. PMID:27618100

  17. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides.

    Science.gov (United States)

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2016-02-01

    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers.

  18. Cell junction proteins within the cochlea:A review of recent research

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Bohua Hu; Shiming Yang

    2015-01-01

    Cell—cell junctions in the cochlea are highly complex and well organized. The role of these junctions is to maintain structural and functional integrity of the cochlea. In this review, we describe classification of cell junction-associated proteins identified within the cochlea and provide a brief overview of the function of these proteins in adherent junctions, gap junctions and tight junctions. Copyright © 2016, PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  19. Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29.

    Science.gov (United States)

    Jeong, Chang Hee; Seok, Jin Sil; Petriello, Michael C; Han, Sung Gu

    2017-03-15

    Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40μM, 12h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5-10mM, 1h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.

  20. Disruption of MDCK cell tight junctions by the free-living amoeba Naegleria fowleri.

    Science.gov (United States)

    Shibayama, Mineko; Martínez-Castillo, Moisés; Silva-Olivares, Angélica; Galindo-Gómez, Silvia; Navarro-García, Fernando; Escobar-Herrera, Jaime; Sabanero, Myrna; Tsutsumi, Víctor; Serrano-Luna, Jesús

    2013-02-01

    Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis. This parasite invades its host by penetrating the olfactory mucosa. However, the mechanism of epithelium penetration is not well understood. In the present study, we evaluated the effect of N. fowleri trophozoites and the non-pathogenic Naegleria gruberi on Madin-Darby canine kidney (MDCK) tight junction proteins, including claudin-1, occludin and ZO-1, as well as on the actin cytoskeleton. Trophozoites from each of the free-living amoeba species were co-cultured with MDCK cells in a 1 : 1 ratio for 1, 3, 6 or 10 h. Light microscopy revealed that N. fowleri caused morphological changes as early as 3 h post-infection in an epithelial MDCK monolayer. Confocal microscopy analysis revealed that after 10 h of co-culture, N. fowleri trophozoites induced epithelial cell damage, which was characterized by changes in the actin apical ring and disruption of the ZO-1 and claudin-1 proteins but not occludin. Western blot assays revealed gradual degradation of ZO-1 and claudin-1 as early as 3 h post-infection. Likewise, there was a drop in transepithelial electrical resistance that resulted in increased epithelial permeability and facilitated the invasion of N. fowleri trophozoites by a paracellular route. In contrast, N. gruberi did not induce alterations in MDCK cells even at 10 h post-infection. Based on these results, we suggest that N. fowleri trophozoites disrupt epithelial monolayers, which could enable their penetration of the olfactory epithelium and subsequent invasion of the central nervous system.

  1. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  2. 紧密连接蛋白Occludin在鼻息肉中的表达及调节%Expression and regulation of tight junction protein Occludin in nasal polyps

    Institute of Scientific and Technical Information of China (English)

    陈曦; 郭洁波; 张涵; 左可军; 韦轶; 史剑波; 李华斌; 许庚

    2014-01-01

    Objective To evaluate the possible role of tight junction protein Occludin in nasal polyps.Methods The expression of Claudin-1,Occludin and ZO-1 in nasal polyps (n =20) and healthy uncinate mucosa (n =15) were examined using immunohistochemical staining,real-time quantitative polymerase chain reaction (PCR) and Western blot analysis.The regulatory effects of proinflammatory cytokines (IFN-γ,IL-13,IL-17,TGF-β,TGF-α) on the expression of Occludin in cultured human nasal epithelial cells were investigated.Results The immunohistochemical results showed that Claudin-1,Occludin and ZO-1 were detected both in the nasal polyp group and the control group.The expression sites were the cell membrane and cytoplasm of nasal mucosa epithelial cells.The mean optical density of Claudin1,Occludin and ZO-1 were 0.187 ± 0.076,0.172 ± 0.109 and 0.098 ± 0.035 respectively in the nasal polyp group and were significantly lower than those in the control group (0.312 ± 0.101,0.220 ± 0.069 and 0.233 ± 0.093 respectively),the differences were significant (t =9.345,t =3.301,t =13.323,all P < 0.01).RT-PCR results showed that the relative expression of Occludin mRNA was 0.000 117 ± 0.000 035 in the nasal polyp group and was significantly lower than that in the control group(0.000 464 ±0.000 134),and the difference was significant (Z =-5.0,P < 0.01).There was no statistically significant difference in the relative expression of Claudin-1 and ZO-1 mRNA between the nasal polyp group and the control group(P > 0.05).After the cultured human nasal epithelial cells were stimulated by IL-13,IL-17,IFN-γ and other proinflammatory cytokines,the relative expression of Occludin mRNA was 0.631 ± 0.039,0.581 ± 0.029 and 0.648 ± 0.040,respectively.Compared with the unstimulated control group,the differences were statistically significant (t =16.299,24.669 and 14.995 respectively,all P < 0.05).Western blot analyse showed that the relative grayscale in the above proinflammatory cytokines

  3. Rad54 protein promotes branch migration of Holliday junctions.

    Science.gov (United States)

    Bugreev, Dmitry V; Mazina, Olga M; Mazin, Alexander V

    2006-08-03

    Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.

  4. Gap junction proteins are key drivers of endocrine function.

    Science.gov (United States)

    Meda, Paolo

    2017-03-08

    It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gap junction proteins in the light-damaged albino rat.

    Science.gov (United States)

    Guo, Cindy X; Tran, Henry; Green, Colin R; Danesh-Meyer, Helen V; Acosta, Monica L

    2014-01-01

    Changes in connexin expression are associated with many pathological conditions seen in animal models and in humans. We hypothesized that gap junctions are important mediators in tissue dysfunction and injury processes in the retina, and therefore, we investigated the pattern of connexin protein expression in the light-damaged albino rat eye. Adult Sprague-Dawley rats were exposed to intense light for 24 h. The animals were euthanized, and ocular tissue was harvested at 0 h, 6 h, 24 h, 48 h, and 7 days after light damage. The tissues were processed for immunohistochemistry and western blotting to analyze the expression of the gap junction proteins in the light-damaged condition compared to the non-light-damaged condition. Cell death was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique. Intense light exposure caused increased TUNEL labeling of photoreceptor cells. Immunocytochemistry revealed that connexin 36 (Cx36) was significantly increased in the inner plexiform layer and Cx45 was significantly decreased in the light-damaged retina. The pattern of Cx36 and Cx45 labeling returned to normal 7 days after light damage. Cx43 significantly increased in the RPE and the choroid in the light-damaged tissue, and decreased but not significantly in the retina. This elevated Cx43 expression in the choroid colocalized with markers of nitration-related oxidative stress (nitrotyrosine) and inflammation (CD45 and ionized calcium-binding adaptor molecule-1) in the choroid. The results suggest that connexins are regulated differently in the retina than in the choroid in response to photoreceptor damage. Changes in connexins, including Cx36, Cx43, and Cx45, may contribute to the damage process. Specifically, Cx43 was associated with inflammatory damage. Therefore, connexins may be candidate targets for treatment for ameliorating disease progression.

  6. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth.

    Science.gov (United States)

    Patkee, Wishwanath R A; Carr, Georgina; Baker, Emma H; Baines, Deborah L; Garnett, James P

    2016-04-01

    Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti-diabetes drug, metformin, reduces glucose-induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose-induced P. aeruginosa infections across airway epithelial (Calu-3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre-treatment of the epithelium inhibited the glucose-induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5-aminoimidazole-4-carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa-induced reduction in the abundance of tight junction proteins, claudin-1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia-induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin-1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia-induced respiratory infections, avoiding the use of antibiotics.

  7. Claudin-1, -2 and -3 are selectively expressed in the epithelia of the choroid plexus of the mouse from early development and into adulthood while claudin-5 is restricted to endothelial cells

    Directory of Open Access Journals (Sweden)

    Alexandra eSteinemann

    2016-02-01

    Full Text Available A primary function of epithelial and endothelial monolayers is the formation of barriers that separate tissues into functional compartments. Tight junctions (TJs seal the intercellular space between the single cells of a monolayer. TJs thus contribute importantly to the homeostasis of the cerebrospinal fluid as they help in maintaining the blood-brain-barrier (BBB and the blood-cerebrospinal fluid barrier. The composition of TJs differs by its localization as well as the stage of development according to its respective function. Claudin-3 is typically present in the epithelia and has been claimed to be a constituent of the BBB. It is, however, notoriously difficult to demonstrate its expression in endothelial cells of the brain vasculature at the morphological level by means of immunohistochemical techniques. Using an improved fixation strategy (4 % paraformaldehyde at pH 11, in the presence of EDTA and the sensitive alkaline phosphatase as a detection system, we show that claudin-3 is present in mouse epithelia from embryonic day 14 onwards. In brain, it is restricted to the anlage of choroid plexus in the ventricles, together with claudin-1 and -2. In adult mice, it is clearly delineating the epithelium of the choroid plexus in the lateral and fourth ventricles. In contrast, in cerebral blood vessels claudin-3 as well as claudin-1 and -2 are absent in cerebral blood vessels during all developmental stages up to adulthood. Rather, the BBB is characterized by the presence of claudin-5, ZO-1 and occludin. Thus, in mice claudin-3 is an important constituent of TJ in the embryonic and in the adult choroid plexus.

  8. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional...... interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise....

  9. Altered expression of epithelial junctional proteins in atopic asthma: Possible role in inflammation

    NARCIS (Netherlands)

    W.I. de Boer (Pim); H.S. Sharma (Hari); S.M. Baelemans (Sophia); H.C. Hoogsteden (Henk); B.N.M. Lambrecht (Bart); G.J. Braunstahl (Gert-Jan)

    2008-01-01

    textabstractEpithelial cells form a tight barrier against environmental stimuli via tight junctions (TJs) and adherence junctions (AJs). Defects in TJ and AJ proteins may cause changes in epithelial morphology and integrity and potentially lead to faster trafficking of inflammatory cells through the

  10. Transitions of protein traffic from cardiac ER to junctional SR.

    Science.gov (United States)

    Sleiman, Naama H; McFarland, Timothy P; Jones, Larry R; Cala, Steven E

    2015-04-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic.

  11. Transitions of protein traffic from cardiac ER to junctional SR

    Science.gov (United States)

    Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.

    2015-01-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca2+ release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24 h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48 h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQD-sRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed (delTRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and del TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic. PMID:25640161

  12. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid.

    Science.gov (United States)

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L

    2015-01-01

    Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. Copyright © 2015 International Society for Peritoneal Dialysis.

  13. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins.

    Science.gov (United States)

    Jariwala, Ruchi; Mandal, Hemanti; Bagchi, Tamishraha

    2017-09-01

    The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; PGRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.

  14. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    Science.gov (United States)

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  15. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions.

    Science.gov (United States)

    Raleigh, David R; Marchiando, Amanda M; Zhang, Yong; Shen, Le; Sasaki, Hiroyuki; Wang, Yingmin; Long, Manyuan; Turner, Jerrold R

    2010-04-01

    In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain. Phylogenetic tree reconstruction; analysis of RNA and protein tissue distribution; immunofluorescent and electron microscopic examination of subcellular localization; characterization of intracellular trafficking, protein interactions, dynamic behavior, and siRNA knockdown effects; and description of remodeling after in vivo immune activation show that marvelD3, occludin, and tricellulin have distinct but overlapping functions at the tight junction. Although marvelD3 is able to partially compensate for occludin or tricellulin loss, it cannot fully restore function. We conclude that marvelD3, occludin, and tricellulin define the tight junction-associated MARVEL protein family. The data further suggest that these proteins are best considered as a group with both redundant and unique contributions to epithelial function and tight junction regulation.

  16. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Directory of Open Access Journals (Sweden)

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  17. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

  18. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability.

    Science.gov (United States)

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-14

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ(-/-) mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper-tyrosine-phosphorylated in the PTPσ(-/-) mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ(-/-) mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD.

  19. Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training.

    Science.gov (United States)

    Curzi, Davide; Baldassarri, Valentina; De Matteis, Rita; Salamanna, Francesca; Bolotta, Alessandra; Frizziero, Antonio; Fini, Milena; Marini, Marina; Falcieri, Elisabetta

    2015-04-01

    Myotendinous junction is the muscle-tendon interface through which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 ± 0.4 nm) with respect to the control group (43.9 ± 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.

  20. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  1. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Jun-Xing Zhao; Nan Hu; Jun Ren; Min Du; Mei-Jun Zhu

    2012-01-01

    AIM:To investigate the effect of side-stream smoking on gut microflora composition,intestinal inflammation and expression of tight junction proteins.METHODS:C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks.Cecal contents were collected for microbial composition analysis.Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins.RESULTS:Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria,Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus),Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice.Meanwhile,side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα,accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6.The contents of tight junction proteins,claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking.In addition,side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling,while inhibiting AMP-activated protein kinase in the large intestine.CONCLUSION:Side-stream smoking altered gut microflora composition and reduced the inflammatory response,which was associated with increased expression of tight junction proteins.

  2. Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development.

    Science.gov (United States)

    Dianati, Elham; Poiraud, Jérémy; Weber-Ouellette, Anne; Plante, Isabelle

    2016-08-01

    Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.

  3. Roles of neuro-exocytotic proteins at the neuromuscular junction

    NARCIS (Netherlands)

    Sons-Michel, Michèle S.

    2011-01-01

    The aim of the studies described in the thesis was to elucidate the roles of several neuro-exocytotic proteins at the motor nerve terminal in neuromuscular synaptic transmission, making use of genetic knockout (KO) mice, each missing one (or more) neuro-exocytotic proteins. In addition, it was

  4. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein

    NARCIS (Netherlands)

    Giepmans, B N; Moolenaar, W H

    1998-01-01

    Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated

  5. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles.

    Science.gov (United States)

    Mora, Jocelyn M; Fenwick, Mark A; Castle, Laura; Baithun, Marianne; Ryder, Timothy A; Mobberley, Margaret; Carzaniga, Raffaella; Franks, Stephen; Hardy, Kate

    2012-05-01

    In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.

  6. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1.

    Science.gov (United States)

    Moiseeva, E D; Bazhulina, N P; Gursky, Y G; Grokhovsky, S L; Surovaya, A N; Gursky, G V

    2017-03-01

    In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg(2+) ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg(2+) ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3'-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences.

  7. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions.

    Science.gov (United States)

    Totsingan, Filbert; Bell, Anthony J

    2013-11-01

    The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.

  8. Peanut Allergens Alter Intestinal Barrier Permeability and Tight Junction Localisation in Caco-2 Cell Cultures1

    Directory of Open Access Journals (Sweden)

    Dwan B. Price

    2014-05-01

    Full Text Available Background/Aims: Allergen absorption by epithelia may play an important role in downstream immune responses. Transport mechanisms that can bypass Peyer's patches include transcellular and paracellular transport. The capacity of an allergen to cross via these means can modulate downstream processing of the allergen by the immune system. The aim of this study was to investigate allergen-epithelial interactions of peanut allergens with the human intestinal epithelium. Methods: We achieved this using the human Caco-2 cell culture model, exposed to crude peanut extract. Western and immunofluorescence analysis were used to identify the cellular and molecular changes of peanut extract on the intestinal epithelium. Results: Following exposure of Caco-2 cells to peanut extract, binding of the peanut allergens Ara h 1 and Ara h 2 to the apical cellular membrane and transcytosis across the monolayers were observed. Additionally, the co-localisation of the transmembrane tight junction proteins occludin, JAM-A and claudin-1, with the intracellular adhesion protein ZO-1 was modified. Conclusion: Disruption of Caco-2 barrier integrity through tight junction disruption may enable movement of peanut proteins across the intestinal epithelium. This accounts for peanut's increased allergenicity, compared to other food allergens, and provides an explanation for the potency of peanut allergens in immune response elicitation.

  9. Grainy head promotes expression of septate junction proteins and influences epithelial morphogenesis.

    Science.gov (United States)

    Narasimha, Maithreyi; Uv, Anne; Krejci, Alena; Brown, Nicholas H; Bray, Sarah J

    2008-03-15

    Transcription factors of the Grainy head (Grh) family are required in epithelia to generate the impermeable apical layer that protects against the external environment. This function is conserved in vertebrates and invertebrates, despite the differing molecular composition of the protective barrier. Epithelial cells also have junctions that create a paracellular diffusion barrier (tight or septate junctions). To examine whether Grh has a role in regulating such characteristics, we used an epidermal layer in the Drosophila embryo that has no endogenous Grh and lacks septate junctions, the amnioserosa. Expression of Grh in the amnioserosa caused severe defects in dorsal closure, a process similar to wound closure, and induced robust expression of the septate junction proteins Coracle, Fasciclin 3 and Sinuous. Grh-binding sites are present within the genes encoding these proteins, consistent with them being direct targets. Removal of Grh from imaginal disc cells caused a reduction in Fasciclin 3 and Coracle levels, suggesting that Grh normally fine tunes their epithelial expression and hence contributes to barrier properties. The fact that ectopic Grh arrests dorsal closure also suggests that this dynamic process relies on epithelia having distinct adhesive properties conferred by differential deployment of Grh.

  10. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family

    Directory of Open Access Journals (Sweden)

    Balda Maria S

    2009-12-01

    Full Text Available Abstract Background Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction. Results Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance. Conclusions Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties.

  11. Gap junction proteins: master regulators of the planarian stem cell response to tissue maintenance and injury.

    Science.gov (United States)

    Peiris, T Harshani; Oviedo, Néstor J

    2013-01-01

    Gap junction (GJ) proteins are crucial mediators of cell-cell communication during embryogenesis, tissue regeneration and disease. GJ proteins form plasma membrane channels that facilitate passage of small molecules across cells and modulate signaling pathways and cellular behavior in different tissues. These properties have been conserved throughout evolution, and in most invertebrates GJ proteins are known as innexins. Despite their critical relevance for physiology and disease, the mechanisms by which GJ proteins modulate cell behavior are poorly understood. This review summarizes findings from recent work that uses planarian flatworms as a paradigm to analyze GJ proteins in the complexity of the whole organism. The planarian model allows access to a large pool of adult somatic stem cells (known as neoblasts) that support physiological cell turnover and tissue regeneration. Innexin proteins are present in planarians and play a fundamental role in controlling neoblast behavior. We discuss the possibility that GJ proteins participate as cellular sensors that inform neoblasts about local and systemic physiological demands. We believe that functional analyses of GJ proteins will bring a complementary perspective to studies that focus on the temporal expression of genes. Finally, integrating functional studies along with molecular genetics and epigenetic approaches would expand our understanding of cellular regulation in vivo and greatly enhance the possibilities for rationally modulating stem cell behavior in their natural environment. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  13. SynProt: A Comprehensive Database for Proteins of the Detergent-Resistant Synaptic Junctions Fraction

    Directory of Open Access Journals (Sweden)

    Rainer ePielot

    2012-06-01

    Full Text Available Chemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse and some human proteins, which mainly have been manually extracted from twelve proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed. We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.

  14. Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins.

    Science.gov (United States)

    Kim, Seyeun; Gardner, Jeffrey F

    2011-03-01

    CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.

  15. Effect of salvianolate on intestinal epithelium tight junction protein zonula occludens protein 1 in cirrhotic rats

    Institute of Scientific and Technical Information of China (English)

    Dan-Hong Yang; Zai-Yuan Ye; Yuan-Jun Xie; Xu-Jun He; Wen-Juan Xu; Wei-Ming Zhou

    2012-01-01

    AIM:To study the effect of salvianolate on tight junctions (TJs) and zonula occludens protein 1 (ZO-1) in small intestinal mucosa of cirrhotic rats.METHODS:Cirrhosis was induced using carbon tetrachloride.Rats were randomly divided into the untreated group,low-dose salvianolate (12 mg/kg) treatment group,medium-dose salvianolate (24 mg/kg) treatment group,and high-dose salvianolate (48 mg/kg) treatment group,and were treated for 2 wk.Another 10 healthy rats served as the normal control group.Histological changes in liver tissue samples were observed under a light microscope.We evaluated morphologic indices of ileal mucosa including intestinal villi width and thickness of mucosa and intestinal wall using a pathological image analysis system.Ultrastructural changes in small intestinal mucosa were investigated in the five groups using transmission electron microscopy.The changes in ZO-1 expression,a tight junction protein,were analyzed by immunocytochemistry.The staining index was calculated as the product of the staining intensity score and the proportion of positive cells.RESULTS:In the untreated group,hepatocytes showed a disordered arrangement,fatty degeneration was extensive,swelling was obvious,and disorganized lobules were divided by collagen fibers in hepatic tissue,which were partly improved in the salvianolate treated groups.In the untreated group,abundant lymphocytes infiltrated the fibrous tissue with proliferation of bile ducts,and collagen fibers gradually decreased and damaged hepatic lobules were partly repaired following salvianolate treatment.Compared with the untreated group,no differences in intestinal villi width between the five groups were observed.The villi height as well as mucosa and intestinal wall thickness gradually thickened with salvianolate treatment and were significantly shorter in the untreated group compared with those in the salvianolate treatment groups and normal group (P < 0.01).The number of microvilli decreased and showed

  16. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    Science.gov (United States)

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS.

  17. Expression of gap junction protein connexin 43 in bovine urinary bladder tumours.

    Science.gov (United States)

    Corteggio, A; Florio, J; Roperto, F; Borzacchiello, G

    2011-01-01

    The aetiopathogenesis of urinary bladder tumours in cattle involves prolonged ingestion of bracken fern and infection by bovine papillomavirus types 1 or 2 (BPV-1/2). The oncogenic activity of BPV is largely associated with the major oncoprotein E5. Gap junctions are the only communicating junctions found in animal tissues and are composed of proteins known as connexins. Alterations in connexin expression have been associated with oncogenesis. The present study investigated biochemically and immunohistochemically the expression of connexin 43 in samples of normal (n=2), dysplastic (n=3) and neoplastic (n=23) bovine urothelium. The tumours included 10 carcinomas in situ, five papillary urothelial carcinomas and eight invasive urothelial carcinomas. Normal and dysplastic urothelium had membrane expression of connexin 43, but this was reduced in samples of carcinoma in situ. Papillary urothelial carcinomas showed moderate cytoplasmic and membrane labelling, while invasive carcinoma showed loss of connexin 43 expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  19. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Anam Naz

    2017-09-01

    Full Text Available Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  20. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    Science.gov (United States)

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  1. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    Directory of Open Access Journals (Sweden)

    Andrew Marsh

    Full Text Available Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29. Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the

  2. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells.

    Science.gov (United States)

    Kato, Tatsuya; Sato, Nagato; Hayama, Satoshi; Yamabuki, Takumi; Ito, Tomoo; Miyamoto, Masaki; Kondo, Satoshi; Nakamura, Yusuke; Daigo, Yataro

    2007-09-15

    We identified a novel gene HJURP (Holliday junction-recognizing protein) whose activation seemed to play a pivotal role in the immortality of cancer cells. HJURP was considered a possible downstream target for ataxia telangiectasia mutated signaling, and its expression was increased by DNA double-strand breaks (DSB). HJURP was involved in the homologous recombination pathway in the DSB repair process through interaction with hMSH5 and NBS1, which is a part of the MRN protein complex. HJURP formed nuclear foci in cells at S phase and those subjected to DNA damage. In vitro assays implied that HJURP bound directly to the Holliday junction and rDNA arrays. Treatment of cancer cells with small interfering RNA (siRNA) against HJURP caused abnormal chromosomal fusions and led to genomic instability and senescence. In addition, HJURP overexpression was observed in a majority of lung cancers and was associated with poor prognosis as well. We suggest that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells and is a potential novel therapeutic target for the development of anticancer drugs.

  3. EMP-1 is a junctional protein in a liver stem cell line and in the liver.

    Science.gov (United States)

    Lee, Hsuan-Shu; Sherley, James L; Chen, Jeremy J W; Chiu, Chien-Chang; Chiou, Ling-Ling; Liang, Ja-Der; Yang, Pan-Chyr; Huang, Guan-Tarn; Sheu, Jin-Chuan

    2005-09-09

    In an attempt to discover cell markers for liver stem cells, a cDNA microarray analysis was carried out to compare the gene expression profiles between an adult liver stem cell line, Lig-8, and mature hepatocytes. Several genes in the categories of extracellular matrix, cell membrane, cell adhesion, transcription factor, signal molecule, transporter, and metabolic enzyme were shown to be differentially expressed in Lig-8 cells. Among them, epithelial membrane protein (EMP)-1 has been previously implicated with stem cell phenotypes. Antiserum to EMP-1 was produced to localize its expression. On monolayers of Lig-8 cells, EMP-1 was expressed along the intercellular border. In the liver harboring proliferating oval cells, the liver progenitors, EMP-1 was localized as ribbon bands, a staining pattern for epithelial junctions, all the way through bile duct epithelia, oval cell ductules, and into peri-hepatocytic regions. These peri-hepatocytic regions were proved to be bile canaliculi by co-localization of EMP-1 and dipeptidyl peptidase IV, an enzyme located on bile canaliculi. This report is the first to indicate EMP-1 to be a junctional protein in the liver.

  4. Tight junction protein claudin 4 in gastric carcinoma and its relation to lymphangiogenic activity.

    Science.gov (United States)

    Shareef, Mohamed Moustafa; Radi, Dina Mohammed Adel; Eid, Asmaa Mustafa Mohammed

    2015-01-01

    Gastric cancer is the second most common cause of cancer-related death worldwide. Claudins are a family of tight junction proteins that are biologically relevant in many cancer progression steps. This study aimed to investigate the expression of the intestinal claudin (claudin 4) in gastric carcinoma and to evaluate its relation to the different clinicopathologic prognostic parameters, especially lymphangiogenesis (production of new lymphatic vessels, measured by lymphovascular density (LVD)) and lymphovascular invasion (LVI). Fifty-five gastric carcinoma specimens were immunohistochemically stained for claudin 4 and D2-40 (for detection of lymphatic vessel endothelium). High expression of claudin 4 was detected in 26 of 55 (47.3%) cases. Low expression of claudin 4 was related to poorly differentiated type (p=0.001), non-intestinal (diffuse) type (p=0.001), deeper tumour invasion (pgastric carcinoma and lost in poorly differentiated diffuse type. So, claudin 4 may be used as one of the differentiating markers between the two major types of gastric carcinoma (intestinal vs. diffuse). LVD and LVI were related to higher incidence of lymph node metastasis and therefore could be used as predictive markers for lymph node metastasis in limited specimens during early gastric carcinoma to determine the need for more invasive surgery. Low expression of claudin 4 was related to lymphangiogenesis. This may shed light on the relation of tight junction protein expression and lymphangiogenesis. Copyright © 2015 Arab Journal of Gastroenterology. Published by Elsevier B.V. All rights reserved.

  5. Expression of junctional adhesion molecule-1 in rat corneal tissue%接合黏附分子-1在大鼠角膜中的表达研究

    Institute of Scientific and Technical Information of China (English)

    王光洁; 蒋华

    2012-01-01

    背景 接合黏附分子-1(JAM-1)是新发现的跨膜蛋白,参与细胞紧密连接的结构组成和功能发挥.在眼组织方面,紧密连接对维持角膜的透明性十分重要,但是目前就JAM-1在角膜紧密连接结构和功能方面的研究较少. 目的 确定JAM-1在大鼠角膜上皮层、基质层和内皮层的构成.方法 选取4只SPF级Wistar大鼠,2只用于JAM-1基因在角膜组织中表达的逆转录聚合酶链反应(RT-PCR)检测,另2只用于免疫组织化学检测.动物过量麻醉处死后获得角膜组织并制备角膜上皮、基质和内皮标本,RT-PCR法检测角膜标本中JAM-1、occludin和claudin-1 mRNA的表达.反应产物行质量分数1.5%琼脂糖凝胶电泳并用凝胶成像系统进行分析.用兔抗鼠JAM-1单克隆抗体对角膜石蜡切片、上皮及内皮铺片行免疫组织化学检测,评估JAM-1蛋白在大鼠角膜组织各层的表达部位和表达强度. 结果 在大鼠角膜各层均可检测到JAM-1、occludin和claudin-1 mRNA的表达,PCR熔解曲线为清晰的单峰.角膜组织各层中JAM-1 mRNA表达水平与occludin mRNA相似,均高于claudin-1 mRNA.3种黏附分子均在上皮层表达最强,角膜基质层表达较弱.免疫组织化学检测显示,JAM-1蛋白在角膜各层均有明确的阳性染色,角膜上皮基底层的表达强于基质层和内皮层.角膜上皮、内皮铺片检测显示,JAM-1蛋白主要表达于上皮细胞和内皮细胞的连接部位,而角膜内皮中JAM-1蛋白的阳性染色广泛而弥散.结论 JAM-1作为细胞连接的构成成分,在角膜上皮层、内皮层和基质层均有表达,但其表达的形态和水平因组织层次的不同而不同.%Background Junctional adhesion molecule-1 (JAM-1) is intercellular transmembrane protein newly discovered and associated with the tight junction.Tight junction plays an important role in keeping the transparency of cornea,but there are few studies about JAM-1 in cornea tight junction. Objective

  6. A Gap Junction Protein, Inx2, Modulates Calcium Flux to Specify Border Cell Fate during Drosophila oogenesis

    Science.gov (United States)

    Ghosh, Ritabrata; Deshpande, Girish

    2017-01-01

    Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis. Furthermore, detailed experimental analysis has uncovered that Inx2 also regulates a calcium flux that transmits across the follicle cells. We propose that Inx2 mediated calcium flux in the follicle cells stimulates endocytosis by altering Dynamin (Shibire) distribution which is in turn critical for careful calibration of STAT activation and, thus for BC specification. Together our data provide unprecedented molecular insights into how gap junction proteins can regulate cell-type specification. PMID:28114410

  7. Protein preconcentration using nanofractures generated by nanoparticle-assisted electric breakdown at junction gaps.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available Sample preconcentration is an important step that increases the accuracy of subsequent detection, especially for samples with extremely low concentrations. Due to the overlapping of electrical double layers in the nanofluidic channel, the concentration polarization effect can be generated by applying an electric field. Therefore, a nonlinear electrokinetic flow is induced, which results in the fast accumulation of proteins in front of the induced ionic depletion zone, the so-called exclusion-enrichment effect. Nanofractures were created in this work to preconcentrate proteins via the exclusion-enrichment effect. The protein sample was driven by electroosmotic flow and accumulated at a specific location. The preconcentration chip for proteins was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. Nanofractures were formed by utilizing nanoparticle-assisted electric breakdown. The proposed method for nanofracture formation that utilizes nanoparticle deposition at the junction gap between microchannels greatly decreases the required electric breakdown voltage. The experimental results indicate that a protein sample with an extremely low concentration of 1 nM was concentrated to 1.5×10(4-fold in 60 min using the proposed chip.

  8. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules

    Directory of Open Access Journals (Sweden)

    Anna Hejmej

    2013-01-01

    Full Text Available In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP on the expression and distribution of adherens and gap junction proteins, N-cadherin, β-catenin, and connexin 43 (Cx43, in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β-catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w. resulted in the reduction of junction proteins expressions (P<0.05, P<0.01 and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P<0.05, N-cadherin, and β-catenin (statistically nonsignificant levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β-catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway.

  9. Effect of FCCP on tight junction permeability and cellular distribution of ZO-1 protein in epithelial (MDCK) cells.

    Science.gov (United States)

    Li, C X; Poznansky, M J

    1990-12-14

    The effect of the uncoupler of oxidative phosphorylation, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), on the tight junction of Madin-Darby canine kidney cells was examined. FCCP induced an abrupt decrease in the transepithelial electrical resistance of the confluent monolayers over a period of 20 s. When FCCP was withdrawn from the incubation medium, the monolayer resistance recovered to close to the original level in less than 2 h. Staining of the tight junction-associated protein ZO-1 showed that the changes in transepithelial electrical resistance were accompanied by a diffusing of the protein away from cell peripheries and a reconcentration to the tight junction areas following resistance recovery. Intracellular pH was decreased by FCCP on a similar time-scale with no obvious changes in ATP levels over this time-course. These data suggest that the uncoupler FCCP has a profound effect on tight junction permeability and cellular distribution of the tight junction protein ZO-1 in the epithelial cells and that it probably acts by breaking down proton gradients and altering intracellular pH.

  10. The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier.

    Science.gov (United States)

    Bangsow, Thorsten; Baumann, Ewa; Bangsow, Carmen; Jaeger, Martina H; Pelzer, Bernhard; Gruhn, Petra; Wolf, Sabine; von Melchner, Harald; Stanimirovic, Danica B

    2008-06-01

    In the central nervous system, a constant microenvironment required for neuronal cell activity is maintained by the blood-brain barrier (BBB). The BBB is formed by the brain microvascular endothelial cells (BMEC), which are sealed by tight junctions (TJ). To identify genes that are differentially expressed in BMEC compared with peripheral endothelial cells, we constructed a subtractive cDNA library from porcine BMEC (pBMEC) and aortic endothelial cells (AOEC). Screening the library for differentially expressed genes yielded 26 BMEC-specific transcripts, such as solute carrier family 35 member F2 (SLC35F2), ADP-ribosylation factor-like 5B (ARL5B), TSC22 domain family member 1 (TSC22D1), integral membrane protein 2A (ITM2A), and epithelial membrane protein 1 (EMP1). In this study, we show that EMP1 transcript is enriched in pBMEC compared with brain tissue and that EMP1 protein colocalizes with the TJ protein occludin in mouse BMEC by coimmunoprecipitation and in rat brain vessels by immunohistochemistry. Epithelial membrane protein 1 expression was transiently induced in laser-capture microdissected rat brain vessels after a 20-min global cerebral ischemia, in parallel with the loss of occludin immunoreactivity. The study identifies EMP1 as a novel TJ-associated protein of the BBB and suggests its potential role in the regulation of the BBB function in cerebral ischemia.

  11. Expression of gap junction proteins connexins 26, 30, and 43 in Dupuytren's disease.

    Science.gov (United States)

    Holzer, Lukas A; Cör, Andrej; Holzer, Gerold

    2014-02-01

    Dupuytren's disease (DD) is a benign fibroproliferative process of the palmar aponeurosis showing similarities to wound healing. Communication of cells involved in wound healing is mediated by the composition of gap junction (GJ) proteins. We investigated the expression of 3 GJ proteins, connexins 26, 30, and 43 (Cx26, Cx30, and Cx43) in DD. Fragments of Dupuytren's tissue from 31 patients (mean age 56 (30-76) years, 24 male) were analyzed immunohistochemically and compared to control tissue for expression of the GJ proteins Cx26, Cx30, and Cx43 and also alfa-smooth muscle actin (α-SMA). 14 of 31 samples could be attributed to the involutional phase (α-SMA positive) whereas 17 samples had to be considered cords in the residual phase (α-SMA negative). Expression of Cx26 and Cx43 was seen in 12 of the 14 samples from the involutional phase, and Cx30 was seen in 7 of these. Only 4 of the 17 samples from the residual phase showed any Cx, and there was none in the controls. The high expression of GJ proteins Cx26, Cx30, and Cx43 in α-SMA positive myofibroblast-rich nodules, which are characteristic of the active involutional phase of DD, suggests that connexins could be a novel treatment target for the treatment of DD.

  12. Regulation of gap-junction protein connexin 43 by β-adrenergic receptor stimulation in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yi XIA; Kai-zheng GONG; Ming XU; You-yi ZHANG; Ji-hong GUO; Yao SONG; Ping ZHANG

    2009-01-01

    Aim:β-adrenergic receptor (β-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties.Connexin 43 (Cx43),the predominant gap-junction protein in the heart,has an indispensable role in modulating cardiac electric activities by affecting gap-junction function.The present study investigates the effects of short-term stimulation of β-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function.Methods:The level of Cx43 expression in neonatal rat cardiomyocytes (NRCM) was detected by a Western blotting assay.The GJIC function was evaluated by scrape loading/dye transfer assay.Results:Stimulation of β-AR by the agonist isoproterenol for 5 min induces the up-regulation of nonphosphorylated Cx43 protein level,but not total Cx43.Selective β2-AR inhibitor ICI 118551,but not β-AR inhibitor CGP20712,could fully abolish the effect.Moreover,pretreatment with both protein kinase A inhibitor H89 and G,protein inhibitor pertussis toxin also inhibited the isoproterenol-induced increase of nonphosphorylated Cx43 expression.Isoproterenol-induced up-regulation of nonphosphorylated Cx43 is accompanied with enhanced GJIC function.Conclusion:Taken together,β2-AR stimulation increases the expression of nonphosphorylated Cx43,thereby enhancing the gating function of gap junctions in cardiac myocytes in both a protein kinase A-and G1-dependent manner.

  13. Eya1 protein phosphatase regulates tight junction formation in lung distal epithelium.

    Science.gov (United States)

    El-Hashash, Ahmed H K; Turcatel, Gianluca; Varma, Saaket; Berika, Mohamed; Al Alam, Denise; Warburton, David

    2012-09-01

    Little is known about the regulatory mechanisms underlying lung epithelial tight junction (TJ) assembly, which is inextricably linked to the preservation of epithelial polarity, and is highly coordinated by proteins that regulate epithelial cell polarity, such as aPKCζ. We recently reported that Eya1 phosphatase functions through aPKCζ-Notch1 signaling to control cell polarity in the lung epithelium. Here, we have extended these observations to TJ formation to demonstrate that Eya1 is crucial for the maintenance of TJ protein assembly in the lung epithelium, probably by controlling aPKCζ phosphorylation levels, aPKCζ-mediated TJ protein phosphorylation and Notch1-Cdc42 activity. Thus, TJs are disassembled after interfering with Eya1 function in vivo or during calcium-induced TJ assembly in vitro. These effects are reversed by reintroduction of wild-type Eya1 or partially inhibiting aPKCζ in Eya1siRNA cells. Moreover, genetic activation of Notch1 rescues Eya1(-/-) lung epithelial TJ defects. These findings uncover novel functions for the Eya1-aPKCζ-Notch1-Cdc42 pathway as a crucial regulatory mechanism of TJ assembly and polarity of the lung epithelium, providing a conceptual framework for future mechanistic and translational studies in this area.

  14. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  15. Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus.

    Science.gov (United States)

    Zhao, Hua; Waite, J Herbert

    2006-11-28

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of approximately 93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-l-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including approximately 36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins.

  16. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK.

    Directory of Open Access Journals (Sweden)

    Xiao Xiao Tang

    Full Text Available The tight junctions (TJs, characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK. AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK.

  17. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks.

    Science.gov (United States)

    Machwe, Amrita; Karale, Rajashree; Xu, Xioahua; Liu, Yilun; Orren, David K

    2011-08-16

    Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.

  18. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier.

    Science.gov (United States)

    Sonoda, N; Furuse, M; Sasaki, H; Yonemura, S; Katahira, J; Horiguchi, Y; Tsukita, S

    1999-10-04

    Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.

  19. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.

    Science.gov (United States)

    Nighot, Prashant K; Hu, Chien-An Andy; Ma, Thomas Y

    2015-03-13

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.

  20. The RecA/RAD51 protein drives migration of Holliday junctions via polymerization on DNA.

    Science.gov (United States)

    Rossi, Matthew J; Mazina, Olga M; Bugreev, Dmitry V; Mazin, Alexander V

    2011-04-19

    The Holliday junction (HJ), a cross-shaped structure that physically links the two DNA helices, is a key intermediate in homologous recombination, DNA repair, and replication. Several helicase-like proteins are known to bind HJs and promote their branch migration (BM) by translocating along DNA at the expense of ATP hydrolysis. Surprisingly, the bacterial recombinase protein RecA and its eukaryotic homologue Rad51 also promote BM of HJs despite the fact they do not bind HJs preferentially and do not translocate along DNA. RecA/Rad51 plays a key role in DNA double-stranded break repair and homologous recombination. RecA/Rad51 binds to ssDNA and forms contiguous filaments that promote the search for homologous DNA sequences and DNA strand exchange. The mechanism of BM promoted by RecA/RAD51 is unknown. Here, we demonstrate that cycles of RecA/Rad51 polymerization and dissociation coupled with ATP hydrolysis drives the BM of HJs.

  1. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. © 2013.

  2. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells.

    Science.gov (United States)

    Jaramillo, Blanca Estela; Ponce, Arturo; Moreno, Jacqueline; Betanzos, Abigail; Huerta, Miriam; Lopez-Bayghen, Esther; Gonzalez-Mariscal, Lorenza

    2004-07-01

    ZO-2 is a MAGUK protein that in confluent epithelial sheets localizes at tight junctions (TJ) whereas in sparse cultures accumulates in clusters at the nucleus. Here, we have characterized several nuclear properties of ZO-2. We observe that ZO-2 is present in the nuclear matrix and co-immunoprecipitates with lamin B(1) and actin from the nuclei of sparse cultures. We show that ZO-2 presents several NLS at its amino region, that when deleted, diminish the nuclear import of the ZO-2 amino segment and impair the ability of the region to regulate the transcriptional activity of promoters controlled by AP-1. Several RS repeats are detected in the ZO-2 amino segment, however, their deletion does not preclude the display of a speckled nuclear pattern. ZO-2 displays two putative NES. However, only the second one appears to be functional, as when conjugated to ovalbumin (OV), it is able to translocate this protein from the nucleus to the cytoplasm in a leptomycin B-sensitive way.

  3. EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier.

    Science.gov (United States)

    Ding, Gui-Rong; Qiu, Lian-Bo; Wang, Xiao-Wu; Li, Kang-Chu; Zhou, Yong-Chun; Zhou, Yan; Zhang, Jie; Zhou, Jia-Xing; Li, Yu-Rong; Guo, Guo-Zhen

    2010-07-15

    The blood-brain barrier (BBB) is critical to maintain cerebral homeostasis. In this study, we examined the effects of exposure to electromagnetic pulse (EMP) on the functional integrity of BBB and, on the localization and expression of tight junction (TJ) proteins (occludin and ZO-1) in rats. Animals were sham or whole-body exposed to EMP at 200 kV/m for 400 pulses. The permeability of BBB in rat cerebral cortex was examined by using Evans Blue (EB) and lanthanum nitrate as vascular tracers. The localization and expression of TJ proteins were assessed by western blot and immunofluorescence analysis, respectively. The data indicated that EMP exposure caused: (i) increased permeability of BBB, and (ii) altered localization as well as decreased levels of TJ protein ZO-1. These results suggested that the alteration of ZO-1 may play an important role in the disruption of tight junctions, which may lead to dysfunction of BBB after EMP exposure.

  4. Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins.

    Science.gov (United States)

    Markov, Alexander G; Falchuk, Evgeny L; Kruglova, Natalia M; Rybalchenko, Oksana V; Fromm, Michael; Amasheh, Salah

    2014-11-01

    Claudin tight junction proteins have been identified to primarily determine intestinal epithelial barrier properties. While functional contribution of single claudins has been characterized in detail, information on the interplay with secretory mechanisms in native intestinal epithelium is scarce. Therefore, effects of cholera toxin and theophylline on rat colon were analyzed, including detection of sealing claudins. Tissue specimens were stripped off submucosal tissue layers and mounted in Ussing chambers, and short-circuit current (ISC) and transepithelial resistance (TER) were recorded. In parallel, expression and localization of claudins was analyzed and histological studies were performed employing hematoxylin-eosin staining and light and electron microscopy. Theophylline induced a strong increase of ISC in colon tissue specimens. In parallel, a decrease of TER was observed. In contrast, cholera toxin did not induce a significant increase of ISC, whereas an increase of TER was detected after 120 min. Western blots of membrane fractions revealed an increase of claudin-3 and -4 after incubation with cholera toxin, and theophylline induced an increase of claudin-4. In accordance, confocal laser-scanning microscopy exhibited increased signals of claudin-3 and -4 after incubation with cholera toxin, and increased signals of claudin-4 after incubation with theophylline, within tight junction complexes. Morphological analyses revealed no general changes of tight junction complexes, but intercellular spaces were markedly widened after incubation with cholera toxin and theophylline. We conclude that cholera toxin and theophylline have different effects on sealing tight junction proteins in native colon preparations, which may synergistically contribute to transport functions, in vitro.

  5. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation.

    Science.gov (United States)

    Kolosov, Dennis; Bui, Phuong; Donini, Andrew; Wilkie, Mike P; Kelly, Scott P

    2017-08-10

    This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two Occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a, and tric were broadly expressed in larval lamprey, with greatest abundance of ocln in gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins respectively while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na(+)] and [Cl(-)] reduced, but not [Ca(++)], and carcass moisture content increased. In association, Ocln abundance increased in skin and kidney, but reduced in gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance was also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate. © 2017. Published by The Company of Biologists Ltd.

  6. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions.

    Science.gov (United States)

    Iverson, Douglas; Serrano, Crystal; Brahan, Ann Marie; Shams, Arik; Totsingan, Filbert; Bell, Anthony J

    2015-12-01

    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.

  7. Role of calcium and vesicle-docking proteins in remobilising dormant neuromuscular junctions in desert frogs.

    Science.gov (United States)

    Lavidis, Nickolas A; Hudson, Nicholas J; Choy, Peng T; Lehnert, Sigrid A; Franklin, Craig E

    2008-01-01

    Despite prolonged immobility the desert frog, Cyclorana alboguttata, suffers little impairment in muscle function. To determine compensatory mechanisms at neuromuscular junctions, transmitter release was examined along primary terminals in C. alboguttata iliofibularis muscle. Using extracellular recording we found the amplitudes of evoked endplate currents were significantly smaller in dormant frogs. In active frogs we identified two negatively sloping proximal-distal gradients of transmitter frequency and quantal content; a shallow proximal-distal gradient with low probability of transmitter release (0.6). During aestivation, only a shallow gradient was identified. The high probability release sites in control frogs were inhibited during aestivation by a mechanism that could be reversed by (1) increasing the extracellular calcium concentration, and (2) increasing the frequency of stimulation. This suggests that transmitter vesicles are available during aestivation but not released. We quantified expression of messenger RNA transcripts coding for the transmitter vesicle-docking proteins synaptotagmin 1, syntaxin 1B and UNC-13. All three were rare transcripts maintained at control values during aestivation. Neuromuscular remobilisation after dormancy in C. alboguttata is more likely a product of rapidly reversible physiologic mechanisms than reorganisations of the neuromuscular transcriptome.

  8. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    XIA; Jiahui; (夏家辉); ZHENG; Duo; (郑多),; TANG; Dongsheng; (唐冬生); DAI; Heping; (戴和平); PAN; Qian; (潘乾); LONG; Zhigao; (龙志高); LIAO; Xiaodong; (廖晓东)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5 encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  9. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  10. Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes.

    Science.gov (United States)

    Martins-Marques, Tania; Catarino, Steve; Zuzarte, Monica; Marques, Carla; Matafome, Paulo; Pereira, Paulo; Girão, Henrique

    2015-04-15

    GJIC (gap junction intercellular communication) between cardiomyocytes is essential for synchronous heart contraction and relies on Cx (connexin)-containing channels. Increased breakdown of Cx43 has been often associated with various cardiac diseases. However, the mechanisms whereby Cx43 is degraded in ischaemic heart remain unknown. The results obtained in the present study, using both HL-1 cells and organotypic heart cultures, show that simulated ischaemia induces degradation of Cx43 that can be prevented by chemical or genetic inhibitors of autophagy. Additionally, ischaemia-induced degradation of Cx43 results in GJIC impairment in HL-1 cells, which can be restored by autophagy inhibition. In cardiomyocytes, ubiquitin signals Cx43 for autophagic degradation, through the recruitment of the ubiquitin-binding proteins Eps15 (epidermal growth factor receptor substrate 15) and p62, that assist in Cx43 internalization and targeting to autophagic vesicles, via LC3 (light chain 3). Moreover, we establish that degradation of Cx43 in ischaemia or I/R (ischaemia/reperfusion) relies upon different molecular players. Indeed, degradation of Cx43 during early periods of ischaemia depends on AMPK (AMP-activated protein kinase), whereas in late periods of ischaemia and I/R Beclin 1 is required. In the Langendorff-perfused heart, Cx43 is dephosphorylated in ischaemia and degraded during I/R, where Cx43 degradation correlates with autophagy activation. In summary, the results of the present study provide new evidence regarding the molecular mechanisms whereby Cx43 is degraded in ischaemia, which may contribute to the development of new strategies that aim to preserve GJIC and cardiac function in ischaemic heart.

  11. Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

    OpenAIRE

    Thal, Serge C.; Clara Luh; Eva-Verena Schaible; Ralph Timaru-Kast; Jana Hedrich; Luhmann, Heiko J.; Kristin Engelhard; Zehendner, Christoph M.

    2012-01-01

    Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthet...

  12. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling

    Science.gov (United States)

    Adams, Ralph; Burnley, Rebecca J.; Valenzano, Chiara R.; Qureshi, Omar; Doyle, Carl; Lumb, Simon; del Carmen Lopez, Maria; Griffin, Robert; McMillan, David; Taylor, Richard D.; Meier, Chris; Mori, Prashant; Griffin, Laura M.; Wernery, Ulrich; Kinne, Jörg; Rapecki, Stephen; Baker, Terry S.; Lawson, Alastair D. G.; Wright, Michael; Ettorre, Anna

    2017-01-01

    Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the “junctional epitope” nature of VHH6, a camelid single domain antibody recognizing the IL-6–gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions. PMID:28134246

  13. Cdc42-dependent Modulation of Tight Junctions and Membrane Protein Traffic in Polarized Madin-Darby Canine Kidney Cells

    Science.gov (United States)

    Rojas, Raul; Ruiz, Wily G.; Leung, Som-Ming; Jou, Tzuu-Shuh; Apodaca, Gerard

    2001-01-01

    Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity. PMID:11514615

  14. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  15. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells

    NARCIS (Netherlands)

    Soares, Ana Rosa; Martins-Marques, Tania; Ribeiro-Rodrigues, Teresa; Ferreira, Joao Vasco; Catarino, Steve; Pinho, Maria Joao; Zuzarte, Monica; Anjo, Sandra Isabel; Manadas, Bruno; Sluijter, Joost P. G.; Pereira, Paulo; Girao, Henrique

    2015-01-01

    Intercellular communication is vital to ensure tissue and organism homeostasis and can occur directly, between neighbour cells via gap junctions (GJ), or indirectly, at longer distances, through extracellular vesicles, including exosomes. Exosomes, as intercellular carriers of messenger molecules, m

  16. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption

    NARCIS (Netherlands)

    Simon, DB; Lu, Y; Choate, KA; Velazquez, H; Al-Sabban, E; Praga, M; Casari, C; Bettinelli, A; Colussi, C; Rodriguez-Soriano, J; McCredie, D; Milford, D; Sanjad, S; Lifton, RP

    1999-01-01

    Epithelia permit selective and regulated flux from apical to basolateral surfaces by transcellular passage through cells or paracellular flux between cells. Tight junctions constitute the barrier to paracellular conductance; however, Little is known about the specific molecules that mediate paracell

  17. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Kusch, Angelika [Department of Nephrology and Intensive Care Medicine, Charite Campus Virchow-Klinikum, Berlin D-13353 (Germany); Korenbaum, Elena; Haller, Hermann [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Dumler, Inna, E-mail: dumler.inna@mh-hannover.de [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany)

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  18. Cochlear implantation effect on deaf children with gap junction protein beta 2 gene mutation

    Institute of Scientific and Technical Information of China (English)

    KONG Ying; LIU Sha; WANG Su-ju; Li Shu-jing; LIANG Shuang

    2013-01-01

    Background The popularization and promotion of gene diagnosis technology makes it possible to detect deafness genes for children with congenital hearing impairment,and the proportion of gap junction protein beta 2 (GJB2) gene mutations in cochlear implant patients is 26.5% We did follow-up evaluation on auditory rehabilitation effect for all 31 deaf children with GJB2 gene mutation after cochlear implantation to provide a reference for such patients.Methods Application of “the genetic deafness gene chip detection kit” and “gene complete sequence analysis” were applied to conduct detection on common genetic deafness gene mutation hotspots of the hearing impaired children with cochlear implantation.To conduct auditory rehabilitation effect evaluation on all 31 cases of patients with GJB2 genetic deafness after 3,6 and 12 months of the operation respectively.The single factor repeated measure analysis of variance (ANOVA) was applied to analysis whether there were significant difference among the results of initial consonant of a Chinese syllable recognition at 3 different stages after the operation,the results of vowel of a Chinese syllable recognition at 3 different stages after the operation,and the results of two-syllable recognition at 3 different stages after the operation.Results The 235delC is the high-incidence mutational site in 31 cases of patients with GJB2 genetic deafness,and the total detection rate is up to 90.3% (28/31).There were significant differences in the initial consonant and the vowel of a Chinese syllable recognition rate,and the two-syllable recognition rates at 3,6,and 12 months after the operation (P<0.01).Conclusion Cochlear implantation is a safe and effective measure for auditory reconstruction,enabling patients with GJB2 hereditary severe sensorineural deafness to achieve auditory speech recognition effectively.

  19. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  20. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells.

    Science.gov (United States)

    Torres-Flores, Jesús M; Silva-Ayala, Daniela; Espinoza, Marco A; López, Susana; Arias, Carlos F

    2015-01-15

    Several molecules have been identified as receptors or coreceptors for rotavirus infection, including glycans, integrins, and hsc70. In this work we report that the tight junction proteins JAM-A, occludin, and ZO-1 play an important role during rotavirus entry into MA104 cells. JAM-A was found to function as coreceptor for rotavirus strains RRV, Wa, and UK, but not for rotavirus YM. Reassortant viruses derived from rotaviruses RRV and YM showed that the virus spike protein VP4 determines the use of JAM-A as coreceptor.

  1. Glucocorticoids upregulates transepithelial electrical resistance and expression of tight junction-related protein in human trabecular meshwork cells

    Institute of Scientific and Technical Information of China (English)

    ZHUO Ye-hong; HUANG Ya-lin; WEI Yan-tao; LING Yun-lan; LIN Ming-kai; GE Jian

    2005-01-01

    @@ The trabecular meshwork is located at the anterior chamber angle, and is the main route for the outflow of aqueous humor. It is composed of perforated sheets of collagen and elastic tissue covered by trabecular meshwork (TM) cells, forming a filter with decreasing pore size as the canal of Schlemm is approached. TM cells have some endothelial properties, such as the presence of intercellular junctional complexes, particularly tight junctions (TJs). TJs form paracellular seals between adjacent cells and act as fences that segregate protein (and partially lipid) components of the apical and basolateral plasma membrane domains. Under the electron microscope, TJs appear as a series of discrete contacts between the lateral membranes of adjacent cells.

  2. Enhanced Protein Production in Escherichia coli by Optimization of Cloning Scars at the Vector-Coding Sequence Junction

    DEFF Research Database (Denmark)

    Mirzadeh, Kiavash; Martinez, Virginia; Toddo, Stephen

    2015-01-01

    Protein production in Escherichia coli is a fundamental activity for a large fraction of academic, pharmaceutical, and industrial research laboratories. Maximum production is usually sought, as this reduces costs and facilitates downstream purification steps. Frustratingly, many coding sequences...... are poorly expressed even when they are codon-optimized and expressed from vectors with powerful genetic elements. In this study, we show that poor expression can be caused by certain nucleotide sequences (e.g., cloning scars) at the junction between the vector and the coding sequence. Since these sequences...... lie between the Shine-Dalgarno sequence and the start codon, they are an integral part of the translation initiation region. To identify the most optimal sequences, we devised a simple and inexpensive PCR-based step that generates sequence variants at the vector-coding sequence junction...

  3. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation.

    Science.gov (United States)

    Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S

    2007-02-01

    Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.

  4. The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio)

    Science.gov (United States)

    Kwong, Raymond W. M.; Kumai, Yusuke; Perry, Steve F.

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased. PMID:23967101

  5. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Raymond W M Kwong

    Full Text Available Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio. We observed that the half-time for saturation of water influx (K(u was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM. Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H⁺-ATPase-rich cells or Na⁺/K⁺-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca²⁺-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP; the paracellular routes may become significant when the paracellular permeability is increased.

  6. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  7. Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage.

    Science.gov (United States)

    Mayan, Maria D; Carpintero-Fernandez, Paula; Gago-Fuentes, Raquel; Martinez-de-Ilarduya, Oskar; Wang, Hong-Zhang; Valiunas, Virginijus; Brink, Peter; Blanco, Francisco J

    2013-04-01

    Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak

    2015-01-01

    and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current...

  9. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  10. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  11. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  12. Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary.

    Science.gov (United States)

    Kronen, Maria R; Schoenfelder, Kevin P; Klein, Allon M; Nystul, Todd G

    2014-01-01

    Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.

  13. Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    Maria R Kronen

    Full Text Available Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl or discs large (dlg, undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib, do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.

  14. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    Science.gov (United States)

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  15. Dipyridamole increases gap junction coupling in bovine GM-7373 aortic endothelial cells by a cAMP-protein kinase A dependent pathway.

    Science.gov (United States)

    Begandt, D; Bintig, W; Oberheide, K; Schlie, S; Ngezahayo, A

    2010-02-01

    The scrape-loading/dye transfer technique was applied on the bovine aortic endothelial cell line GM-7373 to analyze the effects of the antithrombolytic drug dipyridamole on gap junction coupling in endothelial cells. We found that a cell treatment for 24 h with dipyridamole in therapeutically relevant concentrations (1-100 microM) increased gap junction coupling in a dose dependent manner. Similar to dipyridamole, forskolin as well as 8-Br-cAMP increased the gap junction coupling, while dibutyryl-cGMP (db-cGMP) did not affect the gap junction coupling of the GM-7373 endothelial cells. In parallel, a pharmacological inhibition of protein kinase A (PKA) with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89), antagonised the action of dipyridamole on gap junction coupling. We propose that the observed dipyridamole induced increase in gap junction coupling in endothelial cells is related to a cAMP-PKA dependent phosphorylation pathway. The report shows that gap junction coupling in endothelial cells is a suitable therapeutic target for treatment of cardiovascular diseases.

  16. Evolution and cell physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells?

    Science.gov (United States)

    Le Bivic, André

    2013-12-15

    The formation of the first epithelium was an essential step for animal evolution, since it has allowed coordination of the behavior of a cell layer and creation of a selective barrier between the internal medium and the outside world. The possibility of coupling the cells in a single layer has allowed morphogenetic events, such as tube formation, or gastrulation, to form more complex animal morphologies. The invention of sealed junctions between cells has allowed, on the other hand, creation of an asymmetry of nutrients or salts between the apical and the basal side of the epithelial layer. Creation of an internal medium has led to homeostasis, allowing the evolution of more complex physiological functions and the emergence of sophisticated animal shapes. During evolution, the origins of the first animals coincided with the invention of several protein complexes, including true cadherins and the polarity protein complexes. How these complexes regulate formation of the apicolateral border and the adherens junctions is still not fully understood. This review focuses on the role of these apical polarity complexes and, in particular, the Crumbs complex, which is essential for proper organization of epithelial layers from Drosophila to humans.

  17. The zinc finger protein Zfr1p is localized specifically to conjugation junction and required for sexual development in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available Conjugation in Tetrahymena thermophila involves a developmental program consisting of three prezygotic nuclear divisions, pronuclear exchange and fusion, and postzygotic and exconjugant stages. The conjugation junction structure appears during the initiation of conjugation development, and disappears during the exconjugant stage. Many structural and functional proteins are involved in the establishment and maintenance of the junction structure in T. thermophila. In the present study, a zinc finger protein-encoding gene ZFR1 was found to be expressed specifically during conjugation and to localize specifically to the conjugation junction region. Truncated Zfr1p localized at the plasma membrane in ordered arrays and decorated Golgi apparatus located adjacent to basal body. The N-terminal zinc finger and C-terminal hydrophobic domains of Zfr1p were found to be required for its specific conjugation junction localization. Conjugation development of ZFR1 somatic knockout cells was aborted at the pronuclear exchange and fusion conjugation stages. Furthermore, Zfr1p was found to be important for conjugation junction stability during the prezygotic nuclear division stage. Taken together, our data reveal that Zfr1p is required for the stability and integrity of the conjugation junction structure and essential for the sexual life cycle of the Tetrahymena cell.

  18. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice.

    Science.gov (United States)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14days and ovaries collected 3days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (Pobese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (Pobesity while total CX37 protein was reduced (Pobese ovaries. Cx43 mRNA and total protein levels were decreased (Pobese ovaries while basal protein staining intensity was reduced (Pobese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (Pobesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mechanism of Holliday junction resolution by the human GEN1 protein.

    Science.gov (United States)

    Rass, Ulrich; Compton, Sarah A; Matos, Joao; Singleton, Martin R; Ip, Stephen C Y; Blanco, Miguel G; Griffith, Jack D; West, Stephen C

    2010-07-15

    Holliday junction (HJ) resolution is essential for chromosome segregation at meiosis and the repair of stalled/collapsed replication forks in mitotic cells. All organisms possess nucleases that promote HJ resolution by the introduction of symmetrically related nicks in two strands at, or close to, the junction point. GEN1, a member of the Rad2/XPG nuclease family, was isolated recently from human cells and shown to promote HJ resolution in vitro and in vivo. Here, we provide the first biochemical/structural characterization of GEN1, showing that, like the Escherichia coli HJ resolvase RuvC, it binds specifically to HJs and resolves them by a dual incision mechanism in which nicks are introduced in the pair of continuous (noncrossing) strands within the lifetime of the GEN1-HJ complex. In contrast to RuvC, but like other Rad2/XPG family members such as FEN1, GEN1 is a monomeric 5'-flap endonuclease. However, the unique feature of GEN1 that distinguishes it from other Rad2/XPG nucleases is its ability to dimerize on HJs. This functional adaptation provides the two symmetrically aligned active sites required for HJ resolution.

  20. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells.

    Science.gov (United States)

    Betanzos, Abigail; Huerta, Miriam; Lopez-Bayghen, Esther; Azuara, Elisa; Amerena, José; González-Mariscal, Lorenza

    2004-01-01

    ZO-2 is a membrane-associated guanylate kinase (MAGUK) protein present at the tight junction (TJ) of epithelial cells. While confluent monolayers have ZO-2 at their cellular borders, sparse cultures conspicuously show ZO-2 at the nuclei. To study the role of nuclear ZO-2, we tested by pull-down assays and gel shift analysis the interaction between ZO-2 GST fusion proteins and different transcription factors. We identified the existence of a specific interaction of ZO-2 with Fos, Jun and C/EBP (CCAAT/enhancer binding protein). To analyze if this association is present "in vivo", we performed immunoprecipitation and immunolocalization experiments, which revealed an interaction of ZO-2 with Jun, Fos and C/EBP not only at the nucleus but also at the TJ region. To test if the association of ZO-2 with AP-1 (activator protein-1) modulates gene transcription, we performed reporter gene assays employing chloramphenicol acetyltransferase (CAT) constructs with promoters under the control of AP-1 sites. We observed that the co-transfected ZO-2 down-regulates CAT expression in a dose-dependent manner. Since ZO-2 is a multidomain protein, we proceeded to determine which region of the molecule is responsible for the modulation of gene expression, and observed that both the amino and the carboxyl domains are capable of inhibiting gene transcription.

  1. Molecular characterisation of the nucleocapsid protein gene, glycoprotein gene and gene junctions of rhabdovirus 903/87, a novel fish pathogenic rhabdovirus

    DEFF Research Database (Denmark)

    Johansson, Tove; Nylund, S.; Olesen, Niels Jørgen

    2001-01-01

    The sequences of the nucleocapsid and glycoprotein genes and the gene junctions of the fish pathogenic rhabdovirus 903/87 were determined from cDNA and PCR clones. The mRNA of the nucleocapsid is most likely 1492 nucleotides long and encodes a protein of 426 amino acids, whereas the mRNA of the g......The sequences of the nucleocapsid and glycoprotein genes and the gene junctions of the fish pathogenic rhabdovirus 903/87 were determined from cDNA and PCR clones. The mRNA of the nucleocapsid is most likely 1492 nucleotides long and encodes a protein of 426 amino acids, whereas the m...

  2. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    Directory of Open Access Journals (Sweden)

    Zheng Ruan

    Full Text Available Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA supplemented group (orally 20 mg/kg and 50 mg/kg body. Dietary supplementation with CHA decreased (P<0.05 the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05 in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05 villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05 intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05 by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05 in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  3. Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust.

    Science.gov (United States)

    Wang, Qian; Hurd, Toby W; Margolis, Ben

    2004-07-16

    Tight junctions are the structures in mammalian epithelial cells that separate the apical and basolateral membranes and may also be important in the establishment of cell polarity. Two evolutionarily conserved multiprotein complexes, Crumbs-PALS1 (Stardust)-PATJ and Cdc42-Par6-Par3-atypical protein kinase C, have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. These two complexes have been linked physically and functionally by an interaction between PALS1 and Par6. Here we identify an evolutionarily conserved region in the amino terminus of PALS1 as the Par6 binding site and identify valine and aspartic acid residues in this region as essential for interacting with the PDZ domain of Par6. We have also characterized, in more detail, the amino terminus of Drosophila Stardust and demonstrate that the interaction mechanism between Stardust and Drosophila Par6 is evolutionarily conserved. Par6 interferes with PATJ in binding PALS1, and these two interactions do not appear to function synergistically. Taken together, these results define the molecular mechanisms linking two conserved polarity complexes.

  4. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2015-01-01

    Active recombinant proteins are used for studying the biological functions of genes and for the development of therapeutic drugs. Overexpression of recombinant proteins in bacteria often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. Protein refolding is an important process for obtaining active recombinant proteins from inclusion bodies. However, the conventional refolding method of dialysis or dilution is time-consuming and recovered active protein yields are often low, and a cumbersome trial-and-error process is required to achieve success. To circumvent these difficulties, we used controllable diffusion through laminar flow in microchannels to regulate the denaturant concentration. This method largely aims at reducing protein aggregation during the refolding procedure. This Commentary introduces the principles of the protein refolding method using microfluidic chips and the advantage of our results as a tool for rapid and efficient recovery of active recombinant proteins from inclusion bodies.

  5. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    Science.gov (United States)

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  6. Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase.

    Science.gov (United States)

    Nora, Gerald J; Buncher, Noah A; Opresko, Patricia L

    2010-07-01

    WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres.

  7. PLEKHA7 is an adherens junction protein with a tissue distribution and subcellular localization distinct from ZO-1 and E-cadherin.

    Directory of Open Access Journals (Sweden)

    Pamela Pulimeno

    Full Text Available The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of M(r approximately 135 kDa and approximately 145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts ( approximately 5.5 kb and approximately 6.5 kb are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, beta-catenin and alpha-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues.

  8. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    Directory of Open Access Journals (Sweden)

    Bailey Nichols

    2015-07-01

    Full Text Available Dystrophin-glycoprotein complex (DGC is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin of a muscle fiber to the extracellular matrix (ECM. Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies, and limb-girdle muscular dystrophies (sarcoglycanopathies, are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS, which is localized at the muscle membrane by DGC members (dystrophin and syntrophins, plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.

  9. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    José L. Reyes

    2013-01-01

    Full Text Available Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid and vitamin E (α-tocopherol, depict on the morphological and functional alterations induced by heavy metals.

  10. HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2015-10-01

    Full Text Available Human papillomavirus type 16 (HPV16 causes a range of cancers including cervical and head and neck cancers. HPV E6 oncoprotein binds the cell polarity regulator hDlg (human homologue of Drosophila Discs Large. Previously we showed in vitro, and now in vivo, that hDlg also binds Connexin 43 (Cx43, a major component of gap junctions that mediate intercellular transfer of small molecules. In HPV16-positive non-tumour cervical epithelial cells (W12G Cx43 localised to the plasma membrane, while in W12T tumour cells derived from these, it relocated with hDlg into the cytoplasm. We now provide evidence that E6 regulates this cytoplasmic pool of Cx43. E6 siRNA depletion in W12T cells resulted in restoration of Cx43 and hDlg trafficking to the cell membrane. In C33a HPV-negative cervical tumour cells expressing HPV16 or 18 E6, Cx43 was located primarily in the cytoplasm, but mutation of the 18E6 C-terminal hDlg binding motif resulted in redistribution of Cx43 to the membrane. The data indicate for the first time that increased cytoplasmic E6 levels associated with malignant progression alter Cx43 trafficking and recycling to the membrane and the E6/hDlg interaction may be involved. This suggests a novel E6-associated mechanism for changes in Cx43 trafficking in cervical tumour cells.

  11. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro.

    Science.gov (United States)

    Shen, Yujie; Zhou, Min; Yan, Junkai; Gong, Zizhen; Xiao, Yongtao; Zhang, Cong; Du, Peng; Chen, Yingwei

    2017-02-01

    Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy.

  12. Specific deletion of AMP-activated protein kinase (α1AMPK in murine oocytes alters junctional protein expression and mitochondrial physiology.

    Directory of Open Access Journals (Sweden)

    Michael J Bertoldo

    Full Text Available Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK, an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues. Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.

  13. The tight junction component protein, claudin-4, is expressed by enteric neurons in the rat distal colon.

    Science.gov (United States)

    Karaki, Shin-ichiro; Kaji, Izumi; Otomo, Yasuko; Tazoe, Hideaki; Kuwahara, Atsukazu

    2007-11-27

    The expression of a tight junction (TJ) component protein, claudin-4, in the enteric neurons was investigated in the rat distal colon by immunohistochemistry and RT-PCR. Claudin-4 immunoreactivity was detected in almost all neurofilament-positive enteric neurons both of the submucosal and the myenteric plexuses, and both of the cell bodies and the neurofibers. The immunoreactivity of enteric neurons for claudin-4 was divided into two types: strongly and weakly positive neurons. Especially in the myenteric plexus, the stained neurons were classified by Dogiel's morphological classification of enteric neurons. The strongly stained claudin-4 positive neurons show Dogiel type II morphology, while the weakly stained claudin-4 positive neurons show Dogiel type I morphology. These immunohistochemical data were supported by mRNA expression in the muscle plus submucosa preparation containing the submucosal and myenteric plexuses, as well as mucosa preparation. The physiological function of claudin-4 expressed on enteric neurons is unclear up to now. It is however suggested that claudin-4 expressed on enteric neurons might play roles for the neural activity, for example as insulation between neurofibers. In conclusion, the present study clearly shows that claudin-4 is expressed by enteric neurons. This is the first evidence that the neuron itself expresses the TJ component protein, claudin-4, in the nervous system.

  14. Polycystin-2 activity is controlled by transcriptional coactivator with PDZ binding motif and PALS1-associated tight junction protein.

    Science.gov (United States)

    Duning, Kerstin; Rosenbusch, Deike; Schlüter, Marc A; Tian, Yuemin; Kunzelmann, Karl; Meyer, Nina; Schulze, Ulf; Markoff, Arseni; Pavenstädt, Hermann; Weide, Thomas

    2010-10-29

    Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent monogenic cause of kidney failure, characterized by the development of renal cysts. ADPKD is caused by mutations of the polycystin-1 (PC1) or polycystin-2 (PC2) genes. PC2 encodes a Ca(2+)-permeable cation channel, and its dysfunction has been implicated in cyst development. The transcriptional coactivator with PDZ binding motif (TAZ) is required for the integrity of renal cilia. Its absence results in the development of renal cysts in a knock-out mouse model. TAZ directly interacts with PC2, and it has been suggested that another yet unidentified PDZ domain protein may be involved in the TAZ/PC2 interaction. Here we describe a novel interaction of TAZ with the multi-PDZ-containing PALS1-associated tight junction protein (PATJ). TAZ interacts with both the N-terminal PDZ domains 1-3 and the C-terminal PDZ domains 8-10 of PATJ, suggesting two distinct TAZ binding domains. We also show that the C terminus of PC2 strongly interacts with PDZ domains 8-10 and to a weaker extent with PDZ domains 1-3 of PATJ. Finally, we demonstrate that both TAZ and PATJ impair PC2 channel activity when co-expressed with PC2 in oocytes of Xenopus laevis. These results implicate TAZ and PATJ as novel regulatory elements of the PC2 channel and might thus be involved in ADPKD pathology.

  15. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

    Directory of Open Access Journals (Sweden)

    Xiaotang Ma

    Full Text Available This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs and mouse brain microvascular endothelial cells (bEnd.3s. The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1 and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.

  16. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

    Science.gov (United States)

    Ma, Xiaotang; Zhang, Huiting; Pan, Qunwen; Zhao, Yuhui; Chen, Ji; Zhao, Bin; Chen, Yanfang

    2013-01-01

    This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.

  17. When proteome meets genome: the alpha helix and the beta strand of proteins are eschewed by mRNA splice junctions and may define the minimal indivisible modules of protein architecture

    Indian Academy of Sciences (India)

    Sailen Barik

    2004-09-01

    The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the -helices and -strands of proteins than within the more flexible linker regions (‘turns’ and ‘loops’) connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the -helix and the -strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.

  18. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes.

    Science.gov (United States)

    Shimada, M; Maeda, T; Terada, T

    2001-04-01

    Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These results suggest that the initiation of meiotic resumption, namely, the formation of networks of filamentous bivalents in germinal vesicle, is associated with the reduction of gap junctional protein connexin-43 in the outer layers of cumulus cells via the PKC and/or PI 3-kinase pathway. Moreover, the connexin-43 in the inner layers of cumulus cells is phosphorylated during meiotic progression beyond the MI stage, regardless of MAP kinase activation in cumulus cells surrounding the oocyte.

  19. Effects of Angiotensin Ⅱ on Expression of the Gap Junction Channel Protein Connexin 43 in Neonatal Rat Ventricular Myocytes

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Wei Wu

    2007-01-01

    To study the effects of angiotensin Ⅱ,as a mediator of cardiac hypertrophy,on expression of connexin 43 (Cx43) in cultured neonatal rat ventricular myocytes and correlation of expression of Cx43 and cardiomyocyte hypertrophy.Methods Cardiomyocytes were isolated from newborn SD rats.Angiotensin Ⅱ was added into the media to induce myocyte hypertrophy.Cultures were exposed to 10 ~6 mol/L angiotensin Ⅱ for 72 h,Cx43 expression was characterized by RT-PCR and Immunofluorescence methods.Results Immunofluorescence analysis revealed decreased Cx43 immunoreactivity in cells treated for 72 h with angiotensin Ⅱ.RT-PCR analysis demonstrated there was an obvious decrease of Cx43 mRNA level in cells exposed to angiotensin Ⅱ for 72 h.The changes of expression of connexin 43 were related to its entrance into S phase of the cell cycle.Cultured neonatal rat cardiomyocytes were exposed for 72 h to increase concentrations of angiotensin Ⅱ ( 1.0 × 10-9 ~ 1.0 × 10-6mol/L),resulting in significantly decreased Cx43 expression.Conclusions Angiotensin Ⅱ leads to a concentration-dependent decrease in Cx43 protein in cultured neonatal rat ventricular myocytes by decreasing Cx43 mRNA synthesis.Signal transduction pathways activated by angiotensin Ⅱ under pathophysiologic conditions of cardiac hypertrophy could initiate remodeling of gap junctions.

  20. A novel mutation of gap junction protein β 1 gene in X-linked Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Chen, Sheng Dong; Li, Zheng Xi; Guan, Yang Tai; Zhou, Xia Jun; Jiang, Jian Ming; Hao, Yong

    2011-06-01

    In this study we report a novel mutation in the gap junction protein beta 1 (GJB1) gene of a Chinese X-linked Charcot-Marie-Tooth disease (CMTX1) family, which has specific electrophysiological characteristics. Twenty members in the family were studied by clinical neurological examination and GJB1 gene mutation analysis, and 3 patients were studied electrophysiologically. The proband and his mother also underwent sural nerve biopsy. All patients have the CMT phenotype, except for 2 asymptomatic carriers. Electrophysiological examinations showed non-uniform slowing of motor conduction velocities and partial motor conduction blocks and temporal dispersion. Sural nerve biopsy confirmed a predominantly demyelinating neuropathy, and an Asn2Lys mutation in the amino-terminal domain was found in 9 members of this family, but not in 25 normal controls in the family. This family represents a novel mutation in the GJB1 form of CMTX1. The mutation in the amino-terminus has an impact on the electrophysiological characteristics of the disease. Copyright © 2011 Wiley Periodicals, Inc.

  1. Cell culture model predicts human disease: Altered expression of junction proteins and matrix metalloproteinases in cervical dysplasia

    Directory of Open Access Journals (Sweden)

    Kivi Niina

    2012-08-01

    Full Text Available Abstract Background Cervical cancer is necessarily caused by human papillomaviruses, which encode three oncogenes manifesting their functions by interfering with a number of cellular proteins and pathways: the E5, E6, and E7 proteins. We have earlier found in our microarray studies that the E5 oncogene crucially affects the expression of cellular genes involved in adhesion and motility of epithelial cells. Methods In order to biologically validate our previous experimental findings we performed immunohistochemical staining of a representative set of tissue samples from different grades of high-risk human papillomavirus associated cervical disease as well as normal squamous and columnar cervical epithelium. Three-dimensional collagen raft cultures established from E5-expressing and control epithelial cells were also examined. The expression of p16, matrix metalloproteinase (MMP -7, MMP-16, cytokeratin (CK 8/18, laminin, E-cadherin and beta-catenin was studied. Results In agreement with our previous microarray studies, we found intense staining for E-cadherin and beta-catenin in adherens junctions even in high-grade cervical lesions. Staining for MMP-16 was increased in severe disease as well. No significant change in staining for MMP-7 and cytokeratin 8/18 along with the grade of cervical squamous epithelial disease was observed. Conclusions Here we have confirmed, using tissue material from human papillomavirus associated lesions, some of the cellular gene expression modifications that we earlier reported in an experimental system studying specifically the E5 oncogene of papillomaviruses. These findings were partially surprising in the context of cervical carcinogenesis and emphasize that the complexity of carcinogenesis is not yet fully understood. Microarray approaches provide a wide overwiev of gene expression in experimental settings, which may yield biologically valid biomarkers for disease diagnostics, prognosis, and follow-up.

  2. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  3. Immunohistochemical localization of a gap junction protein (connexin43) in the muscularis externa of murine, canine, and human intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Huizinga, J D; Thuneberg, L

    1993-01-01

    Electron-microscopic studies have revealed a heterogeneous distribution of gap junctions in the muscularis externa of mammalian intestines. This heterogeneity is observed at four different levels: among species; between small and large intestines; between longitudinal and circular muscle layers; ...

  4. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction.

    Science.gov (United States)

    Manik, Mohammad Kawsar; Yang, Huiseon; Tong, Junsen; Im, Young Jun

    2017-03-10

    Yeast Osh1 belongs to the oxysterol-binding protein (OSBP) family of proteins and contains multiple targeting modules optimized for lipid transport at the nucleus-vacuole junction (NVJ). The key determinants for NVJ targeting and the role of Osh1 at NVJs have remained elusive because of unknown lipid specificities. In this study, we determined the structures of the ankyrin repeat domain (ANK), and OSBP-related domain (ORD) of Osh1, in complex with Nvj1 and ergosterol, respectively. The Osh1 ANK forms a unique bi-lobed structure that recognizes a cytosolic helical segment of Nvj1. We discovered that Osh1 ORD binds ergosterol and phosphatidylinositol 4-phosphate PI(4)P in a competitive manner, suggesting counter-transport function of the two lipids. Ergosterol is bound to the hydrophobic pocket in a head-down orientation, and the structure of the PI(4)P-binding site in Osh1 is well conserved. Our results suggest that Osh1 performs non-vesicular transport of ergosterol and PI(4)P at the NVJ.

  5. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  6. Gap junctions.

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2012-07-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  7. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis).

    Science.gov (United States)

    Yamamoto, Yoji; Yoshizaki, Goro; Takeuchi, Toshio; Soyano, Kiyoshi; Patiño, Reynaldo

    2008-02-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18alpha-glycyrrhetinic acid (alpha-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20beta-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption.

  8. Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva.

    Science.gov (United States)

    Nakayama, Yohei; Kobayashi, Ryoki; Matsui, Sari; Matsumura, Hiroyoshi; Iwai, Yasunobu; Noda, Keisuke; Yamazaki, Mizuho; Kurita-Ochiai, Tomoko; Yoshimura, Atsutoshi; Shinomura, Tamayuki; Ganss, Bernhard; Ogata, Yorimasa

    2017-07-01

    The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.

  9. Monitoring the Retention of Human Proliferating Cell Nuclear Antigen at Primer/Template Junctions by Proteins That Bind Single-Stranded DNA.

    Science.gov (United States)

    Hedglin, Mark; Aitha, Mahesh; Benkovic, Stephen J

    2017-07-11

    In humans, proliferating cell nuclear antigen (PCNA) sliding clamps encircling DNA coordinate various aspects of DNA metabolism throughout the cell cycle. A critical aspect of this is restricting PCNA to the vicinity of its DNA target site. For example, PCNA must be maintained at or near primer/template (P/T) junctions during DNA synthesis. With a diverse array of cellular factors implicated, many of which interact with PCNA, DNA, or both, it is unknown how this critical feat is achieved. Furthermore, current biochemical assays that examine the retention of PCNA near P/T junctions are inefficient, discontinuous, and qualitative and significantly deviate from physiologically relevant conditions. To overcome these challenges and limitations, we recently developed a novel and convenient Förster resonance energy transfer (FRET) assay that directly and continuously monitors the retention of human PCNA at a P/T junction. Here we describe in detail the design, methodology, interpretation, and limitations of this quantitative FRET assay using the single-stranded DNA-binding protein, SSB, from Escherichia coli as an example. This powerful tool is broadly applicable to any single-stranded DNA-binding protein and may be utilized and/or expanded upon to dissect DNA metabolic pathways that are dependent upon PCNA.

  10. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis.

    Science.gov (United States)

    Khan, Zahidul; Yaiw, Koon-Chu; Wilhelmi, Vanessa; Lam, Hoyin; Rahbar, Afsar; Stragliotto, Giuseppe; Söderberg-Nauclér, Cecilia

    2014-01-01

    A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis.

  11. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome.

  12. Poly-L-arginine-Induced internalization of tight junction proteins increases the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules.

    Science.gov (United States)

    Yamaki, Tsutomu; Ohtake, Kazuo; Ichikawa, Keiko; Uchida, Masaki; Uchida, Hiroyuki; Oshima, Shinji; Ohshima, Shinji; Juni, Kazuhiko; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2013-01-01

    We investigated whether poly-L-arginine (PLA) enhances the paracellular permeability of the Caco-2 monolayer to hydrophilic macromolecules and clarified the disposition of tight junction (TJ) proteins. The transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran (FD-4) permeation were determined after treatment with PLA. TJ proteins were visualized using immunofluorescence microscopy after PLA exposure and depletion, and their expression levels were determined. The barrier function of TJs was also evaluated by measuring the alterations in the TEER and in the localization of TJ proteins. PLA induced an increase in hydrophilic macromolecule, FD-4, permeation through Caco-2 cell monolayers and a decrease in the TEER in a concentration-dependent manner, without any significant impact on the cell viability. This increased paracellular permeability induced by PLA was found to be internalized of claudin-4, ZO-1, tricellulin and mainly occludin from cell-cell junction to the subcellular space. ZO-1 appeared to play an important role in the reconstitution of TJ strand structures following PLA depletion. These results indicate that the PLA led to the internalization of TJ proteins to the subcellular space, subsequently increasing the permeability of the Caco-2 cell monolayer to FD-4 via a paracellular route.

  13. Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication

    NARCIS (Netherlands)

    Giepmans, B N; Hengeveld, T; Postma, F R; Moolenaar, W H

    2001-01-01

    Cell-cell communication via connexin-43 (Cx43)-based gap junctions is transiently inhibited by certain mitogens, but the underlying regulatory mechanisms are incompletely understood. Our previous studies have implicated the c-Src tyrosine kinase in mediating transient closure of Cx43-based gap junct

  14. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells.

    Directory of Open Access Journals (Sweden)

    Shinsaku Tokuda

    Full Text Available Tight junctions (TJs regulate the movements of substances through the paracellular pathway, and claudins are major determinants of TJ permeability. Claudin-2 forms high conductive cation pores in TJs. The suppression of claudin-2 expression by RNA interference in Madin-Darby canine kidney (MDCK II cells (a low-resistance strain of MDCK cells was shown to induce a three-fold increase in transepithelial electrical resistance (TER, which, however, was still lower than in high-resistance strains of MDCK cells. Because RNA interference-mediated knockdown is not complete and only reduces gene function, we considered the possibility that the remaining claudin-2 expression in the knockdown study caused the lower TER in claudin-2 knockdown cells. Therefore, we investigated the effects of claudin-2 knockout in MDCK II cells by establishing claudin-2 knockout clones using transcription activator-like effector nucleases (TALENs, a recently developed genome editing method for gene knockout. Surprisingly, claudin-2 knockout increased TER by more than 50-fold in MDCK II cells, and TER values in these cells (3000-4000 Ω·cm2 were comparable to those in the high-resistance strains of MDCK cells. Claudin-2 re-expression restored the TER of claudin-2 knockout cells dependent upon claudin-2 protein levels. In addition, we investigated the localization of claudin-1, -2, -3, -4, and -7 at TJs between control MDCK cells and their respective knockout cells using their TALENs. Claudin-2 and -7 were less efficiently localized at TJs between control and their knockout cells. Our results indicate that claudin-2 independently determines the 'leaky' property of TJs in MDCK II cells and suggest the importance of knockout analysis in cultured cells.

  15. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    Science.gov (United States)

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  16. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection.

    Science.gov (United States)

    Basu, Rahul; Bose, Abhishek; Thomas, Deepthi; Das Sarma, Jayasri

    2017-09-08

    Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo, was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    Directory of Open Access Journals (Sweden)

    Kristin Elfers

    Full Text Available Diets fed to ruminants should contain nitrogen (N as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ and adherens junction (AJ proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  18. On the role of the gap junction protein Cx43 (GJA1 in human cardiac malformations with Fallot-pathology. a study on paediatric cardiac specimen.

    Directory of Open Access Journals (Sweden)

    Aida Salameh

    Full Text Available INTRODUCTION: Gap junction channels are involved in growth and differentiation. Therefore, we wanted to elucidate if the main cardiac gap junction protein connexin43 (GJA1 is altered in patients with Tetralogy of Fallot or double-outlet right ventricle of Fallot-type (62 patients referred to as Fallot compared to other cardiac anomalies (21 patients referred to as non-Fallot. Patients were divided into three age groups: 0-2years, 2-12years and >12years. Myocardial tissue samples were collected during corrective surgery and analysis of cell morphology, GJA1- and N-cadherin (CDH2-distribution, as well as GJA1 protein- and mRNA-expression was carried out. Moreover, GJA1-gene analysis of 16 patients and 20 healthy subjects was performed. RESULTS: Myocardial cell length and width were significantly increased in the oldest age group compared to the younger ones. GJA1 distribution changed significantly during maturation with the ratio of polar/lateral GJA1 increasing from 2.93±0.68 to 8.52±1.41. While in 0-2years old patients ∼6% of the lateral GJA1 was co-localised with CDH2 this decreased with age. Furthermore, the changes in cell morphology and GJA1-distribution were not due to the heart defect itself but were significantly dependent on age. Total GJA1 protein expression decreased during growing-up, whereas GJA1-mRNA remained unchanged. Sequencing of the GJA1-gene revealed only few heterozygous single nucleotide polymorphisms within the Fallot and the healthy control group. CONCLUSION: During maturation significant changes in gap junction remodelling occur which might be necessary for the growing and developing heart. In our study point mutations within the Cx43-gene could not be identified as a cause of the development of TOF.

  19. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    Science.gov (United States)

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331.

  20. Loss of cadherin-binding proteins β-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis.

    Science.gov (United States)

    Swope, David; Cheng, Lan; Gao, Erhe; Li, Jifen; Radice, Glenn L

    2012-03-01

    Arrhythmic right ventricular cardiomyopathy (ARVC) is a hereditary heart muscle disease that causes sudden cardiac death (SCD) in young people. Almost half of ARVC patients have a mutation in genes encoding cell adhesion proteins of the desmosome, including plakoglobin (JUP). We previously reported that cardiac tissue-specific plakoglobin (PG) knockout (PG CKO) mice have no apparent conduction abnormality and survive longer than expected. Importantly, the PG homolog, β-catenin (CTNNB1), showed increased association with the gap junction protein connexin43 (Cx43) in PG CKO hearts. To determine whether β-catenin is required to maintain cardiac conduction in the absence of PG, we generated mice lacking both PG and β-catenin specifically in the heart (i.e., double knockout [DKO]). The DKO mice exhibited cardiomyopathy, fibrous tissue replacement, and conduction abnormalities resulting in SCD. Loss of the cadherin linker proteins resulted in dissolution of the intercalated disc (ICD) structure. Moreover, Cx43-containing gap junction plaques were reduced at the ICD, consistent with the arrhythmogenicity of the DKO hearts. Finally, ambulatory electrocardiogram monitoring captured the abrupt onset of spontaneous lethal ventricular arrhythmia in the DKO mice. In conclusion, these studies demonstrate that the N-cadherin-binding partners, PG and β-catenin, are indispensable for maintaining mechanoelectrical coupling in the heart.

  1. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.

  2. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions.

    Science.gov (United States)

    Bohl, Joanna; Brimer, Nicole; Lyons, Charles; Vande Pol, Scott B

    2007-03-30

    MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.

  3. Selective permeability of gap junction channels.

    Science.gov (United States)

    Goldberg, Gary S; Valiunas, Virginijus; Brink, Peter R

    2004-03-23

    Gap junctions mediate the transfer of small cytoplasmic molecules between adjacent cells. A family of gap junction proteins exist that form channels with unique properties, and differ in their ability to mediate the transfer of specific molecules. Mutations in a number of individual gap junction proteins, called connexins, cause specific human diseases. Therefore, it is important to understand how gap junctions selectively move molecules between cells. Rules that dictate the ability of a molecule to travel through gap junction channels are complex. In addition to molecular weight and size, the ability of a solute to transverse these channels depends on its net charge, shape, and interactions with specific connexins that constitute gap junctions in particular cells. This review presents some data and interpretations pertaining to mechanisms that govern the differential transfer of signals through gap junction channels.

  4. Transforming growth factor-β3 regulates cell junction restructuring via MAPK-mediated mRNA destabilization and Smad-dependent protein degradation of junctional adhesion molecule B (JAM-B).

    Science.gov (United States)

    Zhang, Xu; Lui, Wing-Yee

    2015-06-01

    Junctional adhesion molecule-B (JAM-B) is found between Sertoli cells at the blood-testis barrier (BTB) as well as between Sertoli and germ cells at the apical ectoplasmic specializations (ES) in the testis. The expression of JAM-B is tightly regulated to modulate the passage of spermatocytes across the BTB as well as the release of mature spermatozoa from the seminiferous epithelium. Transforming growth factor beta (TGF-β) family is implicated in the regulation of testicular cell junction dynamics during spermatogenesis. This study aims to investigate the effects of TGF-β3 on the expression of JAM-B as well as the underlying mechanisms on how TGF-β3 regulates JAM-B expression to facilitate the disassembly of the BTB and apical ES. Our results revealed that TGF-β3 suppresses JAM-B at post-transcriptional and post-translational levels. Inhibitor, siRNA knockdown and co-immunoprecipitation have shown that TGF-β3 induces JAM-B protein degradation via ubiquitin-proteasome pathway. Immunofluorescence staining further confirmed that blockage of ubiquitin-proteasome pathway could abrogate TGF-β3-induced loss of JAM-B at the cell-cell interface. siRNA knockdown and immunofluorescence staining also demonstrated that activation of Smad signaling is required for TGF-β3-induced JAM-B protein degradation. In addition, TGF-β3 reduces JAM-B mRNA levels, at least in part, via post-transcriptional regulation. mRNA stability assay has confirmed that TGF-β3 promotes the degradation of JAM-B transcript and TGF-β3-mediated mRNA destabilization requires the activation of ERK1/2 and p54 JNK signal cascades. Taken together, TGF-β3 significantly downregulates JAM-B expression via post-transcriptional and post-translational modulation and results in the disruption of BTB and apical ES.

  5. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hinerman, Jennifer M. [Univ. of Toledo, OH (United States); Dignam, J. David [Univ. of Toledo, OH (United States); Mueser, Timothy C. [Univ. of Toledo, OH (United States)

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  6. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall.

    Science.gov (United States)

    Blank, Fabian; Wehrli, Marc; Lehmann, Andrea; Baum, Oliver; Gehr, Peter; von Garnier, Christophe; Rothen-Rutishauser, Barbara M

    2011-01-01

    The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.

  7. Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator.

    Science.gov (United States)

    Sarkar, Susanta K; Andoy, Nesha May; Benítez, Jaime J; Chen, Peng R; Kong, Jason S; He, Chuan; Chen, Peng

    2007-10-17

    Protein-DNA interactions are essential for gene maintenance, replication, and expression. Characterizing how proteins interact with and change the structure of DNA is crucial in elucidating the mechanisms of protein function. Here, we present a novel and generalizable method of using engineered DNA Holliday junctions (HJs) that contain specific protein-recognition sequences to report protein-DNA interactions in single-molecule FRET measurements, utilizing the intrinsic structural dynamics of HJs. Because the effects of protein binding are converted to the changes in the structure and dynamics of HJs, protein-DNA interactions that involve small structural changes of DNA can be studied. We apply this method to investigate how the MerR-family regulator PbrR691 interacts with DNA for transcriptional regulation. Both apo- and holo-PbrR691 bind the stacked conformers of the engineered HJ, change their structures, constrain their conformational distributions, alter the kinetics, and shift the equilibrium of their structural dynamics. The information obtained maps the potential energy surfaces of HJ before and after PbrR691 binding and reveals the protein actions that force DNA structural changes for transcriptional regulation. The ability of PbrR691 to bind both HJ conformers and still allow HJ structural dynamics also informs about its conformational flexibility that may have significance for its regulatory function. This method of using engineered HJs offers quantification of the changes both in structure and in dynamics of DNA upon protein binding and thus provides a new tool to elucidate the correlation of structure, dynamics, and function of DNA-binding proteins.

  8. Short communication: Glucagon-like peptide-2 and coccidiosis alter tight junction gene expression in the gastrointestinal tract of dairy calves.

    Science.gov (United States)

    Walker, M P; Evock-Clover, C M; Elsasser, T H; Connor, E E

    2015-05-01

    Tight junction (TJ) proteins are integral factors involved in gut barrier function, and therapy with glucagon-like peptide-2 (GLP-2) enhances gut integrity. Our aim was to assess effects of GLP-2 treatment on mRNA expression of 8 TJ complex proteins in the intestine of dairy calves not infected or infected with Eimeria bovis at 11±3d of age. Mucosal epithelium from jejunum, ileum, and cecum was collected at slaughter from Holstein bull calves assigned to 4 groups: noninfected, buffer-treated (n=5); noninfected, GLP-2 treated (n=4); E. bovis-infected, buffer-treated (n=5); and E. bovis-infected, GLP-2-treated (n=4). Infected calves were orally dosed with 100,000 to 200,000 sporulated E. bovis oocysts on d 0; GLP-2-treated calves received 50 µg of GLP-2/kg of body weight subcutaneously twice daily for 10d beginning on d 18; and buffer-treated calves received an equal injection volume of 0.01 M Na bicarbonate buffer. All calves were killed on d 28. The mRNA expression of coxsackie and adenovirus receptor (CXADR), claudins 1, 2, and 4 (CLDN1, CLDN2, and CLDN4), F11 receptor (F11R), junction adhesion molecule 2 (JAM2), occludin (OCLN), and tight junction protein ZO-1 (TJP1) was determined by real-time quantitative PCR. In jejunum and ileum, an interaction of E. bovis infection and GLP-2 treatment on gene expression was noted. In jejunum of noninfected calves, GLP-2 increased CXADR, CLDN2, OCLN, and TJP1 mRNA expression but had no effect on mRNA expression in infected calves. Treatment with GLP-2 also increased tight junction protein ZO-1 protein expression in jejunum of noninfected calves as determined by immunohistochemistry. In ileum, E. bovis decreased expression of JAM2, OCLN, and TJP1 in buffer-treated calves, and GLP-2 increased TJP1 expression in infected calves. In cecum, E. bovis infection reduced expression of CXADR, CLDN4, F11R, and OCLN, and GLP-2 therapy increased expression of CLDN4, F11R, OCLN, and TJP1. Results are consistent with studies in

  9. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats.

    Science.gov (United States)

    Goodrich, Katheryn M; Fundaro, Gabrielle; Griffin, Laura E; Grant, Ar'quette; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2012-10-01

    Animal studies have demonstrated the potential of grape seed extract (GSE) to prevent metabolic syndrome, obesity, and type 2 diabetes. Recently, metabolic endotoxemia induced by bacterial endotoxins produced in the colon has emerged as a possible factor in the etiology of metabolic syndrome. Improving colonic barrier function may control endotoxemia by reducing endotoxin uptake. However, the impact of GSE on colonic barrier integrity and endotoxin uptake has not been evaluated. We performed a secondary analysis of samples collected from a chronic GSE feeding study with pharmacokinetic end points to examine potential modulation of biomarkers of colonic integrity and endotoxin uptake. We hypothesized that a secondary analysis would indicate that chronic GSE administration increases colonic expression of intestinal tight junction proteins and reduces circulating endotoxin levels, even in the absence of an obesity-promoting stimulus. Wistar Furth rats were administered drinking water containing 0.1% GSE for 21 days. Grape seed extract significantly increased the expression of gut junction protein occludin in the proximal colon and reduced fecal levels of the neutrophil protein calprotectin, compared with control. Grape seed extract did not significantly reduce serum or fecal endotoxin levels compared with control, although the variability in serum levels was widely increased by GSE. These data suggest that the improvement of gut barrier integrity and potential modulation of endotoxemia warrant investigation as a possible mechanism by which GSE prevents metabolic syndrome and associated diseases. Further investigation of this mechanism in high-fat feeding metabolic syndrome and obesity models is therefore justified. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Exon Junction Complexes Show a Distributional Bias toward Alternatively Spliced mRNAs and against mRNAs Coding for Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Christian Hauer

    2016-08-01

    Full Text Available The exon junction complex (EJC connects spliced mRNAs to posttranscriptional processes including RNA localization, transport, and regulated degradation. Here, we provide a comprehensive analysis of bona fide EJC binding sites across the transcriptome including all four RNA binding EJC components eIF4A3, BTZ, UPF3B, and RNPS1. Integration of these data sets permits definition of high-confidence EJC deposition sites as well as assessment of whether EJC heterogeneity drives alternative nonsense-mediated mRNA decay pathways. Notably, BTZ (MLN51 or CASC3 emerges as the EJC subunit that is almost exclusively bound to sites 20–24 nucleotides upstream of exon-exon junctions, hence defining EJC positions. By contrast, eIF4A3, UPF3B, and RNPS1 display additional RNA binding sites suggesting accompanying non-EJC functions. Finally, our data show that EJCs are largely distributed across spliced RNAs in an orthodox fashion, with two notable exceptions: an EJC deposition bias in favor of alternatively spliced transcripts and against the mRNAs that encode ribosomal proteins.

  11. Relationship of gelatinases-tight junction proteins and blood-brain barrier permeability in the early stage of cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haolin Xin; Wenzhao Liang; Jing Mang; Lina Lin; Na Guo; Feng Zhang; Zhongxin Xu

    2012-01-01

    Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.

  12. Localization of the tight junction protein gene TJP1 to human chromosome 15q13, distal to the Prader-Willi/Angelman region, and to mouse chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Mohandas, T.K. [Darthmouth-Hitchcock Medical Center, Lebanon, NH (United States); Chen, X.N.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1995-12-10

    The gene encoding the tight junction (zonula occludens) protein, TJP1, was mapped to human chromosome 15q13 by fluorescence in situ hybridization (FISH) using a cDNA probe. The Jackson Laboratory backcross DNA panel derived from the cross (C57BL/6JEi X SPRET/Ei) F1 females X SPRET/Ei males was used to map the mouse Tjp1 to chromosome 7 near position 30 on the Chromosome Committee Map, a region with conserved homology to human chromosome 15q13. FISH studies on metaphases from patients with the Prader-Willi (PWS) or the Angelman syndrome (AS) showed that TJP1 maps close but distal to the PWS/AS chromosome region. 13 refs., 2 figs.

  13. The gene for human gap junction protein connexin37 (GJA4) maps to chromosome 1p35.1, in the vicinity of D1S195

    Energy Technology Data Exchange (ETDEWEB)

    Van Camp, G.; Coucke, P.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others

    1995-11-20

    Gap junctions are plasma membrane structures containing channels that allow the exchange of small molecules between cells. Each hemichannel is an oligomer of six subunit proteins called connexins. The formation of intercellular channels is possible through interaction with connexins in the plasma membrane of adjacent cells. Gapjunction channels allow the passage of different molecules up to 1 kDa, such as ions, many second messengers, and small metabolites. Connexins are numbered according to their molecular mass in kilodaltons, calculated from the gene sequences. They are found in the vast majority of cell types and facilitate intercellular communication between cells. Connexins are encoded by a family of homologous genes with highly conserved extracellular and transmembrane domains, whereas the cytoplasmic regions are specific for each subtype. All connexin genes described up to now contain no introns in the coding region. 17 refs., 1 fig.

  14. Deficiency of angulin-2/ILDR1, a tricellular tight junction-associated membrane protein, causes deafness with cochlear hair cell degeneration in mice.

    Science.gov (United States)

    Higashi, Tomohito; Katsuno, Tatsuya; Kitajiri, Shin-Ichiro; Furuse, Mikio

    2015-01-01

    Tricellular tight junctions seal the extracellular spaces of tricellular contacts, where the vertices of three epithelial cells meet, and are required for the establishment of a strong barrier function of the epithelial cellular sheet. Angulins and tricellulin are known as specific protein components of tricellular tight junctions, where angulins recruit tricellulin. Mutations in the genes encoding angulin-2/ILDR1 and tricellulin have been reported to cause human hereditary deafness DFNB42 and DFNB49, respectively. To investigate the pathogenesis of DFNB42, we analyzed mice with a targeted disruption of Ildr1, which encodes angulin-2/ILDR1. Ildr1 null mice exhibited profound deafness. Hair cells in the cochlea of Ildr1 null mice develop normally, but begin to degenerate by two weeks after birth. Tricellulin localization at tricellular contacts of the organ of Corti in the cochlea was retained in Ildr1 null mice, but its distribution along the depth of tricellular contacts was affected. Interestingly, compensatory tricellular contact localization of angulin-1/LSR was observed in the organ of Corti in Ildr1 null mice although it was hardly detected in the organ of Corti in wild-type mice. The onset of hair cell degeneration in Ildr1 null mice was earlier than that in the reported Tric mutant mice, which mimic one of the tricellulin mutations in DFNB49 deafness. These results indicate that the angulin-2/ILDR1 deficiency causes the postnatal degenerative loss of hair cells in the cochlea, leading to human deafness DFNB42. Our data also suggest that angulin family proteins have distinct functions in addition to their common roles of tricellulin recruitment and that the function of angulin-2/ILDR1 for hearing cannot be substituted by angulin-1/LSR.

  15. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Arecoline induced disruption of expression and localization of the tight junctional protein ZO-1 is dependent on the HER 2 expression in human endometrial Ishikawa cells.

    Science.gov (United States)

    Giri, Sarbani; Poindexter, Kevin M; Sundar, Shyam N; Firestone, Gary L

    2010-07-06

    Approximately 600 million people chew Betel nut, making this practice the fourth most popular oral habit in the world. Arecoline, the major alkaloid present in betel nut is one of the causative agents for precancerous lesions and several cancers of mouth among those who chew betel nut. Arecoline can be detected in the human embryonic tissue and is correlated to low birth weight of newborns whose mothers chew betel nut during pregnancy, suggesting that arecoline can induce many systemic effects. However, few reports exist as to the effects of arecoline in human tissues other than oral cancer cell lines. Furthermore, in any system, virtually nothing is known about the cellular effects of arecoline treatment on membrane associated signaling components of human cancer cells. Using the human Ishikawa endometrial cancer cell line, we investigated the effects of arecoline on expression, localization and functional connections between the ZO-1 tight junction protein and the HER2 EGF receptor family member. Treatment of Ishikawa cells with arecoline coordinately down-regulated expression of both ZO-1 and HER2 protein and transcripts in a dose dependent manner. Biochemical fractionation of cells as well as indirect immunofluorescence revealed that arecoline disrupted the localization of ZO-1 to the junctional complex at the cell periphery. Compared to control transfected cells, ectopic expression of exogenous HER2 prevented the arecoline mediated down-regulation of ZO-1 expression and restored the localization of ZO-1 to the cell periphery. Furthermore, treatment with dexamethasone, a synthetic glucocorticoid reported to up-regulate expression of HER2 in Ishikawa cells, precluded arecoline from down-regulating ZO-1 expression and disrupting ZO-1 localization. Arecoline is known to induce precancerous lesions and cancer in the oral cavity of betel nut users. The arecoline down-regulation of ZO-1 expression and subcellular distribution suggests that arecoline potentially

  17. Arecoline induced disruption of expression and localization of the tight junctional protein ZO-1 is dependent on the HER 2 expression in human endometrial Ishikawa cells

    Directory of Open Access Journals (Sweden)

    Sundar Shyam N

    2010-07-01

    Full Text Available Abstract Background Approximately 600 million people chew Betel nut, making this practice the fourth most popular oral habit in the world. Arecoline, the major alkaloid present in betel nut is one of the causative agents for precancerous lesions and several cancers of mouth among those who chew betel nut. Arecoline can be detected in the human embryonic tissue and is correlated to low birth weight of newborns whose mothers chew betel nut during pregnancy, suggesting that arecoline can induce many systemic effects. However, few reports exist as to the effects of arecoline in human tissues other than oral cancer cell lines. Furthermore, in any system, virtually nothing is known about the cellular effects of arecoline treatment on membrane associated signaling components of human cancer cells. Results Using the human Ishikawa endometrial cancer cell line, we investigated the effects of arecoline on expression, localization and functional connections between the ZO-1 tight junction protein and the HER2 EGF receptor family member. Treatment of Ishikawa cells with arecoline coordinately down-regulated expression of both ZO-1 and HER2 protein and transcripts in a dose dependent manner. Biochemical fractionation of cells as well as indirect immunofluorescence revealed that arecoline disrupted the localization of ZO-1 to the junctional complex at the cell periphery. Compared to control transfected cells, ectopic expression of exogenous HER2 prevented the arecoline mediated down-regulation of ZO-1 expression and restored the localization of ZO-1 to the cell periphery. Furthermore, treatment with dexamethasone, a synthetic glucocorticoid reported to up-regulate expression of HER2 in Ishikawa cells, precluded arecoline from down-regulating ZO-1 expression and disrupting ZO-1 localization. Conclusion Arecoline is known to induce precancerous lesions and cancer in the oral cavity of betel nut users. The arecoline down-regulation of ZO-1 expression and

  18. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions.

    Directory of Open Access Journals (Sweden)

    Ken Kobayashi

    Full Text Available Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4 on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.

  19. Identification of a novel mutation of the gene for gap junction protein α3 (GJA3) in a Chinese family with congenital cataract.

    Science.gov (United States)

    Hu, Ying; Gao, Lin; Feng, Yali; Yang, Tao; Huang, Shangzhi; Shao, Zhengbo; Yuan, Huiping

    2014-07-01

    Cataract, defined as any opacity of the crystallin lens, can be divided into early onset (congenital or infantile) and age-related. It is the leading cause of visual disability in children, and mutations in many genes have currently been linked with this disorder. In the present study, we identified a genetic defect in a Chinese family with congenital cataract. Genomic DNA was extracted from the venous blood of the family and 100 normal controls. To screen for the disease-causing mutation, we sequenced eight candidate genes, and to predict the functional consequences of the mutation, a structural model of the protein was developed using the Protein Data Bank and PyMOL 1.1r1. We found a novel variant (c.163 A > G transition) in the gene for gap junction protein α3, or the connexin46 gene. This mutation resulted in the substitution of a highly conserved asparagine at codon 55 by aspartic acid (p.N55D). There were no nucleotide polymorphisms in the other candidate genes sequenced.

  20. Calcium-Dependent Protein Kinase in Ginger Binds with Importin-α through Its Junction Domain for Nuclear Localization, and Further Interacts with NAC Transcription Factor

    Science.gov (United States)

    Vivek, Padmanabhan Jayanthi; Resmi, Mohankumar Saraladevi; Sreekumar, Sweda; Sivakumar, K. C.; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ elevations in plant cells regulating the gene expression linked with various cellular processes like stress response, growth and development, metabolism, and cytoskeleton dynamics. Ginger is an extensively used spice due to its unique flavor and immense medicinal value. The two major threats that interfere with the large scale production of ginger are the salinity and drought stress. ZoCDPK1 (Zingiber officinale Calcium-dependent protein kinase 1) is a salinity and drought-inducible CDPK gene isolated from ginger and undergoes dynamic subcellular localization during stress conditions. ZoCDPK1, with signature features of a typical Ca2+ regulated kinase, also possesses a bipartite nuclear localization sequence (NLS) in its junction domain (JD). A striking feature in ZoCDPK1 is the rare occurrence of a coupling between the NLS in JD and consensus sequences in regulatory domain. Here, we further identified its nature of nuclear localization and its interaction partners. In the homology model generated for ZoCDPK1, the regulatory domain mimics the crystal structure of the regulatory domain in Arabidopsis CDPK1. Molecular docking simulation of importin (ZoIMPα), an important protein involved in nuclear translocation, into the NLS of ZoCDPK1 was well-visualized. Furthermore, the direct interaction of ZoCDPK1 and ZoIMPα proteins was studied by the yeast 2-hybrid (Y2H) system, which confirmed that junction domain (JD) is an important interaction module required for ZoCDPK1 and ZoIMPα binding. The probable interacting partners of ZoCDPK1 were also identified using Y2H experiment. Of the 10 different stress-related interacting partners identified for ZoCDPK1, NAC transcription factor (TF) needs special mention, especially in the context of ZoCDPK1 function. The interaction between ZoCDPK1 and NAC TF, in fact, corroborate with the results of gene expression and over-expression studies of ZoCDPK1. Hence

  1. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype-Phenotype Correlation in X-linked Charcot-Marie-Tooth Disease in Chinese Patients.

    Science.gov (United States)

    Sun, Bo; Chen, Zhao-Hui; Ling, Li; Li, Yi-Fan; Liu, Li-Zhi; Yang, Fei; Huang, Xu-Sheng

    2016-05-05

    Among patients with Charcot-Marie-Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX1. Nine GJB1 mutations (c.283G>A, c.77C>T, c.643C>T, c.515C>T, c.191G>A, c.610C>T, c.490C>T, c.491G>A, and c.44G>A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were T, c.191G>A, and c.610C>T, were revealed and bioinformatics analyses indicated high pathogenicity. The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.

  2. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype-Phenotype Correlation in X-linked Charcot-Marie-Tooth Disease in Chinese Patients

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Zhao-Hui Chen; Li Ling; Yi-Fan Li; Li-Zhi Liu; Fei Yang; Xu-Sheng Huang

    2016-01-01

    Background:Among patients with Charcot-Marie-Tooth disease (CMT),the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type,accounting for approximately 90% of all CMTX.More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32).CX32 is thought to form gap junctions that promote the diffusion pathway between cells.GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin,and novel mutations are continually discovered.Methods:We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20,2012,to December 31,2015.Clinical examination,nerve conduction studies,and molecular and bioinformatics analyses were performed to identify patients with CMTX 1.Results:Nine GJB1 mutations (c.283G>A,c.77C>T,c.643C>T,c.515C>T,c.191G>A,c.610C>T,c.490C>T,c.491G>A,and c.44G>A) were discovered in nine patients.Median motor nerve conduction velocities of all nine patients were < 38 m/s,resembling CMT Type 1.Three novel mutations,c.643C>T,c.191G>A,and c.610C>T,were revealed and bioinformatics analyses indicated high pathogenicity.Conclusions:The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT 1 X.Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.

  3. The protein kinase A pathway contributes to Hg2+-induced alterations in phosphorylation and subcellular distribution of occludin associated with increased tight junction permeability of salivary epithelial cell monolayers.

    Science.gov (United States)

    Kawedia, Jitesh D; Jiang, Mengmeng; Kulkarni, Amit; Waechter, Holly E; Matlin, Karl S; Pauletti, Giovanni M; Menon, Anil G

    2008-09-01

    Hg(2+) is commonly used as an inhibitor of many aquaporins during measurements of transcellular water transport. To investigate whether it could also act on the paracellular water transport pathway, we asked whether addition of Hg(2+) affected transport of radiolabeled probes through tight junctions of a salivary epithelial cell monolayer. Inclusion of 1 mM Hg(2+) decreased transepithelial electrical resistance by 8-fold and augmented mannitol and raffinose flux by 13-fold, which translated into an estimated 44% increase in pore radius at the tight junction. These Hg(2+)-induced effects could be partially blocked by the protein kinase A (PKA) inhibitor N-[2-((p-bromocinnamyl) amino) ethyl]-5-isoquinolinesulfonamide, 2HCl (H89), suggesting that both-PKA dependent and PKA-independent mechanisms contribute to tight junction regulation. Western blot analyses showed a 2-fold decrease in tight junction-associated occludin after Hg(2+) treatment and the presence of a novel hyperphosphorylated form of occludin in the cytoplasmic fraction. These findings were corroborated by confocal imaging. The results from this study reveal a novel contribution of the PKA pathway in Hg(2+)-induced regulation of tight junction permeability in the salivary epithelial barrier. Therapeutically, this could be explored for pharmacological intervention in the treatment of dry mouth, Sjögren's syndrome, and possibly other disorders of fluid transport.

  4. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  5. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4.

    Science.gov (United States)

    Kominsky, Scott L; Vali, Mustafa; Korz, Dorian; Gabig, Theodore G; Weitzman, Sigmund A; Argani, Pedram; Sukumar, Saraswati

    2004-05-01

    Clostridium perfringens enterotoxin (CPE) induces cytolysis very rapidly through binding to its receptors, the tight junction proteins CLDN 3 and 4. In this study, we investigated CLDN 3 and 4 expression in breast cancer and tested the potential of CPE-mediated therapy. CLDN 3 and 4 proteins were detected in all primary breast carcinomas tested (n = 21) and, compared to normal mammary epithelium, were overexpressed in approximately 62% and 26%, respectively. Treatment of breast cancer cell lines in culture with CPE resulted in rapid and dose-dependent cytolysis exclusively in cells that expressed CLDN 3 and 4. Intratumoral CPE treatment of xenografts of T47D breast cancer cells in immunodeficient mice resulted in a significant reduction in tumor volume (P = 0.007), with accompanying necrosis. Necrotic reactions were also seen in three freshly resected primary breast carcinoma samples treated with CPE for 12 hours, while isolated primary breast carcinoma cells underwent rapid and complete cytolysis within 1 hour. Thus, expression of CLDN 3 and 4 sensitizes primary breast carcinomas to CPE-mediated cytolysis and emphasizes the potential of CPE in breast cancer therapy.

  6. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.

    Directory of Open Access Journals (Sweden)

    Sébastien Besteiro

    2009-02-01

    Full Text Available One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1 and the neck of the rhoptries (for RON2/RON4/RON5 proteins, have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

  7. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice.

    Science.gov (United States)

    Oguro, K; Jover, T; Tanaka, H; Lin, Y; Kojima, T; Oguro, N; Grooms, S Y; Bennett, M V; Zukin, R S

    2001-10-01

    Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.

  8. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 level and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.

  9. Lentivirus-mediated RNAi knockdown of the gap junction protein, Cx43, attenuates the development of vascular restenosis following balloon injury.

    Science.gov (United States)

    Han, Xiao-Jian; Chen, Min; Hong, Tao; Zhu, Ling-Yu; He, Dan; Feng, Jiu-Geng; Jiang, Li-Ping

    2015-04-01

    Percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] has been developed into a mature interventional treatment for atherosclerotic cardiovascular disease. However, the long-term therapeutic effect is compromised by the high incidence of vascular restenosis following angioplasty, and the underlying mechanisms of vascular restenosis have not yet been fully elucidated. In the present study, we investigated the role of the gap junction (GJ) protein, connexin 43 (Cx43), in the development of vascular restenosis. To establish vascular restenosis, rat carotid arteries were subjected to balloon angioplasty injury. At 0, 7, 14 and 2 days following balloon injury, the arteries were removed, and the intimal/medial area of the vessels was measured to evaluate the degree of restenosis. We found that the intimal area gradually increased following balloon injury. Intimal hyperplasia and restenosis were particularly evident at 14 and 28 days after injury. In addition, the mRNA and protein expression of Cx43 was temporarily decreased at 7 days, and subsequently increased at 14 and 28 days following balloon injury, as shown by RT-PCR and western blot analysis. To determine the involvement of Cx43 in vascular restenosis, the lentivirus vector expressing shRNA targeting Cx43, Cx43-RNAi-LV, was used to silence Cx43 in the rat carotid arteries. The knockdown of Cx43 effectively attenuated the development of intimal hyperplasia and vascular restenosis following balloon injury. Thus, our data indicate the vital role of the GJ protein, Cx43, in the development of vascular restenosis, and provide new insight into the pathogenesis of vascular restenosis. Cx43 may prove to be a novel potential pharmacological target for the prevention of vascular restenosis following PCI.

  10. Gap junctions - guards of excitability.

    Science.gov (United States)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus; Delmar, Mario; Nielsen, Morten Schak

    2015-06-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane.

  11. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  12. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts - indications of novel tumor promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Luděk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L.

    2009-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) – ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5 - 5 mg d.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs. PMID:19619572

  13. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis.

    Science.gov (United States)

    Lin, Junyi; Xue, Aimin; Li, Liliang; Li, Beixu; Li, Yuhua; Shen, Yiwen; Sun, Ning; Chen, Ruizhen; Xu, Hongfei; Zhao, Ziqin

    2016-05-18

    Viral myocarditis (VMC) is a life-threatening disease that leads to heart failure or cardiac arrhythmia. A large number of researches have revealed that mircroRNAs (miRNAs) participate in the pathological processes of VMC. We previously reported that miR-1 repressed the expression of gap junction protein α1 (GJA1) in VMC. In this study, miR-19b was found to be significantly upregulated using the microarray analysis in a mouse model of VMC, and overexpression of miR-19b led to irregular beating pattern in human cardiomyocytes derived from the induced pluripotent stem cells (hiPSCs-CMs). The upregulation of miR-19b was associated with decreased GJA1 in vivo. Furthermore, a miR-19b inhibitor increased, while its mimics suppressed the expression of GJA1 in HL-1 cells. When GJA1 was overexpressed, the miR-19b mimics-mediated irregular beating was reversed in hiPSCs-CMs. In addition, the effect of miR-19b on GJA1 was enhanced by miR-1 in a dose-dependent manner. These data suggest miR-19b contributes to irregular beating through regulation of GJA1 by cooperating with miR-1. Based on the present and our previous studies, it could be indicated that miR-19b and miR-1 might be critically involved in cardiac arrhythmia associated with VMC.

  14. Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol.

    Science.gov (United States)

    Upham, Brad L; Guzvić, Miodrag; Scott, Jacob; Carbone, Joseph M; Blaha, Ludek; Coe, Chad; Li, Lan Lan; Rummel, Alisa M; Trosko, James E

    2007-01-01

    Dicumyl peroxide (di-CuOOH) and benzoyl peroxide (BzOOH) act as tumor promoters in SENCAR mice, whereas di-tert-butylhydroperoxide does not. Tumor promotion requires the removal of growth suppression by inhibition of gap junctional intercellular communication (GJIC) and the induction of mitogenic intracellular pathways. We showed that di-CuOOH and BzOOH both reversibly inhibited GJIC and transiently activated mitogen-activated protein kinase, specifically, the extracellular receptor kinase at noncytotoxic conditions in WB-F344 rat liver epithelial cells, whereas the non-tumor-promoting di-tert-butylhydroperoxide did not inhibit GJIC or activate extracellular receptor kinase. di-CuOOH but not BzOOH inhibited GJIC through a phosphatidylcholine-specific phospholipase C-dependent mechanism. N-acetylcysteine (NAC) was needed to prevent a cytotoxic, glutathione-depleting effect of BzOOH, whereas di-CuOOH was noncytotoxic and did not alter glutathione levels at all doses and times tested. Pretreatment of WB-F344 cells with resveratrol, a polyphenolic antioxidant present in red wine, prevented at physiological doses the inhibition of GJIC by di-CuOOH but not from BzOOH and was effective in significantly preventing extracellular receptor kinase activation by both peroxides. NAC did not prevent any of the peroxide effects on either GJIC or extracellular receptor kinase, suggesting a specific antioxidant effect of resveratrol.

  15. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  16. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    Science.gov (United States)

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response.

    Science.gov (United States)

    Zong, Xin; Hu, Wangyang; Song, Deguang; Li, Zhi; Du, Huahua; Lu, Zeqing; Wang, Yizhen

    2016-03-15

    LFP-20, a 20-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, has antimicrobial and immunomodulatory activities. This study assessed the protective effects of LFP-20 on LPS-induced intestinal damage in a LPS-induced mouse model and in vitro, using intestinal porcine epithelial cell line 1 (IPEC-1) cells. LFP-20 prevented LPS-induced impairment in colon epithelium tissues, infiltration of macrophages or leukocytes, histological evidence of inflammation and increased levels of TNF-a, IL-6 and IFN-γ. LFP-20 increased the expression of zonula occludens-1, occludin and claudin-1 and reduced permeability as well as apoptosis of the colon in LPS-treated mice. In IPEC-1 cells, LFP-20 increased transepithelial electrical resistance and tight junction expression. Moreover, we found LFP-20 decreased the MyD88 and AKT levels to affect the NF-κB signaling pathway, to modulate inflammation response and tight junction networks in the processing of LPS stimulation. In summary, LFP-20 prevents the inflammatory response and disruption of tight junction structure induced by LPS, suggesting the potential use of LFP-20 as a prophylactic agent to protect intestinal barrier function.

  18. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Directory of Open Access Journals (Sweden)

    Christoph M Zehendner

    Full Text Available Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR on the evolution of reactive oxygen species (ROS and blood-brain barrier (BBB integrity in brain endothelial cells (BEC. BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC or towards occlusion of the arteria cerebri media (MCAO with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF, MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1 and claudin 5 (Cl5, decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role

  19. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Science.gov (United States)

    Zehendner, Christoph M; Librizzi, Laura; Hedrich, Jana; Bauer, Nina M; Angamo, Eskedar A; de Curtis, Marco; Luhmann, Heiko J

    2013-01-01

    Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR) on the evolution of reactive oxygen species (ROS) and blood-brain barrier (BBB) integrity in brain endothelial cells (BEC). BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC) or towards occlusion of the arteria cerebri media (MCAO) with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER) and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF), MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ) integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI) was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1) and claudin 5 (Cl5), decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role in this

  20. Transient, recurrent, white matter lesions in x-linked Charcot-Marie-tooth disease with novel mutation of gap junction protein beta 1 gene in China: a case report.

    Science.gov (United States)

    Zhao, Yuan; Xie, Yanchen; Zhu, Xiaoquan; Wang, Huigang; Li, Yao; Li, Jimei

    2014-08-03

    Transient white matter lesions have been rarely reported in X-linked Charcot-Marie-Tooth disease type 1. We describe a 15-year-old boy who presented transient and recurrent weakness of the limbs for 5 days. His mother, his mother's mother and his mother's sister presented pes cavus. MRI and electrophysiology were performed in the proband. Gap junction protein beta l gene was analyzed by PCR-sequencing in the proband and his parents. The electrophysiological studies showed a mixed demyelinating and axonal sensorimotor neuropathy. MRI showed white matter lesions in the internal capsule, corpus callosum and periventricular areas, which showed almost complete resolution after two months. T278G mutation in Gap junction protein beta l gene was detected in the proband and his mother. This case report highlights that the novel T278G mutation of Gap junction protein beta l maybe could result in X-linked Charcot-Marie-Tooth disease type 1 with predominant leucoencephalopathy. The white matter changes in MRI of X-linked Charcot-Marie-Tooth disease type 1 patient are reversible.

  1. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  2. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation.

    Science.gov (United States)

    Boivin, Felix J; Schmidt-Ott, Kai M

    2017-06-01

    Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization. © 2017 New York Academy of Sciences.

  3. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells.

    Science.gov (United States)

    Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan

    2017-04-01

    Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNF-α induced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.

  4. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.

  5. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.

  6. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Junyi Lin

    2016-05-01

    Full Text Available Viral myocarditis (VMC is a life-threatening disease that leads to heart failure or cardiac arrhythmia. A large number of researches have revealed that mircroRNAs (miRNAs participate in the pathological processes of VMC. We previously reported that miR-1 repressed the expression of gap junction protein α1 (GJA1 in VMC. In this study, miR-19b was found to be significantly upregulated using the microarray analysis in a mouse model of VMC, and overexpression of miR-19b led to irregular beating pattern in human cardiomyocytes derived from the induced pluripotent stem cells (hiPSCs-CMs. The upregulation of miR-19b was associated with decreased GJA1 in vivo. Furthermore, a miR-19b inhibitor increased, while its mimics suppressed the expression of GJA1 in HL-1 cells. When GJA1 was overexpressed, the miR-19b mimics-mediated irregular beating was reversed in hiPSCs-CMs. In addition, the effect of miR-19b on GJA1 was enhanced by miR-1 in a dose-dependent manner. These data suggest miR-19b contributes to irregular beating through regulation of GJA1 by cooperating with miR-1. Based on the present and our previous studies, it could be indicated that miR-19b and miR-1 might be critically involved in cardiac arrhythmia associated with VMC.

  7. ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro

    Directory of Open Access Journals (Sweden)

    Fuxing Yang

    2016-01-01

    Full Text Available Disruption of blood-brain barrier (BBB follows brain trauma or central nervous system (CNS stress. However, the mechanisms leading to this process or the underlying neural plasticity are not clearly known. We hypothesized that ATP/P2X7R signaling regulates the integrity of BBB. Activation of P2X7 receptor (P2X7R by ATP induces the release of interleukin-1β (IL-1β, which in turn enhances the activity of matrix metalloproteinase-9 (MMP-9. Degradation of tight junction proteins (TJPs such as ZO-1 and occludin occurs, which finally contributes to disruption of BBB. A contact coculture system using human astrocytes and hCMEC/D3, an immortalized human brain endothelial cell line, was used to mimic BBB in vitro. Permeability was used to evaluate changes in the integrity of TJPs. ELISA, Western blot, and immunofluorescent staining procedures were used. Our data demonstrated that exposure to the photoreactive ATP analog, 3′-O-(4-benzoylbenzoyl adenosine 5′-triphosphate (BzATP, induced a significant decrease in ZO-1 and occludin expression. Meanwhile, the decrease of ZO-1 and occludin was significantly attenuated by P2X7R inhibitors, as well as IL-1R and MMP antagonists. Further, the induction of IL-1β and MMP-9 was closely linked to ATP/P2X7R-associated BBB leakage. In conclusion, our study explored the mechanism of ATP/P2X7R signaling in the disruption of BBB following brain trauma/stress injury, especially focusing on the relationship with IL-1β and MMP-9.

  8. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells.

    Science.gov (United States)

    Kudva, Indira T; Krastins, Bryan; Torres, Alfredo G; Griffin, Robert W; Sheng, Haiqing; Sarracino, David A; Hovde, Carolyn J; Calderwood, Stephen B; John, Manohar

    2015-06-01

    Building on previous studies, we defined the repertoire of proteins comprising the immunoproteome (IP) of Escherichia coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (O157 IP), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called "proteomics-based expression library screening" (PELS; Kudva et al., 2006). The E. coli O157 IP (O157-IP) comprised 91 proteins, and included those identified previously using proteomics-based expression library screening, and also proteins comprising DMEM and bovine rumen fluid proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured HEp-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine rectoanal junction squamous epithelial cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to rectoanal junction squamous epithelial cells, and additionally implicate a possible role for the outer membrane protein A regulator, TdcA, in the expression of such adhesins. Our observations have implications for the development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract.

  9. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon.

    Science.gov (United States)

    Richter, Jan F; Pieper, Robert; Zakrzewski, Silke S; Günzel, Dorothee; Schulzke, Joerg D; Van Kessel, Andrew G

    2014-03-28

    Protein fermentation end products may damage the colonic mucosa, which could be counteracted by dietary inclusion of fermentable carbohydrates (fCHO). Although fermentable crude protein (fCP) and fCHO are known to affect microbial ecology, their interactive effects on epithelial barrier function are unknown. In the present study, in a 2 × 2 factorial experiment, thirty-two weaned piglets were fed low-fCP/low-fCHO (14·5 % crude protein (CP)/14·5 % total dietary fibre (TDF)), low-fCP/high-fCHO (14·8 % CP/16·6 % TDF), high-fCP/low-fCHO (19·8 % CP/14·5 % TDF) and high-fCP/high-fCHO (20·1 % CP/18·0 % TDF) diets. After 21-23 d, samples of proximal and distal colonic mucosae were investigated in Ussing chambers with respect to the paracellular and transcytotic passages of macromolecules and epithelial ion transport. The high-fCHO diets were found to reduce the permeability of the distal colon to the transcytotic marker horseradish peroxidase (HRP, 44 kDa; P ion transport), transepithelial resistance (barrier function) and charge selectivity were largely unaffected in both the segments. However, the high-fCP diets were found to suppress the aldosterone-induced epithelial Na channel activity (P composition in a compensatory way, so that colonic transport and barrier properties were only marginally affected.

  10. 病原微生物对紧密连接蛋白的调控%Regulation of pathogens on tight junction protein

    Institute of Scientific and Technical Information of China (English)

    张瑞丽; 王千秋

    2014-01-01

    Tight junctions are the structural and functional base of blood brain barrier and enteric epithelial barrier.Alterations of tight junctions play an important role in pathogens invading the body through paracellular penetration.The article reviews the progress on the effect of pathogens on the structure and function of tight junctions of blood brain barrier and enteric epithelial barrier.%紧密连接是血脑屏障及肠上皮屏障的结构和分子基础,其结构和功能改变是多种病原微生物从细胞旁路侵入机体的先决条件.此文分别就病原微生物如何调节血脑屏障及肠上皮屏障紧密连接结构,进而调节其功能方面的研究进展作一综述.

  11. Septal Junctions in Filamentous Heterocyst-Forming Cyanobacteria.

    Science.gov (United States)

    Flores, Enrique; Herrero, Antonia; Forchhammer, Karl; Maldener, Iris

    2016-02-01

    In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.

  12. Magnetic tunnel junctions (MTJs)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.

  13. Stacked Josephson Junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2010-01-01

    Long Josephson junctions have for some time been considered as a source of THz radiation. Solitons moving coherently in the junctions is a possible source for this radiation. Analytical computations of the bunched state and bunching-inducing methods are reviewed. Experiments showing THz radiation...

  14. Deficiency of dietary niacin impaired gill immunity and antioxidant capacity, and changes its tight junction proteins via regulating NF-κB, TOR, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Li, Shun-Quan; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    To investigate the effects of dietary niacin on gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression, young grass carp (Ctenopharyngodon idella) were fed six diets containing graded levels of niacin (3.95-55.01 mg/kg diet) for 8 weeks. The study indicated that niacin deficiency decreased lysozyme and acid phosphatase activities, and complement 3 content, and caused oxidative damage that might be partly due to the decreased copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in fish gills (P niacin-deficient diet group. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase α, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b, myosin light chain kinase and p38 mitogen-activated protein kinase (p38 MAPK) were significantly increased (P niacin-deficient diet. Interestingly, the varying niacin levels of 3.95-55.01 mg/kg diet had no effect on the mRNA level of Kelch-like-ECH-associated protein 1a, Claudin-c and -12 in fish gills (P > 0.05). In conclusion, niacin deficiency decreased gill immunity, impaired gill antioxidant system, as well as regulated mRNA expression of gill tight junction proteins and related signaling molecules of fish.

  15. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    Science.gov (United States)

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill.

  16. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine.

    Science.gov (United States)

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2014-09-01

    This study investigated the effects of dietary valine on the growth, intestinal immune response, tight junction proteins transcript abundance and gene expression of immune-related signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). Six iso-nitrogenous diets containing graded levels of valine (4.3-19.1 g kg(-)(1) diet) were fed to the fish for 8 weeks. The results showed that percentage weight gain (PWG), feed intake and feed efficiency of fish were the lowest in fish fed the valine-deficient diet (P valine deficiency decreased lysozyme, acid phosphatase activities and complement 3 content in the intestine (P valine deficiency significantly decreased transcript of Occludin, Claudin b, Claudin c, Claudin 3, and ZO-1 (P valine did not have a significant effect on expression of Claudin 12 in the intestine of grass carp (P > 0.05). In conclusion, valine deficiency decreased fish growth and intestinal immune status, as well as regulated gene expression of tight junction proteins, NF-κB P65, IκBα and TOR in the fish intestine. Based on the quadratic regression analysis of lysozyme activity or PWG, the dietary valine requirement of young grass carp (268-679 g) were established to be 14.47 g kg(-1) diet (4.82 g 100 g(-1) CP) or 14.00 g kg(-1) diet (4.77 g 100 g(-1) CP), respectively.

  17. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease.

    Science.gov (United States)

    Mohan, Mahesh; Chow, Cheryl-Emiliane T; Ryan, Caitlin N; Chan, Luisa S; Dufour, Jason; Aye, Pyone P; Blanchard, James; Moehs, Charles P; Sestak, Karol

    2016-10-28

    The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity (p gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change (p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated (p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS macaques will approach those of healthy

  19. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease

    Science.gov (United States)

    Mohan, Mahesh; Chow, Cheryl-Emiliane T.; Ryan, Caitlin N.; Chan, Luisa S.; Dufour, Jason; Aye, Pyone P.; Blanchard, James; Moehs, Charles P.; Sestak, Karol

    2016-01-01

    The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity (p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change (p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated (p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS

  20. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease

    Directory of Open Access Journals (Sweden)

    Mahesh Mohan

    2016-10-01

    Full Text Available The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD, gluten-free diet (GFD, barley gluten-derived diet (BOMI and reduced gluten barley-derived diet (RGB. It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity (p < 0.05 following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity of gut microbiome in GS macaques started to change (p = 0.011 towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b were upregulated (p < 0.05 in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911, Prevotella stercorea (NR_041364 and Streptococcus luteciae (AJ297218 that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes

  1. Gap junction intercellular communication and benzene toxicity.

    Science.gov (United States)

    Rivedal, Edgar; Witz, Gisela; Leithe, Edward

    2010-03-19

    Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to several human diseases, including cancer and abnormal hematopoietic development. Benzene exposure has been shown to cause hematotoxicity and leukemia, but the underlying mechanisms involved remain unclear. We have observed that several metabolites of benzene have the ability to block gap junction intercellular communication. The ring-opened trans,trans-muconaldehyde (MUC) was found to be the most potent inhibitor of gap junction channels. MUC was found to induce cross-linking of the gap junction protein connexin43, which seemed to be responsible for the induced inhibition of GJIC. Glutaraldehyde, which has a similar molecular structure as MUC, was found to possess similar effects on gap junctions as MUC, while the mono-aldehyde formaldehyde shows lower potency, both as a connexin cross-linker, and as an inhibitor of GJIC. Both glutaraldehyde and formaldehyde have previously been associated with induction of leukemia and disturbance of hematopoiesis. Taken together, the data support a possible link between the effect of MUC on gap junctions, and the toxic effects of benzene. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Gap junctions: structure and function (Review).

    Science.gov (United States)

    Evans, W Howard; Martin, Patricia E M

    2002-01-01

    Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.

  3. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  4. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells

    Science.gov (United States)

    Alvarez, Carina-Shianya; Badia, Josefa; Bosch, Manel; Giménez, Rosa; Baldomà, Laura

    2016-01-01

    The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs) released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T-84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the transcriptional

  5. Structure, regulation and function of gap junctions in liver

    Science.gov (United States)

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  6. Equivalent Josephson junctions

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.

  7. 星形胶质细胞缝隙连接蛋白与脑缺血%Astrocytic gap junction protein and cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    王浩; 蔺慕会; 徐佳亮; 陈晓虹

    2014-01-01

    Studies have shown that gap junction (GJ) of astrocytes plays an important role in ischemic brain injury.Therefore,GJ may become a new target for the treatment of ischemic brain injury.In recent years,although the relationship between GJ of astrocytes and ischemic brain injury has been extensively studied,the conclusions are not consistent.This article reviews the structure,distribution,function of GJ,and its research progress related ischemic brain injury.%研究表明,星形胶质细胞缝隙连接(gap junction,GJ)在缺血性脑损伤中起着重要作用,因此GJ可能会有望成为治疗缺血性脑损伤的新靶点.近年来,虽然对星形胶质细胞GJ与缺血性脑损伤的关系进行了广泛研究,但结论并不一致.文章对GJ的结构、分布、功能及其与缺血性脑损伤相关的研究进展进行了综述.

  8. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  9. Male reproductive toxicity of CrVI: In-utero exposure to CrVI at the critical window of testis differentiation represses the expression of Sertoli cell tight junction proteins and hormone receptors in adult F1 progeny rats.

    Science.gov (United States)

    Kumar, Kathiresh M; Aruldhas, Mariajoseph Michael; Banu, Sheerin L; Sadasivam, Balaji; Vengatesh, Ganapathy; Ganesh, Karthik M; Navaneethabalakrishnan, Shobana; Navin, Ajith Kumar; Michael, Felicia Mary; Venkatachalam, Sankar; Stanley, Jone A; Ramachandran, Ilangovan; Banu, Sakhila K; Akbarsha, Mohammad Abdulkader

    2017-02-10

    The effect of gestational exposure to CrVI (occupational/environmental pollutant and target to Sertoli cells(SC)) was tested in a rat model during the testicular differentiation from the bipotential gonad may interrupt spermatogenesis by disrupting SC tight junctions(TJ) and it's proteins and hormone receptors. Pregnant Wistar rats were exposed to 50/100/200ppm CrVI through drinking water during embryonic days 9-14. On Postnatal day 120, testes were subjected to ion exchange chromatographic analysis and revealed increased level of CrIII in SCs and germ cells, serum and testicular interstitial fluid(TIF). Microscopic analyses showed seminiferous tubules atrophy and disruption of SC TJ, which also recorded decreased testosterone in TIF. mRNA and Protein expression analyses attested decreased level of Fshr, Ar, occludin and claudin-11 in SCs. Immunofluorescent detection revealed weak signal of TJ proteins. Taken together, we concluded that gestational exposure to CrVI interferes with the expression of SC TJ proteins due to attenuated expression of hormone receptors.

  10. The Escherichia coli O157:H7 cattle immuno-proteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine recto-anal junction squamous epithelial (RSE) cells

    Science.gov (United States)

    Kudva, Indira T.; Krastins, Bryan; Torres, Alfredo G.; Griffin, Robert W.; Sheng, Haiqing; Sarracino, David A.; Hovde, Carolyn J.; Calderwood, Stephen B.; John, Manohar

    2015-01-01

    SUMMARY Building on previous studies, we defined the repertoire of proteins comprising the immuno-proteome of E. coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (NE; O157 immuno-proteome), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called Proteomics-based Expression Library Screening (PELS; Kudva et al., 2006). The E. coli O157 immuno-proteome (O157-IP) comprised 91 proteins, and included those identified previously using PELS, and also proteins comprising DMEM- and bovine rumen fluid- proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured Hep-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine recto-anal junction squamous epithelial (RSE) cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to RSE-cells, and additionally implicate a possible role for the OmpA regulator, TdcA, in the expression of such adhesins. Our observations have implications for development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract. PMID:25643951

  11. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    Science.gov (United States)

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-02-10

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  12. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression.

    Science.gov (United States)

    Lim, Su-Min; Jeong, Jin-Ju; Woo, Kyung Hee; Han, Myung Joo; Kim, Dong-Hyun

    2016-04-01

    A high-fat diet (HFD) induces obesity and the associated increases in blood glucose and inflammation through changes in gut microbiota, endotoxemia, and increased gut permeability. To counteract this, researchers have suggested that the use of probiotics that suppress production of proinflammatory lipopolysaccharide (LPS). Here, we tested whether Lactobacillus sakei OK67, which inhibits gut microbiota LPS production selected from among the lactic acid bacteria isolated from kimchi, exerted antihypoglycemic or anti-inflammatory effects in HFD-fed mice. Mice were randomly divided into 2 groups and fed an HFD or a low-fat diet for 4 weeks. These groups were further subdivided; 1 subgroup was treated with L sakei OK67 and fed the experimental diet for 4.5 weeks, whereas the other subgroup was fed the experimental diet alone. L sakei OK67 treatment lowered HFD-elevated LPS levels in blood and colonic fluid and significantly decreased HFD-elevated fasting blood glucose levels and the area under the curve in an oral glucose tolerance test. L sakei OK67 treatment inhibited HFD-induced body and epididymal fat weight gains, suppressed HFD-induced tumor necrosis factor-α and interleukin-1β expression and nuclear factor-κB activation in the colon, and significantly increased HFD-suppressed interleukin-10 and tight junction protein expression in the colon. Oral administration of L sakei OK67 significantly downregulated HFD-induced expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, and tumor necrosis factor-α in adipose tissue. In addition, L sakei OK67 treatment strongly inhibited nuclear factor-κB activation in LPS-stimulated peritoneal macrophages. We report that L sakei OK67 ameliorates HFD-induced hyperglycemia and obesity by reducing inflammation and increasing the expression of colon tight junction proteins in mice.

  13. Gap junction diseases of the skin.

    Science.gov (United States)

    van Steensel, M A M

    2004-11-15

    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by mutations in one of the genes coding for the constituent proteins of gap junctions, known as connexins. In this review, the currently known connexin disorders that feature skin abnormalities are described: keratitis-ichthyosis deafness syndrome, erythrokeratoderma variabilis, Vohwinkel's syndrome, and a novel disorder called hypotrichosis-deafness syndrome. What is known about the pathogenesis of these disorders is discussed and related to gap junction physiology. (c) 2004 Wiley-Liss, Inc.

  14. The gap junction cellular internet: connexin hemichannels enter the signalling limelight

    National Research Council Canada - National Science Library

    Evans, W Howard; De Vuyst, Elke; Leybaert, Luc

    2006-01-01

    Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs...

  15. Papain Degrades Tight Junction Proteins of Human Keratinocytes In Vitro and Sensitizes C57BL/6 Mice via the Skin Independent of its Enzymatic Activity or TLR4 Activation.

    Science.gov (United States)

    Stremnitzer, Caroline; Manzano-Szalai, Krisztina; Willensdorfer, Anna; Starkl, Philipp; Pieper, Mario; König, Peter; Mildner, Michael; Tschachler, Erwin; Reichart, Ursula; Jensen-Jarolim, Erika

    2015-07-01

    Papain is commonly used in food, pharmaceutical, textile, and cosmetic industries and is known to induce occupational allergic asthma. We have previously shown that the papain-like cysteine protease Dermatophagoides pteronyssinus 1 from house dust mite exhibits percutaneous sensitization potential. We aimed here to investigate the potential of papain itself in epicutaneous sensitization. The effects of papain on tight junction (TJ) proteins were tested in vitro in human primary keratinocytes. Using C57BL/6 wild-type and Toll-like receptor 4 (TLR4)-deficient mice, we analyzed the sensitization potential of papain, its effects on the skin barrier, and immune cell recruitment. Our results show that papain affects the skin barrier by increasing transepidermal water loss, degrading TJ proteins and inducing vasodilation. When topically applied, papain exhibited a high epicutaneous inflammatory potential by recruiting neutrophils, mast cells, and CD3-positive cells and by induction of a TH2-biased antibody response. However, its high potency for specific sensitization via the skin was TLR4 independent and, in spite of its capacity to degrade epidermal TJ proteins, does not rely on its enzymatic function. From our data, we conclude that papain has all features to act as a strong allergen via the skin.

  16. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    Science.gov (United States)

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish intestine. Based on the quadratic regression analysis of lysozyme activity at a 95% maximum, the dietary Phe requirement of young grass carp (256-629 g) was estimated to be 8.31 g kg(-1), corresponding to 2.75 g 100 g(-1) protein.

  17. The gap junction proteome and its relationship to disease.

    Science.gov (United States)

    Laird, Dale W

    2010-02-01

    In recent years our understanding of connexins has advanced from viewing them simply as proteins with a surprisingly short lifespan that form gap junction channels. Connexins are now known to be multifaceted proteins at the core of many multiprotein complexes that link to structural junctional complexes and cytoskeletal elements, and also to the cellular machinery that facilitates their transport, assembly, function and internalization. Collectively, these connexin-binding proteins can be termed the 'gap junction proteome'. The mechanistic understanding of the gap junction proteome with regards to the dynamic life cycle of connexins has grown further in importance in light of the large number of human diseases attributed to connexin gene mutations and regulatory changes in connexin spatial localization and expression levels.

  18. The human myotendinous junction

    DEFF Research Database (Denmark)

    Knudsen, A B; Larsen, M; Mackey, Abigail

    2015-01-01

    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never ...

  19. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  20. Glial connexins and gap junctions in CNS inflammation and disease.

    Science.gov (United States)

    Kielian, Tammy

    2008-08-01

    Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.

  1. Junction trees of general graphs

    Institute of Scientific and Technical Information of China (English)

    Xiaofei WANG; Jianhua GUO

    2008-01-01

    In this paper,we study the maximal prime subgraphs and their corresponding structure for any undirected graph.We introduce the notion of junction trees and investigate their structural characteristics,including junction properties,induced-subtree properties,running-intersection properties and maximum-weight spanning tree properties.Furthermore,the characters of leaves and edges on junction trees are discussed.

  2. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine.

    Science.gov (United States)

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON.

  3. Gap-junction-mediated cell-to-cell communication.

    Science.gov (United States)

    Hervé, Jean-Claude; Derangeon, Mickaël

    2013-04-01

    Cells of multicellular organisms need to communicate with each other and have evolved various mechanisms for this purpose, the most direct and quickest of which is through channels that directly connect the cytoplasms of adjacent cells. Such intercellular channels span the two plasma membranes and the intercellular space and result from the docking of two hemichannels. These channels are densely packed into plasma-membrane spatial microdomains termed "gap junctions" and allow cells to exchange ions and small molecules directly. A hemichannel is a hexameric torus of junctional proteins around an aqueous pore. Vertebrates express two families of gap-junction proteins: the well-characterized connexins and the more recently discovered pannexins, the latter being related to invertebrate innexins ("invertebrate connexins"). Some gap-junctional hemichannels also appear to mediate cell-extracellular communication. Communicating junctions play crucial roles in the maintenance of homeostasis, morphogenesis, cell differentiation and growth control in metazoans. Gap-junctional channels are not passive conduits, as previously long regarded, but use "gating" mechanisms to open and close the central pore in response to biological stimuli (e.g. a change in the transjunctional voltage). Their permeability is finely tuned by complex mechanisms that have just begun to be identified. Given their ubiquity and diversity, gap junctions play crucial roles in a plethora of functions and their dysfunctions are involved in a wide range of diseases. However, the exact mechanisms involved remain poorly understood.

  4. Holliday junction resolvases.

    Science.gov (United States)

    Wyatt, Haley D M; West, Stephen C

    2014-09-02

    Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  6. Paracellular drug absorption enhancement through tight junction modulation

    OpenAIRE

    Lemmer, Hendrik Jacobus Righard; Josias H. Hamman

    2013-01-01

    Introduction: Inclusion of absorption-enhancing agents in dosage forms is one approach to improve the bioavailability of active pharmaceutical ingredients with low membrane permeability. Tight junctions are dynamic protein structures that form a regulated barrier for movement of molecules through the intercellular spaces across the intestinal epithelium. Some drug absorption enhancers are capable of loosening tight junctions and thereby facilitate paracellular absorption of drug molecules. ...

  7. Aβ(1-42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins.

    Science.gov (United States)

    Wan, Wenbin; Cao, Lan; Liu, Lumei; Zhang, Chunyan; Kalionis, Bill; Tai, Xiantao; Li, Yaming; Xia, Shijin

    2015-07-01

    Accumulating evidence indicates that abnormal deposition of amyloid-β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood-brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ(1-42), and the levels of tight junction (TJ) scaffold proteins (ZO-1, Claudin-5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ(1-42), including monomer (Aβ(1-42)-Mono), oligomer (Aβ(1-42)-Oligo), and fibril (Aβ(1-42)-Fibril), our data confirmed that Aβ(1-42)-Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ(1-42) significantly up-regulated the level of receptor for advanced glycation end-products (RAGE). Co-incubation of a polyclonal antibody to RAGE and Aβ(1-42)-Oligo in bEnd.3 cells blocked RAGE suppression of Aβ(1-42)-Oligo-induced alterations in TJ scaffold proteins and reversed Aβ(1-42)-Oligo-induced up-regulation of RAGE, matrix metalloproteinase (MMP)-2, and MMP-9. Furthermore, we found that these effects induced by Aβ(1-42)-Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad-spectrum MMP inhibitor, partially reversed the Aβ(1-42)-Oligo-induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ-induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up-regulation of MMP-2 and MMP-9.

  8. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein...

  9. The connexin43 carboxyl terminus and cardiac gap junction organization.

    Science.gov (United States)

    Palatinus, Joseph A; Rhett, J Matthew; Gourdie, Robert G

    2012-08-01

    The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Transistor-like behavior of single metalloprotein junctions.

    Science.gov (United States)

    Artés, Juan M; Díez-Pérez, Ismael; Gorostiza, Pau

    2012-06-13

    Single protein junctions consisting of azurin bridged between a gold substrate and the probe of an electrochemical tunneling microscope (ECSTM) have been obtained by two independent methods that allowed statistical analysis over a large number of measured junctions. Conductance measurements yield (7.3 ± 1.5) × 10(-6)G(0) in agreement with reported estimates using other techniques. Redox gating of the protein with an on/off ratio of 20 was demonstrated and constitutes a proof-of-principle of a single redox protein field-effect transistor.

  11. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I.

    Science.gov (United States)

    Stroud, David A; Formosa, Luke E; Wijeyeratne, Xiaonan W; Nguyen, Thanh N; Ryan, Michael T

    2013-01-18

    Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.

  12. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model

    Directory of Open Access Journals (Sweden)

    Yi Zou

    2016-01-01

    Full Text Available Oregano essential oil (OEO has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P<0.05 endotoxin level in serum and increased (P<0.05 villus height and expression of occludin and zonula occludens-1 (ZO-1 in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P<0.05 population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P<0.05 of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK, protein kinase B (Akt, and nuclear factor κB (NF-κB signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs.

  13. An induced junction photovoltaic cell

    Science.gov (United States)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  14. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    Science.gov (United States)

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could

  15. An Important Member of Tight Junctions: Claudins

    Directory of Open Access Journals (Sweden)

    Ozlem Demirpence

    2016-01-01

    Full Text Available The tight junction (TJs, the most apically located of the intercellular junctional complexes, inhibits solute and water flow through the paracellular space, termed the %u201Cbarrier%u201D function. TJs participate in signal transduction mechanisms that regulate epithelial cell proliferation, gene expression, differentiation and morphogenesis. The claudin family of transmembrane proteins localized to the TJ. Loss of expression of Claudin causes of suppression TJs function. Recent studies have shown that altered levels of the different claudins may be related to invasion and progression of carcinoma cells in several primary neoplasms. A better knowledge of the mechanisms underlying carcinogenesis will likely result in the development of novel approaches for the diagnosis and therapy.

  16. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  17. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  18. Defining functional interactions during biogenesis of epithelial junctions

    Science.gov (United States)

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.

    2016-01-01

    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  19. Loss of tricellular tight junction protein LSR promotes cell invasion and migration via upregulation of TEAD1/AREG in human endometrial cancer

    Science.gov (United States)

    Shimada, Hiroshi; Abe, Shyuetsu; Kohno, Takayuki; Satohisa, Seiro; Konno, Takumi; Takahashi, Syunta; Hatakeyama, Tsubasa; Arimoto, Chihiro; Kakuki, Takuya; Kaneko, Yakuto; Takano, Ken-ichi; Saito, Tsuyoshi; Kojima, Takashi

    2017-01-01

    Lipolysis-stimulated lipoprotein receptor (LSR) is a unique molecule of tricellular contacts of normal and cancer cells. We investigated how the loss of LSR induced cell migration, invasion and proliferation in endometrial cancer cell line Sawano. mRNAs of amphiregulin (AREG) and TEA domain family member 1 (TEAD1) were markedly upregulated by siRNA-LSR. In endometrial cancer tissues, downregulation of LSR and upregulation of AREG were observed together with malignancy, and Yes-associated protein (YAP) was present in the nuclei. siRNA-AREG prevented the cell migration and invasion induced by siRNA-LSR, whereas treatment with AREG induced cell migration and invasion. LSR was colocalized with TRIC, angiomotin (AMOT), Merlin and phosphorylated YAP (pYAP). siRNA-LSR increased expression of pYAP and decreased that of AMOT and Merlin. siRNA-YAP prevented expression of the mRNAs of AREG and TEAD1, and the cell migration and invasion induced by siRNA-LSR. Treatment with dobutamine and 2-deoxy-D-glucose and glucose starvation induced the pYAP expression and prevented the cell migration and invasion induced by siRNA-LSR. siRNA-AMOT decreased the Merlin expression and prevented the cell migration and invasion induced by siRNA-LSR. The loss of LSR promoted cell invasion and migration via upregulation of TEAD1/AREG dependent on YAP/pYAP and AMOT/Merlin in human endometrial cancer cells. PMID:28071680

  20. Molecular mechanisms of gap junction mutations in myelinating cells.

    Science.gov (United States)

    Sargiannidou, Irene; Markoullis, Kyriaki; Kleopa, Kleopas A

    2010-09-01

    There is an emerging group of neurological disorders that result from genetic mutations affecting gap junction proteins in myelinating cells. The X-linked form of Charcot Marie Tooth disease (CMT1X) is caused by numerous mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32), which is expressed in both Schwann cells in the PNS and oligodendrocytes in the CNS. Patients with CMT1X present mainly with a progressive peripheral neuropathy, showing mixed axonal and demyelinating features. In many cases there is also clinical or subclinical involvement of the CNS with acute or chronic phenotypes of encephalopathy. Furthermore, mutations in the GJA12/GJC2 gene encoding the gap junction protein Cx47, which is expressed in oligodendrocytes, have been identified in families with progressive leukodystrophy, known as Pelizaeus-Merzbacher-like disease, as well as in patients with hereditary spastic paraplegia. Recent studies have provided insights into the pattern of gap junction protein expression and function in CNS and PNS myelinating cells. Furthermore, in vitro and in vivo disease models have clarified some of the molecular and cellular mechanisms underlying these disorders. Here we provide an overview of the clinical, genetic, and neurobiological aspects of gap junction disorders affecting the nervous system.

  1. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  2. The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1.

    Science.gov (United States)

    Bhella, David; Goodfellow, Ian G

    2011-11-01

    Caliciviridae are small icosahedral positive-sense RNA-containing viruses and include the human noroviruses, a leading cause of infectious acute gastroenteritis and feline calicivirus (FCV), which causes respiratory illness and stomatitis in cats. FCV attachment and entry is mediated by feline junctional adhesion molecule A (fJAM-A), which binds to the outer face of the capsomere, inducing a conformational change in the capsid that may be important for viral uncoating. Here we present the results of our structural investigation of the virus-receptor interaction and ensuing conformational changes. Cryo-electron microscopy and three-dimensional image reconstruction were used to solve the structure of the virus decorated with a soluble fragment of the receptor at subnanometer resolution. In initial reconstructions, the P domains of the capsid protein VP1 and fJAM-A were poorly resolved. Sorting experiments led to improved reconstructions of the FCV-fJAM-A complex both before and after the induced conformational change, as well as in three transition states. These data showed that the P domain becomes flexible following fJAM-A binding, leading to a loss of icosahedral symmetry. Furthermore, two distinct conformational changes were seen; an anticlockwise rotation of up to 15° of the P domain was observed in the AB dimers, while tilting of the P domain away from the icosahedral 2-fold axis was seen in the CC dimers. A list of putative contact residues was calculated by fitting high-resolution coordinates for fJAM-A and VP1 to the reconstructed density maps, highlighting regions in both virus and receptor important for virus attachment and entry.

  3. Tight Junctions in Salivary Epithelium

    Directory of Open Access Journals (Sweden)

    Olga J. Baker

    2010-01-01

    Full Text Available Epithelial cell tight junctions (TJs consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.

  4. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden TJP3 ZO3 TJP3 Tight junction protein ZO-3 Tight junction protein 3, Zona occlude...ns protein 3, Zonula occludens protein 3 9606 Homo sapiens O95049 27134 3KFV 27134 O95049 ...

  5. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden TJP2 X104, ZO2 TJP2 Tight junction protein ZO-2 Tight ju...nction protein 2, Zona occludens protein 2, Zonula occludens protein 2 9606 Homo sapiens Q9UDY2 9414 3E17, 2OSG 9414 ...

  6. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden Tjp1 Zo1 Tight junction protein ZO-1 Tight junction protein 1, Zona occlude...ns protein 1, Zonula occludens protein 1 10090 Mus musculus 21872 P39447 2RRM P39447 21431884 ...

  7. Metallic Junction Thermoelectric Device Simulations

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2017-01-01

    Thermoelectric junctions made of semiconductors have existed in radioisotope thermoelectric generators (RTG) for deep space missions, but are currently being adapted for terrestrial energy harvesting. Unfortunately, these devices are inefficient, operating at only 7% efficiency. This low efficiency has driven efforts to make high-figure-of-merit thermoelectric devices, which require a high electrical conductivity but a low thermal conductivity, a combination that is difficult to achieve. Lowered thermal conductivity has increased efficiency, but at the cost of power output. An alternative setup is to use metallic junctions rather than semiconductors as thermoelectric devices. Metals have orders of magnitude more electrons and electronic conductivities higher than semiconductors, but thermal conductivity is higher as well. To evaluate the viability of metallic junction thermoelectrics, a two dimensional heat transfer MATLAB simulation was constructed to calculate efficiency and power output. High Seebeck coefficient alloys, Chromel (90%Ni-10%Cr) and Constantan (55%Cu-45%Ni), produced efficiencies of around 20-30%. Parameters such as the number of layers of junctions, lateral junction density, and junction sizes for both series- and parallel-connected junctions were explored.

  8. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  9. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm.

    Directory of Open Access Journals (Sweden)

    Jeremiah F Roeth

    Full Text Available BACKGROUND: Tissue morphogenesis and organogenesis require that cells retain stable cell-cell adhesion while changing shape and moving. One mechanism to accommodate this plasticity in cell adhesion involves regulated trafficking of junctional proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here we explored trafficking of junctional proteins in two well-characterized model epithelia, the Drosophila embryonic ectoderm and amnioserosa. We find that DE-cadherin, the transmembrane protein of adherens junctions, is actively trafficked through putative vesicles, and appears to travel through both Rab5-positive and Rab11-positive structures. We manipulated the functions of Rab11 and Rab5 to examine the effects on junctional stability and morphogenesis. Reducing Rab11 function, either using a dominant negative construct or loss of function alleles, disrupts integrity of the ectoderm and leads to loss of adherens junctions. Strikingly, the apical junctional regulator Crumbs is lost before AJs are destabilized, while the basolateral protein Dlg remains cortical. Altering Rab5 function had less dramatic effects, not disrupting adherens junction integrity but affecting dorsal closure. CONCLUSIONS/SIGNIFICANCE: We contrast our results with what others saw when disrupting other trafficking regulators, and when disrupting Rab function in other tissues; together these data suggest distinct mechanisms regulate junctional stability and plasticity in different tissues.

  10. Close the Gap : a study on the regulation of Connexin43 gap junctional communication

    NARCIS (Netherlands)

    Zeijl, Leonie van

    2009-01-01

    Gap junctions are groups of transmembrane channels that connect the cytoplasms of adjacent cells to mediate the diffusion of small molecules, such as ions, metabolites, second messengers and small peptides. The building blocks of gap junctions are connexin proteins. The most ubiquitous and best stu

  11. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR.

    Science.gov (United States)

    Edwards, Vonetta L; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C; Song, Wenxia

    2013-06-01

    Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.

  12. Imaging of cervicothoracic junction trauma

    Directory of Open Access Journals (Sweden)

    Wongwaisayawan S

    2013-01-01

    Full Text Available Sirote Wongwaisayawan,1 Ruedeekorn Suwannanon,2 Rathachai Kaewlai11Department of Radiology, Ramathibodi Hospital and Mahidol University, Bangkok, Thailand; 2Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, ThailandAbstract: Cervicothoracic junction trauma is an important cause of morbidity and mortality in trauma patients. Imaging has played an important role in identifying injuries and guiding appropriate, timely therapy. Computed tomography is currently a method of choice for diagnosing cervicothoracic junction trauma, in which the pattern of injuries often suggests possible mechanisms and potential injuries. In this article, the authors describe and illustrate common and uncommon injuries that can occur in the cervicothoracic junction.Keywords: cervicothoracic junction, cervical spine, trauma, imaging, radiology

  13. 糖尿病大鼠脑组织紧密连接蛋白Occludin 表达的变化%Change of fight junction protein Occludin expression in brain tissue in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    余爱勇; 邓星奇; 赵玉武; 王继芹; 刘梅

    2011-01-01

    Objective To observe the change of tight junction protein Occludin expression in brain tissue in diabetic rats. Methods Thirty adult male SD rats were randomly divided into 1 month diabetic group, 3 month diabetic group and normal control group. The diabetic rats were induced by streptozotocin intraperitoneal injection.The level of Oeeludin mRNA and protein in brain tissue of the rats was detected by reverse transcription PCR and Western blot. Results The levels of Occludin mRNA in brain tissue of 1 month diabetic group and 3 month diabetic group [ (0.20 ± 0.21 ) , (0.06 ± 0.02 ) ] were significantly lower than normal control group ( 1.00 ± 0.00) ( all P < 0. 05). And the level of Occludin mRNA in 3 month diabetic group was significantly lower than that in 1 month diabetic group (P < O. 05 ). The levels of Occludin protein in 1 month diabetic group and 3 month diabetic group [ (0.58 ± 0.01 ), (0.29 ± 0.01 ) ] were significantly lower than that in normal control group ( 1.02 ± 0.06) ( P <0. 05-0.01 ). And the level of Occludin protein in 3 month diabetic group was significantly lower than that in 1 month diabetic group (P < 0. 05 ). Conclusions The Occludin expression in brain tissue in diabetic rats is decreased, and the decrease get more obvious with the progress of diabetes. It indicated that the blood-brain barrier is broken down by diabetes.%目的:研究糖尿病大鼠脑组织紧密连接蛋白Occludin表达的变化.方法:30只雄性SD大鼠随机分为糖尿病1个月组、糖尿病3个月组及正常对照组.腹腔注射链脲佐菌素制作糖尿病大鼠模型,采用逆转录PCR和Western blot法检测大鼠脑组织Occludin mRNA和蛋白的水平.结果:糖尿病1个月组和3个月组大鼠脑组织Occludin mRNA水平[(0.20±0.21),(0.06±0.02)]均较正常对照组(1.00±0.00)显著降低(均P<0.05),且糖尿病3个月组Occludin mRNA水平明显低于糖尿病1个月组(P<0.05).糖尿病1个月组和3个月

  14. Gap junctions in the control of vascular function.

    Science.gov (United States)

    Figueroa, Xavier F; Duling, Brian R

    2009-02-01

    Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.

  15. Demonstrated Anomalous Pancreaticobiliary Ductal Junction

    OpenAIRE

    Koçkar, Cem; ?ENOL, Altu?; BA?TÜRK, Abdulkadir; AYDIN, Bünyamin; Cüre, Erkan

    2015-01-01

    Anomalies of the pancreaticobiliary junction are rare. Clinically anomalies of the pancreaticobiliary junction are uncommonly symptomatic but may present themselves with associated conditions ranging from benign acute abdominal pain to carcinomas. A 52 years old man was admitted to gastroenterology service with complaints of fever, nausea, vomiting and recurrent epigastric pain. He was diagnosed with biliary pancreatitis. Endoscopic retrograde cholangiopancreato-graphy was performed. Papilla ...

  16. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  17. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    Directory of Open Access Journals (Sweden)

    Tang Vivian W

    2006-12-01

    Full Text Available Abstract Background Zonula occludens, also known as the tight junction, is a specialized cell-cell interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of ~100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure fraction, the molecular composition of the tight junction remains largely unknown. Results A novel biochemical purification protocol has been developed to isolate tight junction protein complexes from cultured human epithelial cells. After identification of proteins by mass spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A simple algorithm has been devised to incorporate transmembrane domains and protein modification sites for scoring membrane proteins. Using this new scoring system, a total of 912 proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin the hits in 4 categories: configuration, molecular function, cellular function, and specialized process. Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation, and transcription are also found. However, the strongest clusters belong to synaptic proteins and signaling molecules. Localization studies of key components of synaptic transmission have confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain. To correlate proteomics data with structure, the tight junction has been examined using electron microscopy. This has revealed many novel structures including end-on cytoskeletal attachments, vesicles fusing/budding at the tight junction membrane domain, secreted substances encased between the tight junction kisses, endocytosis of tight junction

  18. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  19. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  20. Membrane proteins of the triad junction and excitation-contraction coupling in skeletal muscles%骨骼肌三联管膜蛋白与兴奋收缩偶联

    Institute of Scientific and Technical Information of China (English)

    马国震; 李文惠; 骆硕; 马彦芬

    2011-01-01

    BACKGROUND: The mechanism of excitation-contraction coupling (E-C coupling) in skeletal muscles and a fast and responsive E-C coupling mechanism directly determine the motor ability. The triad junction, which is the specific structure in skeletal muscles,is the infrastructures of E-C coupling. The membrane proteins in the triads play a key role in the development of the triads,maintaining the normal structural form of the triads and exerting the triadic full functions.OBJECTIVE: To review the research advances of triadic membrane proteins and to summarize the structure and functions of dihydropyridine receptor (DHPR), ryanodine receptor, MG29 protein, JP protein, Calumin and STIM1 protein, calsequestrin and TRIC.METHODS: Papers regarding skeletal muscle senescence and power-velocity were searched by computer in databases of CNKI,Duxiu, Elsevier SD and Springer Link from 1980 to 2010. The change laws of skeletal muscle power-velocity with aging and effect of this law on muscle was analyzed.RESULTS AND CONCLUSION: Totally 28 documents were included in this paper. Literature summary showed that, DHPR,ryanodine receptor, MG29 protein, JP protein, Calumin and STIM1 protein, calsequestrin and TRIC doing its own job in skeletal muscles, all of them play an indispensable role in maintaining normal function of skeletal muscles. However, the study of these proteins remains limited. which need further exDloration.%背景:骨骼肌的兴奋收缩偶联机制及快速、有效的兴奋收缩偶联直接决定了运动能力.三联管是骨骼肌中特有的结构,是兴奋收缩偶联的结构基础.位于三联管上的膜蛋白在三联管结构的发育、正常形态的维持和功能的发挥中均起着关键作用.目的:介绍三联管膜蛋白的研究进展,对双氢吡啶受体蛋白,兰诺定受体蛋白,MG29 蛋白,JP 蛋白,Calumin 与STIM1蛋白,隐钙素和TRIC 通道蛋白等的结构和功能进行了归纳总结.方法:电子检索中国学术期刊数据

  1. Octagonal Defects at Carbon Nanotube Junctions

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  2. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice.

    Science.gov (United States)

    Huang, Chun-Kai; Sie, Yi-Syuan; Chen, Yu-Fu; Huang, Tian-Sheng; Lu, Chung-An

    2016-04-12

    The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC

  3. The role of gap junctions in inflammatory and neoplastic disorders (Review).

    Science.gov (United States)

    Wong, Pui; Laxton, Victoria; Srivastava, Saurabh; Chan, Yin Wah Fiona; Tse, Gary

    2017-03-01

    Gap junctions are intercellular channels made of connexin proteins, mediating both electrical and biochemical signals between cells. The ability of gap junction proteins to regulate immune responses, cell proliferation, migration, apoptosis and carcinogenesis makes them attractive therapeutic targets for treating inflammatory and neoplastic disorders in different organ systems. Alterations in gap junction profile and expression levels are observed in hyperproliferative skin disorders, lymphatic vessel diseases, inflammatory lung diseases, liver injury and neoplastic disorders. It is now recognized that the therapeutic effects mediated by traditional pharmacological agents are dependent upon gap junction communication and may even act by influencing gap junction expression or function. Novel strategies for modulating the function or expression of connexins, such as the use of synthetic mimetic peptides and siRNA technology are considered.

  4. GAP junctional communication in brain secondary organizers.

    Science.gov (United States)

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  5. Research progress of relationship between gap junctions and movement disorders

    Directory of Open Access Journals (Sweden)

    Hai-lei WANG

    2016-12-01

    Full Text Available Gap junctions (GJ is an important way to transmit signals among body cells. Studies have confirmed that changes on structure and composition of gap junction proteins are associated with many kinds of diseases. Movement disorders is a common disease of the central nervous system (CNS, which has a certain degree of correlation with GJ, and it has become a key factor in the domestic and foreign research of pathogenesis and treatment mechanism of central nervons system diseases. This paper reviews GJ and its relationship with movement disorders. DOI: 10.3969/j.issn.1672-6731.2016.12.011

  6. Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity

    National Research Council Canada - National Science Library

    Sen, Arnab; Nagy-Zsvér-Vadas, Zsanett; Krahn, Michael P

    2012-01-01

    ... (Pals1-associated tight junction protein) was not per se crucial for the maintenance of apical-basal polarity in Drosophila melanogaster epithelial cells but rather regulated Myosin localization and phosphorylation...

  7. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  8. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    Science.gov (United States)

    Schwab, Bettina C; Heida, Tjitske; Zhao, Yan; van Gils, Stephan A; van Wezel, Richard J A

    2014-10-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a major role in modifying this synchrony, because they show functional plasticity under the influence of dopamine and after neural injury. In this study, confocal imaging was used to detect connexin-36, the major neural gap junction protein, in postmortem tissues of PD patients and control subjects in the putamen, subthalamic nucleus (STN), and external and internal globus pallidus (GPe and GPi, respectively). Moreover, we quantified how gap junctions affect synchrony in an existing computational model of the basal ganglia. We detected connexin-36 in the human putamen, GPe, and GPi, but not in the STN. Furthermore, we found that the number of connexin-36 spots in PD tissues increased by 50% in the putamen, 43% in the GPe, and 109% in the GPi compared with controls. In the computational model, gap junctions in the GPe and GPi strongly influenced synchrony. The basal ganglia became especially susceptible to synchronize with input from the cortex when gap junctions were numerous and high in conductance. In conclusion, connexin-36 expression in the human GPe and GPi suggests that gap junctional coupling exists within these nuclei. In PD, neural injury and dopamine depletion could increase this coupling. Therefore, we propose that gap junctions act as a powerful modulator of synchrony in the basal ganglia. © 2014 International Parkinson and Movement Disorder Society.

  9. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam

    2014-05-01

    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  10. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  11. Control over Rectification in Supramolecular Tunneling Junctions

    NARCIS (Netherlands)

    Wimbush, K.S.; Wimbush, Kim S.; Reus, William F.; van der Wiel, Wilfred Gerard; Reinhoudt, David; Whitesides, George M.; Nijhuis, C.A.; Velders, Aldrik

    2010-01-01

    In complete control: The magnitude of current rectification in well-defined supramolecular tunneling junctions can be controlled by changing the terminal functionality (red spheres) of dendrimers (gray spheres) immobilized on a supramolecular platform (see picture). Junctions containing biferrocene

  12. Nano-Molecular Junctions on STM Tips

    Institute of Scientific and Technical Information of China (English)

    Chun Huang∗; Jianshu Yang

    2011-01-01

    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions. The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Current-voltage characteristics of a Tour wire and a new molecular rectifier are presented.

  13. Nano-Molecular Junctions on STM Tips

    Institute of Scientific and Technical Information of China (English)

    Chun Huang; Jianshu Yang

    2011-01-01

    We present a technique for building metal-organic-metal junctions, which contain ten or fewer conjugated molecules between each of such junction, and the investigations of the I-V response of these junctions.The junctions are made by self assembling thiolated molecules onto gold coated tips for use in scanning tunneling microscopy. We show that this easy technique probes the qualitative properties of the molecules. Currentvoltage characteristics of a Tour wire and a new molecular rectifier are presented.

  14. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  16. Identifying connexin expression and determining gap junction intercellular communication in rainbow trout cells.

    Science.gov (United States)

    Hooper, Joshua; Poynter, Sarah J; DeWitte-Orr, Stephanie J

    2017-05-01

    Gap junctions are groups of membrane-bound channels that allow the passage of small molecules and ions between cells, permitting cell-cell communication. Because of their importance in cell homeostasis, gap junction presence and function were characterized in three commonly studied rainbow trout cell lines, namely RTgill-W1, RTgutGC, and RTG-2. Firstly, gap junction presence was determined by screening for gap junction protein alpha 7 and alpha 1 (GJA7 and GJA1) presence at the transcript level and GJA7 at the protein level. GJA7 was successfully identified at both the transcript and protein levels, and GJA1 was detected at the transcript level in all three cell lines. This is the first report of a GJA7 full-length transcript sequence in rainbow trout cells. Gap junction function, as determined by gap junction intercellular communication (GJIC), was examined using Lucifer yellow dye migration with the scrape and load technique; visualized by fluorescence microscopy. Phorbol 12-myristate 13-acetate (PMA), a gap junction inhibitor, was used to confirm the presence of functional gap junctions. Effects of serum deprivation on GJIC were also monitored; 24-h serum deprivation resulted in greater dye migration compared with 30-min serum deprivation. Both RTG-2 and RTgill-W1 showed significant dye migration that was inhibited by PMA while RTgutGC did not. Human foreskin fibroblast (HFF-1) cells were used as a positive control for gap junction presence and function. Taken together, our study shows that rainbow trout cells express connexin transcripts and proteins, and RTG-2 and, to a lesser extent, RTgill-W1 cells are able to perform GJIC.

  17. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation.

    Science.gov (United States)

    Reglero-Real, Natalia; Colom, Bartomeu; Bodkin, Jennifer Victoria; Nourshargh, Sussan

    2016-10-01

    Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule. Of importance, a growing body of evidence indicates that the expression of these molecules is regulated in a spatiotemporal manner during inflammation: responses that have significant implications for the barrier function of blood vessels against blood-borne macromolecules and transmigrating leukocytes. This review summarizes key aspects of our current understanding of the dynamics and mechanisms that regulate the expression of endothelial cells junctional molecules during inflammation and discusses the associated functional implications of such events in acute and chronic scenarios. © 2016 American Heart Association, Inc.

  18. Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease.

    Science.gov (United States)

    Cottrell, G Trevor; Burt, Janis M

    2005-06-10

    The capacity of multiple connexins to hetero-oligomerize into functional heterogeneous gap junction channels has been demonstrated in vivo, in vitro, and in nonmammalian expression systems. These heterogeneous channels display gating activity, channel conductances, selectivity and regulatory behaviors that are sometimes not predicted by the behaviors of the corresponding homogeneous channels. Such observations suggest that heteromerization of gap junction proteins offers an efficient cellular strategy for finely regulating cell-to-cell communication. The available evidence strongly indicates that heterogeneous gap junction assembly is important to normal growth and differentiation, and may influence the appearance of several disease states. Definitive evidence that heterogeneous gap junction channels differentially regulate electrical conduction in excitable cells is absent. This review examines the prevalence, regulation, and implications of gap junction channel hetero-oligomerization.

  19. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  20. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  1. Long Range Magnetic Interaction between Josephson Junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    A new model for magnetic coupling between long Josephson junctions is proposed. The coupling mechanism is a result of the magnetic fields outside the junctions and is consequently effective over long distances between junctions. We give specific expressions for the form and magnitude of the inter...

  2. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.;

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  3. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...

  4. Characterization and comparison of synthetic immobile and mobile Holliday junctions.

    Science.gov (United States)

    Shida, T; Iwasaki, H; Shinagawa, H; Kyogoku, Y

    1996-04-01

    Eight synthetic Holliday junction (HJ) oligonucleotides containing an immobile or a mobile junction were characterized by gel electrophoresis, ultraviolet absorption and circular dichroism (CD) spectroscopy. Four 24-mer deoxyribonucleotides formed stable immobile and mobile HJs in 0.1 M NaCl at 5 muM strand concentration at room temperature. However, the immobile HJ constructed from four 18-mers was less stable, and four 12-mers did not form the HJ structure under the conditions used. A comparison of the melting profiles of the HJs with those of the duplexes corresponding to the arms of four-way junctions indicated that the thermal stability of the HJ was similar to that of the individual arm and the cooperativity of the melting behavior of the HJ was relatively higher than that of the individual arm duplex. The Tms of the mobile HJs containing 4, 6, 8, and 10 base-pair homologous cores at junctions were essentially identical with that of the immobile HJ of the same size. There is a tendency that the HJ containing a larger homologous core region becomes more resistant to thermal denaturation. The addition of divalent metal cations, Mg2+ and Ca2+, to the solutions of the HJs raised their melting temperatures. The difference found for the CD spectra of the HJs which differ only in the arrangement of the HJ depended primarily upon the DNA sequence flanking the junction. The RuvC protein binds to the immobile and mobile HJs, regardless of the presence and the size of the homologous core at the junction.

  5. Octagonal Defects at Carbon Nanotube Junctions

    Directory of Open Access Journals (Sweden)

    W. Jaskólski

    2013-01-01

    Full Text Available We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF. The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system.

  6. Fabrication of high quality ferromagnetic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)

    2006-05-15

    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.

  7. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells.

    Science.gov (United States)

    Wallace, Sean W; Magalhaes, Ana; Hall, Alan

    2011-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.

  8. Seebeck effect in molecular junctions

    Science.gov (United States)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  9. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...... charge position are in quantitative agreement with the experiments, while pure DFT is not. This is the consequence of the accurate energy level alignment, where the DFT+∑ method corrects the self-interaction error in the standard DFT functional and uses a static image charge model to include the image...... charge effect on the energy level renormalization. Additionally, the gating of the 4,4’-bipyridine (44BP) molecule contacted to either Ni or Au electrodes has been investigated. Here it is found that the gating mechanism is conceptually different between two cases. In the case of Ni contacts where...

  10. How coherent are Josephson junctions?

    CERN Document Server

    Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J

    2011-01-01

    Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.

  11. Morphogenesis of rat myotendinous junction.

    Science.gov (United States)

    Curzi, Davide; Ambrogini, Patrizia; Falcieri, Elisabetta; Burattini, Sabrina

    2013-10-01

    Myotendinous junction (MTJ) is the highly specialized complex which connects the skeletal muscle to the tendon for transmitting the contractile force between the two tissues. The purpose of this study was to investigate the MTJ development and rat EDL was chosen as a model. 1, 15, 30 day animals were considered and the junctions were analyzed by light and electron microscopy. The MTJ interface architecture increased during the development, extending the interaction between muscle and tendon. 1-day-old rats showed disorganized myofibril bundles, spread cytosol and incomplete rough endoplasmic reticulum, features partially improved in 15-day-old rats, and completely developed in 30-day-old animals. These findings indicate that muscle-tendon interface displays, during rat lifetime, numerically increased and longer tendon interdigitations, correlated with an improved organization of both tissues and with a progressive acquirement of full functionality.

  12. DHT deficiency perturbs the integrity of the rat seminiferous epithelium by disrupting tight and adherens junctions.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Wenda-Różewicka, Lidia; Wiszniewska, Barbara

    2011-01-01

    In rats with a DHT deficiency induced by finasteride, morphological changes in the seminiferous epithelium were observed. The structural alterations were manifested by the premature germ cells sloughing into the lumen of seminiferous tubules. The etiology of this disorder could be connected with intercellular junctions disintegration. We showed in the immunohistochemical study the changes in expression of some proteins building tight and adherens junctions. The depression of N-cadherin, β-catenin and occludin immunoexpressions could be the reason for the release of immature germ cells from the seminiferous epithelium. However, the observed increase of the immunohistochemical reaction intensity of vinculin, one of the cadherin/catenin complex regulators, could be insufficient to maintain the proper function of adherens junctions. The hormonal imbalance appears to influence the pattern of expression of junctional proteins in the seminiferous epithelium. It could lead to untimely germ cells sloughing, and ultimately could impair fertility.

  13. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines

    Science.gov (United States)

    LeRoy, Gary; Carroll, Robert; Kyin, Saw; Seki, Masayuki; Cole, Michael D.

    2005-01-01

    Homologous recombination provides an effective way to repair DNA double-strand breaks (DSBs) and is required for genetic recombination. During the process of homologous recombination, a heteroduplex DNA structure, or a ‘Holliday junction’ (HJ), is formed. The movement, or branch migration, of this junction is necessary for recombination to proceed correctly. In prokaryotes, the RecQ protein or the RuvA/RuvB protein complex can promote ATP-dependent branch migration of Holliday junctions. Much less is known about the processing of Holliday junctions in eukaryotes. Here, we identify RecQL1 as a predominant ATP-dependent, HJ branch migrator present in human nuclear extracts. A reduction in the level of RecQL1 induced by RNA interference in HeLa cells leads to an increase in sister chromatid exchange. We propose that RecQL1 is involved in the processing of Holliday junctions in human cells. PMID:16260474

  14. Structure of the gap junction channel and its implications for its biological functions.

    Science.gov (United States)

    Maeda, Shoji; Tsukihara, Tomitake

    2011-04-01

    Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.

  15. Thermoelectric efficiency of molecular junctions

    Science.gov (United States)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  16. [Gap junctions: A new therapeutic target in major depressive disorder?].

    Science.gov (United States)

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder.

  17. Chaos induced by coupling between Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.

    2015-02-01

    It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.

  18. Homotypic gap junctional communication associated with metastasis increases suppression increases with PKA kinase activity and is unaffected by P13K inhibition

    Science.gov (United States)

    Loss of gap junctional intercellular communication (GJIC) between cancer cells is a common characteristic of malignant transformation. This communication is mediated by connexin proteins that make up the functional units of gap junctions. Connexins are highly regulated at the protein level and phosp...

  19. [Remodeling of cardiac gap junctions and arrhythmias].

    Science.gov (United States)

    Yu, Zhi-Bin; Sheng, Juan-Juan

    2011-12-25

    In the heart, gap junctions mediate electrical and chemical coupling between adjacent cardiomyocytes, forming the cell-to-cell pathways for orderly spread of the wave of electrical excitation responsible for a functional syncytium. Three principal connexins are expressed in cardiomyocytes, connexin 43 (CX43), CX40, and CX45. CX43 predominates in ventricular muscle cells. Most of the gap junctions, assembled from CX43, are located at the intercalated discs, often with larger junctional plaques at the disc periphery. The gap junctions are rarely distributed to the sides of the cardiomyocyte. The ischemia-reperfusion, cardiac hypertrophy, heart failure, hypercholesterolemia, and diabetes mellitus induce gap junction remodeling. The gap junction remodeling induced by above-mentioned diseases shows similar characteristics, including down-regulation of CX43, reduction in gap junction plaque size, increased heterogeneity and lateralization of gap junction distribution, and dephosphorylation of CX43. The elevated angiotensin II concentration in local myocardium may play an important role in the gap junction remodeling. The down-regulation of CX43 and lateralization of gap junction distribution alter anisotropic spread of the impulse of ventricular myocardium. The dephosphorylation of CX43 not only reduces electrical conductance, but also decreases permeability of chemicals between cardiomyocytes. The lateralization of gap junctions may increase the number of hemichannels formed by CX43. The opening of hemichannels induces ATP efflux and Na(+) influx, which forms a delayed after-depolarization. The gap junction remodeling in pathological condition produces arrhythmia substrate in the ventricles. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and arrhythmias were summarized.

  20. Connexins: a myriad of functions extending beyond assembly of gap junction channels

    Directory of Open Access Journals (Sweden)

    Mroue Rana M

    2009-03-01

    Full Text Available Abstract Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  1. Connexins: a myriad of functions extending beyond assembly of gap junction channels.

    Science.gov (United States)

    Dbouk, Hashem A; Mroue, Rana M; El-Sabban, Marwan E; Talhouk, Rabih S

    2009-03-12

    Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  2. Physics and Applications of NIS Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  3. Algorithms for Junctions in Directed Acyclic Graphs

    CERN Document Server

    Ferreira, Carlos Eduardo

    2012-01-01

    Given a pair of distinct vertices u, v in a graph G, we say that s is a junction of u, v if there are in G internally vertex disjoint directed paths from s to u and from s to v. We show how to characterize junctions in directed acyclic graphs. We also consider the two problems in the following and derive efficient algorithms to solve them. Given a directed acyclic graph G and a vertex s in G, how can we find all pairs of vertices of G such that s is a junction of them? And given a directed acyclic graph G and k pairs of vertices of G, how can we preprocess G such that all junctions of k given pairs of vertices could be listed quickly? All junctions of k pairs problem arises in an application in Anthropology and we apply our algorithm to find such junctions on kinship networks of some brazilian indian ethnic groups.

  4. Molecular junctions: can pulling influence optical controllability?

    Science.gov (United States)

    Parker, Shane M; Smeu, Manuel; Franco, Ignacio; Ratner, Mark A; Seideman, Tamar

    2014-08-13

    We suggest the combination of single molecule pulling and optical control as a way to enhance control over the electron transport characteristics of a molecular junction. We demonstrate using a model junction consisting of biphenyl-dithiol coupled to gold contacts. The junction is pulled while optically manipulating the dihedral angle between the two rings. Quantum dynamics simulations show that molecular pulling enhances the degree of control over the dihedral angle and hence over the transport properties.

  5. Gap Junctions in the Ventral Hippocampal-Medial Prefrontal Pathway Are Involved in Anxiety Regulation

    Science.gov (United States)

    Schoenfeld, Timothy J.; Kloth, Alexander D.; Hsueh, Brian; Runkle, Matthew B.; Kane, Gary A.; Wang, Samuel S.-H.

    2014-01-01

    Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP–mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety. PMID:25411496

  6. Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Wei ZHAO; Zhong Xiang LIN; Zhi Qian ZHANG

    2004-01-01

    To examine the role of gap junctions in cell senescence,the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore,cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis. p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin (10 mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis,elevation of p53 expression,loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.

  7. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  8. THE CELULAR JUNCTIONS AND THE EMERGENCE OF ANIMALS

    Directory of Open Access Journals (Sweden)

    Urquiza-Bardone, Sergio

    2013-07-01

    Full Text Available The emergence of multicellularity and epithelia in relation to the appearance of cellular junctions, in order to illustrate the first steps of animal evolution, is discussed. We analyzed the structure and roles of adherens and occludins, considered to be the oldest. Also treated are some aspects of the main proteins that constitute them, the cadherins and claudins, as well as the related structures observed in sponges and choanoflagellates, the most ancient animals and the ancestors of these, respectively. It was concluded that the animal ancestor probably possessed some kind of adherens and possibly occludins, appearing as the first of major importance. These junctions increased in complexity through until the complexity observed in modern times.

  9. Role of gap junctions and hemichannels in parasitic infections.

    Science.gov (United States)

    Vega, José Luis; Subiabre, Mario; Figueroa, Felipe; Schalper, Kurt Alex; Osorio, Luis; González, Jorge; Sáez, Juan Carlos

    2013-01-01

    In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.

  10. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans

    Science.gov (United States)

    Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.

    2017-01-01

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932

  11. Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer?

    Science.gov (United States)

    Salameh, Aida; Dhein, Stefan

    2005-12-20

    Intercellular communication in many organs is maintained via intercellular gap junction channels composed of connexins, a large protein family with a number of isoforms. This gap junction intercellular communication (GJIC) allows the propagation of action potentials (e.g., in brain, heart), and the transfer of small molecules which may regulate cell growth, differentiation and function. The latter has been shown to be involved in cancer growth: reduced GJIC often is associated with increased tumor growth or with de-differentiation processes. Disturbances of GJIC in the heart can cause arrhythmia, while in brain electrical activity during seizures seems to be propagated via gap junction channels. Many diseases or pathophysiological conditions seem to be associated with alterations of gap junction protein expression. Thus, depending on the target disease opening or closure of gap junctions may be of interest, or alteration of connexin expression. GJIC can be affected acutely by changing gap junction conductance or--more chronic--by altering connexin expression and membrane localisation. This review gives an overview on drugs affecting GJIC.

  12. Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion.

    Directory of Open Access Journals (Sweden)

    Terrence M Dobrowsky

    Full Text Available The fusion of the human immunodeficiency virus type 1 (HIV-1 with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection.

  13. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    Science.gov (United States)

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  14. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  15. Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion.

    Science.gov (United States)

    Dobrowsky, Terrence M; Daniels, Brian R; Siliciano, Robert F; Sun, Sean X; Wirtz, Denis

    2010-07-15

    The fusion of the human immunodeficiency virus type 1 (HIV-1) with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection.

  16. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  17. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.;

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...

  18. Gap junction disorders of myelinating cells.

    Science.gov (United States)

    Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene

    2010-01-01

    Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.

  19. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Science.gov (United States)

    Mansour, Hussein; McColm, Janet R; Cole, Louise; Weible, Michael; Korlimbinis, Anastasia; Chan-Ling, Tailoi

    2013-01-01

    We investigated age-associated changes in retinal astrocyte connexins (Cx) by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC). We compared Wistar rat retinal wholemounts in animals aged 3 (young adult), 9 (middle-aged) and 22 months (aged). We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (Pgap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  20. Benzalkonium chloride suppresses rabbit corneal endothelium intercellular gap junction communication.

    Directory of Open Access Journals (Sweden)

    Zhenhao Zhang

    Full Text Available Gap junction intercellular communication (GJIC plays a critical role in the maintenance of corneal endothelium homeostasis. We determined if benzalkonium chloride (BAK alters GJIC activity in the rabbit corneal endothelium since it is commonly used as a drug preservative in ocular eyedrop preparations even though it can have cytotoxic effects.Thirty-six adult New Zealand albino rabbits were randomly divided into three groups. BAK at 0.01%, 0.05%, and 0.1% was applied twice daily to one eye of each of the rabbits in one of the three groups for seven days. The contralateral untreated eyes were used as controls. Corneal endothelial morphological features were observed by in vivo confocal microscopy (IVCM. Immunofluorescent staining resolved changes in gap junction integrity and localization. Western blot analysis and RT-PCR evaluated changes in levels of connexin43 (Cx43 and tight junction zonula occludens-1 (ZO-1 gene and protein expression, respectively. Cx43 and ZO-1 physical interaction was detected by immunoprecipitation (IP. Primary rabbit corneal endothelial cells were cultured in Dulbecco's Modified Eagle Medium (DMEM containing BAK for 24 hours. The scrape-loading dye transfer technique (SLDT was used to assess GJIC activity.Topical administration of BAK (0.05%, 0.1% dose dependently disrupted corneal endothelial cell morphology, altered Cx43 and ZO-1 distribution and reduced Cx43 expression. BAK also markedly induced increases in Cx43 phosphorylation status concomitant with decreases in the Cx43-ZO-1 protein-protein interaction. These changes were associated with marked declines in GJIC activity.The dose dependent declines in rabbit corneal endothelial GJIC activity induced by BAK are associated with less Cx43-ZO-1 interaction possibly arising from increases in Cx43 phosphorylation and declines in its protein expression. These novel changes provide additional evidence that BAK containing eyedrop preparations should be used with caution to

  1. Shear zone junctions: Of zippers and freeways

    Science.gov (United States)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  2. Junction conditions of cosmological perturbations

    CERN Document Server

    Tomita, K

    2004-01-01

    The behavior of perturbations is studied in cosmological models which consist of two different homogeneous regions connected in a spherical shell boundary. The junction conditions for the metric perturbations and the displacements of the shell boundary are analyzed and the surface densities of the perturbed energy and momentum in the shell are derived, using Mukohyama's gauge-invariant formalism and the Israel discontinuity condition. In both homogeneous regions the perturbations of scalar, vector and tensor types are expanded using the 3-dimensional harmonic functions, but the model coupling among them is caused in the shell by the inhomogeneity. By treating the perturbations with odd and even parities separately, it is found, however, that we can have consistent displacements and surface densities for given metric parturbations

  3. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients.

    Science.gov (United States)

    Riz, Irene; Hawley, Robert G

    2017-07-01

    Tight junction protein 1 (TJP1) has recently been proposed as a biomarker to identify multiple myeloma (MM) patients most likely to respond to bortezomib- and carfilzomib-based proteasome inhibitor regimens. Herein we report increased expression of TJP1 during the adaptive response mediating carfilzomib resistance in the LP-1/Cfz MM cell line. Moreover, increased TJP1 expression delineated a subset of relapsed/refractory MM patients on bortezomib-based therapy sharing an LP-1/Cfz-like phenotype characterized by activation of interacting transcriptional effectors of the Hippo signaling cascade (TAZ and TEAD1) and an adult tissue stem cell signature. siRNA-mediated knockdown of TJP1 or TAZ/TEAD1 partially sensitized LP-1/Cfz cells to carfilzomib. Connectivity Map analysis identified translation inhibitors as candidate therapeutic agents targeting this molecular phenotype. We confirmed this prediction by showing that homoharringtonine (omacetaxine mepesuccinate) - the first translation inhibitor to be approved by the U.S. Food and Drug Administration - displayed potent cytotoxic activity on LP-1/Cfz cells. Homoharringtonine treatment reduced the levels of TAZ and TEAD1 as well as the MM-protective proteins Nrf2 and MCL1. Thus, our data suggest the importance of further studies evaluating translation inhibitors in relapsed/refractory MM. On the other hand, use of TJP1 as a MM biomarker for proteasome inhibitor sensitivity requires careful consideration.

  4. Symposia for a Meeting on Ion Channels and Gap Junctions

    CERN Document Server

    Sáez, Juan

    1997-01-01

    Ion channels allow us to see nature in all its magnificence, to hear a Bach suite, to smell the aroma of grandmother's cooking, and, in this regard, they put us in contact with the external world. These ion channels are protein molecules located in the cell membrane. In complex organisms, cells need to communicate in order to know about their metabolic status and to act in a coordinate manner. The latter is also accomplished by a class of ion channels able to pierce the lipid bilayer membranes of two adjacent cells. These intercellular channels are the functional subunits of gap junctions. Accordingly, the book is divided in two parts: the first part is dedicated to ion channels that look to the external world, and the second part is dedicated to gap junctions found at cell interfaces. This book is based on a series of symposia for a meeting on ion channels and gap junctions held in Santiago, Chile, on November 28-30, 1995. The book should be useful to graduate students taking the first steps in this field as...

  5. Coordinate transformation in the model of long Josephson junctions: geometrically equivalent Josephson junctions

    Science.gov (United States)

    Semerdzhieva, E. G.; Boyadzhiev, T. L.; Shukrinov, Yu. M.

    2005-10-01

    The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasi-one-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view.

  6. Atomically Abrupt Topological p-n Junction.

    Science.gov (United States)

    Kim, Sung Hwan; Jin, Kyung-Hwan; Kho, Byung Woo; Park, Byeong-Gyu; Liu, Feng; Kim, Jun Sung; Yeom, Han Woong

    2017-08-24

    Topological insulators (TI's) are a new class of quantum matter with extraordinary surface electronic states, which bear great potential for spintronics and error-tolerant quantum computing. In order to put a TI into any practical use, these materials need to be fabricated into devices whose basic units are often p-n junctions. Interesting electronic properties of a 'topological' p-n junction were proposed theoretically such as the junction electronic state and the spin rectification. However, the fabrication of a lateral topological p-n junction has been challenging because of materials, process, and fundamental reasons. Here, we demonstrate an innovative approach to realize a p-n junction of topological surface states (TSS's) of a three-dimensional (3D) topological insulator (TI) with an atomically abrupt interface. When a ultrathin Sb film is grown on a 3D TI of Bi2Se3 with a typical n-type TSS, the surface develops a strongly p-type TSS through the substantial hybridization between the 2D Sb film and the Bi2Se3 surface. Thus, the Bi2Se3 surface covered partially with Sb films bifurcates into areas of n- and p-type TSS's as separated by atomic step edges with a lateral electronic junction of as short as 2 nm. This approach opens a different avenue toward various electronic and spintronic devices based on well-defined topological p-n junctions with the scalability down to atomic dimensions.

  7. Gap junction communication in myelinating glia.

    Science.gov (United States)

    Nualart-Marti, Anna; Solsona, Carles; Fields, R Douglas

    2013-01-01

    Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their functions and involvement in neurological disorders. Gap junctions mediate intercellular communication among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote communication between cellular compartments of myelinating glia that are separated by layers of compact myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation, calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunctions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcellular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane potential after axonal activity via electrical coupling and the re-distribution of potassium ions released from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribution of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models of X-linked Charcot-Marie-Tooth disease (CMTX) and Pelizaeus-Merzbarcher-like disease (PMLD), which are caused by mutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research identifying the expression and regulation of gap junctions in myelinating glia is likely to provide a better understanding of myelinating glia in nervous system function, plasticity, and disease. This

  8. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  9. Fluxon dynamics in three stacked Josephson junctions

    DEFF Research Database (Denmark)

    Gorria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2002-01-01

    /sub -/, the coupling between junctions leads to a repulsion of the fluxons with the same polarity. Above this critical velocity a fluxon will induce radiation in the neighboring junctions, leading to a bunching of the fluxons in the stacked junctions. Using the Sakai-Bodin-Pedersen model, three coupled perturbed sine......-Gordon equations are numerically studied for different values of coupling, damping, and bias parameters. In a narrow range of velocities bunching occurs. Outside this interval the fluxons split and new fluxons may be created. I-V characteristics are presented...

  10. Temperature dependence of thermopower in molecular junctions

    Science.gov (United States)

    Kim, Youngsang; Lenert, Andrej; Meyhofer, Edgar; Reddy, Pramod

    2016-07-01

    The thermoelectric properties of molecular junctions are of considerable interest due to their promise for efficient energy conversion. While the dependence of thermoelectric properties of junctions on molecular structure has been recently studied, their temperature dependence remains unexplored. Using a custom built variable temperature scanning tunneling microscope, we measured the thermopower and electrical conductance of individual benzenedithiol junctions over a range of temperatures (100 K-300 K). We find that while the electrical conductance is independent of temperature, the thermopower increases linearly with temperature, confirming the predictions of the Landauer theory.

  11. Phase qubits fabricated with trilayer junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M; Bialczak, R C; Lenander, M; Lucero, E; Mariantoni, Matteo; Neeley, M; O' Connell, A D; Sank, D; Wang, H; Wenner, J; Yamamoto, T; Yin, Y; Cleland, A N; Martinis, J, E-mail: martin.weides@nist.gov, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-05-15

    We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T{sub 1{approx}}400 ns is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric.

  12. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells

    NARCIS (Netherlands)

    van Meer, G.|info:eu-repo/dai/nl/068570368; Simons, K.

    1986-01-01

    Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the

  13. Mechanisms of gap junction traffic in health and disease.

    Science.gov (United States)

    Hesketh, Geoffrey G; Van Eyk, Jennifer E; Tomaselli, Gordon F

    2009-10-01

    Gap junctions (GJs) allow direct communication between cells. In the heart, GJs mediate the electrical coupling of cardiomyocytes and as such dictate the speed and direction of cardiac conduction. A prominent feature of acquired structural heart disease is remodeling of GJ protein expression and localization concomitant with increased susceptibility to lethal arrhythmias, leading many to hypothesize that the two are causally linked. Detailed understanding of the cellular mechanisms that regulate GJ localization and function within cardiomyocytes may therefore uncover potential therapeutic strategies for a significant clinical problem. This review will outline our current understanding of GJ cell biology with the intent of highlighting cellular mechanisms responsible for GJ remodeling associated with cardiac disease.

  14. Active zone stability: insights from fly neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Xiaolin Tian

    2015-01-01

    Full Text Available The presynaptic active zone is a dynamic structure that orchestrates regulated release of neurotransmitters. Developmental and aging processes, and changes in neuronal network activity can all modulate the number, size and composition of active zone and thereby synaptic efficacy. However, very little is known about the mechanism that controls the structural stability of active zone. By studying a model synapse, the Drosophila neuromuscular junction, our recent work shed light on how two scaffolding proteins at the active zone regulate active zone stability by promoting a localized dephosphorylation event at the nerve terminal. Here we discuss the major insights from our findings and their implications for future research.

  15. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.

    Science.gov (United States)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin; Kjølbye, Anne-Louise; Hennan, James K; Holstein-Rathlou, Niels-Henrik; Petersen, Jørgen Søberg; Nielsen, Morten Schak

    2007-03-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.

  16. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1.

    Science.gov (United States)

    Chen, Yang; Pitzer, Ashley L; Li, Xiang; Li, Pin-Lan; Wang, Lei; Zhang, Yang

    2015-12-01

    Recent studies have indicated that the inflammasome plays a critical role in the pathogenesis of vascular diseases. However, the pathological relevance of this inflammasome activation, particularly in vascular cells, remains largely unknown. Here, we investigated the role of endothelial (Nucleotide-binding Oligomerization Domain) NOD-like receptor family pyrin domain containing three (Nlrp3) inflammasomes in modulating inter-endothelial junction proteins, which are associated with endothelial barrier dysfunction, an early onset of obesity-associated endothelial injury. Our findings demonstrate that the activation of Nlrp3 inflammasome by visfatin markedly decreased the expression of inter-endothelial junction proteins including tight junction proteins ZO-1, ZO-2 and occludin, and adherens junction protein VE-cadherin in cultured mouse vascular endothelial (VE) cell monolayers. Such visfatin-induced down-regulation of junction proteins in endothelial cells was attributed to high mobility group box protein 1 (HMGB1) release derived from endothelial inflammasome-dependent caspase-1 activity. Similarly, in the coronary arteries of wild-type mice, high-fat diet (HFD) treatment caused a down-regulation of inter-endothelial junction proteins ZO-1, ZO-2, occludin and VE-cadherin, which was accompanied with enhanced inflammasome activation and HMGB1 expression in the endothelium as well as transmigration of CD43(+) T cells into the coronary arterial wall. In contrast, all these HFD-induced alterations in coronary arteries were prevented in mice with Nlrp3 gene deletion. Taken together, these data strongly suggest that the activation of endothelial Nlrp3 inflammasomes as a result of the increased actions of injurious adipokines such as visfatin produces HMGB1, which act in paracrine or autocrine fashion to disrupt inter-endothelial junctions and increase paracellular permeability of the endothelium contributing to the early onset of endothelial injury during metabolic

  17. Presynaptic spike broadening reduces junctional potential amplitude.

    Science.gov (United States)

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  18. Laparoscopically assisted pyeloplasty for ureteropelvic junction ...

    African Journals Online (AJOL)

    junction obstruction: a transperitoneal versus a retroperitoneal approach ... laparoscopic-assisted dismembered pyeloplasty (TLADP) ... to an open technique for two patients of the TLADP group; ... Annals of Pediatric Surgery 2012, 8:29–31.

  19. Androgen-Dependent Sertoli Cell Tight Junction Remodeling Is Mediated by Multiple Tight Junction Components

    National Research Council Canada - National Science Library

    Chakraborty, Papia; William Buaas, F; Sharma, Manju; Smith, Benjamin E; Greenlee, Anne R; Eacker, Stephen M; Braun, Robert E

    2014-01-01

    Sertoli cell tight junctions (SCTJs) of the seminiferous epithelium create a specialized microenvironment in the testis to aid differentiation of spermatocytes and spermatids from spermatogonial stem cells...

  20. Modulation of Intercellular Junction by Utilization of Cadherin Peptides as an Effort to Improve Drug Delivery

    Directory of Open Access Journals (Sweden)

    Usman Sumo Friend Tambunan

    2004-04-01

    Full Text Available Rapid advances in combinatorial chemistry and molecular biology has influenced the discovery of many proteins, peptides and peptidomimetics as potential therapeutic agents. Unfortunately, the practical application of these potential drugs is often restricted by the difficulties of delivering them to target site(s due to the presence of biological barriers. Recently, a new method to improve the drug delivery, that is by modulating the intercellular junction, has been evaluated. Modulation of intercellular junction could be achieved by modulating the proteins which play important role in establishing the intercellular junction, one of which is cadherin. In the present work we have demonstrated the ability of several cadherin peptides, i.e. Ac-LFSHAVSSNG-NH2 (HAV-10, Ac-SHAVSS-NH2 (HAV-6, Ac-QGADTPPVGV-NH2 (ADT-10, and Ac-ADTPPV-NH2 (ADT-6 to modulate the intercellular junction of MDCK (Madin Darby Canine Kidney cells, this finding is a contribution to the establishment of a new method to improve the drug delivery by utilization of cadherin peptides by modulating the intercellular junction.

  1. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available BACKGROUND: The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. METHODS AND FINDINGS: In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. CONCLUSIONS: These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  2. Junction Plasmon-Induced Molecular Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

    2013-10-17

    Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4’-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

  3. [Clinical anatomy of the esophagogastric junction].

    Science.gov (United States)

    Tănase, M; Aldea, A S

    2012-01-01

    The esophagogastric junction is a controversial anatomical area, due to its sphincteric mechanism which does not show an obvious anatomical basis. The aim of this study is to investigate the anatomical components that endoscopically indicate the mucosal esophagogastric junction in hiatal hernia patients. The esophagogastric junction was investigated in 27 hiatal hernia patients undergoing surgery. Hiatal hernia is an extension of the stomach situated between the esophagogastric junction and the diaphragmatic indentation. The following types of hiatal hernia were found: sliding hiatal hernia (type I) in 4 patients (14.81%), rolling hiatal hernia (type II) in 2 (7.4%), mixed hiatal hernia (type III) in 12 (44.44%), type IV hiatal hernia in 4 (14.81%) and recurrent hiatal hernia in 5 (18.51%). Of the 27 hiatal hernia patients, 8 (29.6%) were operated using classical procedures: laparotomy--6 (75%) and laparoscopic surgery--2 (25%). The angle of His cannot be used for marking the mucosal esophagogastric junction due to the severe damage of the lower esophageal sphincter in hiatal hernia patients. The squamocolumnar junction is displaced in hiatal hernia patients and was not an option for the study group. The distal end of the esophageal longitudinal palisading vessels needs medication (proton pump inhibitors that reduce the gastric acid production), in order to enhance the visibility of these vessels. The proximal end of gastric longitudinal mucosal folds proved to be the most reliable site to identify endoscopically the mucosal esophagogastric junction. The anatomical structure of the esophagogastric junction differs in hiatal hernia patients and these peculiarities are very important in surgery.

  4. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  5. The role of glutathione S-transferase and claudin-1 gene polymorphisms in contact sensitization

    DEFF Research Database (Denmark)

    Ross-Hansen, K; Linneberg, A; Johansen, J D

    2013-01-01

    BACKGROUND: Contact sensitization is frequent in the general population and arises from excessive or repeated skin exposure to chemicals and metals. However, little is known about its genetic susceptibility. OBJECTIVES: To determine the role of polymorphisms of glutathione S-transferase (GST) genes...... with the minor allele of CLDN1 SNP rs9290927 (P(trend)=0·013). For CLDN1 rs17501010, contact sensitization to organic compounds was associated with the major allele (P(trend)=0·031). The risk pattern was also identified for self-reported nickel dermatitis (P(trend)=0·011). The fragrance sensitization prevalence......, respectively, with nickel contact sensitization in individuals without ear piercings, contact sensitization to fragrances, and with both organic compounds and nickel contact dermatitis. We could not find associations between GST gene polymorphisms and contact sensitization. FLG mutations did not affect...

  6. Predictive modelling of ferroelectric tunnel junctions

    Science.gov (United States)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  7. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning.

    Science.gov (United States)

    Kamasawa, N; Sik, A; Morita, M; Yasumura, T; Davidson, K G V; Nagy, J I; Rash, J E

    2005-01-01

    The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin 47 than connexin 32. Along surfaces of internodal myelin, connexin 47 was several times as abundant as connexin 32, and in the smallest gap junctions, often occurred without connexin 32. In contrast, connexin 32 was localized without connexin 47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin 47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin 32 is the predominant if not sole connexin in autologous ("reflexive") oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and

  8. Tight junction changes in epithelial cells by Campylobacter jejuni and non-jejuni Campylobacter species

    DEFF Research Database (Denmark)

    Bücker, Roland; Nielsen, Hans Linde; Krüg, S

    in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29...

  9. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    NARCIS (Netherlands)

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H

    2007-01-01

    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosp

  10. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.; Roy, N.C.

    2011-01-01

    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein s

  11. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.; Roy, N.C.

    2011-01-01

    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein

  12. Charge transport in nanoscale junctions.

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  13. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death.

    Science.gov (United States)

    Van Norstrand, David W; Asimaki, Angeliki; Rubinos, Clio; Dolmatova, Elena; Srinivas, Miduturu; Tester, David J; Saffitz, Jeffrey E; Duffy, Heather S; Ackerman, Michael J

    2012-01-24

    An estimated 10% to 15% of sudden infant death syndrome (SIDS) cases may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases, including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death. GJA1 open reading frame mutational analysis was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole-cell patch-clamp studies were performed to determine the functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white boy and a 3-month-old white girl, respectively. Analysis of the E42K victim's parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in >1000 ethnically matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation, and S272P demonstrated wild-type junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss of function not rescued by wild type. Moreover, the E42K victim's cardiac tissue demonstrated a mosaic immunostaining pattern for connexin43 protein. This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-connexin43 demonstrated a trafficking-independent reduction in junctional coupling in vitro and a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of connexin43-associated sudden death.

  14. Modulation of gap junction channels and hemichannels by growth factors.

    Science.gov (United States)

    Schalper, Kurt A; Riquelme, Manuel A; Brañes, María C; Martínez, Agustín D; Vega, José Luis; Berthoud, Viviana M; Bennett, Michael V L; Sáez, Juan C

    2012-03-01

    Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.

  15. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  16. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    Science.gov (United States)

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  17. Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive.

    Science.gov (United States)

    Ribeiro-Rodrigues, Teresa M; Catarino, Steve; Pinho, Maria J; Pereira, Paulo; Girao, Henrique

    2015-06-01

    Connexins (Cxs) are transmembrane proteins that form channels which allow direct intercellular communication (IC) between neighbouring cells via gap junctions. Mechanisms that modulate the amount of channels at the plasma membrane have emerged as important regulators of IC and their de-regulation has been associated with various diseases. Although Cx-mediated IC can be modulated by different mechanisms, ubiquitination has been described as one of the major post-translational modifications involved in Cx regulation and consequently IC. In this review, we focus on the role of ubiquitin and its effect on gap junction intercellular communication.

  18. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin;

    2007-01-01

    . In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing......Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  19. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  20. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  1. Altered detrusor gap junction communications induce storage symptoms in bladder inflammation: a mouse cyclophosphamide-induced model of cystitis.

    Science.gov (United States)

    Okinami, Takeshi; Imamura, Masaaki; Nishikawa, Nobuyuki; Negoro, Hiromitsu; Sugino, Yoshio; Yoshimura, Koji; Kanematsu, Akihiro; Hashitani, Hikaru; Ogawa, Osamu

    2014-01-01

    Lower urinary tract symptoms (LUTS) include storage, voiding and post-micturition symptoms, featuring many urological diseases. Storage symptoms are the most frequent among these and associated with overactive bladder and non-bacterial bladder inflammation such as interstitial cystitis/bladder pain syndrome (IC/BPS). Gap junction, a key regulator of hyperactive conditions in the bladder, has been reported to be involved in pathological bladder inflammation. Here we report involvement of gap junction in the etiology of storage symptoms in bladder inflammation. In this study, cyclophosphamide-induced cystitis was adapted as a model of bladder inflammation. Cyclophosphamide-treated mice showed typical storage symptoms including increased urinary frequency and reduced bladder capacity, with concurrent up-regulation of connexin 43 (GJA1), one of the major gap junction proteins in the bladder. In isometric tension study, bladder smooth muscle strips taken from the treated mice showed more pronounced spontaneous contraction than controls, which was attenuated by carbenoxolone, a gap junction inhibitor. In voiding behavior studies, the storage symptoms in the treated mice characterized by frequent voiding were alleviated by 18α-glycyrrhetinic acid, another gap junction inhibitor. These results demonstrate that cyclophosphamide-induced mouse model of cystitis shows clinical storage symptoms related with bladder inflammation and that gap junction in the bladder may be a key molecule of these storage symptoms. Therefore, gap junction in the bladder might be an alternative therapeutic target for storage symptoms in bladder inflammation.

  2. Altered detrusor gap junction communications induce storage symptoms in bladder inflammation: a mouse cyclophosphamide-induced model of cystitis.

    Directory of Open Access Journals (Sweden)

    Takeshi Okinami

    Full Text Available Lower urinary tract symptoms (LUTS include storage, voiding and post-micturition symptoms, featuring many urological diseases. Storage symptoms are the most frequent among these and associated with overactive bladder and non-bacterial bladder inflammation such as interstitial cystitis/bladder pain syndrome (IC/BPS. Gap junction, a key regulator of hyperactive conditions in the bladder, has been reported to be involved in pathological bladder inflammation. Here we report involvement of gap junction in the etiology of storage symptoms in bladder inflammation. In this study, cyclophosphamide-induced cystitis was adapted as a model of bladder inflammation. Cyclophosphamide-treated mice showed typical storage symptoms including increased urinary frequency and reduced bladder capacity, with concurrent up-regulation of connexin 43 (GJA1, one of the major gap junction proteins in the bladder. In isometric tension study, bladder smooth muscle strips taken from the treated mice showed more pronounced spontaneous contraction than controls, which was attenuated by carbenoxolone, a gap junction inhibitor. In voiding behavior studies, the storage symptoms in the treated mice characterized by frequent voiding were alleviated by 18α-glycyrrhetinic acid, another gap junction inhibitor. These results demonstrate that cyclophosphamide-induced mouse model of cystitis shows clinical storage symptoms related with bladder inflammation and that gap junction in the bladder may be a key molecule of these storage symptoms. Therefore, gap junction in the bladder might be an alternative therapeutic target for storage symptoms in bladder inflammation.

  3. Highlighting Kathleen Green and Mario Delmar, guest editors of special issue (part 2): junctional targets of skin and heart disease.

    Science.gov (United States)

    Cowin, Pamela

    2014-06-01

    Cell Communication and Adhesion has been fortunate to enlist two pioneers of epidermal and cardiac cell junctions, Kathleen Green and Mario Delmar, as Guest Editors of a two part series on junctional targets of skin and heart disease. Part 2 of this series begins with an overview from Dipal Patel and Kathy Green comparing epidermal desmosomes to cardiac area composita junctions, and surveying the pathogenic mechanisms resulting from mutations in their components in heart disease. This is followed by a review from David Kelsell on the role of desmosomal mutation in inherited syndromes involving skin fragility. Agnieszka Kobeliak discusses how structural deficits in the epidermal barrier intersect with the NFkB signaling pathway to induce inflammatory diseases such as psoriasis and atopic dermatitis. Farah Sheikh reviews the specialized junctional components in cardiomyocytes of the cardiac conduction system and Robert Gourdie discusses how molecular complexes between sodium channels and gap junction proteins within the perijunctional microdomains within the intercalated disc facilitate conduction. Glenn Radice evaluates the role of N-cadherin in heart. Andre Kleber and Chris Chen explore new approaches to study junctional mechanotransduction in vitro with a focus on the effects of connexin ablation and the role of cadherins, respectively. To complement this series of reviews, we have interviewed Werner Franke, whose systematic documentation the tissue-specific complexity of desmosome composition and pioneering discovery of the cardiac area composita junction greatly facilitated elucidation of the role of desmosomal components in the pathophysiology of human heart disease.

  4. Role of gap junction channel in the development of beat-to-beat action potential repolarization variability and arrhythmias.

    Science.gov (United States)

    Magyar, Janos; Banyasz, Tamas; Szentandrassy, Norbert; Kistamas, Kornel; Nanasi, Peter P; Satin, Jonathan

    2015-01-01

    The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a random alteration of the ventricular repolarization duration. SBVR has been suggested to be more predictive of the development of lethal arrhythmias than the action potential prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not completely understood but it is known that SBVR depends on stochastic ion channel gating, intracellular calcium handling and intercellular coupling. Coupling of single cardiomyocytes significantly decreases the beat-to-beat changes in action potential duration (APD) due to the electrotonic current flow between neighboring cells. The magnitude of this electrotonic current depends on the intercellular gap junction resistance. Reduced gap junction resistance causes greater electrotonic current flow between cells, and reduces SBVR. Myocardial ischaemia (MI) is known to affect gap junction channel protein expression and function. MI increases gap junction resistance that leads to slow conduction, APD and refractory period dispersion, and an increase in SBVR. Ultimately, development of reentry arrhythmias and fibrillation are associated post-MI. Antiarrhythmic drugs have proarrhythmic side effects requiring alternative approaches. A novel idea is to target gap junction channels. Specifically, the use of gap junction channel enhancers and inhibitors may help to reveal the precise role of gap junctions in the development of arrhythmias. Since cell-to-cell coupling is represented in SBVR, this parameter can be used to monitor the degree of coupling of myocardium.

  5. The Rho Target PRK2 Regulates Apical Junction Formation in Human Bronchial Epithelial Cells ▿

    OpenAIRE

    Wallace, Sean W.; Magalhaes, Ana; Hall, Alan

    2010-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of...

  6. Dislocation Multi-junctions and Strain Hardening

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  7. 普洱茶对非酒精性脂肪肝大鼠肠道脂肪吸收及粘膜屏障的干预研究%Effect of Pu-erh Tea on Long Chain Fatty Acid Metabolism and Expression of Tight Junction Proteins in the Rat Model of Non-alcoholic Fatty Liver Disease

    Institute of Scientific and Technical Information of China (English)

    朱晟易; 童钰铃; 赵奕; 吕海鹏; 林智; 沈国丽; 孙婷; 宋震亚

    2016-01-01

    In this study, the influence of Pu-erh tea on the absorption of long chain fatty acids in non-alcoholic fatty liver disease (NAFLD) rats was analyzed. Moreover, the possible interventional mechanism was also discussed. Thirty-six SD rats were randomly divided into three groups, normal group (NG), NAFLD group, and Pu-erh tea group (PTG), 12 rats for each group. All rats were killed after 8 weeks. Rat weight, liver index, serum lipid level, intestinal lipid absorption protein (CD36), tight junction proteins (Occludin, ZO-1), and TNF-α mRNA were measured. Compared with NAFLD group, rat weight and serum LDL-C in PTG were decreased by 16.12% and 42.59%, respectively. In addition, the expressions of CD36 and TNF-α mRNA in PTG were decreased, while occludin and ZO-1 mRNA expressions were increased. Our results suggest that Pu-erh tea can regulate the intestinal absorption of long chain fatty acids and the tight junction proteins in rats, and it is especially effective in prophylaxis against ‘the first attack’ in the early stage of NAFLD.%研究了普洱茶调控非酒精性脂肪肝大鼠肠道对长链脂肪酸的吸收,并探讨了其可能机制。将36只 SD大鼠随机分成正常对照组、脂肪肝模型组和普洱茶干预组,每组12只。实验第8周末处死所有大鼠,测定大鼠体质量、肝指数及血清血脂水平;采用定量 PCR 测定大鼠肠道黏膜脂质吸收相关蛋白细胞分化抗原36(Cluster of differentiation 36,CD36)、紧密连接相关蛋白如闭锁蛋白(Occludin)、紧密连接蛋白(Zonula occludens 1,ZO-1)和肿瘤坏死因子α(Tumor necrosis factor-α, TNF-α)基因表达水平。研究结果表明,与模型组相比,普洱茶组大鼠体质量和血清 LDL-C 水平分别下降了16.12%和42.59%;此外,普洱茶组大鼠小肠组织 CD36、TNF-α表达水平明显降低,而 Occludin、ZO-1表达水平明显升高。研究发现,普洱茶对 NAFLD大鼠肠道长链脂肪酸吸

  8. Rapid method of quantification of tight-junction organization using image analysis.

    Science.gov (United States)

    Terryn, Christine; Sellami, Mehdi; Fichel, Caroline; Diebold, Marie-Danielle; Gangloff, Sophie; Le Naour, Richard; Polette, Myriam; Zahm, Jean-Marie

    2013-02-01

    The spatial organization of proteins in a cell population or in tissues is an important parameter to study the functionality of biological specimens. In this article, we have focused on tight junctions which form network-like features in immunofluorescence microscopy images. Usually, the organization or disorganization of tight junctions is noticed qualitatively. The aim of this article is to present a simple method to quantify the organization level of tight junction network using image analysis with a dedicated macro developed with Image J software. The method has been validated with simulated images displaying regular decrease of network organization. Then, the macro has been applied to immunofluorescence microscopy images of cells in culture and of tissue sections.

  9. Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I: Identification of Structure Formed upon DNA Binding.

    Science.gov (United States)

    Freeman, Alasdair D J; Stevens, Michael; Declais, Anne-Cecile; Leahy, Adam; Mackay, Katherine; El Mkami, Hassane; Lilley, David M J; Norman, David G

    2016-08-01

    The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.

  10. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions.

    Science.gov (United States)

    Grawe, F; Wodarz, A; Lee, B; Knust, E; Skaer, H

    1996-03-01

    Morphogenetic movements of epithelia during development underlie the normal elaboration of the final body plan. The tissue integrity critical for these movements is conferred by anchorage of the cytoskeleton by adherens junctions, initially spot and later belt-like, zonular structures, which encircle the apical side of the cell. Loss-of-function mutations in the Drosophila genes crumbs and stardust lead to the loss of cell polarity in most ectodermally derived epithelia, followed in some, such as the epidermis, by extensive apoptosis. Here we show that both mutants fail to establish proper zonulae adherentes in the epidermis. Our results suggest that the two genes are involved in different aspects of this process. Further, they are compatible with the hypothesis that crumbs delimits the apical border, where the zonula adherens usually forms and where Crumbs protein is normally most abundant. In contrast, stardust seems to be required at an earlier stage for the assembly of the spot adherence junctions. In both mutants, the defect observed at the ultrastructural level are preceded by a misdistribution of Armadillo and DE-cadherin, the homologues of beta-catenin and E-cadherin, respectively, which are two constituents of the vertebrate adherens junctions. Strikingly, expansion of the apical membrane domain in epidermal cells by overexpression of crumbs also abolishes the formation of adherens junctions and results in the disruption of tissue integrity, but without loss of membrane polarity. This result supports the view that membrane polarity is independent of the formation of adherens junctions in epidermal cells.

  11. Gap junctions in cells of the immune system: structure, regulation and possible functional roles

    Directory of Open Access Journals (Sweden)

    J.C. Sáez

    2000-04-01

    Full Text Available Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  12. Distribution of the feline calicivirus receptor junctional adhesion molecule a in feline tissues.

    Science.gov (United States)

    Pesavento, P A; Stokol, T; Liu, H; van der List, D A; Gaffney, P M; Parker, J S

    2011-03-01

    Junctional adhesion molecule A (JAM-A) is an immunoglobulin superfamily protein that plays an important role in the assembly and maintenance of tight junctions and the establishment of epithelial cell polarity. The feline JAM-A (fJAM-A) is a functional receptor for feline calicivirus (FCV). Among natural diseases associated with FCV infection, isolates that cause oral vesicular disease are detected in epithelial cells; however, isolates that cause systemic disease are detected in multiple cell types. The distribution of an FCV receptor or receptors in feline tissues is relevant to viral pathogenesis in that it should reflect the wide latitude of clinical sequelae associated with FCV infection. The authors examined the expression of feline JAM-A in the cat by using confocal immunofluorescence localization on normal tissues, with special regard to tissue targets of naturally occurring FCV. As described in the human and the mouse, fJAM-A was widely distributed in feline tissues, where it localized at cell-cell junctions of epithelial and endothelial cells. fJAM-A was highly expressed on feline platelets, with lower levels of expression on feline peripheral blood leukocytes. Additionally, FCV infection of a feline epithelial cell monolayer causes redistribution of fJAM-A to the cytosol of infected cells. It is reasonable to propose that the spectrum of lesions caused by FCV reflects disruption of intercellular junctions that rely on fJAM-A function and tight junctional integrity.

  13. Created-by-current states in long Josephson junctions

    Science.gov (United States)

    Boyadjiev, T. L.; Andreeva, O. Yu.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-08-01

    Critical curves "critical current-external magnetic field" of long Josephson junctions with inhomogeneity and variable width are studied. We demonstrate the existence of regions of magnetic field where some fluxon states are stable only if the external current through the junction is different from zero. Position and size of such regions depend on the length of the junction, its geometry, parameters of inhomogeneity and form of the junction. The noncentral (left and right) pure fluxon states appear in the inhomogeneous Josephson junction with the increase in the junction length. We demonstrate new bifurcation points with change in width of the inhomogeneity and amplitude of the Josephson current through the inhomogeneity.

  14. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  15. Silicon fiber with p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 312 Holden Hall, Blacksburg, Virginia 24060 (United States)

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  16. Vortex structures in exponentially shaped Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.

    2005-04-01

    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  17. Holographic Josephson Junction from Massive Gravity

    CERN Document Server

    Hu, Ya-Peng; Zeng, Hua-Bi; Zhang, Hai-Qing

    2015-01-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  18. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...... on square tunnel junction pads with varying sizes and analyze the measured data using both the original and the modified CIPT model. Thus, we determine in which sample size range the modified CIPT model is needed to ensure validity of the extracted sample parameters, RA and TMR. In addition, measurements...... as a function of position on a square tunnel junction pad are used to investigate the sensitivity of the measurement results to probe misalignment....

  19. Gap Junction in the Teleost Fish Lineage: Duplicated Connexins May Contribute to Skin Pattern Formation and Body Shape Determination.

    Science.gov (United States)

    Watanabe, Masakatsu

    2017-01-01

    Gap junctions are intercellular channels that allow passage of ions and small molecules between adjacent cells. Gap junctions in vertebrates are composed of connexons, which are an assembly of six proteins, connexins. Docking of two connexons on the opposite cell surfaces forms a gap junction between the cytoplasm of two neighboring cells. Connexins compose a family of structurally related four-pass transmembrane proteins. In mammals, there are ~20 connexins, each of which contributes to unique permeability of gap junctions, and mutations of some connexin-encoding genes are associated with human diseases. Zebrafish has been predicted to contain 39 connexin-encoding genes; the high number can be attributed to gene duplication during fish evolution, which resulted in diversified functions of gap junctions in teleosts. The determination of body shapes and skin patterns in animal species is an intriguing question. Mathematical models suggest principle mechanisms explaining the diversification of animal morphology. Recent studies have revealed the involvement of gap junctions in fish morphological diversity, including skin pattern formation and body shape determination. This review focuses on connexins in teleosts, which are integrated in the mathematical models explaining morphological diversity of animal skin patterns and body shapes.

  20. Overdamped Josephson junctions for digital applications

    Energy Technology Data Exchange (ETDEWEB)

    Febvre, P., E-mail: Pascal.Febvre@univ-savoie.fr [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); De Leo, N.; Fretto, M.; Sosso, A. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M. [Donetsk Institute for Physics and Engineering, 72 R. Luxemburg str., 83114 Donetsk (Ukraine); Collot, R. [University of Savoie, IMEP-LAHC – CNRS UMR5130, 73376 Le Bourget du Lac (France); Lacquaniti, V. [I.N.Ri.M., Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)

    2013-01-15

    Highlights: ► Properties of self-shunted sub-micron Nb/Al–AlO{sub x}/Nb SNIS junctions are studied. ► 1–100 kA/cm{sup 2} current densities and 0.1–0.7 mV critical voltages are obtained. ► The critical voltage-vs-temperature behavior of SNIS junctions is discussed. ► Numerical results showing an effect of the aluminum film thickness are presented. ► A Josephson balanced comparator is studied for different temperatures of operation. -- Abstract: An interesting feature of Superconductor–Normal metal–Superconductor Josephson junctions for digital applications is due to their non-hysteretic current–voltage characteristics in a broad temperature range below T{sub c}. This allows to design Single-Flux-Quantum (SFQ) cells without the need of external shunts. Two advantages can be drawn from this property: first the SFQ cells can be more compact which leads to a more integrated solution towards nano-devices and more complex circuits; second the absence of electrical parasitic elements associated with the wiring of resistors external to the Josephson junctions increases the performance of SFQ circuits, in particular regarding the ultimate speed of operation. For this purpose Superconductor–Normal metal–Insulator–Superconductor Nb/Al–AlO{sub x}/Nb Josephson junctions have been recently developed at INRiM with aluminum layer thicknesses between 30 and 100 nm. They exhibit non-hysteretic current–voltage characteristics with I{sub c}R{sub n} values higher than 0.5 mV in a broad temperature range and optimal Stewart McCumber parameters at 4.2 K for RSFQ applications. The main features of obtained SNIS junctions regarding digital applications are presented.

  1. Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia.

    Science.gov (United States)

    Li, Jifen; Goossens, Steven; van Hengel, Jolanda; Gao, Erhe; Cheng, Lan; Tyberghein, Koen; Shang, Xiying; De Rycke, Riet; van Roy, Frans; Radice, Glenn L

    2012-02-15

    It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a 'hybrid adhering junction' or 'area composita'. The α-catenin family member αT-catenin, part of the N-cadherin-catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy.

  2. Gap junctional regulation of pressure, fluid force, and electrical fields in the epigenetics of cardiac morphogenesis and remodeling.

    Science.gov (United States)

    Seki, Akiko; Nishii, Kiyomasa; Hagiwara, Nobuhisa

    2015-05-15

    Epigenetic factors of pressure load, fluid force, and electrical fields that occur during cardiac contraction affect cardiac development, morphology, function, and pathogenesis. These factors are orchestrated by intercellular communication mediated by gap junctions, which synchronize action potentials and second messengers. Misregulation of the gap junction protein connexin (Cx) alters cardiogenesis, and can be a pathogenic factor causing cardiac conduction disturbance, fatal arrhythmia, and cardiac remodeling in disease states such as hypertension and ischemia. Changes in Cx expression can occur even when the DNA sequence of the Cx gene itself is unaltered. Posttranslational modifications might reduce arrhythmogenic substrates, improve cardiac function, and promote remodeling in a diseased heart. In this review, we discuss the epigenetic features of gap junctions that regulate cardiac morphology and remodeling. We further discuss potential clinical applications of current knowledge of the structure and function of gap junctions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase.

    Science.gov (United States)

    Xia, Jun; Chen, Li-Tzu; Mei, Qian; Ma, Chien-Hui; Halliday, Jennifer A; Lin, Hsin-Yu; Magnan, David; Pribis, John P; Fitzgerald, Devon M; Hamilton, Holly M; Richters, Megan; Nehring, Ralf B; Shen, Xi; Li, Lei; Bates, David; Hastings, P J; Herman, Christophe; Jayaram, Makkuni; Rosenberg, Susan M

    2016-11-01

    DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.

  4. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    Directory of Open Access Journals (Sweden)

    Rocío eTalaverón

    2015-10-01

    Full Text Available The postnatal subventricular zone lining the walls of the lateral ventricles contains neural progenitor cells (NPCs that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the subventricular zone is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. Subventricular zone NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of subventricular zone NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26, Cx43, Cx45 and pannexin 1. Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%. Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7% or with microglia (incidence of coupling: 71.9 ± 6.7%. Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal subventricular zone neurospheres. In addition, they demonstrate that subventricular zone-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in

  5. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells.

    Science.gov (United States)

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M; Matarredona, Esperanza R; Sáez, Juan C

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain.

  6. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    Science.gov (United States)

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M.; Matarredona, Esperanza R.; Sáez, Juan C.

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain. PMID:26528139

  7. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values...... in any of the transistors. The implication is that the electron and hole ionization rates did not change as a result of the addition of extra scattering centers. This result is in direct contradiction to observations of Lee et al. The most likely explanation for the discrepancy is erroneous determination...

  8. Fast transient response of novel Peltier junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, G.E.; Rao, K.R.; Jerger, D.

    1977-01-01

    The fast transient response of a thermoelectric (TE) cooler with novel geometry is discussed. This geometry involves conical semiconductor legs whose hot to cold junction cross-sectional area ratios can be varied. The novel TE junctions are fabricated such that the thermal capacitance and electrical conductance are decreased while simultaneously increasing the thermal resistance. The experimental apparatus which includes the vacuum system, power supplies, pulse and control circuitry, sensing and measuring instrumentation etc. is described. With narrow pulse width and large amplitudes, additional cooling of the order of 45/sup 0/C below the steady-state maximum with recovery times in the range of 1 to 3 sec is obtained.

  9. The Geometric Field at a Josephson Junction

    CERN Document Server

    Atanasov, Victor

    2016-01-01

    A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  10. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  11. Rectangular-to-circular groove waveguide junction

    Institute of Scientific and Technical Information of China (English)

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)

    2003-01-01

    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  12. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  13. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves “critical current-magnetic field” are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  14. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Semerdjieva, E.G. [Plovdiv University, 24 Tzar Asen Str., Plovdiv 4000 (Bulgaria); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  15. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    Science.gov (United States)

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.

  16. 中药清肠栓对溃疡性结肠炎大鼠结肠黏膜紧密连接蛋白ZO-1、occludin的影响%Qingchang Suppository upregulates the expression of tight junction proteins ZO-1 and occludin in experimental ulcerative colitis in rats

    Institute of Scientific and Technical Information of China (English)

    卢璐; 谢建群; 郭春荣

    2011-01-01

    AIM: To observe the effect of Qingchang Suppository (QS) on the expression of tight junction proteins zonula occluden-1 (ZO-1) and occludin in the colon of rats with trinitrobenzenesulfonic acid (TNBS)-induced ulcerative colitis (UC).METHODS: Thirty-six SD rats were randomly and equally divided into six groups: normal control group, model group, SASP group, high-, medium- and low-dose QS groups. UC was induced in rats with TNBS. The expression of tight junction proteins ZO-1 and occludin in the colon was examined by immunofluorescence.RESULTS: The immunofluorescence signals of ZO-1 and occludin were irregularly distributed and appeared disrupted in rats with UC. The average optical density of ZO-1 and occludin immunofluorescence, as calculated using image analysis software, were decreased obviously in UC rats compared to normal controls (1.802 ± 1.304 vs 3.145 ± 0.110; 0.568 ± 0.063 vs 1.538 ± 0.220, both P < 0.01). Treatment with QS up-regulated the expression of ZO-1 and occludin in rats with UC (both P < 0.01).CONCLUSION: QS exerts a beneficial effect against TNBS-induced UC in rats possibly by modulating intestinal mucosal barrier and decreasing increased intestinal permeability.%目的:探讨复方中药清肠栓对三硝基苯磺酸(TNBS)诱导的UC大鼠结肠黏膜上皮紧密连接相关蛋白-l(ZO-1)、闭锁蛋白(occludin)的修复作用.方法:清洁级♂SD大鼠36只,随机分为正常组、模型组、SASP组、清肠栓高、中、低剂量组,每组6只.选用TNBS诱导的UC大鼠模型.采用免疫荧光的方法观察各组大鼠结肠黏膜上皮ZO-1、occludin和F-actin的表达,并运用图像分析软件进行平均光密度测定,考察了中药清肠栓对UC大鼠结肠黏膜上皮屏障的修复作用,结果:UC发病会对结肠紧密连接和细胞骨架系统造成严重的损害,模型组大鼠结肠黏膜上皮ZO-1、occludin几乎完全被破坏,不规则的分散在细胞外围,荧光染色暗淡.图像分析测其平均光

  17. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    Science.gov (United States)

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  18. Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin

    Directory of Open Access Journals (Sweden)

    Max Johannes Dörfel

    2012-01-01

    Full Text Available Tight junctions (TJs typically represent the most apical contacts in epithelial and endothelial cell layers where they play an essential role in the separation of extracellular or luminal spaces from underlying tissues in the body. Depending on the protein composition, TJs define the barrier characteristics and in addition maintain cell polarity. Two major families of integral membrane proteins form the typical TJ strand network, the tight junction-associated MARVEL protein (TAMP family members occludin, tricellulin, and MarvelD3 as well as a specific set of claudins. Occludin was the first identified member of these tetraspanins and is now widely accepted as a regulator of TJ assembly and function. Therefore, occludin itself has to be tightly regulated. Phosphorylation of occludin appears to be of central importance in this context. Here we want to summarize current knowledge on the kinases and phosphatases directly modifying occludin, and their role in the regulation of TJ structure, function, and dynamics.

  19. Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

    Science.gov (United States)

    Gillers, Benjamin S; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R; Boukens, Bastiaan J; Rentschler, Stacey

    2014-01-01

    Rationale Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results We utilized a novel allele of β-catenin that preserves β-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricular preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue. PMID:25599332

  20. Role of Gap Junctions and Hemichannels in Parasitic Infections

    Directory of Open Access Journals (Sweden)

    José Luis Vega

    2013-01-01

    Full Text Available In vertebrates, connexins (Cxs and pannexins (Panxs are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.

  1. Mefloquine gap junction blockade and risk of pregnancy loss.

    Science.gov (United States)

    Nevin, Remington Lee

    2012-09-01

    Obstetric use of the antimalarial drug mefloquine has historically been discouraged during the first trimester and immediately before conception owing to concerns of potential fetal harm. With the rise of resistance to the antimalarial drug sulfadoxine-pyrimethamine (SP), mefloquine is now being considered as a replacement for SP for universal antenatal administration to women from malaria-endemic regions. Recent recommendations have also suggested that mefloquine may be used cautiously among pregnant travelers who cannot otherwise avoid visiting these areas. Mefloquine has been demonstrated to cause blockade of gap junction protein alpha 1 (GJA1) gap junction intercellular communication (GJIC), and recent evidence suggests that GJA1 GJIC is critical to successful embryonic implantation and early placental development. During routine use, mefloquine accumulates in organ and peripheral tissue, crosses the blood-placental barrier, and may plausibly accumulate in developing decidua and trophoblast at concentrations sufficient to interfere with GJA1 GJIC and, thus, cause deleterious effects on fetal outcomes. This conclusion is supported by epidemiological evidence that demonstrates use of the drug during early development is associated with an increased risk of miscarriage and stillbirth. Confirmatory studies are pending, but the available experimental and epidemiological evidence support renewed adherence, where feasible, to existing mefloquine package insert guidance that women avoid the drug during the periconceptional period.

  2. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Popov, Lauren M; Marceau, Caleb D; Starkl, Philipp M; Lumb, Jennifer H; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L; Merakou, Christina; Bouley, Donna M; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E; Amieva, Manuel R

    2015-11-17

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.

  3. Ballistic transport in InSb Josephson junctions

    Science.gov (United States)

    Damasco, John Jeffrey; Gill, Stephen; Car, Diana; Bakkers, Erik; Mason, Nadya

    We present transport measurements on Josephson junctions consisting of InSb nanowires contacted by Al at various junction lengths. Junction behavior as a function of gate voltage, electric field, and magnetic field is discussed. We show that short junctions behave as 1D quantum wires, exhibiting quantized conductance steps. In addition, we show how Josephson behavior changes as transport evolves from ballistic to diffusive as a function of contact spacing.

  4. Dynamics near Resonance Junctions in Hamiltonian Systems

    CERN Document Server

    Goto, S; Goto, Shin-itiro; Nozaki, Kazuhiro

    1999-01-01

    An approximate Poincare map near equally strong multiple resonances is reduced by means the method of averaging. Near the resonance junction of three degrees of freedom, we find that some homoclinic orbits ``whiskers'' in single resonance lines survive and form nearly periodic orbits, each of which looks like a pair of homoclinic orbits.

  5. Cooling of suspended nanostructures with tunnel junctions

    OpenAIRE

    Koppinen, P. J.; Maasilta, I. J.

    2009-01-01

    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow ($\\sim$ 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design.

  6. Polyphosphonium-based ion bipolar junction transistors.

    Science.gov (United States)

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  7. Flux interactions on stacked Josephson junctions

    DEFF Research Database (Denmark)

    Scott, Alwyn C.; A., Petraglia

    1996-01-01

    Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange betwe...

  8. Defect formation in long Josephson junctions

    DEFF Research Database (Denmark)

    Gordeeva, Anna; Pankratov, Andrey

    2010-01-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...

  9. Gap junction diseases of the skin.

    NARCIS (Netherlands)

    Steensel, M.A.M. van

    2004-01-01

    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by muta

  10. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus;

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...

  11. Fluxon density waves in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....