WorldWideScience

Sample records for jsc time-modulated ultra-wideband

  1. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop an innovative way of using Time Modulated Ultra Wideband (TM-UWB) transceivers (radios) to provide high performance integrated...

  2. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  3. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  4. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  5. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  6. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  7. Ultra-Wideband Transceivers for Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Reisenzahn Alexander

    2005-01-01

    Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.

  8. Ultra wideband wireless body area networks

    CERN Document Server

    Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit

    2014-01-01

    This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN).  The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability.  The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority.  Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals.   • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...

  9. Ultra-wideband ranging precision and accuracy

    International Nuclear Information System (INIS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-01-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging

  10. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  11. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  12. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  13. Ultra-wideband MMICs for remote sensing applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2003-01-01

    This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...

  14. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    NARCIS (Netherlands)

    Wang, Y.; Leus, G.; Van der Veen, A.J.

    2009-01-01

    A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI) and the

  15. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  16. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  17. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  18. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  19. Monostatic ultra-wideband GPR antenna for through wall detection

    Directory of Open Access Journals (Sweden)

    Ali Jawad

    2017-01-01

    Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  20. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  1. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  2. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  3. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  4. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  5. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  6. Ultra-wideband horn antenna with abrupt radiator

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  7. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    Science.gov (United States)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  8. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  9. Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2006-01-01

    Full Text Available Two ultra-wideband (UWB specifications, that is, direct-sequence (DS UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN. Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

  10. Time-Domain Diversity in Ultra-Wideband MIMO Communications

    Directory of Open Access Journals (Sweden)

    Alain Sibille

    2005-03-01

    Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the “polluting” character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product Nt×Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.

  11. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  12. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yiyin

    2009-01-01

    Full Text Available Abstract A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  13. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Yiyin Wang

    2009-01-01

    Full Text Available A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  14. Ultra-Wideband Printed Slot Radiators with Controllable Frequency Characteristics

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available We have studied the possibility of creating ultra-wideband (UWB antennas with controlled frequency response of matching based on the printed slot antenna Vivaldi by introducing controlled resonators directly into the structure of the radiator. In the area of irregular slotline there are printed switched resonators with variable capacitance (varactor model, which allow tuning the frequency characteristics for each state of switching cavities, providing bandpass and band-barrage properties of the antenna. The investigation of reconfigurable printed resonators in the system of reconfigurable resonators of a bandpass filter is conducted. The paper considers filter to provide restructuring in the band (3-9 GHz. Electrodynamic simulation of the device was carried out in the time domain using a finite integration method. A bandstop reconfigurable filter is also investigated. The filter located on the substrate opposite the slit is based on tunable L-shaped resonator that has one end connected to the short-circuitor through the board metallization; the other end remains open and is brought into the region of interaction with the slotline. Such filter provides an effective narrow-band suppression and can be easily tuned to the desired frequency channel. The combination of these two types of filters allows you to create a controlled print Vivaldi slot antenna with combined properties. The paper investigates parameters of the scattering and radiation pattern of the antenna in different modes.

  15. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  16. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  17. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  18. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  19. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  20. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  1. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  2. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  3. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  4. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  5. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  6. Range extension and channel capacity increase in impulse-radio ultra-wideband communications

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Yu, Xianbin; Caballero Jambrina, Antonio

    2010-01-01

    We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed...

  7. First Experimental Impulse-Radio Ultra-Wideband Transmission Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Ultra-wideband impulse-radio wireless transmission under the stringent conditions and complex shape of the Russian spectral emission mask is experimentally demonstrated for the first time. Transmission of 1Gbit/s and 1.25Gbit/s signals over distances of 6m and 3m is achieved with a BER below 3.8×10-3....

  8. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    Science.gov (United States)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  9. Spectral encoded optical label detection for dynamic routing of impulse radio ultra-wideband signals in metro-access networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Yu, Xianbin; Yin, Xiaoli

    2010-01-01

    In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels.......In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels....

  10. 35 Gb/s Ultra-wideband Technology for Advanced Communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    be applied, evolving from classic spectral inefficient pulsebased systems to more advanced and flexible modulation schemes. Ultra-wideband technology is suitable for low-power high-speed wireless communication systems over short distances, and is an appealing alternative for next generation networks ranging......The fast development of electronics and portable devices, intended mainly for multimedia applications, is increasing exponentially the data traffic demands per user. To cope with these new data demands in limited bandwidth systems, new technologies must be explored and new transmission schemes must...... from high-speed wireless personal area networks, to the internet of things applications. Its popularity stems from the fact that they can be used as an overlay to existing systems, without interference, operating in parallel to existing wireless systems, which perceive ultra-wideband emissions...

  11. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  12. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  13. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  14. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  15. Ultra - Wideband, zero visual signature RF vest antenna for man-portable radios

    OpenAIRE

    Lebaric, Jovan E.; Adler, Richard W.; Limbert, Matthew E.

    2001-01-01

    This paper presents the recent research of the COMbat Wear INtegration (COMWIN) RF Vest antenna presented at MILCOM2000. This version of the ultra-wideband VHF/UHF (30 MHz to 500 MHz) vest antenna, designated as MK-III, is integrated into the existing dismounted Marine/Soldier Kevlar flak vest and has no visual signature. This antenna is one of the three COMWIN antennas developed at the Naval Postgraduate School (NPS) for the Joint Tactical Radio System applications. ...

  16. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  17. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz........ The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  18. Up to 35 Gbps Ultra-Wideband Wireless Data Transmission Links

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    For the first time Ultra-Wideband record data transmission rates up to 35.1 Gbps and 21.6 Gbps are achieved, compliant with the restrictions on the effective radiated power established by both the United States Federal Communications Commission and the European Electronic Communications Committee......, respectively. To achieve these record bit rates, the multi-band approach of Carrierless Amplitude Phase modulation scheme was employed. Wireless transmissions were achieved with a BER below the 7% FEC threshold of 3.8·10-3 ....

  19. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  20. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz....... The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  1. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    Science.gov (United States)

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  2. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  3. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  4. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  5. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  6. Design of a planar ultra-wideband four-way power divider/combiner using defected ground structures

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Cimoli, Bruno; Midili, Virginio

    2017-01-01

    This work presents the design of a planar ultra-wideband (UWB) four-way power divider/combiner. A prototype has been fabricated on a printed circuit board and characterized. For achieving the frequency response required in UWB applications, each branch of the divider is conceived as a three...

  7. Ultra-wideband balanced schottky envelope detector for data communication with high bitrate to carrier frequency ratio

    DEFF Research Database (Denmark)

    Granja, Angel Blanco; Cimoli, Bruno; Rodriguez, Sebastian

    2017-01-01

    This paper reports on an ultra-wideband (UWB) Schottky diode based balanced envelope detector for the L-, S-, C- and X- bands. The proposed circuit consists of a balun that splits the input signal into two 180° out of phase signals, a balanced detector, that demodulates the two signals, a low pass...

  8. Ultra Wideband Signal Detection with a Schottky Diode Based Envelope Detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    error correction threshold are achieved for wireless distances of 20 cm and 50 cm at respective data rates of 2.5 Gbit/s and 1.25 Gbit/s. uwb transmission is one of the most attractive alternatives for low-power high-speed wireless communication systems over short distances, its popularity stemming from....... The receiver is able to detect an ultra-wideband signal compliant with the Federal Communications Commission (fcc) regulations for uwb transmission and consisting of a 2.5 Gbit/s non-return-to-zero (nrz) data signal on a 6.9 GHz carrier after 20 cm wireless transmission. Bit error rates (ber) below the forward...... its interoperability with existing wireless services and its license free operation. The latter is conditioned on meeting a number of standards and regulations for maximum radiated powers, designed to ensure the former by defining uwb signals as signals with large bandwidths in the frequency range...

  9. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    Science.gov (United States)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWRcommunication at 7.25-8.395 GHz.

  10. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  11. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  12. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  13. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  14. A Comprehensive Evaluation of Indoor Ranging Using Ultra-Wideband Technology

    Directory of Open Access Journals (Sweden)

    Camillo Gentile

    2007-04-01

    Full Text Available Ultra-wideband technology shows promise for precision ranging due to its fine time resolution to resolve multipath fading and the presence of lower frequencies in the baseband to penetrate walls. While a concerted effort has been conducted in the extensive modeling of the indoor UWB channel in recent years, to our knowledge only two papers have reported ranging performance, but for limited range and fixed bandwidth and center frequency. In principle, boosting power can guarantee connectivity between transmitter and receiver, but not precision due to the distorting effects of walls and other objects in the direct path. In order to gauge the limits of UWB ranging, we carry out 5000 measurements up to an unprecedented 45 m in non-line-of-sight conditions in four separate buildings with dominant wall material varying from sheet rock to steel. In addition, we report performance for varying bandwidth and center frequency of the system.

  15. A Comprehensive Evaluation of Indoor Ranging Using Ultra-Wideband Technology

    Directory of Open Access Journals (Sweden)

    Gentile Camillo

    2007-01-01

    Full Text Available Ultra-wideband technology shows promise for precision ranging due to its fine time resolution to resolve multipath fading and the presence of lower frequencies in the baseband to penetrate walls. While a concerted effort has been conducted in the extensive modeling of the indoor UWB channel in recent years, to our knowledge only two papers have reported ranging performance, but for limited range and fixed bandwidth and center frequency. In principle, boosting power can guarantee connectivity between transmitter and receiver, but not precision due to the distorting effects of walls and other objects in the direct path. In order to gauge the limits of UWB ranging, we carry out 5000 measurements up to an unprecedented 45 m in non-line-of-sight conditions in four separate buildings with dominant wall material varying from sheet rock to steel. In addition, we report performance for varying bandwidth and center frequency of the system.

  16. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  17. Ultra-Wideband Geo-Regioning: A Novel Clustering and Localization Technique

    Directory of Open Access Journals (Sweden)

    Armin Wittneben

    2007-12-01

    Full Text Available Ultra-wideband (UWB technology enables a high temporal resolution of the propagation channel. Consequently, a channel impulse response between transmitter and receiver can be interpreted as signature for their relative positions. If the position of the receiver is known, the channel impulse response indicates the position of the transmitter and vice versa. This work introduces UWB geo-regioning as a clustering and localization method based on channel impulse response fingerprinting, develops a theoretical framework for performance analysis, and evaluates this approach by means of performance results based on measured channel impulse responses. Complexity issues are discussed and performance dependencies on signal-to-noise ratio, a priori knowledge, observation window, and system bandwidth are investigated.

  18. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig

    2014-09-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  19. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  20. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  1. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh

    2014-03-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest techniques for dealing with background clutter in situations when it might be time variant. We also present a novel methodology for reducing the required sampling rate of the system significantly while achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above challenges and providing a low-complexity solution for the monitoring of respiratory movements.

  2. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  3. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  4. Ultra-wideband real-time data acquisition in steady-state experiments

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Emoto, Masahiko; Nagayama, Yoshio; Kawahata, Kazuo; Imazu, Setsuo; Okumura, Haruhiko

    2006-01-01

    The ultra-wideband real-time data acquisition (DAQ) system has started its operation at LHD steady-state experiments since 2004. It uses Compact PCI standard digitizers whose acquisition performance is continuously above 80 MB/s for each frontend, and is also capable of grabbing picture frames from high-resolution cameras. Near the end of the 8th LHD experimental period, it achieved a new world record of 84 GB/shot acquired data during about 4,000 s long-pulse discharge (no.56068). Numbers of real-time and batch DAQ were 15 and 30, respectively. To realize 80 MB/s streaming from the digitizer frontend to data storage and network clients, the acquired data are once buffered on the shared memory to be read by network streaming and data saving tasks independently. The former sends 1/N thinned stream by using a set of TCP and UDP sessions for every monitoring clients, and the latter saves raw data into a series of 10 s chunk files. Afterward, the subdivided segmental compression library 'titz' is applied in migrating them to the mass storage for enabling users to retrieve a smaller chunk of huge data. Different compression algorithms, zlib and JPEG-LS, are automatically applied for waveform picture and data, respectively. Newly made utilities and many improvements, such as acquisition status monitor, real-time waveform monitor, and 64 bit counting in digital timing system, have put the ultra-wideband acquisition system fit for practical use by entire stuff. Demonstrated technologies here could be applied for the next generation fusion experiment like ITER. (author)

  5. Analisis experimental de la propagacion en redes de area corporal para la banda de ultra wideband. experimental characterization of the propagation in ultra wideband body area networks

    Science.gov (United States)

    Garcia Serna, Ruben Gregorio

    Diferentes dispositivos capaces de obtener informacion sobre parametros fisiologicos, cinematicos o contextuales del cuerpo pueden interconectarse de manera inalambrica dando lugar a las denominadas Redes de Area Corporal Inalambricas (WBAN, Wireless Body Area Networks). De entre las posibles tecnologias para establecer los enlaces, Ultra Wideband (UWB) esta captando cada vez un mayor interes debido a caracteristicas tales como el bajo nivel de potencia de transmision requerido (bajo nivel de exposicion a campos electromagneticos), el alto ancho de banda disponible y la alta resolucion temporal/espacial. El diseno de sistemas centrados en el cuerpo requiere de modelos de canal que describan de manera precisa la propagacion de senales en este tipo de entornos. Esta tesis se plantea con el objetivo de contribuir al estudio experimental de la propagacion en sistemas centrados en el cuerpo operando en la banda UWB. En primer lugar, se presenta un marco introductorio a las redes WBAN, sus elementos constitutivos, bandas de frecuencia, estandarizacion y modelos de canal. Ademas, se introducen los fundamentos de la tecnologia UWB y sus aplicaciones en este area. Seguidamente, se analiza en terminos de las perdidas de propagacion y la dispersion de retardo la propagacion en el canal off-body entre un transmisor fijo y un dispositivo receptor colocado sobre la superficie del cuerpo de un sujeto. Se considera la influencia de diferentes aspectos, tales como el entorno de medidas, la posicion de colocacion de una antena sobre el cuerpo y la postura adoptada por un sujeto. Finalmente, se analiza el canal de propagacion in-body considerando el movimiento relativo entre dos dispositivos causado por efecto de la respiracion. Las condiciones de propagacion en el interior del cuerpo se emulan por medio de un phantom liquido para UWB y la caracterizacion se plantea tanto en frecuencia, en terminos del modelado de la forma y el ensanchamiento del espectro Doppler, como en tiempo, por

  6. Low-sampling-rate ultra-wideband channel estimation using a bounded-data-uncertainty approach

    KAUST Repository

    Ballal, Tarig

    2014-01-01

    This paper proposes a low-sampling-rate scheme for ultra-wideband channel estimation. In the proposed scheme, P pulses are transmitted to produce P observations. These observations are exploited to produce channel impulse response estimates at a desired sampling rate, while the ADC operates at a rate that is P times less. To avoid loss of fidelity, the interpulse interval, given in units of sampling periods of the desired rate, is restricted to be co-prime with P. This condition is affected when clock drift is present and the transmitted pulse locations change. To handle this situation and to achieve good performance without using prior information, we derive an improved estimator based on the bounded data uncertainty (BDU) model. This estimator is shown to be related to the Bayesian linear minimum mean squared error (LMMSE) estimator. The performance of the proposed sub-sampling scheme was tested in conjunction with the new estimator. It is shown that high reduction in sampling rate can be achieved. The proposed estimator outperforms the least squares estimator in most cases; while in the high SNR regime, it also outperforms the LMMSE estimator. © 2014 IEEE.

  7. Design Studies of Ultra-Wideband Microstrip Antennas with a Small Capacitive Feed

    Directory of Open Access Journals (Sweden)

    Veeresh G. Kasabegoudar

    2007-01-01

    Full Text Available The design of an ultra-wideband microstrip patch antenna with a small coplanar capacitive feed strip is presented. The proposed rectangular patch antenna provides an impedance bandwidth of nearly 50%, and has stable radiation patterns for almost all frequencies in the operational band. Results presented here show that such wide bandwidths are also possible for triangular and semiellipse geometries with a similar feed arrangement. The proposed feed is a very small strip placed very close to the radiator on a substrate above the ground plane. Shape of the feed strip can also be different, so long as the area is not changed. Experimental results agree with the simulated results. Effects of key design parameters such as the air gap between the substrate and the ground plane, the distance between radiator patch and feed strip, and the dimensions of the feed strip on the input characteristics of the antenna have been investigated and discussed. As demonstrated here, the proposed antenna can be redesigned for any frequency in the L-, S-, C-, or X-band. A design criterion for the air gap has been empirically obtained to enable maximum antenna bandwidth for all these operational frequencies.

  8. Design of CMOS RFIC ultra-wideband impulse transmitters and receivers

    CERN Document Server

    Nguyen, Cam

    2017-01-01

    This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets.  The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of U...

  9. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  10. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  11. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  12. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    Science.gov (United States)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  13. Pulse Sign Separation Technique for the Received Bits in Wireless Ultra-Wideband Combination Approach

    Directory of Open Access Journals (Sweden)

    Rashid A. Fayadh

    2014-01-01

    Full Text Available When receiving high data rate in ultra-wideband (UWB technology, many users have experienced multiple-user interference and intersymbol interference in the multipath reception technique. Structures have been proposed for implementing rake receivers to enhance their capabilities by reducing the bit error probability (Pe, thereby providing better performances by indoor and outdoor multipath receivers. As a result, several rake structures have been proposed in the past to reduce the number of resolvable paths that must be estimated and combined. To achieve this aim, we suggest two maximal ratio combiners based on the pulse sign separation technique, such as the pulse sign separation selective combiner (PSS-SC and the pulse sign separation partial combiner (PSS-PC to reduce complexity with fewer fingers and to improve the system performance. In the combiners, a comparator was added to compare the positive quantity of positive pulses and negative quantities of negative pulses to decide whether the transmitted bit was 1 or 0. The Pe was driven by simulation for multipath environments for impulse radio time-hopping binary phase shift keying (TH-BPSK modulation, and the results were compared with those of conventional selective combiners (C-SCs and conventional partial combiners (C-PCs.

  14. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  15. Numerical Design of Ultra-Wideband Printed Antenna for Surface Penetrating Radar Application

    Directory of Open Access Journals (Sweden)

    Achmad Munir

    2011-08-01

    Full Text Available Surface penetrating radar (SPR is an imaging device of electromagnetic wave that works by emitting and transmitting a narrow period pulse through the antenna. Due to the use of narrow period pulse, according to the Fourier transform duality, therefore ultra-wideband (UWB antenna becomes one of the most important needs in SPR system. In this paper, a novel UWB printed antenna is proposed to be used for SPR application. Basically, the proposed antenna is developed from a rectangular microstrip antenna fed by symmetric T-shaped. Some investigation methods such as resistive loading, abrupt transition, and ground plane modification are attempted to achieve required characteristics of bandwidth, radiation efficiency, and compactness needed by the system. To obtain the optimum design, the characteristics of proposed antenna are numerically investigated through the physical parameters of antenna. It is shown that proposed antenna deployed on an FR-4 Epoxy substrate with permittivity of 4.3 and thickness of 1.6mm has a compact size of 72.8mm x 60.0mm and a large bandwidth of 50MHz-5GHz which is suitable for SPR application.

  16. An ultra-wideband pattern reconfigurable antenna based on graphene coating

    Science.gov (United States)

    Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu

    2016-11-01

    An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.

  17. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  18. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    Science.gov (United States)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  19. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  20. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  1. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  2. Miniature CRLH-based ultra wideband antenna with gain enhancement for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Mohammad Alibakhshi-Kenari

    2016-06-01

    Full Text Available A novel miniaturized ultra wideband (UWB antenna based on composite right/left-handed (CRLH metamaterial unit cells for modern wireless communication applications is presented. The physical size of the small and compact antenna is 15×7.87×1.6 mm3 or 0.15λo×0.07λo×0.01λo in terms of the free-space wavelength at 3 GHz. The proposed antenna covers an impedance bandwidth of 3–10.6 GHz, which is equivalent to a fractional bandwidth of 111%. The gain and efficiency of the antenna are greater than 2.89 dBi and 38.54%, respectively, with a peak gain of 9.41 dBi and a peak efficiency of 99.93%. The characteristics of the antenna were validated with measured results obtained from a fabricated prototype to establish the proof of concept.

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    Science.gov (United States)

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  4. Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    H. Vincent Poor

    2008-05-01

    Full Text Available In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA and angle-of-arrival (AOA, in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.

  5. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    Science.gov (United States)

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  6. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  7. Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

    Directory of Open Access Journals (Sweden)

    R. Singha

    2018-04-01

    Full Text Available The gain of the ultra-wideband tapered slot antenna (TSA is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN application.

  8. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  9. Compact Elliptically Tapered Slot Antenna with Non-uniform Corrugations for Ultra-wideband Applications

    Directory of Open Access Journals (Sweden)

    F. G. Zhu

    2013-04-01

    Full Text Available A small size elliptically tapered slot antenna (ETSA fed by coplanar waveguide (CPW for ultra-wideband (UWB applications is proposed. It is printed on an FR4 substrate and occupies a size of 37×34×0.8 mm^3. A pair of quarter circular shapes is etched on the radiator to reduce the size. To overcome the limitation of uniform corrugation, non-uniform corrugation is utilized to reduce the cross-polarization level. A parametric study is carried out to investigate the effects of circular cut and corrugations. In order to validate the design, a prototype is fabricated and measured. Both simulated and measured results confirm that the proposed antenna achieves a good performance of a reflection coefficient below -10 dB from 3.1 GHz to 10.6 GHz, including a maximum antenna gain of 8.1dBi, directional patterns in the end-fire direction, low cross-polarization level below -20 dB and linear phase response. The antenna is promising for applications in UWB impulse radar imaging.

  10. Design and Analysis of Ultra-wideband Micro Strip Patch Antenna with Notch Band Characteristics

    Directory of Open Access Journals (Sweden)

    Kumar Omprakash

    2016-01-01

    Full Text Available A new design of ultra-wideband (UWB micro strip patch antenna with notch band characteristic for wireless local area network (WLAN application is presented in this paper. The proposed antenna consists of a rectangular patch with a partial ground plane that is fed by 50 Ω micro strip line. A notch band function is created by inserting overlapped one U-shape and one C-shape slot on the radiator patch, added additional patch to the ground plane side and slit in truncated ground plane. The proposed antenna potentially minimized frequency interference between WLAN and UWB system. This antenna with the size of 26 mm × 32 mm (W×L and the simulated results show that the antenna can operate over the frequency band between 3.1 and 10.45 GHz for voltage standing wave ratio (VSWR > 2 with band notch 5.06-5.825 GHz. Besides in the working band, the antenna shows good radiation pattern in the H-plane and the E-plane and has good time domain characteristic.

  11. Low-sampling-rate ultra-wideband channel estimation using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig

    2014-09-01

    In this paper, a low-sampling-rate scheme for ultra-wideband channel estimation is proposed. The scheme exploits multiple observations generated by transmitting multiple pulses. In the proposed scheme, P pulses are transmitted to produce channel impulse response estimates at a desired sampling rate, while the ADC samples at a rate that is P times slower. To avoid loss of fidelity, the number of sampling periods (based on the desired rate) in the inter-pulse interval is restricted to be co-prime with P. This condition is affected when clock drift is present and the transmitted pulse locations change. To handle this case, and to achieve an overall good channel estimation performance, without using prior information, we derive an improved estimator based on the bounded data uncertainty (BDU) model. It is shown that this estimator is related to the Bayesian linear minimum mean squared error (LMMSE) estimator. Channel estimation performance of the proposed sub-sampling scheme combined with the new estimator is assessed in simulation. The results show that high reduction in sampling rate can be achieved. The proposed estimator outperforms the least squares estimator in almost all cases, while in the high SNR regime it also outperforms the LMMSE estimator. In addition to channel estimation, a synchronization method is also proposed that utilizes the same pulse sequence used for channel estimation. © 2014 IEEE.

  12. Elevated CPW-Fed Slotted Microstrip Antenna for Ultra-Wideband Application

    Directory of Open Access Journals (Sweden)

    Chandan Kumar Ghosh

    2012-01-01

    Full Text Available Elevated-coplanar-waveguide- (ECPW- fed microstrip antenna with inverted “G” slots in the back conductor is presented. It is modeled and analyzed for the application of multiple frequency bands. The changes in radiation and the transmission characteristics are investigated by the introduction of the slots in two different positions at the ground plane (back conductor. The proposed antenna without slots exhibits a stop band from 2.55 GHz to 4.25 GHz while introducing two slots on the back conductor, two adjacent poles appear at central frequencies of 3.0 GHz and 3.9 GHz, respectively, and the antenna shows the ultra-wideband (UWB characteristics. The first pole appears at the central frequency of 3.0 GHz and covers the band width of 950 MHz, and the second pole exists at a central frequency of 3.90 GHz covering a bandwidth of 750 MHz. Experimental result shows that impedance bandwidth of 129% (S11<-10 dB is well achieved when the antenna is excited with both slots. Compared to most of the previously reported ECPW structures, the impedance bandwidth of this antenna is increased and also the size of the antenna becomes smaller and more suitable for many wireless applications like PCS (1850–1990 MHz, WLAN (2.4–2.484 GHz, WiMAX (2.5–2.69 GHz and 5.15–5.85 GHz, and also X-band communication.

  13. Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter

    Directory of Open Access Journals (Sweden)

    Somdotta Roy Choudhury

    2014-09-01

    Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.

  14. Pulse shaping for high data rate ultra-wideband wireless transmission under the Russian spectral emission mask

    DEFF Research Database (Denmark)

    Rommel, Simon; Grakhova, Elizaveta P.; Jurado-Navas, Antonio

    2017-01-01

    This paper addresses impulse-radio ultra-wideband (IR-UWB) transmission under the Russian spectral emission mask for unlicensed UWB radio communications. Four pulse shapes are proposed and their bit error rate (BER) performance is both estimated analytically and evaluated experimentally. Well......-known shapes such as the Gaussian, root-raised cosine, hyperbolic secant, and the frequency B-spline wavelet are used to form linear combinations of component pulses, shaped to make efficient use of the spectral emission mask. Analytical BER values are derived using a Nakagami-m model, and good agreement......-UWB transmission under the strict regulations of the Russian spectral emission mask....

  15. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    Directory of Open Access Journals (Sweden)

    Dries Van Baelen

    2018-01-01

    Full Text Available A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  16. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    Science.gov (United States)

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  17. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  18. Experimental Performance Comparison of 60 GHz DCM OFDM and Impulse BPSK Ultra-Wideband with Combined Optical Fibre and Wireless Transmission

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2010-01-01

    We present an experimental performance comparison of 1.44Gbps dual-carrier modulation OFDM and BPSK impulse-radio ultra-wideband in the 60GHz band with combined fibre, up to 40km, and 5m wireless transmission. Impulse-radio exhibits better dispersion tolerance requiring lower optical power....

  19. 3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution Over a 50 km Fiber With Wireless Transmission

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Gamatham, Romeo

    2010-01-01

    A 3.125 Gb/s photonic impulse radio ultra-wideband signal is created using the incoherent optical field summation resulting from the cross gain modulation of an uncooled distributed feedback laser injected with an external cavity laser. After 50 km of fiber and wireless transmission over 2.9-3.3-m...

  20. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...

  1. Ultra-Wideband RCS Reduction and Gain Enhancement of Aperture-Coupled Antenna Based on Hybrid-FSS

    Directory of Open Access Journals (Sweden)

    L. L. Cong

    2017-12-01

    Full Text Available A novel design of aperture-coupled microstrip antenna with ultra-wideband low radar cross section (RCS is proposed. Hybrid frequency selective surface (FSS structures consisting of two kinds of polarization-dependent folded split ring resonators (PDFSRRs and square patches are utilized to replace the conventional metallic ground. By orthogonally arranging the PDFSRRs in a chessboard-like configuration, the band-stop characteristic contributes to the gain enhancement, while the zero degree points of reflection phase and wave-transmission characteristic are utilized to achieve RCS reduction both in-band and out-of-band. Furthermore, with square patches periodically etched on the bottom of FSS structure, a new zero degree reflection phase is introduced to enhance the effect of RCS reduction. Full wave simulations and measurements demonstrate that the proposed antenna achieves RCS reduction from 1 GHz to 18 GHz and gain enhancement compared with traditional microstrip antenna.

  2. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  3. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  4. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-01-01

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  5. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  6. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    Science.gov (United States)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  7. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  8. Iterative Frequency-Domain Channel Estimation and Equalization for Ultra-Wideband Systems with Short Cyclic Prefix

    Directory of Open Access Journals (Sweden)

    Salim Bahçeci

    2010-01-01

    Full Text Available In impulse radio ultra-wideband (IR-UWB systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS and non-line-of-sight (NLOS UWB channels after only a few iterations.

  9. Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Chiang Mung

    2006-01-01

    Full Text Available The problem of choosing the optimal multipath components to be employed at a minimum mean square error (MMSE selective Rake receiver is considered for an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a nonconvex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they perform better than the conventional finger selection algorithm, which is suboptimal since it ignores the correlation between multipath components, and they can get quite close to the optimal scheme that cannot be implemented in practice due to its complexity. In addition to the convex relaxation techniques, a genetic-algorithm- (GA- based approach is proposed, which does not need any approximations or integer relaxations. This iterative algorithm is based on the direct evaluation of the objective function, and can achieve near-optimal performance with a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithms with that of the conventional and the optimal schemes.

  10. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  11. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    Science.gov (United States)

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  12. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    Science.gov (United States)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  13. 4 Gbps Impulse Radio (IR) Ultra-Wideband (UWB) Transmission over 100 Meters Multi Mode Fiber with 4 Meters Wireless Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Caballero Jambrina, Antonio

    2009-01-01

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting...... laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate - distance product of 20; the highest yet reported for wireless IR-UWB transmission...

  14. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  15. Efficient Time-Domain Ray-Tracing Technique for the Analysis of Ultra-Wideband Indoor Environments including Lossy Materials and Multiple Effects

    Directory of Open Access Journals (Sweden)

    F. Saez de Adana

    2009-01-01

    Full Text Available This paper presents an efficient application of the Time-Domain Uniform Theory of Diffraction (TD-UTD for the analysis of Ultra-Wideband (UWB mobile communications for indoor environments. The classical TD-UTD formulation is modified to include the contribution of lossy materials and multiple-ray interactions with the environment. The electromagnetic analysis is combined with a ray-tracing acceleration technique to treat realistic and complex environments. The validity of this method is tested with measurements performed inside the Polytechnic building of the University of Alcala and shows good performance of the model for the analysis of UWB propagation.

  16. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Ahmad, H; Hassan, N A; Jemangin, M H; Harun, S W

    2011-01-01

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  17. Ultra-wideband ladder filters using zero-th shear mode plate wave in ultrathin LiNbO3 plate with apodized interdigital transducers

    Science.gov (United States)

    Kadota, Michio; Tanaka, Shuji

    2016-07-01

    There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.

  18. Response to FCC 98-208 notice of inquiry in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems

    International Nuclear Information System (INIS)

    Morey, R M.

    1998-01-01

    In general, Micropower Impulse Radar (MIR) depends on Ultra-Wideband (UWB) transmission systems. UWB technology can supply innovative new systems and products that have an obvious value for radar and communications uses. Important applications include bridge-deck inspection systems, ground penetrating radar, mine detection, and precise distance resolution for such things as liquid level measurement. Most of these UWB inspection and measurement methods have some unique qualities, which need to be pursued. Therefore, in considering changes to Part 15 the FCC needs to take into account the unique features of UWB technology. MIR is applicable to two general types of UWB systems: radar systems and communications systems. Currently LLNL and its licensees are focusing on radar or radar type systems. LLNL is evaluating MIR for specialized communication systems. MIR is a relatively low power technology. Therefore, MIR systems seem to have a low potential for causing harmful interference to other users of the spectrum since the transmitted signal is spread over a wide bandwidth, which results in a relatively low spectral power density

  19. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Science.gov (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  20. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    Science.gov (United States)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  1. Performance of a 60-GHz DCM-OFDM and BPSK-Impulse Ultra-Wideband System with Radio-Over-Fiber and Wireless Transmission Employing a Directly-Modulated VCSEL

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2011-01-01

    The performance of radio-over-fiber optical transmission employing vertical-cavity surface-emitting lasers (VCSELs), and further wireless transmission, of the two major ultra-wideband (UWB) implementations is reported when operating in the 60-GHz radio band. Performance is evaluated at 1.44 Gbit...... in bend-insensitive single-mode fiber with wireless transmission up to 5 m in both cases is demonstrated with no penalty. A simulation analysis has also been performed in order to investigate the operational limits. The analysis results are in excellent agreement with the experimental work and indicate...... good tolerance to chromatic dispersion due to the chirp characteristics of electro-optical conversion when a directly-modulated VCSEL is employed. The performance comparison indicates that BPSK-IR UWB exhibits better tolerance to optical transmission impairments requiring lower received optical power...

  2. JSC research and technology

    Science.gov (United States)

    1993-01-01

    The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.

  3. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rana Pratap, E-mail: ranayadav97@gmail.com; Kumar, Sunil; Kulkarni, S. V. [Thapar University, Patiala, Punjab 147004, India and Institute for Plasma Research, Gandhinagar 382428 (India)

    2016-01-15

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  4. Center Innovation Fund: JSC CIF (also includes JSC IRAD) Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The Center...

  5. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  6. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  7. Ultra-Wideband Transceiver Design and Optimization

    Science.gov (United States)

    Mehra, Ashutosh

    The technology landscape has quickly changed over the last few years. Developments in personal area networks, IC technology, DSP processing and bio-medical devices have enabled the integration of short range communication into low cost personal health care solutions. Newer technologies and solutions are being developed to cater to the personal operating space(POS) and body area networks(BAN). Health care is driving towards using multiple sensor and therapeutic nodes inside the POS. Technology has enabled remote patient care where the patient has low cost on-body wearables that allow the patient/physician to access vital signs without the patient physically visiting the clinic. Big semiconductor giants want to move into the wearable health monitor space. Along with the developments in fitness based health wearables, there has been a lot of interest towards developing BAN devices catering to the 'mission-critical' wearables and implants. Hearing aids, EKG monitors, neurostimulators are some examples. This work explores the use of the 802.15 ulta wideband (UWB) standard for designing a radio to operate in the a wireless sensor network in the BAN. The specific application targeted is a hearing aid. However, the design in this work is capable of working in a low power low range application with the ability to have multiple data rates ranging from a few kHz to 10's of MHz. The first radio designed by Marconi using spark-gap transmitters was an impulse radio (IR). The IR UWB technology boasts of low power, low cost, high data rates, multiple channels, simultaneous networking, the ability to carry information through obstacles that more limited bandwidths cannot, and also potentially lower complexity hardware design. The inherent timing accuracy associated with the technology gives UWB transmissions immunity to multipath fading and are hence make them more suitable for a cluttered indoor environment. The key difference with the traditional narrowband transceiver is that instead of using continuous wave (CW) transmission, impulses in time are used. The timing accuracy associated with these impulses require synchronization in time, rather than synchronization in frequency for carrier-based CW systems. A complete fully integrated system is presented in thesis. This work presents a low-power noncoherent IR UWB transceiver operating at 5GHz in 0.13um CMOS. A fully-digital transmitter generates a shaped output pulse of 1GHz 3-dB bandwidth. DLLs provide a PVT-tolerant time-step resolution of 1ns over the entire symbol period and regulate the pulse generator center frequency. The transmitter outputs -31dBm (0.88pJ/pulse at 1Mpulse/s) with a dynamic (energy) efficiency of 16pJ/pulse. The transmit out pulse is FCC part 15 compliant over process voltage and temperature (PVT) variations. The transmitter is semi-compliant with IEEE 802.15.6 and IEEE 802.15.4 standards and will become completely compliant with minor modifications. The receiver presented in this work is a non-coherent energy detect IR UWB receiver. The receiver has an on-chip transformer preceding the LNA, which is followed by a super-regenerative amplifier (SRA), envelope detector, sample-and-holds, and a bank of comparators. The design is SRA based energy-detection receiver. Measured results show a receiver efficiency of 0.32nJ/bit at 20.8Mb/s and operation with inputs as low as -70dBm. The SRA based energy-detection receiver utilizes early/late detection for a two-step baseband synchronization algorithm. An integrated solution to the issue of synchronization is also proposed. The system proposed is capable of synchronization and tracking control. The system in this work utilizes early/late detection for a two-step baseband synchronization algorithm. The algorithm is implemented in Matlab and the time to synchronization is observed to be between 250micros to a few couple of ms. Measurements have also been made using the receiver and manually implementing the algorithm. This work addresses all aspects time synchronization in an IR transceiver. The initial mismatch is addressed by two methods. Beyond the initial synchronization, the system presented in this system is also capable of tracking. This would mean that once the transceiver has been synchronized, the timing generation would continue to track the phase and the frequency changes depending upon crystal drift over time or movement between the receiver and the transmitter. A test was also performed on the complete transceiver system with two radios talking to each other over a highly attenuated wired channel.

  8. NASA/JSC ISSLive!

    Science.gov (United States)

    Harris, Philip D.; Price, Jennifer B.; Khan, Ahmed; Severance, Mark T.

    2011-01-01

    Just 150 miles above us, the International Space Station (ISS) is orbiting. Each day, the astronauts on board perform a variety of activities from exercise, science experiments, and maintenance. Yet, many on the ground do not know about these daily activities. National Aeronautics Space Agency/ Johnson Space Center (NASA/JSC) innovation creation ISSLive! - an education project - is working to bridge this knowledge gap with traditional education channels such as schools, but also non-traditional channels with the non-technical everyday public. ISSLive! provides a website that seamlessly integrates planning and telemetry data, video feeds, 3D models, and iOS and android applications. Through the site, users are able to view astronauts daily schedules, in plain English alongside the original data. As an example, when an astronaut is working with a science experiment, a user will be able to read about the activity and for more detailed activities follow provided links to view more information all integrated into the same site. Live telemetry data from a predefined set can also be provided alongside the activities. For users to learn more, 3D models of the external and internal parts of the ISS are available, allowing users to explore the station and even select sensors, such as temperature, and view a real-time chart of the data. Even ground operations are modeled with a 3D mission control center, providing users information on the various flight control disciplines and showing live data that they would be monitoring. Some unique activities are also highlighted and have dedicated spaces to explore in more detail. Education is the focus of ISSLive!, even from the beginning when university students participated in the development process as part of their master s projects. Focus groups at a Houston school showed interest in the project and excitement towards including ISSLive! in their classroom. Through this inclusion, students' knowledge can be assessed with projects

  9. A new VME timing module: TG8

    International Nuclear Information System (INIS)

    Beetham, C.G.; Daems, G.; Lewis, J.; Puccio, B.

    1992-01-01

    The two accelerator divisions of CERN, namely PS and SL, are defining a new common control system based on PC, VME and Workstations. This has provided an opportunity to review both central timing systems and to come up with common solutions. The result was, amongst others, the design of a unique timing module, called TG8. The TG8 is a multipurpose VME module, which receives messages distributed over a timing network. These messages include timing information, clock plus calendar and telegrams instructing the CERN accelerators on the characteristics of the next beam to be produced. The TG8 compares incoming messages with up to 256 programmed actions. An action consists of two parts, a trigger which matches an incoming message and what to do when the match occurs. The latter part may optionally create an output pulse on one of the eight output channels and/or a bus interrupt, both with programmable delay and telegram conditioning. (author)

  10. Controlling traffic jams by time modulating the safety distance

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Gorria, C.; Berkemer, R.

    2013-01-01

    The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....

  11. Center Independent Research & Developments: JSC IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The center...

  12. Trigger Timing Module for SVD2 upgrade at Belle

    International Nuclear Information System (INIS)

    Chang, M.C.; Gao, Z.W.; Guo, Y.N.; Kawasaki, T.; Ueno, K.; Velikzhanin, Y.S.

    2003-01-01

    We have developed a Trigger Timing Module (TTM2) for the control and readout electronics (CORE) of the upgraded Silicon Vertex Detector (SVD2) for use in the BELLE experiment. Eleven Trigger Timing Modules located at one VME-crate provide timing and strobe signals for the SVD2 CORE electronics and make communication between SVD2 and Global Decision Logic of the BELLE data acquisition system. The main motivation to make a new TTM design is to avoid glitches

  13. Design and test for the time module of HXMT

    International Nuclear Information System (INIS)

    Ji Jianfeng; Zhang Zhi; Liu Congzhan

    2007-01-01

    The time module is a key component of HXMT, which determines whether HXMT can realize its scientific aim, scan imaging and timing analysis, correctly. The design in this paper splits the time information into two parts. The time information above second, which can be synchronized by control system of HXMT, is generated by GPSs second pulse. The time information below second is generated by high precision crystal and revised by GPSs second pulse. In order to solve the problem of how to verify the correctness of the time module, a new method using timing analysis is proposed and implemented in this paper. (authors)

  14. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  15. 75 FR 62476 - Ultra-Wideband Transmission Systems

    Science.gov (United States)

    2010-10-12

    ... would be obtained from measurements taken with the system operating in its normal operating mode. At the... with the transmitter operating continuously at a fundamental transmission frequency. 9. Subsequent to... systems, measured in their normal operating modes, is less than that of a UWB transmitter employing...

  16. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  17. Ultra Wideband Wireless Body Area Network for Medical Applications

    Science.gov (United States)

    2010-04-01

    Medical Applications RTO-MP-HFM-182 42 - 11 z x y Tumour Fat Skin Chest Figure 8: A Simple Hemispherical Brest Model. Table 2...x y Tumour Fat Skin Chest wall  Glands Nipple Figure 9: A Comprehensive Hemispherical Brest Model. The base diameter of the breast is...34 in Proc. 2nd European Radar Conference (EuRAD), Paris , France, October 6–7, 2005, pp. 97–100. [38] M. Sugawara, K. Niki, H. Furuhata, S. Ohnishi

  18. Ultra-wideband, omni-directional, low distortion coaxial antenna

    Science.gov (United States)

    Eubanks, Travis Wayne; Gibson, Christopher Lawrence

    2015-01-06

    An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminate at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.

  19. Principles and Limitations of Ultra-Wideband FM Communications Systems

    Directory of Open Access Journals (Sweden)

    Kouwenhoven Michiel HL

    2005-01-01

    Full Text Available This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1–10 kbps and medium (100–1000 kbps bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  20. Ultra-Wideband Notched Characteristic Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Rastanto Hadinegoro

    2015-02-01

    Full Text Available In this paper, a novel Ultra-Wide Band (UWB notch patch antenna with co-planar waveguide (CPW fed is presented. This antenna only used one layer and the patch antenna is constructed on the first layer and back to back with CPW fed and bottom part is ground plane. The width notch is used to achieve the UWB characteristic. The results shown that the impedance bandwidth is 1130 MHz (1.662–2.792 GHz or about 50.7% for VSWR <2.

  1. Ultra-wideband indoor communications using optical technology

    OpenAIRE

    Mirshafiei, Mehrdad

    2013-01-01

    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’in...

  2. Algorithms for Indoor Positioning Systems Using Ultra-Wideband Signals

    NARCIS (Netherlands)

    Yan, J.

    2010-01-01

    Positioning systems and techniques have attracted more and more attention in recent years, in particular with satellite navigation technology as a tremendous enabler, and developments in indoor navigation. The work presented in this thesis has been conducted within the research project: \\HERE:

  3. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  4. Influence of the Antennas on the Ultra-Wideband Transmission

    Directory of Open Access Journals (Sweden)

    Werner Wiesbeck

    2005-03-01

    Full Text Available Spectrum is presently one of the most valuable goods worldwide as the demand is permanently increasing and it can be traded only locally. Since the United States Federal Communications Commission (FCC has opened the spectrum from 3.1 GHz to 10.6 GHz, that is, a bandwidth of 7.5 GHz, for unlicensed use with up to −41.25 dBm/MHz EIRP, numerous applications in communications and sensor areas are showing up. Like all wireless devices, these have an antenna as an integral part of the air interface. The antennas are modeled as linear time-invariant (LTI systems with a transfer function. The measurement of the antenna's frequency-dependent directional transfer function is described. Quality measures for the antennas like the peak value of the transient response, its width and ringing, as well as the transient gain are discussed. The application of these quality measures is shown for measurements of different UWB antennas.

  5. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  6. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alarifi

    2016-05-01

    Full Text Available In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  7. Quality assurance monitoring during nuclear fuel production in JSC 'TVEL'

    International Nuclear Information System (INIS)

    Filimonov, G.; Tchirkov, V.

    2000-01-01

    The paper describes Quality Assurance (QA) monitoring during fabrication of nuclear fuel in Russian Federation. Joint Stock Company 'TVEL', natural state monopoly of the type of holding that fabricates and supplies nuclear fuel for the NPPs of Russia, CIS and Europe, incorporates the major enterprises of the nuclear fuel cycle including JSC 'Mashinostroitelny zavod', Electrostal (fabrication of fuel pellets, rods and assemblies for different types of reactors), JSC 'Novosibirsky zavod khimconcentratov', Novosibirsk (fabrication of fuel rods and assemblies for WWER-440 and WWER-1000), JSC 'Tchepetsky mechanitchesky zavod', Tchepetsk (fabrication of Zr tubing). Monitoring of QA is an important element of Quality Management System (QMS) developed and implemented at the above-mentioned enterprises of the JSC 'TVEL' and it is performed on three levels including external and internal audits and author's supervision. Paper also describes short- and long-term policies of the JSC 'TVEL' in nuclear fuel quality field. (author)

  8. JSC “ALFA-BANK” marketing policy. problems and perspectives

    OpenAIRE

    Kirillov, A.; Kuznetcova, E.; Martirosian, M.

    2013-01-01

    The article is devoted to the results of JSC “Alfa-Bank” consumers’ segmentation and the following complex marketing research. The article suggests the ways of the bank’s marketing policy improvement.

  9. Synchronization of delayed systems in the presence of delay time modulation

    International Nuclear Information System (INIS)

    Kye, Won-Ho; Choi, Muhan; Kim, Myung-Woon; Lee, Soo-Young; Rim, Sunghwan; Kim, Chil-Min; Park, Young-Jai

    2004-01-01

    We investigate synchronization in the presence of delay time modulation for application to communication. We have observed that the robust synchronization is established by a common delay signal and its threshold is presented using Lyapunov exponents analysis. The influence of the delay time modulation in chaotic oscillators is also discussed

  10. Overview of Power Quality and Integrated Testing at JSC

    Science.gov (United States)

    Davies, Francis

    2018-01-01

    This presentation describes the basic philosophy behind integrated testing and partially integrated testing. It lists some well known errors in space systems that were or could have been caught during integrated testing. Two examples of integrated testing at the Johnson Space Center (JSC) are mentioned, and then an overview of two test facilities that do power testing (partially integrated testing) at JSC are presented, with information on the capabilities of each. Finally a list of three projects that has problems caught during power quality or Electromagnetic Interference (EMI) testing is presented.

  11. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  12. 3D Pattern Synthesis of Time-Modulated Conformal Arrays with a Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Wentao Li

    2014-01-01

    Full Text Available This paper addresses the synthesis of the three-dimensional (3D radiation patterns of the time-modulated conformal arrays. Due to the nature of periodic time modulation, harmonic radiation patterns are generated at the multiples of the modulation frequency in time-modulated arrays. Thus, the optimization goal of the time-modulated conformal array includes the optimization of the sidelobe level at the operating frequency and the sideband levels (SBLs at the harmonic frequency, and the design can be regarded as a multiobjective problem. The multiobjective particle swarm optimization (MOPSO is applied to optimize the switch-on instants and pulse durations of the time-modulated conformal array. To significantly reduce the optimization variables, the modified Bernstein polynomial is employed in the synthesis process. Furthermore, dual polarized patch antenna is designed as radiator to achieve low cross-polarization level during the beam scanning. A 12 × 13 (156-element conical conformal microstrip array is simulated to demonstrate the proposed synthesis mechanism, and good results reveal the promising ability of the proposed algorithm in solving the synthesis of the time-modulated conformal arrays problem.

  13. Best Practices: Power Quality and Integrated Testing at JSC

    Science.gov (United States)

    Davis, Lydia

    2018-01-01

    This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.

  14. JSC Case Study: Fleet Experience with E-85 Fuel

    Science.gov (United States)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  15. Development of the CELSS Emulator at NASA JSC

    Science.gov (United States)

    Cullingford, Hatice S.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  16. The JSC Engineering Directorate Product Peer Review Process

    Science.gov (United States)

    Jenks, Kenneth C.

    2009-01-01

    The JSC Engineering Directorate has developed a Product Peer Review process in support of NASA policies for project management and systems engineering. The process complies with the requirements of NPR 7120.5, NPR 7123.1 and NPR 7150.2 and follows the guidance in NASA/SP-2007-6105. This presentation will give an overview of the process followed by a brief demonstration of an actual peer review, with audience participation.

  17. ASTP crewmen have a meal during training session at JSC

    Science.gov (United States)

    1975-01-01

    Three ASTP crewmen have a meal in the Apollo Command Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. They are, left to right, Cosmonaut Aleksay A. Leonov, commander of the Soviet ASTP first (prime) crew; Astronaut Donald K. Slayton, docking module pilot of the American ASTP prime crew; and Astronaut Thomas P. Stafford, commander of the American ASTP prime crew.

  18. Smart Wireless Power Transfer Operated by Time-Modulated Arrays via a Two-Step Procedure

    Directory of Open Access Journals (Sweden)

    Diego Masotti

    2015-01-01

    Full Text Available The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.

  19. Traversal-time distribution for a classical time-modulated barrier

    International Nuclear Information System (INIS)

    Mateos, J.L.

    1999-01-01

    The classical problem of a time-modulated barrier, inspired by the Buettiker and Landauer model to study the tunneling times, is analyzed. We show that the traversal-time distribution of an ensemble of non-interacting particles that arrives at the oscillating barrier, obeys a distribution with a power-law tail. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  1. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  2. Developing drug formularies for the "National Medical Holding" JSC.

    Science.gov (United States)

    Akhmadyar, N S; Khairulin, B E; Amangeldy-Kyzy, S; Ospanov, M A

    2015-01-01

    One of the main problems of drug provision of multidisciplinary hospitals is the necessity to improve the efficiency of budget spending. Despite the efforts undertaken in Kazakhstan for improving the mechanism of drug distribution (creation of the Kazakhstan National Formulary, Unified National Health System, the handbook of medicines (drugs) costs in the electronic register of inpatients (ERI), having a single distributor), the number of unresolved issues still remain."National Medical Holding" JSC (NMH) was established in 2008 and unites 6 innovational healthcare facilities with up to 1431 beds (700 children and 731 adults), located in the medical cluster - which are "National Research Center for Maternal and Child Health" JSC (NRCMC), "Republic Children's Rehabilitation Center" JSC (RCRC), "Republican Diagnostic Center" JSC (RDC), "National Centre for Neurosurgery" JSC (NCN), "National Research Center for Oncology and Transplantation" JSC (NRCOT) and "National Research Cardiac Surgery Center" JSC (NRCSC). The main purpose of NMH is to create an internationally competitive "Hospital of the Future", which will provide the citizens of Kazakhstan and others with a wide range of medical services based on advanced medical technology, modern hospital management, international quality and safety standards. These services include emergency care, outpatient diagnostic services, obstetrics and gynecology, neonatal care, internal medicine, neurosurgery, cardiac surgery, transplantation, cancer care for children and adults, as well as rehabilitation treatment. To create a program of development of a drug formulary of NMH and its subsidiaries. In order to create drug formularies of NMH, analytical, software and statistical methods were used.AII subsidiary organizations of NMH (5 out of 6) except for the NRCOT have been accredited by Joint Commission International (JCI) standards, which ensure the safety of patients and clinical staff, by improving the technological

  3. Pulse Splitting for Harmonic Beamforming in Time-Modulated Linear Arrays

    Directory of Open Access Journals (Sweden)

    Lorenzo Poli

    2014-01-01

    Full Text Available A novel strategy for harmonic beamforming in time-modulated linear arrays is proposed. The pulse splitting technique is exploited to simultaneously generate two harmonic patterns, one at the central frequency and another at a preselected harmonic of arbitrary order, while controlling the maximum level of the remaining sideband radiations. An optimization strategy based on the particle swarm optimizer is developed in order to determine the optimal parameters describing the pulse sequence used to modulate the excitation weights of the array elements. Representative numerical results are reported and discussed to point out potentialities and limitations of the proposed approach.

  4. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  5. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  6. The JSC Research and Development Annual Report 1993

    Science.gov (United States)

    1994-01-01

    Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.

  7. Replacement/Refurbishment of JSC/NASA POD Specimens

    Science.gov (United States)

    Castner, Willard L.

    2010-01-01

    The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.

  8. [Taylor and Hill, Incorporated's JSC Cryo Chamber A

    Science.gov (United States)

    Morales, Rito

    2008-01-01

    NASA commissioned construction of an environmental simulation test chamber which was completed in 1964 at Johnson Space Center (JSC) in Houston, Texas. The facility, Chamber A, was invaluable for testing spacecraft and satellites before deployment to space. By testing spacecraft in an environment similar to the one they would be functioning in, potential problems could be addressed before launch. A new addition to NASA's observatory inventory is called the James Webb Space Telescope (JWST), after a former Administrator of NASA. The new telescope will have 7 times the mirror area of the Hubble, with a target destination approximately one million miles from earth. Scheduled for launch in 2013, the JWST will allow scientists the ability to see, for the first time, the first galaxies that formed in the early Universe. Pre-launch testing of JWST must be performed in environments that approximate its final target space environment as closely as possible.

  9. Developing a Strategic Plan for NASA JSC's Technology Investments

    Science.gov (United States)

    Stecklein, Jonette M.

    2012-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database

  10. Global Model of Time-Modulated Electronegative Discharges for Neutral Radical and Electron Temperature Control

    Science.gov (United States)

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (SMART Contract SM99-10051.

  11. Information transfer via implicit encoding with delay time modulation in a time-delay system

    Energy Technology Data Exchange (ETDEWEB)

    Kye, Won-Ho, E-mail: whkye@kipo.go.kr [Korean Intellectual Property Office, Government Complex Daejeon Building 4, 189, Cheongsa-ro, Seo-gu, Daejeon 302-701 (Korea, Republic of)

    2012-08-20

    A new encoding scheme for information transfer with modulated delay time in a time-delay system is proposed. In the scheme, the message is implicitly encoded into the modulated delay time. The information transfer rate as a function of encoding redundancy in various noise scales is presented and it is analyzed that the implicit encoding scheme (IES) has stronger resistance against channel noise than the explicit encoding scheme (EES). In addition, its advantages in terms of secure communication and feasible applications are discussed. -- Highlights: ► We propose new encoding scheme with delay time modulation. ► The message is implicitly encoded with modulated delay time. ► The proposed scheme shows stronger resistance against channel noise.

  12. A high-speed Schottky detector for ultra-wideband communications

    DEFF Research Database (Denmark)

    Valdecasa, Guillermo Silva; Cimoli, Bruno; Blanco Granja, Ángel

    2017-01-01

    This letter reviews the design procedure of a high‐speed Schottky video detector for high‐data‐rate communications within the ultra‐wideband (UWB) frequencies. The classic design approach for video detectors is extended with a mixer‐like analysis, which results in a more detailed assessment of th....... Using 0 dBm carrier power, the lowest measured conversion loss is 10 dB for a video frequency of 1.1 GHz and better than 13 dB up to 1.8 GHz....

  13. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh; Ballal, Tarig; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2014-01-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation

  14. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.

  15. Ultra-Wideband Radar for Breath Tracking with Optical Fiber for Remote Reach Extension

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    We report on the experimental demonstration of an UWB radar with fiber extension for remote breath tracking through 10 cm of concrete. The radar is based on telecom class equipment.......We report on the experimental demonstration of an UWB radar with fiber extension for remote breath tracking through 10 cm of concrete. The radar is based on telecom class equipment....

  16. Low-Cost Ultra-Wideband EM Sensor for UXO Detection and Classification

    Science.gov (United States)

    2012-04-01

    Mechanical System MOTU Mark of the Unicorn – a brand name for audio equipment MR Magneto-Resistance NIST National Institute of Standards and...magnetic surveys are able to detect ferrous bodies at a further distance than EMI measurements. Consequently , the magnetic anomaly is broader

  17. 2nd International Conference on Ultra-Wideband, Short-Pulse Electromagnetics

    CERN Document Server

    Felsen, Leopold

    1995-01-01

    The papers published in this volume were presented at the Second International Conference on Ultra-WidebandiShort-Pulse (UWB/SP) Electromagnetics, ApriIS-7, 1994. To place this second international conference in proper perspective with respect to the first conference held during October 8-10, 1992, at Polytechnic University, some background information is necessary. As we had hoped, the first conference struck a responsive cord, both in timeliness and relevance, among the electromagnetic community 1. Participants at the first conference already inquired whether and when a follow-up meeting was under consideration. The first concrete proposal in this direction was made a few months after the first conference by Prof. A. Terzuoli of the Air Force Institute of Technology (AFIT), Dayton, Ohio, who has been a strong advocate of time-domain methods and technologies. He initially proposed a follow-up time-domain workshop under AFIT auspices. Realizing that interest in this subject is lodged also at other Air Force i...

  18. The Application of Paired Parallel Filters for Ultra-Wideband Signal Processing

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available The paper considers a unit in which the parallel filters on regular lines are pair-attached. This connection allows to reduce a side line impedance at the point of connection. At the same time these lines become narrow, and the possibility to excite higher modes in the joint reduces.Consider the scattering matrix of four identical lines connection. Then find the scattering matrix of connection in which two side lines are connected with filters. Particular cases of the reflection coefficients of different filters are considered. It is shown that only in the case of identical filters there remained a linear relationship between the input filter coefficients of reflection and transmission coefficient of the unit. It facilitates the solution of the problem of synthesis. Restrictions on the transfer coefficient are found. In transition to the time domain impulse response of connection under consideration and the expression for the synthesis were defined. The paper considers an example of implementation of the matched filtering in this connection. In this case, the output signal is a half-sum of the input signal and their autocorrelation function.

  19. UWBRAD: Ultra Wideband Software Defined Microwave Radiometer for Ice Sheet Subsurface Temperature Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing space and airborne remote sensing instruments have pushed the state-of-the-art in the characterization of ice sheet behaviors with the exception of one key...

  20. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  1. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber

    Science.gov (United States)

    Konev, Leonid S.; Shpolyanskiy, Yuri A.

    2013-05-01

    We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.

  2. Pixelated Checkerboard Metasurface for Ultra-Wideband Radar Cross Section Reduction.

    Science.gov (United States)

    Haji-Ahmadi, Mohammad-Javad; Nayyeri, Vahid; Soleimani, Mohammad; Ramahi, Omar M

    2017-09-12

    In this paper we designed and fabricated a metasurface working as a radar cross section (RCS) reducer over an ultra wide band of frequency from 3.8 to 10.7 GHz. The designed metasurface is a chessboard-like surface made of alternating tiles, with each tile composed of identical unit cells. We develop a novel, simple, highly robust and fully automated approach for designing the unit cells. First, a topology optimization algorithm is used to engineer the shape of the two unit cells. The area of each unit cell is pixelated. A particle swarm optimization algorithm is applied wherein each pixel corresponds to a bit having a binary value of 1 or 0 indicating metallization or no metallization. With the objective of reducing the RCS over a specified frequency range, the optimization algorithm is then linked to a full wave three-dimensional electromagnetic simulator. To validate the design procedure, a surface was designed, fabricated and experimentally tested showing significantly enhanced performance than previous works. Additionally, angular analysis is also presented showing good stability and wide-angle behavior of the designed RCS reducer. The automated design procedure has a wide range of applications and can be easily extended to design surfaces for antennas, energy harvesters, noise mitigation in electronic circuit boards amongst others.

  3. Self organization of wireless sensor networks using ultra-wideband radios

    Science.gov (United States)

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Franak [San Ramon, CA; Spiridon, Alex [Palo Alto, CA

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  4. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag

    Directory of Open Access Journals (Sweden)

    Khaled Issa

    2017-01-01

    Full Text Available A novel compact dual-polarized-spectral-signature-based chipless radio-frequency identification (RFID tag is presented. Specifically, an L-shape resonator-based structure is optimized to have different spectral signatures in both horizontal and vertical polarizations, in order to double the encoding capacity. Resonators’ slot width and the space between closely placed resonators are also optimized to enhance the mutual coupling, thereby helping in achieving high-data encoding density. The proposed RFID tag operates over 5 GHz to 10 GHz frequency band. As a proof of concept, three different 18-bit dual-polarized RFID tags are simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show reasonable agreement with the simulation results, with respect to resonators’ frequency positions, null depth, and their bandwidth over the operational spectrum.

  5. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    Science.gov (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  6. High-speed ultra-wideband wireless signals over fiber systems: Photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on UWB over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce the use of digi...

  7. Graphene as a high impedance surface for ultra-wideband electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)

    2013-11-14

    The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

  8. An Ultra-Wideband Schottky Diode Based Envelope Detector for 2.5 Gbps signals

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Valdecasa, Guillermo Silva; Granja, Angel Blanco

    2016-01-01

    to 2.5 Gbps at 6-9 GHz carrier frequency. The detector uses microstrip and surface-mount device (SMD) components and it is fabricated on a Rogers 6002 substrate. Experimental results show error free transmissions up to 2.5 Gbps at an input power level of -11 dBm. The highest measured conversion gain...

  9. Ultra-Wideband-Technologie für den Einsatz im Schwermaschinenbau

    OpenAIRE

    Neumann, Kai

    2017-01-01

    The rising demands for automation systems continuously pose new challenges on the sensor systems. Due to the increasing capabilities of computer systems and their proportionally rising ability to process and aggregate data, the automation of manufacturing equipment is the long term goal since the 1990’s.Based on the developments of the industrial nations regarding Industry 4.0, the mining and heavy machinery industry have realized the potential of this vision. The digitization of the mine is ...

  10. Handbook of ultra-wideband short-range sensing theory, sensors, applications

    CERN Document Server

    Sachs, Jürgen

    2013-01-01

    Ranging from the theoretical basis of UWB sensors via implementation issues to applications, this much-needed book bridges the gap between designers and appliers working in civil engineering, biotechnology, medical engineering, robotic, mechanical engineering, safety and homeland security. From the contents: * History * Signal and systems in time and frequency domain * Propagation of electromagnetic waves (in frequency and time domain) * UWB-Principles * UWB-antennas and applicators * Data processing * Applications.

  11. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  12. Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation

    Science.gov (United States)

    Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot

    2017-05-01

    In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.

  13. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu. [V.A. Kotelnikov Institute of Radio Engineering and Electronics of the RAS Mokhovaya 11-7, Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology (State University) 9 Institutskiy per., Dolgoprudny, Moscow, 141700 (Russian Federation); Gerasimov, Mark Yu. [V.A. Kotelnikov Institute of Radio Engineering and Electronics of the RAS Mokhovaya 11-7, Moscow, 125009 (Russian Federation); Itskov, Vadim V. [Moscow Institute of Physics and Technology (State University) 9 Institutskiy per., Dolgoprudny, Moscow, 141700 (Russian Federation)

    2016-06-08

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  14. Ultra-Wideband TEM Horns, Transient Arrays and Exponential Curves: A FDTD Look

    National Research Council Canada - National Science Library

    Utton, Troy

    1999-01-01

    .... The first part of this study demonstrates the Finite-Difference Time-Domain (FDTD) method's ability to duplicate experimental data, and establishes the baseline models used throughout the remainder of the research...

  15. Investigation of ultra wideband multi-channel dichroic beamsplitters from 0.3 to 52 microns

    Science.gov (United States)

    Zhang, K. Q.; Hunneman, R.; Seeley, J. S.; Hawkins, G. J.

    1990-01-01

    The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52 microns is described. In order to achieve the optimum performance, the optical constraints of PbTe, Ge, and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap and infinite refractive index for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.

  16. Low-Cost Transceiver Architectures for 60 GHz Ultra Wideband WLANs

    Directory of Open Access Journals (Sweden)

    S. O. Tatu

    2009-01-01

    Full Text Available Millimeter-wave multiport transceiver architectures dedicated to 60 GHz UWB short-range communications are proposed in this paper. Multi-port circuits based on 90° hybrid couplers are intensively used for phased antenna array, millimeter-wave modulation and down-conversion, as a low-cost alternative to the conventional architecture. This allows complete integration of circuits including antennas, in planar technology, on the same substrate, improving the overall transceiver performances.

  17. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    Science.gov (United States)

    2017-02-01

    Equations. The ACD uses a constant line charge distribution and image line charge distribution (both on the -axis) to generate equipotential surfaces ...Each equipotential surface represents an ACD antenna design with a different height. In the Quasi-static Antenna Design Algorithm [2, 3, 4, 5, 6...quasi- static approximation used in the algorithm. A static charge distribution is used to generate equipotential surfaces . The equipotential surfaces

  18. Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Directory of Open Access Journals (Sweden)

    R. Kopru

    2013-09-01

    Full Text Available In this work, we propose a novel approach called as “Normalized Gain Function (NGF method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique based design example supported by simulations in MWO (MicroWave Office from AWR Corporation is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor.

  19. Ultra-Wideband Impulse Radio for Tactical Ad-Hoc Military Communications

    Science.gov (United States)

    2010-09-02

    21], [23]. Rather than using simulations to show the bit-error- probability ( BEP ) performance with MAI as found in [14] and [15], we incorporate...the power 4 delay profile (PDP) of the channel, inspired by the work in [13], to derive the variance of the MAI, enabling theoretical BEP analysis. Our...an upper bound on the BEP , the number of equal-power users that the system can support is evaluated for different modulation order M. The network

  20. Progress on Ultra-Wideband (UWB Multi-Antenna radar imaging for MIGA

    Directory of Open Access Journals (Sweden)

    Yedlin Matthew

    2016-01-01

    Full Text Available Progress on the development of the multi-channel, ground penetrating radar imaging system is presented from hardware and software perspectives. A new exponentially tapered slot antenna, with an operating bandwidth from 100 MHz to 1.5 GHz was fabricated and tested using the eight-port vector network analyzer, designed by Rhode and Schwarz Incorporated for this imaging project. An eight element antenna array mounted on two carts with automatic motor drive, was designed for optimal common midpoint (CMP data acquisition. Data acquisition scenarios were tested using the acoustic version of the NORSAR2D seismic ray-tracing software. This package enables the synthesis and analysis of multi-channel, multi-offset data acquisitions comprising more than a hundred thousand traces. Preliminary processing is in good agreement with published bistatic ground-penetrating radar images obtained in the tunnels of the Low-noise Underground Laboratory (LSBB at Rustrel, France.

  1. A Rugged Ultra-Wideband (UWB) Circular Planar Monopole for Multichannel Radar

    Science.gov (United States)

    2016-03-01

    Introduction 1 2 Fundamental Design and Performance of a UWB- CPM 2 3 Introduction to the Vivaldi Antenna and Contrast to the UWB- CPM 3 4 Baseline UWB- CPM 7...5. First Revision of the UWB- CPM 12 6. Second Revision of the UWB- CPM 21 7. Second Revision UWB- CPM versus the Vivaldi 28 8. Summary and...return loss for the baseline UWB- CPM with and without a reflector ...........................................................................8 Fig. 6

  2. STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck

    Science.gov (United States)

    1988-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  3. STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1986-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.

  4. The need for health promotion in jsc „vilniaus baldai“

    OpenAIRE

    Melkūnaitė, Eglė

    2017-01-01

    The Need for Health Promotion in JSC „Vilniaus Baldai“ The relevance of the study. Health promotion in workplaces brings benefits to the employees, organizations, governments and society as a whole. In order to successfully implement the health promotion program in the workplace, it is important to evaluate facilities, demands and situation of the employer. The aim of the study. To measure the need of health promotion in the company JSC „Vilniaus baldai“. The objective of the study. Measure t...

  5. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  6. MTR2: a discriminator and dead-time module used in counting systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2000-01-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard

  7. Experimental search for a time-modulated muon flux from the direction of Cygnus X-3

    International Nuclear Information System (INIS)

    Worstell, W.A.

    1986-01-01

    Two underground experiments have recently reported detection of an anomalously large muon flux from the direction of the binary X-ray source cygnus X-3, with the 4.8-hour period characteristic of this source. A muon flux of the claimed magnitude, combined with constraints from surface observations, is inconsistent with the production of these muons by photons from Cygnus X-3 in normal air showers. This flux would require either unexpected photon interactions at very high energy (>5 TeV)( or a new type of neutral particle in the flux from Cygnus X-3. This thesis documents measurements with the HPW (Harvard-Purdue-Wisconsin) large underground water Cerenkov detector which do not confirm the claimed muon flux. The author places an upper limit on the flux of time-modulated muons from the direction of Cygnus X-3 of 5 x 10 -11 muons-cm -2 sec -1 at a vertical depth of 1450 MWE meters of water equivalent, with 90% confidence. This upper limit may be compared with the flux of 7 x 10 -11 muons-cm 2 sec -1 at a vertical depth of 1800 MWE which was claimed by another experiment. The HPW measurements are consistent with no anomalous muon flux from Cygnus X-3

  8. Primary sleep enuresis in childhood: polysomnography evidences of sleep stage and time modulation

    Directory of Open Access Journals (Sweden)

    Rubens Reimäo

    1993-03-01

    Full Text Available The objective of this study was to evaluate enuretic events and its relations to sleep stages, sleep cycles and time durations in a selected group of children with primary essential sleep enuresis. We evaluated 18 patients with mean age of 8.2 years old (ranging from 5 to 12 years; 10 were males and 8 females (n.s.. They were referred to the Sleep Disorders Center with the specific complaint of enuresis since the first years of life (primary. Pediatric, urologic and neurologic workup did not show objective abnormalities (essential. The standard all-night polysomnography including an enuresis sensor attached to the shorts in the crotch area was performed. Only enuretic events nights were included. All were drug free patients for two weeks prior to polysomnography. In this report, only one polysomnography per patient was considered. The enuretic events were phase related, occurring predominantly in non-REM (NREM sleep (p<0.05. There was no predominance of enuretic events among the NREM stages (n.s.. A tendency of these events to occur in the first two sleep cycles was detected but may be due to the longer duration of these cycles. The events were time modulated, adjusted to a normal distribution with a mean of 213.4 min of recording time.

  9. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    International Nuclear Information System (INIS)

    Balvert, Marleen; Gorissen, Bram L; Den Hertog, Dick; Hoffmann, Aswin L

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D 90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2–5 cc. However, this comes at a cost of a reduction in D 90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D 90% against uncertainty in dwell positions for both models. (paper)

  10. MODERN RESOURCE-SAVING TECHNOLOGIES IN FOUNDRY PRODUCTION OF JSC «MINSK TRAKTOR PLANT»

    Directory of Open Access Journals (Sweden)

    F. A. Domotenko

    2016-01-01

    Full Text Available In article the main world tendencies of development of the production technology of sandy cores and value of this production in complex technology of manufacture of castings are considered. It is established that the most rational way of production technically and economically is manufacture of wafer sandy cores using the Cold-box-amin technology. Scientific, technical, technological and economic aspects of modernization of foundry production of JSC MTZ with complete transition to production of sandy cores on the resource-saving Cold-box-amin technology are provided. The main distinctive feature of this reequipment – all planned works are based on the domestic technological developments and the equipment created in the cooperation by specialists of JSC BELNIILIT and JSC MTZ. Within GNTP essential support to the provided works was given by the state.

  11. Overview of JSC “NIKIET” activity on ITER Procurement Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A.Yu., E-mail: leshu@nikiet.ru [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Dragunov, Yu. G.; Strebkov, Yu. S.; Kirillov, S.Yu.; Makarov, S.V.; Trofimovich, P.D.; Dubinin, G.V.; Maksimov, V.A.; Sviridenko, M.N.; Razmerov, A.V.; Parshutin, E.V.; Khomyakov, S.E.; Kolganov, V.Yu.; Zhmakin, A.V. [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Belyakov, V.A.; Mazul, I.V.; Gervash, A.A. [JSC “NIIEFA” (D.V. Efremov Institute), 189631, Doroga na Metallostroy, 3, S. Peterburg (Russian Federation); Safronov, V.M.; Romannikov, A.N. [Institution “Project Center ITER”,123182, Square of Academic Kurchatov 1, Moscow (Russian Federation); Eaton, R. [ITER Organization, Route de Vinon sur Verdon CS 90 046 − 13067 Saint Paul lez Durance (France); and others

    2016-11-01

    The two following ITER blanket-relevant Procurement Arrangements (PA) were signed by Russian Federation and ITER Organization in 2014: 1)1.6.P1ARF.01 “Blanket First Wall” (signed on 14-th of February, 2014); 2)1.6.P3.RF.01 “Blanket Module Connections” (signed on 19-th of December, 2014). The first PA is devoted to the development, manufacturing, testing and procuring to ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels. These FW panels are intended to withstand the heat flux from plasma up to 4.7 MW/m{sup 2}, and there are two institutions in Russian Federation responsible for the manufacturing, testing and delivering of these panels on the ITER site: JSC “NIIEFA” (Efremov Institute) and JSC “NIKIET”. JSC “NIIEFA” (Efremov Institute) will manufacture the plasma-facing components (PFC) of EHF FW Panels and perform the final assembling of the panels while JSC “NIKIET” will manufacture the FW beam structures, load-bearing structures of PFC and the all the elements of panel attachment system. As for the second PA (“Blanket Module Connectors”) the JSC “NIKIET” is the alone official Supplier and will manufacture and procure blanket flexible supports, electrical insulating key pads and shield block/vacuum vessel electrical connectors. This article briefly describes the joint activity of JSC “NIKIET” and Efremov Institute in the framework of 1.6.P1ARF.01 “Blanket First Wall” Procurement Arrangement and the material on the activity on the second PA. The main achievements on both PAs (during the period of 2014–2015) are presented and also critical issues and plans are underlined.

  12. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    Science.gov (United States)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  13. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    Science.gov (United States)

    1991-01-01

    JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  14. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  15. Improvement of Operational Reliability Resource for JSC “Beltransgaz” Main Pipelines

    Directory of Open Access Journals (Sweden)

    V. V. Mayorov

    2013-01-01

    Full Text Available  The paper considers prospects for modernization of the operating linear portion of JSC “Beltransgaz” gas transportation system, various methods and materials which are used while implementing  construction and installation works in the oil and gas sector. It has been shown that in the recent decade one of the most technically, technologically and economically efficient application of the material is double-composite polyurethane coating. The method for coating deposition has been tested and introduced by JSC “Beltransgaz” with significant economic efficiency.

  16. ASTP crewmen in Apollo Command Module Trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    The three members of the American ASTP prime crew are photographed inside the Apollo Command Module (CM) trainer in a water tank in bldg 260 during water egress training at JSC. They are, left to right, Astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald K. Slayton, docking module pilot (23430); Slayton attaches his life preserver as he egresses an Apollo Command Module trainer in a water tank in bldg 260 during water egresss training at JSC. Astronauts Brand (on left) and Stafford have already egressed the trainer and are seated in a three-man life raft.

  17. 77 FR 31794 - Financial Crimes Enforcement Network; Imposition of Special Measure Against JSC CredexBank as a...

    Science.gov (United States)

    2012-05-30

    ...; Imposition of Special Measure Against JSC CredexBank as a Financial Institution of Primary Money Laundering... for concluding that JSC CredexBank is a financial institution of primary money laundering concern...- money laundering provisions of the Bank Secrecy Act (BSA), codified at 12 U.S.C. 1829b, 12 U.S.C. 1951...

  18. STS-31 Pilot Bolden with beverages on the FB-SMS middeck during JSC training

    Science.gov (United States)

    1988-01-01

    STS-31 Pilot Charles F. Bolden holds three beverage containers while in front of the galley on the middeck of the fixed based (FB) shuttle mission simulator (SMS) during a training simulation at JSC's Mission Simulation and Training Facility Bldg 5. From the middeck, Bolden, wearing lightweight headset, simulates a communications link with ground controllers and fellow crewmembers.

  19. STS-31 crewmembers review checklist with instructor on JSC's FB-SMS middeck

    Science.gov (United States)

    1988-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Bruce McCandless II (left) and Pilot Charles F. Bolden (right) discuss procedures with a training instructor on the middeck of JSC's fixed-based (FB) Shuttle Mission Simulator (SMS). The three are pointing to a checklist during this training simulation in the Mission Simulation and Training Facility Bldg 5.

  20. STS-37 Mission Specialist (MS) Ross during simulation in JSC's FB-SMS

    Science.gov (United States)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerry L. Ross 'borrows' the pilots station to rehearse some of his scheduled duties for his upcoming mission. He is on the flight deck of the fixed-based (FB) shuttle mission simulator (SMS) during this unsuited simulation. The SMS is part of JSC's Mission Simulation and Training Facility Bldg 5.

  1. STS-44 Atlantis, OV-104, MS Musgrave on FB-SMS middeck during JSC training

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) F. Story Musgrave, wearing lightweight headset (HDST), adjusts controls on communications module mounted on a middeck overhead panel. Musgrave is on the middeck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. The STS-44 crewmembers are participating in a flight simulation.

  2. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  3. STS-37 Mission Specialist (MS) Godwin during simulation in JSC's FB-SMS

    Science.gov (United States)

    1991-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin rehearses some phases of her scheduled duties on the middeck of the fixed-based (FB) shuttle mission simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Godwin is inspecting supplies stowed in the middeck lockers during this unsuited simulation.

  4. STS-52 Mission Specialist (MS) Jernigan during food planning session at JSC

    Science.gov (United States)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan sips a beverage from a plastic container using a straw. She appears to be pondering what beverages she would like to have on her 10-day flight this coming autumn. Other crewmembers joined Jernigan for this food planning session conducted by JSC's Man-Systems Division.

  5. STS-48 MS Buchli and MS Gemar on MB SMS middeck during JSC training session

    Science.gov (United States)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James F. Buchli (left) and MS Charles D. Gemar listen to instructions while on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Buchli and Gemar are reviewing inflight procedures during this preflight familiarization session held in the Mission Simulation and Training Facility Bldg 5.

  6. STS-41 crew is briefed on camera equipment during training session at JSC

    Science.gov (United States)

    1990-01-01

    STS-41 crewmembers are briefed on camera equipment during training session at JSC. Trainer Judy M. Alexander explains the use 16mm motion picture equipment to (left to right) Pilot Robert D. Cabana, Mission Specialist (MS) Bruce E. Melnick, and MS Thomas D. Akers.

  7. STS-30 Pilot Ronald J. Grabe during preflight press conference at JSC

    Science.gov (United States)

    1989-01-01

    During preflight press conference, STS-30 Pilot Ronald J. Grabe answers a question from the news media. The event was held in the JSC Auditorium and Public Affairs Facility Bldg 2 briefing room. STS-30 mission will fly onboard Atlantis, Orbiter Vehicle (OV) 104, and is scheduled for an April 28 liftoff.

  8. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    Science.gov (United States)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; hide

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  9. STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    Science.gov (United States)

    1989-01-01

    STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  10. STS-37 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    Science.gov (United States)

    1991-01-01

    STS-37 Commander Steven R. Nagel (left) and Mission Specialist (MS) Jerry L. Ross rehearse some of their scheduled duties on the flight deck of JSC's fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. During the unsuited simulation, Nagel reviews checklist while seated at the commanders station as Ross looks on from the pilots station.

  11. STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory and Pilot Terence T. Henricks are stationed at their appointed positions on the forward flight deck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) in JSC's Mission Simulation and Training Facility Bldg 5. Gregory (left) in the commanders seat and Henricks (right) in the pilots seat look back toward aft flight deck and the photographer. Seat backs appear in the foreground and forward flight deck control panels in the background.

  12. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks, positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center) and MS James S. Voss (standing). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. A maze of panel switches appear overhead and in the background.

  13. STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen hands Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman checklists from middeck locker MF43E during training session in JSC's fixed base (FB) shuttle mission simulator (SMS) located in Mission Simulation and Training Facility Bldg 5. European Space Agency (ESA) MS Claude Nicollier outfitted with communications kit assembly headset (HDST) and equipment looks beyond Hoffman to the opposite side of the middeck.

  14. STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.

  15. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers (left to right) Commander Frederick H. Hauck, Pilot Richard O. Covey, Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, and MS John M. Lounge pose on the middeck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. A simulation for their anticipated June 1988 flight began 10-20-87.

  16. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    Science.gov (United States)

    Larin, Max E.; Marichalar, Jeremiah J.; Kinder, Gerald R.; Campbell, Charles H.; Riccio, Joseph R.; Nguyen, Tien Q.; Del Papa, Steven V.; Pulsonetti, Maria V.

    2010-01-01

    A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.

  17. ASTP crewmen in Soyuz orbital module mock-up during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Soyuz orbital module mock-up in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. The ASTP crewmen are Astronaut Vance D. Brand (on left), command module pilot of the American ASTP prime crew; and Cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP first (prime) crew. The training session simulated activities on the second day in Earth orbit.

  18. ASTP crewmen in Docking Module trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Docking Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. Astronaut Thomas P. Stafford, commander of the American ASTP prime crew, is on the right. The other crewman is Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP prime crew. The training session simulated activities on the second day in Earth orbit. The Docking Module is designed to link the Apollo and Soyuz spacecraft.

  19. STS-48 MS Gemar uses laptop during training session in JSC's MB SMS

    Science.gov (United States)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Charles D. Gemar, wearing lightweight headset, enters data into a portable laptop computer on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Gemar is participating in a preflight familiarization session in the MB-SMS located in the Mission Simulation and Training Facility Bldg 5. Visible to Gemar's right is a stowed extravehicular mobility unit (EMU) and on his left are forward locker mockups.

  20. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  1. Stochastic resonance driven by time-modulated correlated coloured noise sources in a single-mode laser

    International Nuclear Information System (INIS)

    De-Yi, Chen; Li, Zhang

    2009-01-01

    This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by time-modulated correlated coloured noise sources. The power spectrum and signal-to-noise ratio R of the laser intensity are calculated by the linear approximation. The effects caused by noise self-correlation time τ 1 , τ 2 and cross-correlated time τ 3 for stochastic resonance are analysed in two ways: τ 1 , τ 2 and τ 3 are taken to be the independent variables and the parameters respectively. The effects of the gain coefficient Γ and loss coefficient K on the stochastic resonance are also discussed. It is found that besides the presence of the standard form and the broad sense of stochastic resonance, the number of extrema in the curve of R versus K is reduced with the increase of the gain coefficient Γ

  2. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC

    Science.gov (United States)

    Draper, D. S.; Treiman, A. H.

    2017-01-01

    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  3. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  4. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  5. STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)

    Science.gov (United States)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.

  6. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    Science.gov (United States)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  7. STS-37 crewmembers test CETA hand cart during training session in JSC's WETF

    Science.gov (United States)

    1989-01-01

    STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross and MS Jerome Apt test crew and equipment translation aid (CETA) manual hand over hand cart during underwater session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing an extravehicular mobility unit (EMU), Ross pulls the CETA manual cart along the rail while Apt holds onto the back of the cart. The test will determine how difficult it is to maneuver cargo in such a manner when it is done in space on STS-37. The goal is to find the best method for astronauts to move around the exterior of Space Station Freedom (SSF).

  8. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  9. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  10. Search for time modulations in the decay constant of 40K and 226Ra at the underground Gran Sasso Laboratory

    Science.gov (United States)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2018-05-01

    Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity have been unable to detect any modulation. In this letter we give the results of the activity study of two different sources: 40K and 226Ra. The two gamma spectrometry experiments have been performed underground at the Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5 parts over 106 for 40K and 226Ra, respectively (1 sigma) and they do not show any statistically significant evidence of time dependence in the decay constant. We also give the results of the activity measurement at the time of the two strong X-class solar flares which took place in September 2017. Our data do not show any unexpected time dependence in the decay rate of 40K in correspondence with the two flares. To the best of our knowledge, these are the most precise and accurate results on the stability of the decay constant as function of time.

  11. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  12. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation.

    Science.gov (United States)

    Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit

    2018-06-01

    Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.

  13. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O 2 . The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent. (paper)

  14. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  15. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide.

    Science.gov (United States)

    Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping

    2018-06-15

    We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.

  16. System Wide Implementation of Photonically Generated Impulse Radio Ultra-Wideband for Gigabit Fiber-Wireless Access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2013-01-01

    In this paper, we comprehensively review our research work on system wide implementation of photonically generated IR-UWB signals based on relaxation oscillations of a semiconductor laser. Firstly, we present our novel approach as a flexible method for photonic generation of high speed impulse ra...

  17. Experimental Analysis of 60-GHz VCSEL and ECL Photonic Generation and Transmission of Impulse-Radio Ultra-Wideband Signals

    DEFF Research Database (Denmark)

    Beltran, Marta; Jensen, Jesper Bevensee; Llorente, Roberto

    2011-01-01

    for comparison purposes. Real-time bit-error-rate (BER) performance of generated signals at 3.125 Gb/s is evaluated combining fiber and 2-m wireless transmission. Different optical fiber types including 1-km bend-insensitive single-mode fiber and 20-km nonzero dispersion-shifted fiber is evaluated. $\\hbox......{BER} for the ECL and $\\hbox{BER} for the VCSEL requiring higher received optical power than the ECL is demonstrated employing electrical power detection....

  18. 10Gb/s Ultra-Wideband Wireless Transmission Based on Multi-Band Carrierless Amplitude Phase Modulation

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...... the United States Federal Communications Commission and the European Electronic Communications Committee, achieving a BER below the limit for a 7% overhead FEC of 3.8 · 10−3 up to respective wireless distances of 3.5m and 2m....

  19. Time-Reversal Based Range Extension Technique for Ultra-Wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    Science.gov (United States)

    2008-10-16

    signal from the signal generator is also used to synchronize DSO to record the data of the received signal. The tapped -delay-line model of CIR will...between each filter tap . The output y(t) — h(t) *x(t) is then uniformly sampled with sampling period Ts. 1 ’s follows the relation Ta/Th — q, where q... eft ) ProbtagPake ^ p(l> ’HO PriHretuHg Figure 5.5: An equivalent block diagram of channel estimation The success of recovery relies on the

  20. Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Iegorov, Roman

    2017-01-01

    supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which...... often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength......The emission wavelength of a laser is physically predetermined by the gain medium used.Consequently,arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced...

  1. Method of achieving ultra-wideband true-time-delay beam steering for active electronically scanned arrays

    Energy Technology Data Exchange (ETDEWEB)

    Loui, Hung; Brock, Billy C.

    2016-10-25

    The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.

  2. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    P. B. Tchounwou

    2005-04-01

    Full Text Available Ultra–wideband (UWB technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05 dose-dependent response in cell viability in both serum-treated and serum free medium (SFM -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.

  3. Pulse Shaping for High Capacity Impulse Radio Ultra-Wideband Wireless Links Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Two pulse shapes for IR-UWB transmission under the Russian spectral emission mask are proposed and their potential experimentally demonstrated. Pulses based on the hyperbolic secant square function and the frequency B-spline wavelet are shown to enable transmission of 1.25 Gbit/s signals, reaching...

  4. Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

    International Nuclear Information System (INIS)

    Yuan Cai; Xu Shi-Lin; Yao Jian-Quan; Zhao Xiao-Lei; Cao Xiao-Long; Wu Liang

    2014-01-01

    A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials. (interdisciplinary physics and related areas of science and technology)

  5. Ultra-Wideband Radar Development for Non-Touch Terrain Sensing Application on Close Combat Support Vehicles

    National Research Council Canada - National Science Library

    Jung, Gerald V; Fredrick, Dave; Truong, Marco C; Merritts, Scott J; Modi, Mitul; Hayes, Leonard S; Lin, Chujen; Davydov, Alexander; Petroff, Alan; Fullerton, Larry; Hernandez, Justin

    2000-01-01

    (U) Grizzly, the Army's next-generation complex obstacle breaching system, operates in a harsh environment where sand, dirt, dust, mud, obscurants, battlefield debris, varying levels of vegetation, wide...

  6. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  7. ANALYSIS OF TRAIN SHEET IN THE INFORMATION SYSTEM OF JSC «UKRZALIZNYTSIA»: PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    S. M. Ovcharenko

    2016-04-01

    Full Text Available Purpose. The system of train sheet analysis (TSA in the information system of JSC «Ukrzaliznytsia» provides work with passenger and suburban trains and has considerable potential. Therefore it is necessary to establish the prospects of development of the system. Methodology. Departments’ setup and the train delay causes should be carried out at every station and span, where such delays took place. This requires the fixation of condition deviations of infrastructure from normal and other adverse factors. In the sector of freight transportations the train schedule analysis is insufficient, since this analysis does not account for deviations from the terms of delivery. Therefore it also is necessary to analyze the delivery graphs. The basis for monitoring the cargo delivery is the method of control time points (CTP of technological operations performed with cargo at railway stations. On the basis of CTP to assess the quality of the transport process one should calculate the values of the analysis of cargo delivery schedule (performance level of the cargo delivery schedule, the coefficient of ahead of schedule/delay delivery. Findings. The article proposes to develop the system TSA using the input and display of the train delay causes on-line by transportation service employees, expansion of statistical databases and processing of the input delay causes during its calculation train sheet analysis of freight trains and quality assessment of the delivery schedule fulfillment. It is also appropriate before the new operator companies had appeared to make changes in the instructions TSCHU-TSD-0002 on the list of departments, which include delayed trains, by adding «the department» «The fault of operator companies» and corresponding causes of delays. Originality. The scheme of automated TSA in the information system of JSC «Ukrzaliznytsia» was improved. The author proposes to determine the cargo delivery quality on the certain polygon using the

  8. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  9. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    Science.gov (United States)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  10. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  11. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    Science.gov (United States)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  13. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  14. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  16. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  17. Evaluating the effectiveness of the use of fixed assets defense enterprises (by the example of JSC “Concern ‘Sozvezdie’”

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2016-01-01

    Full Text Available Currently, the problem of sustainable development of enterprises of the Russian military-industrial complex has not only military, but economic importance. The article provides an analysis of the availability, scope, composition and structure of the basic production assets of JSC "Concern "Sozvezdie" for 2013-2015, and analysis of efficiency of use of the basic production assets in JSC "Concern "Sozvezdie" for 2013-2015. JSC "Concern "Sozvezdie" JSC approved the program of innovative development and technological modernization, the development objective of which is the proved choice of the list and content of activities, the implementation of which should ensure the development of the Concern as a scientific and industrial socio-economic system – a holistic entity. Assessment of the dynamics of the basic production assets has shown that the security of JSC "Concern "Sozvezdie" OPF for 2013-2015 increased by 89,81%. The degree of updating of production assets during the period was 50.7%. The analysis of the efficiency of the basic production assets in JSC "Concern "Sozvezdie" has shown that for every 1% increase in revenue major funds have grown by 0.65%. The rate of fondamenti decreased by 18.2%. The assessment of efficiency of use of the basic production assets of JSC "Concern "Sozvezdie" shows that the total technical re-equipment of scientific and technological, testing and production and technological base of the enterprises of the Concern is directed on creation of production capacities to ensure serial production of advanced weapons, military and special equipment in the framework of the state defense order, as the main activity of the majority of the companies of the Group, and reconstruction, the expansion and creation of production to the production of innovative civilian products.

  18. Complex biological testing of ground water quality in the area of sewage settler filtration fields of JSC 'Almaty Kanty'

    International Nuclear Information System (INIS)

    Vetrinskaya, N.I.; Goldobina, E.A.; Kosmukhambetov, A.R.; Kulikova, O.V.; Kozlova, N.V.; Ismailova, Zh.B.

    2001-01-01

    Results are given on the ground water ecological quality estimation of operating survey boreholes of JSC 'Almaty Kanty' industrial enterprise filtration fields using different methods of biological testing. Proved that various biological objects reacted differently onto the toxins present in the water. Concealment of toxic effect was performed at short-period testing at several testing objects (stimulation). Revealed during long period tests, that ground water from all the boreholes surveyed is not ecologically clean and pure, and can bring damage for ecosystem of water reservoirs adjacent and sources of drinking water if migration happens. (author)

  19. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    Science.gov (United States)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  20. Sustainable development through innovation (the example of JSC «Concern» Constellation»

    Directory of Open Access Journals (Sweden)

    T. I. Ovchinnikova

    2016-01-01

    Full Text Available In the article the «economic growth» theoretical approaches to the terms and «sustainable development». It is indicated that «sustainable development» is related to the introduction of new technologies and innovations, as well as the mechanisms of perfection economic activity. The concept of «sustainable development» includes the principles of sustainability and balanced-ness, while economic growth is associated with the dominant country economic policy objectives, including innovative factors, with the well-being of its population level: the development of the social structure, from the labor market level and other factors. Prospects of development of the country based on the justification of the socio-economic model of its translational movement in the world civilization. Excessive political risks and economic sanctions have shown that Russia should not rely on foreign imports of high-tech, and the need to develop import substitution. Change the vector of development of the Russian economy made their adjustments to the development of the Voronezh region economy slowed down the speed of displacements, of capital, the regional financial centers develop poorly, due to lack of investment has slowed the growth of innovational and information development. There is a growing dependence of the region on the processes taking place at the international and national levels. In the example of the Voronezh area are considered factors of sustainable development such as the coordination of organizational efforts and financial resources in order to achieve a new quality of the region's population lives, and necessity of formation of a new development paradigm of management in the region, based on the modernization of diversified bath economy and the introduction of mechanisms to ensure the implementation of sustainable development. In view of the innovative-investment activity of JSC «Concern» Constellation «steady growth

  1. Dependence of the mean time to failure of a hydraulic balancing machine unit on different factors for sectional pumps of the Alrosa JSC

    Science.gov (United States)

    Ovchinnikov, N. P.; Portnyagina, V. V.; Sobakina, M. P.

    2017-12-01

    This paper presents factors that have a greater impact on the mean time to failure of a hydraulic balancing machine unit working in underground kimberlite mines of the Alrosa JSC, the hydraulic balancing machine unit being the least reliable structural elements in terms of error-free operation. In addition, a multifactor linear dependence of mean time to failure of a hydraulic balancing machine unit is shown regarding it being parts of stage sectional pumps in the underground kimberlite mines of the Alrosa JSC. In prospect, this diagram can allow us to predict the durability of the least reliable structural element of a sectional pump.

  2. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  3. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  4. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  5. Evaluation of the information content of wideband and ultra-wideband radar returns from an F14, F15 and F16 using asymptotic electromagnetic techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2012-10-01

    Full Text Available TECHNIQUES J.E. Cilliers *, J.C. Smit *, A.M. McDonald * C.J. Baker‡, K. Woodbridge † * Council for Scientific and Insustiral Research (CSIR, DPSS), South Africa, jcilliers@csir.co.za, ‡ ElectroScience Laboratory, Ohio State University, USA...

  6. Evaluating the Effectiveness of Internal Corporate Controls in Coal Mines Illustrated By the Example of JSC “SUEK-Kuzbass”

    Directory of Open Access Journals (Sweden)

    Kucherova Elena

    2017-01-01

    Full Text Available The article gives reasons for the need to develop the mechanism and tools of performance evaluation based on the implementation of specific management functions, as well as the integrated evaluation of the effectiveness of internal corporate controls. It presents the approbation of the proposed assessment methodology on the example of JSC “SUEK-Kuzbass”. The monitoring role as one of the functions of management is constantly increasing in the market economy. The participation of Russian companies in the international economy requires the organisation of internal company control. Moreover, with the enacting of the Law “On Accountings» № 402-FZ, for the majority of economic agents the organising of internal control became mandatory. Thus, the internal control means the process carried out by the Board of Directors and other staff of the organisation aimed at providing reasonable assurance that the objectives of the organisation such as ensuring the effectiveness and efficiency of operations, reliability of financial reporting and compliance with the legislation in force will be achieved.

  7. Assessment of business customers satisfaction with the products and service of Pnevmostroimashina, jsc, on the B2B market

    Directory of Open Access Journals (Sweden)

    L. M. Kapustina

    2010-12-01

    Full Text Available The paper is dedicated to development of a methodology for assessment of customer satisfaction with the products and services on the b2b market. The study of customer satisfaction is aimed at building strong and mutually beneficial supplier-customer relationship. The authors focus on the importance of customer satisfaction continuous monitoring intended for improvement of the company’s market performance. The research based on the works by Kano N., Lamben J.-J., Carter R., Parashuraman A., Zeitaml V. A., Berry L. L. and others, describes an algorithm study of consumers and offers a methodology to evaluate customer satisfaction with the industrial products. Based on the analysis of the economic crisis effects on the machine-building industry, the authors determine the performance of “Pnevmostroimashina”, JSC, on the road and construction equipment market and illustrate an example of practical use of the customer satisfaction assessment technique in the company. At the end of the paper some recommendations for development of an efficient customer satisfaction measurement procedure are introduced.

  8. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.

    Science.gov (United States)

    Wang, Yue; Guo, Wanqian; Yen, Hong-Wei; Ho, Shih-Hsin; Lo, Yung-Chung; Cheng, Chieh-Lun; Ren, Nanqi; Chang, Jo-Shu

    2015-12-01

    Swine wastewater, containing a high concentration of COD and ammonia nitrogen, is suitable for the growth of microalgae, leading to simultaneous COD/nutrients removal from the wastewater. In this study, an isolated carbohydrate-rich microalga Chlorella vulgaris JSC-6 was adopted to perform swine wastewater treatment. Nearly 60-70% COD removal and 40-90% NH3-N removal was achieved in the mixotrophic and heterotrophic culture, depending on the dilution ratio of the wastewater, while the highest removal percentage was obtained with 20-fold diluted wastewater. Mixotrophic cultivation by using fivefold diluted wastewater resulted in the highest biomass concentration of 3.96 g/L. The carbohydrate content of the microalga grown on the wastewater can reach up to 58% (per dry weight). The results indicated that the microalgae-based wastewater treatment can efficiently reduce the nutrients and COD level, and the resulting microalgal biomass had high carbohydrate content, thereby having potential applications for the fermentative production of biofuels or chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Revisión del estado del arte deIR-Ultra-Wideband y simulación de la respuesta impulsiva del canal IEEE802.15.4a Review of the state of art of IR-Ultra-Wideband and simulation of Impulse Responce of the IEEE 802.15.4a channel

    Directory of Open Access Journals (Sweden)

    Julio Suárez Páez

    2010-06-01

    Full Text Available Este artículo realiza una revisión del estado del arte de la tecnología basada en canales de Banda Ultra Ancha (UWB, Ultra–Wideband enfocándose en su regulación, estandarización, aplicaciones básicas, modelo de canal IEEE 802.15.4a y simulación de la respuesta impulsiva de este tipo de canal. También se pretende introducir al lector en las tecnologías basadas en canales IR–UWB y en los parámetros para el modelamiento y simulación del canal UWB IEEE 802.15.4a.This paper reviews the state of the art of the technology based in channels of Ultra Wide band (UWB Ultra–Wideband focusing on its regulation, standardization, basic applications, IEEE 802.15.4a channel model and simulation of the impulsive response of this type of channel. Also, it aims to introduce the reader to the technologies based on IR–UWB channels and the parameters for modeling and simulation of IEEE 802.15.4a UWB channel.

  10. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    Science.gov (United States)

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  11. ASSESSMENT OF RELIABILITY AND RISK DEGREE FOR ACCIDENT INITIATION AT SLIME STORAGES OF 4th MINING ADMINISTRATION, JSC “BELARUSKALI”

    Directory of Open Access Journals (Sweden)

    P. M. Bohaslauchyk

    2016-01-01

    Full Text Available Definition of reliability for dams of slime storage embankment is given on the basis of reliability theory and characteristics of reliability and their analysis are presented in the paper. The paper specifies qualitative indices for earth dams which are subdivided in two groups: applicability factors and structural reliability factors. A short analysis of all possible causes for accident initiation at earth dams has been made and the analysis has permitted to pinpoint eleven main objects for diagnosis for slime storage dams. In order to assess risk degree of accident initiation at JSC “Belaruskali” slime storages all possible causes of emergency cases and their probability of occurrence have been analyzed in the paper. The paper acknowledges the fact that dam malfunction is possible, as a rule, due to violation of operational rules and regulations. Main parameters of slime storage state which are to be controlled regularly in the process of its operation have been noted in the paper. Observation results over slime storages, calculations of dam slope stability for normal operation (a principal calculation case and operating irregularities in water seals (a special calculation case. As a stability margin factor is close to 1.0 for a special calculation case, an extreme position of depression curve has been determined for all design sections. It has been recommended to carry out a constant control over its position, and in the case when it reaches its peak value it is necessary to undertake appropriate measures in order to reduce its value. Final expert estimations on probability of accident initiation at the investigated slime storage dams of the 4th Mining Administration, JSC “Belaruskali” have been prepared on the basis of the analysis comprising all the required factors. A conclusion has been made about low risk degree of their destruction.

  12. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  13. STUDY OF EFFECTIVENESS OF BREAKWATER STRUCTURES OF THE “EASTERN PETROCHEMICAL COMPANY” JSC OIL REFINERY AND PETROCHEMICAL PLANTS PORT COMPLEX

    Directory of Open Access Journals (Sweden)

    Prikhod’ko Oleg Alekseevich

    2017-05-01

    Full Text Available The article presents the research of MGSU Corporation for testing of design solutions of the “Eastern petrochemical company” JSC oil refinery and petrochemical plants port complex using the physical modeling method. Construction of the marine terminal of the oil refinery and petrochemical plants port complex is planned to be on the Eastern shore of the Vostok Bay which is the part of Peter the Great Bay in the Sea of Japan. The port area is created by means of an artificial land site. The water area of the terminal will be guarded against sea waves by a breakwater. Experiments on the study of wave propagation in the port model water area at the Eastern and Western breakwaters were performed in the laboratory wave basin in three-dimensional layout, with the aim of obtaining of data about wave heights at berthing facilities. Effectiveness of the breakwater designs was studied in two-dimensional layout in a wave flume. During the port model construction all the designed waterworks as well as the project bathymetry of the port water area were reproduced at a scale of 1:100. Analysis of the experiment results with the slope protection embodiment version demonstrates that this engineering solution is able to withstand waves of the design parameters.

  14. JSC Wireless Sensor Network Update

    Science.gov (United States)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  15. JSC Human Life Sciences Project

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  16. Differential Space-Time Modulation for Wideband Wireless Networks

    National Research Council Canada - National Science Library

    Li, Hongbin

    2006-01-01

    .... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...

  17. Vitamin D: Spaceflight, Antarctic, and JSC

    Science.gov (United States)

    Smith, Scott M.; Locke, J.; Zwart, S. R.

    2009-01-01

    Obtaining vitamin D is critical for space travelers because they lack ultraviolet light exposure and have an insufficient dietary supply of vitamin D. Despite the provision of vitamin D supplements to International Space Station (ISS) crewmembers, vitamin D status is consistently lower after flight than before flight, and in several crewmembers has decreased to levels considered clinically significant. Vitamin D has long been known to play a role in calcium metabolism, and more recently its non-calcitropic functions have been recognized. According to the results of several recent studies, functionally relevant measures indicate that the lower limit of serum 25-hydroxyvitamin D (a marker of vitamin D status) should be raised from the current 25 nmol/L to 80 nmol/L. The sub-optimal pre- and postflight vitamin D status is an issue that needs to be addressed, to allow NASA to better define the appropriate amount of supplemental vitamin D to serve as a countermeasure against vitamin D deficiency in astronaut crews. This is very important for long-duration crewmembers, and is critical for exploration-class missions. Ground-based models with limited sunlight exposure could be valuable for evaluating vitamin D supplementation efficacy. One such model is subjects spending the winter in Antarctica, where UV-B radiation levels are zero during the winter. Data from a study of such subjects will enable us to provide long-duration space flight crewmembers with evidence-based recommendations for vitamin D supplementation to achieve optimal vitamin D status before, during, and after flight. We report here results from a vitamin D supplementation study conducted in 2007 in Antarctica at McMurdo Station, and plans for a study to be implemented over the course of 2009. Additionally, in 2008, a study was initiated (and is ongoing) to assess efficacy and safety of supplementing with 2000 IU daily, 10,000 IU weekly, or 50,000 IU weekly for a month and then monthly after that. The data from these studies will enable us to provide space crews with evidence-based recommendations for vitamin D supplementation. The findings also have implications for other persons with limited UV light exposure, including polar workers and the elderly.

  18. JSC Director's Discretionary Fund 1992 Annual Report

    Science.gov (United States)

    Jenkins, Lyle (Compiler)

    1993-01-01

    Annual report of the Johnson Space Center Director's Discretionary Fund documenting effective use of resources. The $1,694,000 funding for FY92 was distributed among 27 projects. The projects are an overall aid to the NASA mission, as well as providing development opportunities for the science and engineering staff with eventual spinoff to commercial uses. Projects described include space-based medical research such as the use of stable isotopes of deuterium and oxygen to measure crew energy use and techniques for noninvasive motion sickness medication. Recycling essentials for space crew support is conducted in the Regenerative Life Support and the Hybrid Regenerative Water Recovery test beds. Two-phase fluid flow simulated under low-gravity conditions, hypervelocity particle impact on open mesh bumpers, and microcalorimetry to measure the long-term hydrazine/material compatibility were investigated. A patent application was made on a shape-memory-alloy release nut. Computer estimate of crew accommodations for advanced concepts was demonstrated. Training techniques were evaluated using multimedia and virtual environment. Upgrades of an electronic still camera provide high resolution images from orbit are presented.

  19. Protocols for Impulse Radio UWB Ad Hoc Networks

    NARCIS (Netherlands)

    Shi, N.

    2010-01-01

    Ultra Wideband (UWB) technology offers an unprecedented opportunity to further accelerate the evolution of wireless communication and expand the application landscape by enabling outstanding capabilities. UWB radio is fundamentally different from most radio technologies, e.g., Bluetooth, WLAN, etc.

  20. UWB Sampler for Wireless Communications and Radar

    National Research Council Canada - National Science Library

    Han, Jeongwoo; Nguyen, Cam

    2005-01-01

    An ultra wideband (UWB) sampler, realized using step recovery and Schottky diodes on coplanar waveguide, coplanar strips and slotlines, has been developed for UWB wireless communications and radar systems...

  1. Efficient Techniques of Sparse Signal Analysis for Enhanced Recovery of Information in Biomedical Engineering and Geosciences

    KAUST Repository

    Sana, Furrukh

    2016-01-01

    precision technique for the monitoring of human respiratory movements by exploiting the sparsity of wireless ultra-wideband signals. The proposed technique provides a novel methodology of overcoming the Nyquist sampling constraint and enables robust

  2. Performance of DS-UWB in MB-OFDM and multi-user interference over Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia

    2011-01-01

    The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct-sequence (DS) UWB

  3. Double parametric resonance for matter-wave solitons in a time-modulated trap

    International Nuclear Information System (INIS)

    Baizakov, Bakhtiyor; Salerno, Mario; Filatrella, Giovanni; Malomed, Boris

    2005-01-01

    We analyze the motion of solitons in a self-attractive Bose-Einstein condensate, loaded into a quasi-one-dimensional parabolic potential trap, which is subjected to time-periodic modulation with an amplitude ε and frequency Ω. First, we apply the variational approximation, which gives rise to decoupled equations of motion for the center-of-mass coordinate of the soliton, ξ(t), and its width a(t). The equation for ξ(t) is the ordinary Mathieu equation (ME) (it is an exact equation that does not depend on the adopted ansatz), the equation for a(t) being a nonlinear generalization of the ME. Both equations give rise to the same map of instability zones in the (ε,Ω) plane, generated by the parametric resonances (PRs), if the instability is defined as the onset of growth of the amplitude of the parametrically driven oscillations. In this sense, the double PR is predicted. Direct simulations of the underlying Gross-Pitaevskii equation give rise to a qualitatively similar but quantitatively different stability map for oscillations of the soliton's width a(t). In the direct simulations, we identify the soliton dynamics as unstable if the instability (again, realized as indefinite growth of the amplitude of oscillations) can be detected during a time comparable with, or smaller than, the lifetime of the condensate (therefore accessible to experimental detection). Two-soliton configurations are also investigated. It is concluded that multiple collisions between solitons are elastic, and they do not affect the instability borders

  4. A CAMAC timing module for the use with high energy resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bulian, N.; Plaga, R. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

    1992-06-15

    A CAMAC module which measures event times with a resolution of 10 ns continuously over a period of 32.6 days has been built. The event times are stored in a deep buffer memory in form of 48-bit data words. The pulse amplitude of each event can be measured concurrently in a high resolution ADC and stored in another FIFO buffer memory. These amplitudes are tagged with a flag to correlate time with amplitude value unambiguously. In spite of the high operating frequency of 100 MHz necessitating the use of ECL counters, the module is compact (single-width) thanks to the use of TTL registers for the intermediate storage of the 48-bit time-word. The setup and testing of the modules with a NaI-pair spectrometer used in the GALLEX dolar neutrino experiment is described. Other possible applications of the module in the field of non-accelerator particle physics are also mentioned. (orig.).

  5. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    Science.gov (United States)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  6. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  7. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)

  8. The formation of a turbulent front in a time modulated argon APPJ

    NARCIS (Netherlands)

    Zhang, S.; Veldhuizen, van E.M.; Bruggeman, P.J.; Sobota, A.

    2014-01-01

    Cold atmospheric pressure plasma jets (APPJ) are promising tools for biomedical applications such as wound healing, disinfection, decontamination, and material processing. The jet effluent is blown in an open air environment which leads to air diffusion and argon-air mixtures in the effluent flow.

  9. Population extinction under bursty reproduction in a time-modulated environment

    Science.gov (United States)

    Vilk, Ohad; Assaf, Michael

    2018-06-01

    In recent years nondemographic variability has been shown to greatly affect dynamics of stochastic populations. For example, nondemographic noise in the form of a bursty reproduction process with an a priori unknown burst size, or environmental variability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of nondemographic variation. Using the so-called momentum-space Wentzel-Kramers-Brillouin (WKB) approach and accounting for the explicit time dependence in the reaction rates, we arrive at a set of time-dependent Hamilton equations. To this end, we evaluate the population's extinction risk by finding the instanton of the time-perturbed Hamiltonian numerically, whereas analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically varying rates corresponding to seasonal effects and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.

  10. JSC Safety and Mission Assurance Data Analysis Overview

    Science.gov (United States)

    Roelant, Henk

    2010-01-01

    These slides describe the data analysis methods that are used to determine inputs for probabilistic risk models supporting the Space Shuttle Program. Other applications can follow a similar path probably using different data sources. Statistical approaches are different and not addressed here. Topics included here: 1) Prior Distribution; 2) Likelihood Data; 3) Bayesian Updating; and 4) Uncertainty and Error. Note: This is a high-level discussion and is not intended to be a tutorial.

  11. National Space Biomedical Research Institute (NSBRI) JSC Summer Projects

    Science.gov (United States)

    Dowdy, Forrest Ryan

    2014-01-01

    This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.

  12. Developing a successful marketing plan for HELP JSC

    OpenAIRE

    Nguyen, Ke Tuong

    2010-01-01

    Health care has become an extremely important issue during the economic development. Vietnamese rapid population growth has made the service sector become overloaded. Majority of people are absorbed at work and neither do take care of their health nor do have a proper health care programme. HELP, a health care service company, has discovered general ideas of its services: brings health, joy and happiness to people. It is no later than now to develop a marketing plan, which can enhance the bu...

  13. A Sub-band Divided Ray Tracing Algorithm Using the DPS Subspace in UWB Indoor Scenarios

    DEFF Research Database (Denmark)

    Gan, Mingming; Xu, Zhinan; Hofer, Markus

    2015-01-01

    Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub-bands. A......Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub...

  14. Bidirectional 3.125 Gbps downstream / 2 Gbps upstream impulse radio ultrawide-band (UWB) over combined fiber and wireless link

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Gibbon, Timothy Braidwood; Yu, Xianbin

    2010-01-01

    We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors.......We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors....

  15. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small shift towards higher frequencies. This frequency shift is due to the reduction of the effective resonance volume that results from the existence of a Stokes boundary layer at the outer librating wall. Due to the symmetry of the forcing not all possible modes can be excited. It is shown that only symmetric modes with respect to the rotation axis exist. From a fundamental perspective, the study might help to understand better inertial mode excitation in librating planets and moons where inertial waves are emitted from critical points on the inner or outer spherical boundary. Recently, Zhang et al. (2013) pointed out the resonance should not occur in symmetric librating bodies without precession. We will discuss how this assumption depends on the boundary conditions. It might turn out that even when the projection of the Euler (or Poincare) force on the modes is zero, the projection of the excited wave beams on the modes is non-zero. K. Zhang, K. H. Chan, X. Liao, and J. M. Aurnou. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration, J. Fluid Mech.,720, 212-235, 2013. I. D. Borcia and U. Harlander. Inertial waves in a rotating annulus with inclined inner cylinder, Theoret. Comp. Fluid Dynamics, 27, 397-413, 2013. I. D. Borcia, A. Ghasemi V., and U. Harlander. Inertial wave mode excitation inside a rotating cylindrical container with librating walls, submitted to Fluid Dyn. Res.,2013. M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi V., I. D. Borcia, A. Will, E. Schaller, C. Egbers, and Uwe Harlander. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, submitted to J. Fluid Mech., 2013.

  16. Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice

    International Nuclear Information System (INIS)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2006-01-01

    We investigate stability of gap solitons (GSs) in the first two band gaps in the framework of the one-dimensional Gross-Pitaevskii equation, combining the repulsive nonlinearity and a moderately strong optical lattice (OL), which is subjected to ''management,'' in the form of time-periodic modulation of its depth. The analysis is performed for parameters relevant to the experiment, characteristic values of the modulation frequency being ω∼2πx20 Hz. First, we present several GS species in the two band gaps in the absence of the management. These include fundamental solitons and their bound states, as well as a subfundamental soliton in the second gap, featuring two peaks of opposite signs in a single well of the periodic potential. This soliton is always unstable, and quickly transforms into a fundamental GS, losing a considerable part of its norm. In the first band gap (stable) bound states of two fundamental GSs are possible solely with opposite signs, if they are separated by an empty site. Under the periodic modulation of the OL depth, we identify stability regions for various GS species, in terms of ω and modulation amplitude, at fixed values of the soliton's norm, N. In either band gap, the GS species with smallest N has a largest stability area; in the first and second gaps, they are, respectively, the fundamental GS proper, or the one spontaneously generated from the subfundamental soliton. However, with the increase of N, the stability region of every species expands in the first gap, and shrinks in the second one. The outcome of the instability development is also different in the two band gaps: it is destruction of the GS in the first gap, and generation of extra side lobes by unstable GSs in the second one

  17. Blind synchronization in asynchronous UWB networks based on the transmit-reference scheme

    NARCIS (Netherlands)

    Djapic, R.; Leus, G.; Veen, A.-J. van der; Trindade, A.

    2006-01-01

    Ultra-wideband (UWB) wireless communication systems are based on the transmission of extremely narrow pulses, with a duration inferior to a nanosecond. The application of transmit reference(TR) to UWB systems allows to side-step channel estimation at the receiver, with a tradeoff of the effective

  18. Multigigahertz beam diagnostics for laser fusion

    International Nuclear Information System (INIS)

    Smith, R.C.; Hodson, E.K.; Carlson, R.L.

    1981-01-01

    A system to make ultra wideband measurements of fast laser pulses and their induced target interactions at a distance of approximately 38 m from the target location is discussed. The system has demonstrated an overall bandwidth of 3 GHz with projected unfolding to 4 GHz. This system allows high resolution temporal history diagnostics in a remote location providing high EMI and radiation immunity

  19. 75 FR 79877 - Unified Agenda of Federal Regulatory and Deregulatory Actions-Fall 2010

    Science.gov (United States)

    2010-12-20

    ... Regarding Ultra-Wideband Transmission 3060-AH47 509 New Advanced Wireless Services (ET Docket No. 00-258...; Wireless 46.9-47 GHz; Government Operations 37-38 & 40 517 Streamlining Earth Station Licensing Rules (IB... Cross-Ownership Limits 3060-AH97 534 Establishment of Rules for Digital Low Power Television, Television...

  20. Blind Synchronization in Asynchronous UWB Networks Based on the Transmit-Reference Scheme

    NARCIS (Netherlands)

    Djapic, R.; Leus, G.; Van Der Veen, A.J.; Trinda, A.

    2006-01-01

    Ultra-wideband (UWB) wireless communication systems are based on the transmission of extremely narrow pulses, with a duration inferior to a nanosecond. The application of transmit reference (TR) to UWB systems allows to side-step channel estimation at the receiver, with a tradeoff of the effective

  1. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    The problem of asynchronous direct-sequence code division multiple access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation and multi-user detection scheme based on the adaptive linear minimum mean-square error (LMMSE...

  2. BER analysis of DS-UWB system employing a laplace distribution model

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia; Adachi, Fumiyuki

    2011-01-01

    This letter takes a new approach to extract a closed-form expression for the bit error rate (BER) of direct-sequence ultra wideband (DS-UWB) system. In the analysis, the main signal is impaired by multi-user interference (MUI) and an external source

  3. D1.7 -- Intermediate Report on the WHERE2 Channel Model

    DEFF Research Database (Denmark)

    Corre, Yoann; Laaraiedh, Mohamed; Pedersen, Troels

    are considered: the radio access technologies and the environments. As such, investigations with respect to narrowband, wideband and ultra wideband channel characterization in multi-link scenarios are reported. Furthermore, indoor and indoor-to-outdoor environments are considered. The channel variability due...

  4. Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications

    DEFF Research Database (Denmark)

    Nguyen, Hung Tuan

    2008-01-01

    In this paper, with the purpose of further reducing the complexity of the system, while keeping its temporal and spatial focusing performance, we investigate the possibility of using optimal one bit time reversal (TR) system for impulse radio ultra wideband multi-user wireless communications...

  5. Secure Multi-Gigabit Ultra-Wide Band Communications for Personal Area Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Puerta Ramírez, Rafael; Tafur Monroy, Idelfonso

    2016-01-01

    scenarios where the user may be located in public spaces. We propose to use Ultra-Wideband communications, which can be seamlessly transported over fiber or wireless, and show different transmission experiments ranging from 2 Gbit/s to 35 Gbit/s. To achieve these record bit rates, the multi-band approach...

  6. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  7. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  8. A Cross-Layer Approach in Sensing and Resource Allocation for Multimedia Transmission over Cognitive UWB Networks

    NARCIS (Netherlands)

    Aripin, N.M.; Rashid, R.A.; Fisal, N.; Lo, A.C.C.; Ariffin, S.H.S.; Yusof, S.K.S.

    2010-01-01

    We propose an MAC centric cross-layer approach to address the problem of multimedia transmission over cognitive Ultra Wideband (C-UWB) networks. Several fundamental design issues, which are related to application (APP), medium access control (MAC), and physical (PHY) layer, are discussed. Although

  9. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  10. Dual Polarized Monopole Patch Antennas for UWB Applications with Elimination of WLAN Signals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2016-05-01

    Full Text Available This paper presents the design, fabrication and measurement of dual polarized microstrip patch antennas for ultra wideband (UWB applications with notch at 5-6 GHz band. The proposed antenna rejects the wireless local area network (WLAN signals and work properly in the entire remaining ultra-wideband. Two antennas are designed for two different frequency bands of ultra wideband and both antennas together produce the entire ultra wideband with notch at 5-6 GHz band. The antennas are fed by a 50 coaxial probe and the entire design is optimized using CST Microwave Studio. The bandwidth of 3.1-5 GHz is achieved by the optimized design of Antenna-1 and the bandwidth of 6 -10.6 GHz is achieved by the optimized design of Antenna-2. The bandwidth of the optimized combined antenna is 3.1-10.6 GHz with elimination of the 5-6 GHz band. Both antennas are simulated, developed and measured. The simulated and measured results are presented. The two designed dual polarized antennas i.e. Antenna-1 and Antenna-2 can be used for 3.1-5 GHz band and 6-10.6 GHz band dual polarized applications, respectively, and the combined antenna structure can be used for UWB dual polarized applications with elimination of 5-6 GHz band signals.

  11. Centralized Cooperative Positioning and Tracking with Realistic Communications Constraints

    DEFF Research Database (Denmark)

    Mensing, Christian; Nielsen, Jimmy Jessen

    2010-01-01

    on the overall performance will be assessed. As we are considering a dynamic scenario, the cooperative positioning algorithms are based on extended Kalman filtering for position estimation and tracking. Simulation results for ultra-wideband based ranging information and WLAN based communications infrastructure...

  12. Noise Tomography and Adaptive Illumination in Noise Radar

    Science.gov (United States)

    2015-10-01

    transform of scatu , defined in (2.15), in y–direction can be written as 2 ( , , ) ( , ) 2 j dn n scat n y scat n y k EU k x d k e O k k j...and J. A. Henning , "Radar penetration imaging using ultra- wideband (UWB) random noise waveforms," IEE Proceedings-Radar Sonar and Navigation, vol

  13. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging...

  14. The STS-95 crew poses with a Mercury capsule model before returning to JSC

    Science.gov (United States)

    1998-01-01

    Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  15. STS-95 Payload Specialist Glenn participates in a media briefing before returning to JSC

    Science.gov (United States)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, participates in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Also participating in the briefing were the other STS-95 crew members: Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  16. The STS-95 crew participates in a media briefing before returning to JSC

    Science.gov (United States)

    1998-01-01

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  17. The STS-95 crew and their families prepare for their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Pilot Steven W. Lindsey (left), Lindsey's daughter (front), and Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, give a thumbs up on the success of the mission. Members of the STS-95 crew and their families prepared for their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Others returning were Mission Commander Curtis L. Brown Jr.; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  18. STS-95 Payload Specialist Glenn and his wife pose before their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, poses with his wife Annie before their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The STS-95 crew also includes Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  19. QC methods and means during pellets and fuel rods manufacturing at JSC 'MSZ'

    International Nuclear Information System (INIS)

    Kouznetsov, A.I.

    2000-01-01

    The report contains the description of the main methods and devices used in fabrication of pellets and fuel rods to prove their conformity to the requirements of technical specifications. The basic principals, range and accuracy of methods and devices are considered in detail, as well as system of metrological support of measurements. The latter includes the metrological certification and periodical verification of the devices, metrological qualification of measurement procedures, standard samples provision and checking the correctness of the analyses performance. If one makes an overall review of testing methods used in different fuel production plants he will find that most part of methods and devices are very similar. There are still some variations in methods which could be a subject for interesting discussions among specialists. This report contains a brief review of testing methods and devices used at our plant. More detailed description is given to methods which differ from those commonly used. (author)

  20. Experimental study of new generation WWER-1000 fuel assemblies at JSC NCCP

    International Nuclear Information System (INIS)

    Enin, A.; Rozhkov, V.; Sinikov, Y.; Ustimenko, A.; Shustov, M.

    2003-01-01

    An experimental program for the study of fuel assembly thermomechanical stability has been established together with RF SSC IPPE and Russian Scientific Center Kurchatov Institute. Assembly fragments and small dummy models of fuel assembly skeletons and fuel rod bundles have been used for the tests. The test results are used for the design selection, verification of the design codes and substantiation of operating capacity of fuel assemblies with a rigid skeleton. The mechanical characteristics of units make it possible to perform fuel assembly strength and rigidity calculations, including the cases of abnormal operation. The mechanical characteristics of the skeleton and fuel rod bundle dummy models make it possible to check for the adequacy of the fuel assembly design model. The mechanical characteristics obtained during fuel rods bundle push through experiments make it possible to substantiate the fuel assembly serviceability under the conditions of fuel rods bundle and skeleton interaction

  1. “Smart COPVs” - Continued Successful Development of JSC IR&D Acoustic Emissions (AE) SHM

    Data.gov (United States)

    National Aeronautics and Space Administration — Developed and applied promising quantitative pass/fail criteria to COPVs using acoustic emission (AE) and developed automated data analysis software. This lays the...

  2. Development of advanced types of fuel at JSC 'UMP'

    International Nuclear Information System (INIS)

    Gagarin, A.E.; Kuchkovskiy, A.; Bezhetskiy, S.V.; Vachnenko, V.V.; Manych, A.V.; Russin, Y.G.

    2009-01-01

    As compared with all acting today techniques of power generation only nuclear power engineering has the real reserve of fuel and contaminate the environment minimum. As IAEA expert assessments show, up to 130 new power generating units with total power 430 gigaWt and annual energy production up to 3000 billion kilowatt-hours will be built in the world to 2020 year. It can be up to 30% of the world power balance. Kazakhstan today has unprecedented positions for nuclear power engineering development in the Republic as well as possibility to have an influence on its development in the world. Actually for today National Atomic Company (NAC) 'Kazatomprom' has the 4th position in the world in satisfaction of world demand for uranium, but to 2010 Kazakhstan should be the world leader in uranium mining in accordance with the company strategy

  3. The influence of sales promotion elements on consumers (jsc „rimi lietuva“ sample)

    OpenAIRE

    Markovskaja, Ivona

    2016-01-01

    The influence of sales promotion elements on consumer is analyzed in the Bachelor‘s Thesis. The thesis examines the information published by various foreign and Lithuanian authors. The main aim of this paper is to analyze different theories of sales promotion effectiveness, sales promotion relevance and factors influencing consumer‘s behavior. This paper analyses the theoretical aspects of sales promotion. It has become more popular in the beginning of the sixth decade. The definition of conc...

  4. A new concept of wastes utilization on the JSC 'Ulba Metallurgical Plant' uranium manufacture

    International Nuclear Information System (INIS)

    Yashin, S.A.; Korobejnikov, I.V.; Manych, A.V.; Kombarov, V.A.

    2003-01-01

    A new concept of radioactive waste handling is developed. It is based on the following principals: 1. Reduce of the waste raffinates volumes at the expense of technological process optimization and extraction of valuable reactants with partially close cycle organization; 2. Imposition of limitation on amount of the incoming water-soluble radioisotopes in temporary disposal due to its concentration and co-precipitation with following additional-extraction and return into the technological process; 3. Combustion of wasted organics in the furnace, dissolution of produced ash, extraction of the radionuclides and its return into technologic process; 4. Refining remelting of radioactive stainless scrap with following re-cycling. A new concept is partially put into operation. The solution of a high-tech tasks is carrying out in co-operation with leading research institutions of Kazakhstan and Russia

  5. MODELING OF THE BASIC PARAMETERS OF ECONOMIC STABILITY (BY THE EXAMPLE OF JSC “BOGUCHAROVO”

    Directory of Open Access Journals (Sweden)

    N. A. Serebriakova

    2014-01-01

    Full Text Available Summary. The article describes the author's vision of the process of management of economic stability of the enterprise by means of simulation of the main parameters of its activity and justified the relevance of the theme of the study. Studied theoretical and methodical bases of economic stability of the enterprise in accordance with the Russian development of a market economy, as well as practical recommendations on modeling of the main parameters of the economic sustainability of the organization. Currently, management of economic stability is one of the most important factors of functioning and development of the enterprises in conditions of the global financial crisis. The relevance of this trend is increasing in line with the increasing complexity of economic ties, changing external environment. A comprehensive approach to the development of the most appropriate variants of the mechanism of management of economic sustainability taking into account the experience of developed countries, industry and sector of factors of external environment can become the basis for developing a common long-term economic development strategy of the enterprise. Problems of economic stability of enterprises caused by the fact that normally carried out in a changing environment operational measures allow for a short time to keep the state of the enterprise is stable, but not change the situation radically. That is, they are associated, on the one hand, with a lack of vision of development of the enterprises, with another - the narrowness of the approach applied to the diagnosis of the existing situation and forecasting of changes in external factors.

  6. Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC

    Science.gov (United States)

    Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.

    2015-01-01

    The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.

  7. Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  8. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  9. Pre-STS-3 press conference held at the JSC public affairs facility

    Science.gov (United States)

    1982-01-01

    Astronauts Jack R. Lousma, center, and C. Gordon Fullerton, left, respond to a visual display of the Columbia and its remote manipulator system in space during a pre-STS-3 press conference. Dr. John Lawrence, public information specialist, is at the far right (25903); Astronaut Lousma, listens as a newsman directs a question his way. In the background is the STS-3 mission logo (25904); Astronaut Fullerton uses an electronic pointer to localize an area on a prjected visual of the OSS payload package to be carried in the cargo bay of the Columbia on STS-3. On far right is Dr. Lawrence (25905).

  10. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  11. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    OpenAIRE

    Igor Prokopovich; Alexei Popov; Lara Pajewski; Marian Marciniak

    2017-01-01

    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the s...

  12. Flexible quality of service model for wireless body area sensor networks

    OpenAIRE

    Liao, Yangzhe; Leeson, Mark S.; Higgins, Matthew D.

    2016-01-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the pro...

  13. Flexible quality of service model for wireless body area sensor networks\\ud

    OpenAIRE

    Liao, Yangzhe; Leeson, Mark S.; Higgins, Matthew D.

    2016-01-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency (RF) ultra-wideband (UWB) technology has developed substantially for physiological signal monitoring due to its advantages such as low power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems of...

  14. A comparison of electrical and photonic pulse generation for IR-UWB on fiber links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Caballero Jambrina, Antonio; Yu, Xianbin

    2010-01-01

    We present and compare experimental results for electrical and photonic generation of 2-Gb/s pulses for impulse radio ultra-wideband on fiber transmission systems based on direct current modulation of a semiconductor laser diode and external optical injection of a semiconductor laser diode......, respectively. We assess the performance of the two generation approaches in terms of bit-error rate after propagation over 20 km of optical fiber followed by wireless transmission....

  15. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  16. Transceiver Design for Multiband OFDM UWB

    Directory of Open Access Journals (Sweden)

    Leenaerts DMW

    2006-01-01

    Full Text Available Ultra-wideband (UWB is an emerging broadband wireless technology enabling data rates up to Mbps. This paper provides an overview of recent design approaches for several circuit functions that are required for the implementation of multiband OFDM UWB transceivers. A number of transceiver and synthesizer architectures that have been proposed in literature will be reviewed. Although the technology focus will be on CMOS, also some design techniques implemented in BiCMOS technologies will be presented.

  17. Low-Power and Reliable Communications for UWB-Based Wireless Monitoring Sensor Networks in Underground Mine Tunnels

    OpenAIRE

    Abou El-Nasr, Mohamad; Shaban, Heba

    2015-01-01

    This paper investigates the bit-error-rate (BER) and maximum allowable data throughput (MADTh) performance of a novel low-power mismatched Rake receiver structure for ultra wideband (UWB) wireless monitoring sensor networks in underground mine tunnels. This receive node structure provides a promising solution for low-power and reliable communications in underground mine tunnels with more than 90% reduction in power consumption. The BER and MADTh of the proposed receive nodes are investigated ...

  18. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems

    Science.gov (United States)

    2017-03-01

    technology. The measured results show good correlation to the simulated results with a return loss and insertion loss of less than 10 dB and greater...SSS); Suspended Integrated Strip-line (SISL) RF packaging; Ultra-wideband (UWB). Introduction The next generation of highly integrated radar...RF Circuit Design,” Second Edition, Pearson Education, 2009. 3. B. Ma, A. Chousseaud, and S. Toutain, “A new design of compact planar microstrip

  19. Statistical, Graphical, and Learning Methods for Sensing, Surveillance, and Navigation Systems

    Science.gov (United States)

    2016-06-28

    using experimental data from an indoor measurement campaign with FCC -compliant ultra-wideband DISTRIBUTION A: Distribution approved for public release...information from inertial measurements and situational context through Bayesian inference over an augmented hidden Markovian model (HMM). In addition, the...We have taken one step further and introduced the concept of range likelihood (RL) of a set of range-related measurements . We show that such RLs

  20. Handheld Synthetic Array Final Report, Part A

    Science.gov (United States)

    2014-12-01

    Arrival UWB Ultra Wideband WiFi Wireless Fidelity WLAN Wireless Local Access Network Variables used variable description 0:tbel x Posterior pdf...technology has obvious application for military based personal and asset location. Differences will be that the wireless signals of opportunity that can...143 Chapter 2. Overview of the SLAM algorithm for SGL – This chapter describes the SLAM algorithm as applicable to the SGL problem. The general

  1. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

    NARCIS (Netherlands)

    Roosink, M.; Robitaille, N.; McFadyen, B.J.; Hebert, L.J.; Jackson, P.L.; Bouyer, L.J.; Mercier, C.

    2015-01-01

    BACKGROUND: Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback.

  2. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.

    Science.gov (United States)

    Roosink, Meyke; Robitaille, Nicolas; McFadyen, Bradford J; Hébert, Luc J; Jackson, Philip L; Bouyer, Laurent J; Mercier, Catherine

    2015-01-05

    Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. The "virtual mirror" was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed. The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 ± 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence. The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of body perception during active movement in healthy controls. The next step will be to apply this system to assessment of body perception disturbances in patients with chronic pain.

  3. Analysis of the process related to the operations management of the rail traction vehicles in JSC 'Serbian Railways'

    Directory of Open Access Journals (Sweden)

    Vukadinović Vojislav

    2016-01-01

    Full Text Available In the study, issues related to the operations management in railway were elaborated, with special emphasis on the operations management of rail vehicles and main parameters in its activities and in the railway functioning. The analysis of the current status, operation and functioning of the Serbian Railways was also provided, with a special focus on the study of the technical condition regarding exploitation, reliability, and availability of traction vehicles operation which is always actual and particularly important for ensuring the regular and safe functioning of train traffic in all railways in the world as well as in the railway of Serbia. The issue related to the exploitation reliability and availability regarding traction vehicles operation is also being analyzed which is reflected in development of the concept and creation of the methodology for assessment of the technical condition and indicators for determining the level of exploitation reliability, availability of the traction vehicle operation as well as functioning of train traffic and the models related to the operations management of rail traction vehicles.

  4. 77 FR 31434 - Finding That JSC CredexBank Is a Financial Institution of Primary Money Laundering Concern

    Science.gov (United States)

    2012-05-25

    ... CredexBank is a financial institution of primary money laundering concern. DATES: The finding made in... Law 107-56. Title III of the USA PATRIOT Act amends the anti- money laundering provisions of the Bank..., to promote prevention, detection, and prosecution of international money laundering and the financing...

  5. Product quality as the main factor of increase of competitiveness (on the example of JSC “Kazan helicopter plant”)

    Science.gov (United States)

    Khafizov, I. I.; Nurullin, I. G.

    2017-09-01

    Planning for effective development, and timely research perspectives and opportunities, States, markets, regulations, competition and competitiveness of its production, helps to achieve the stable business success in the market. The relevance of the study of the production of high quality products is that the quality of goods and services should always comply with the requirements established in state regulations, standards, regulations or conditions.

  6. Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects

    Science.gov (United States)

    Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.

    2012-01-01

    This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).

  7. Behavioral Health and Performance at NASA JSC: Recent Successes and Future Plan for BHP Research and Operations

    Science.gov (United States)

    Leveton, L. B.; VanderArk, S. T.

    2014-01-01

    The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.

  8. GEODESIC MONITORING OF VERTICAL MOVEMENT OF JSC «GRODNO AZOT» BUILDINGS USING DIGITAL DNA 03 LEVEL

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2010-01-01

    Full Text Available The paper presents peculiar features and methodology pertaining to application of digital DNA 03 level for monitoring vertical movement of load-carrying structures in the workshops and foundations of various capacities, exhaust pipes and granulation towers having height from 100 to150 meters. The proposed methods presuppose usage of the results of engineering and geological investigations and highly accurate geodesic measurements considered in the process of hydro- and pneumatic tests of an isothermic storage of liquid ammonia and a production “Ammonia” shop taken as an example. 

  9. The influence of the executives’ leadership and managerial competencies expression on employees’ engagement. jsc “biok laboratorija” case analysis

    OpenAIRE

    Daujotaitė, Greta

    2016-01-01

    The main purpose: to reveal the leadership’s factors that affect employees’ engagement, as well as the employees’ engagement factors that affect leadership development and the success of the organization. Methods of this thesis: comparative analysis of different literature about leadership, leadership theories, managerial competencies and employee engagement, survey research in selected company, analysis and interpretation of its results. The performed research revealed that there’s strong co...

  10. Protein (Cyanobacteria): 497073171 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Fischerella sp. JSC-11 MHYYVHPFQLELHKLENMIVHVQHVNNQEVKQIADSRLFTSQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTLAFGEEGGF

  11. Outage and BER analysis for ultrawideband-based WPAN in Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    This paper presents a performance analysis of multiband orthogonal frequency-division multiplexing (MB-OFDM) in ultra wideband (UWB)-based personal area networks (UPANs). A UPAN consists of devices with different UWB technologies at the physical layer. Approximate expressions for the outage probability and average bit error rate (BER) are derived in closed form for the MB-OFDM target receiver, taking into account multi-user interference (MUI), as well as external interference in the form of time-hopping (TH) and direct-sequence (DS) UWB signals. © 2010 IEEE.

  12. Automatic radar target recognition of objects falling on railway tracks

    International Nuclear Information System (INIS)

    Mroué, A; Heddebaut, M; Elbahhar, F; Rivenq, A; Rouvaen, J-M

    2012-01-01

    This paper presents an automatic radar target recognition procedure based on complex resonances using the signals provided by ultra-wideband radar. This procedure is dedicated to detection and identification of objects lying on railway tracks. For an efficient complex resonance extraction, a comparison between several pole extraction methods is illustrated. Therefore, preprocessing methods are presented aiming to remove most of the erroneous poles interfering with the discrimination scheme. Once physical poles are determined, a specific discrimination technique is introduced based on the Euclidean distances. Both simulation and experimental results are depicted showing an efficient discrimination of different targets including guided transport passengers

  13. The Improved Locating Algorithm of Particle Filter Based on ROS Robot

    Science.gov (United States)

    Fang, Xun; Fu, Xiaoyang; Sun, Ming

    2018-03-01

    This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.

  14. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    Science.gov (United States)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  15. Radiating nonuniform transmission-line systems and the partial element equivalent circuit method

    CERN Document Server

    Nitsch, Juergen; Wollenberg, Gunter

    2009-01-01

    High frequencies of densely packed modern electronic equipment turn even the smallest piece of wire into a transmission line with signal retardation, dispersion, attenuation, and distortion. In electromagnetic environments with high-power microwave or ultra-wideband sources, transmission lines pick up noise currents generated by external electromagnetic fields. These are superimposed on essential signals, the lines acting not only as receiving antennas but radiating parts of the signal energy into the environment. This book is outstanding in its originality. While many textbooks rephrase

  16. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    Directory of Open Access Journals (Sweden)

    Christensen Lars PB

    2005-01-01

    Full Text Available The problem of asynchronous direct-sequence code-division multiple-access (DS-CDMA detection over the ultra-wideband (UWB multipath channel is considered. A joint synchronization, channel-estimation, and multiuser detection scheme based on the adaptive linear minimum mean square error (LMMSE receiver is presented and evaluated. Further, a novel nonrecursive least-squares algorithm capable of reducing the complexity of the adaptation in the receiver while preserving the advantages of the recursive least-squares (RLS algorithm is presented.

  17. Towards convergence of wireless and wireline signal transport in broadband access networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Tafur Monroy, Idelfonso

    2010-01-01

    Hybrid optical wireless access networks are to play an important role in the realization of the vision of delivery of broadband services to the end-user any time, anywhere and at affordable costs. We present results of experiments conducted over a field deployed optical fibre links we successfull...... demonstrated converged wireless and wireline signal transport over a common fibre infrastructure. The type of signal used in this field deployed experiments cover WiMax, Impulse-radio ultra-wideband (UWB) and coherent transmission of baseband QPSK and radio-over-fibre signals....

  18. Micropower radar systems for law enforcement technology

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  19. Performances of Hybrid Amplitude Shape Modulation for UWB Communications Systems over AWGN Channel in a Single and Multi-User Environment

    Directory of Open Access Journals (Sweden)

    M. Herceg

    2009-09-01

    Full Text Available This paper analyzes the performance of the hybrid Amplitude Shape Modulation (h-ASM scheme for the time-hopping ultra-wideband (TH-UWB communication systems in the single and multi-user environment. h-ASM is the combination of Pulse Amplitude Modulation (PAM and Pulse Shape Modulation (PSM based on modified Hermite pulses (MHP. This scheme is suitable for high rate data transmission applications because b = log2(MN bits can be mapped with one waveform. The channel capacity and error probability over AWGN channel are derived and compared with other modulation schemes.

  20. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  1. Design and Performance of Cyclic Delay Diversity in UWB-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Tarasak Poramate

    2008-01-01

    Full Text Available This paper addresses cyclic delay diversity (CDD in an ultra-wideband communication system based on orthogonal frequency division multiplexing (OFDM technique. Symbol error rate and outage probability have been derived. It is shown that with only two transmit antennas, CDD effectively improves SER performance and reduces outage probability significantly especially when the channel delay spread is short. Both simulation and analytical results agree well in all considered cases. The selection of delay times for CDD is also addressed for some special cases.

  2. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  3. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  4. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  5. Time-domain calculation of sub-nanosecond pulse launched by a proton beam

    International Nuclear Information System (INIS)

    Chan, Kwok-Chi Dominic; Cooper, R.K.

    1990-01-01

    Using the finite-difference time-domain code TBCI, we have numerically calculated the radiation from a sub-nanosecond 800-MeV proton bunch as it is launched into space. The calculation is compared to measurements of the time history of the radiated fields and good agreement is found. A movie showing the development of the radiation pattern will be shown during the presentation at this conference, namely, the First Los Alamos Symposium on Ultra-Wideband Radar. 6 refs., 7 figs

  6. 24-71 GHz PCB Array for 5G ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  7. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  8. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  9. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention

    OpenAIRE

    Seong Kyu Leem; Faheem Khan; Sung Ho Cho

    2017-01-01

    In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a...

  10. All-fiber incoherent frequency-to-time mapping method for microwave signal generation with baseband transmission and multicasting support

    DEFF Research Database (Denmark)

    Company Torres, Victor; Tafur Monroy, Idelfonso; Lancis, Jesus

    2008-01-01

    We present a proof-of-principle experiment for achieving simultaneous distribution of baseband radio-frequency data and up-conversion with broadcasting support over a passive optical network. The technique is based on an incoherent frequency-to-time mapping method for pulse shaping. Specifically...... resembles the shape of the incoherent source. The photodetected signal contains both the baseband data and an up-frequency converted copy with central wavelength for the microwave carrier into the ultra-wideband range and tuning capability by selection of the fiber length. (c) 2008 Elsevier B.V. All rights...

  11. Detection and Classification of Transformer Winding Mechanical Faults Using UWB Sensors and Bayesian Classifier

    Science.gov (United States)

    Alehosseini, Ali; A. Hejazi, Maryam; Mokhtari, Ghassem; B. Gharehpetian, Gevork; Mohammadi, Mohammad

    2015-06-01

    In this paper, the Bayesian classifier is used to detect and classify the radial deformation and axial displacement of transformer windings. The proposed method is tested on a model of transformer for different volumes of radial deformation and axial displacement. In this method, ultra-wideband (UWB) signal is sent to the simplified model of the transformer winding. The received signal from the winding model is recorded and used for training and testing of Bayesian classifier in different axial displacement and radial deformation states of the winding. It is shown that the proposed method has a good accuracy to detect and classify the axial displacement and radial deformation of the winding.

  12. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.

    2015-08-31

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  13. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.; Ballal, Tarig; Al-Naffouri, Tareq Y.; Muqaibel, Ali H.

    2015-01-01

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  14. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  15. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  16. Scalable UWB photonic generator based on the combination of doublet pulses.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  17. A 0.76-pJ/Pulse 0.1-1 Gpps Microwatt IR-UWB CMOS Pulse Generator with Adaptive PSD Control Using A Limited Monocycle Precharge Technique

    DEFF Research Database (Denmark)

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao

    2015-01-01

    This brief presents an ultra-wideband pulse generator topology featuring adaptive control of power spectral density for a broad range of applications with different data rate requirements. The adaptivity is accomplished by employing a limited monocycle precharge approach to control the energy use...... for validation. The measured results show that the pulse generator can be used for a wide pulse repetition rate range from 100 Mpps to 1 Gpps. In addition, the pulse generator consumes 0.76 pJ/pulse at 1 Gpps, equivalent to 760 μW and has a compact size of 0.09 mm2....

  18. Development of accurate UWB dielectric properties dispersion at CST simulation tool for modeling microwave interactions with numerical breast phantoms

    International Nuclear Information System (INIS)

    Maher, A.; Quboa, K. M.

    2011-01-01

    In this paper, a reformulation for the recently published dielectric properties dispersion models of the breast tissues is carried out to be used by CST simulation tool. The reformulation includes tabulation of the real and imaginary parts versus frequency on ultra-wideband (UWB) for these models by MATLAB programs. The tables are imported and fitted by CST simulation tool to second or first order general equations. The results have shown good agreement between the original and the imported data. The MATLAB programs written in MATLAB code are included in the appendix.

  19. BER analysis of DS-UWB system employing a laplace distribution model

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-01

    This letter takes a new approach to extract a closed-form expression for the bit error rate (BER) of direct-sequence ultra wideband (DS-UWB) system. In the analysis, the main signal is impaired by multi-user interference (MUI) and an external source of interference originated by simultanously transmitting multiband orthogonal frequency division multiplexing (MB-OFDM) systems which are located in the vicinity of the DS-UWB receiver. All the transmission channels are affected by Nakagami-m fading. A Laplacian distribution is considered for MUI to comply more with real statistical behaviors of this kind of interference. © IEICE 2011.

  20. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...... verifications of the proposed method are carried out with different full-blade measurements. From all the results, it is found that the proposed technique can efficiently suppress multipath for the in-blade tip antenna, and improve the pulse wave front fidelity, so that the UWB sensing system can also...

  1. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  2. Energy detection UWB system based on pulse width modulation

    Directory of Open Access Journals (Sweden)

    Song Cui

    2014-05-01

    Full Text Available A new energy detection ultra-wideband system based on pulse width modulation is proposed. The bit error rate (BER performance of this new system is slightly worst than that of a pulse position modulation (PPM system in additive white Gaussian noise channels. In multipath channels, this system does not suffer from cross-modulation interference as PPM, so it can achieve better BER performance than PPM when cross-modulation interference occurs. In addition, when synchronisation errors occur, this system is more robust than PPM.

  3. Comparative Overview of UWB and VLC for Data- Intensive and Security-Sensitive Applications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Mihovska, Albena D.; Cianca, Ernestina

    2012-01-01

    This paper provides a comparative overview of two short-range wireless technologies with high potential for use in various data-intensive and security-sensitive applications, namely, ultra wideband (UWB) and visible light communications (VLC). Both are emerging technologies with some unique...... and standardization developments for both technologies and gives a proposal for their suitability based on a comparative view, of the strengths and weaknesses for use in applications, such as home networking, vehicular communications, and medical care, including the main technical challenges....

  4. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    Science.gov (United States)

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  5. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  6. Experimental Investigation of Subject-Specific On-Body Radio Propagation Channels for Body-Centric Wireless Communications

    Directory of Open Access Journals (Sweden)

    Mohammad Monirujjaman Khan

    2014-01-01

    Full Text Available In this paper, subject-specific narrowband (2.45 GHz and ultra-wideband (3–10.6 GHz on-body radio propagation studies in wireless body area networks (WBANs were performed by characterizing the path loss for eight different human subjects of different shapes and sizes. The body shapes and sizes of the test subjects used in this study are characterised as thin, medium build, fatty, shorter, average height and taller. Experimental investigation was made in an indoor environment using a pair of printed monopoles (for the narrowband case and a pair of tapered slot antennas (for the ultra-wideband (UWB case. Results demonstrated that, due to the different sizes, heights and shapes of the test subjects, the path loss exponent value varies up to maximum of 0.85 for the narrowband on-body case, whereas a maximum variation of the path loss exponent value of 1.15 is noticed for the UWB case. In addition, the subject-specific behaviour of the on-body radio propagation channels was compared between narrowband and UWB systems, and it was deduced that the on-body radio channels are subject-specific for both narrowband and UWB system cases, when the same antennas (same characteristics are used. The effect of the human body shape and size variations on the eight different on-body radio channels is also studied for both the narrowband and UWB cases.

  7. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain, Position-Velocity-Measured (α-β-η-θ Tracking Filter

    Directory of Open Access Journals (Sweden)

    Kenshi Saho

    2017-07-01

    Full Text Available We present a strategy for designing an α - β - η - θ filter, a fixed-gain moving-object tracking filter using position and velocity measurements. First, performance indices and stability conditions for the filter are analytically derived. Then, an optimal gain design strategy using these results is proposed and its relationship to the position-velocity-measured (PVM Kalman filter is shown. Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance improvement over the traditional position-only-measured α - β filter. Moreover, we apply an α - β - η - θ filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations. We verify that the proposed strategy can easily design the gains for an α - β - η - θ filter based on the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the position-velocity-measured Kalman filter is also demonstrated.

  8. An UWB LNA Design with PSO Using Support Vector Microstrip Line Model

    Directory of Open Access Journals (Sweden)

    Salih Demirel

    2015-01-01

    Full Text Available A rigorous and novel design procedure is constituted for an ultra-wideband (UWB low noise amplifier (LNA by exploiting the 3D electromagnetic simulator based support vector regression machine (SVRM microstrip line model. First of all, in order to design input and output matching circuits (IMC-OMC, source ZS and load ZL termination impedance of matching circuit, which are necessary to obtain required input VSWR (Vireq, noise (Freq, and gain (GTreq, are determined using performance characterisation of employed transistor, NE3512S02, between 3 and 8 GHz frequencies. After the determination of the termination impedance, to provide this impedance with IMC and OMC, dimensions of microstrip lines are obtained with simple, derivative-free, easily implemented algorithm Particle Swarm Optimization (PSO. In the optimization of matching circuits, highly accurate and fast SVRM model of microstrip line is used instead of analytical formulations. ADCH-80a is used to provide ultra-wideband RF choking in DC bias. During the design process, it is aimed that Vireq = 1.85, Freq = Fmin, and GTreq = GTmax all over operating frequency band. Measurements taken from the realized LNA demonstrate the success of this approximation over the band.

  9. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    Directory of Open Access Journals (Sweden)

    MuhibUr Rahman

    2018-03-01

    Full Text Available In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT. Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs on the radiating patch and placing two rectangular split-ring resonators (RSRR near the feedline-patch junction of the conventional ultra-wideband (UWB antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  10. Description of the plasma diagnostics package (PDP) for the OSS-1 Shuttle mission and JSC plasma chamber test in conjunction with the fast pulse electron gun (FPEG)

    Science.gov (United States)

    Shawhan, S. D.

    1982-01-01

    The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.

  11. Innovative Model of Practice-Oriented Training of Employees of the Town-Forming Enterprise in the Mining Region (by the Example of JSC "SUEK-Kuzbass")

    Science.gov (United States)

    Kulay, Svetlana; Kayachev, Gennady

    2017-11-01

    The article proposes to improve the system of training of employees of joint-stock company SUEK-Kuzbass in the educational institutions of the Kemerovo region according to the requirements of the company using practice-oriented training technology. The aim of the work is to substantiate the effectiveness of implementing practice-oriented training, identify priority directions and ways of its development. The main objectives of the study are: to identify the main advantages for the company and students; determine the criteria for the success and practical value of applying practice-oriented training for the company; conduct a comparative analysis of the target and practice-oriented model of training for the company. The real needs of the employer through the dual form of training were taking into account. The expansion of positive experience in training engineering personnel in higher education in technology-based training with the involvement of specialists from other regions of the company and expanding training in mining was also included.

  12. Status report: Nuclear fuel operating experience in implementing the program for power generation increase at VVER NPPs of JSC concern Rosenergoatom

    International Nuclear Information System (INIS)

    Ryabinin, Y.

    2015-01-01

    The power uprate program of operating WWER-1000 plants was performed by Rosenergoatom using FA-2M and FAA-PLUS for 18-month fuel cycles. Their operation was justified at 104% of the rated power, and extension to 18-month fuel cycles was carried out at WWER-1000 units (except for Kalinin NPP-1). The analysis of actual performance data confirmed the efficiency of the actions implemented, and issues addressed related to the introduction of new fuel type, extended fuel cycles and spent nuclear fuel storage and removal

  13. Application opportunities of systems of control and monitoring for engineering processes fading by JSC 'Instrumental plant 'Tenzor', for utilization and storage of radioactive waste

    International Nuclear Information System (INIS)

    Verbitsky, V.J.; Esaulkov, R.O.; Maslova, M.V.; Kujil, A.S.

    2005-01-01

    Full text: Use of unique automated technological process control systems (ATPCS) on objects of storage of radiation hazardous and nuclear materials is offered. The application opportunity of diagnostic complex consisting of specialized software 'Cruise' and infra-red detection system for control and diagnostics of utilization of nuclear waste products in subcritical thermonuclear equipment is considered

  14. SYSTEM OF THE AUTOMATED ACCOUNTING OF ENERGY RESOURCES ON JSC «BMZ — MANAGEMENT COMPANY OF HOLDING «BMK

    Directory of Open Access Journals (Sweden)

    S. Demyanov

    2015-01-01

    Full Text Available The system of the automated accounting of energy resources allows to quickly obtain the data on energy consumption, to analyze consumption of energy carriers, and to find possible ways of energy economy is presented in this article.

  15. Medium pressure boiler water chemistry optimization using neutralizing amines mixture reagent AMINAT™ PK-2 at CEPP “Borovichi Refractories Plant” of JSC “BKO”

    Science.gov (United States)

    Guseva, O. V.; Butakova, M. V.; Orlov, K. A.; Vinogradov, S. V.; Pavlenko, L. S.

    2017-11-01

    An overview of the neutralizing amine based reagent AMINAT PK-2 usage for water chemistry of steam boilers for medium pressure boiler was given. Long term experiment showed that new reagent allows to decrease corrosion rate comparing with old water chemistry based on ammonia only. Two dosage schemes in different cycle places discussed. Scheme with two points on injection showed better results. Results of corrosion rates experiments and photos of tubes inner surfaces are presented. Based on fuel savings due to reducing scale formation the total annual economy for last year was 5.1 million Russian roubles.

  16. IMPROVEMENT OF STRATEGIC MANIPULATED FEDERAL PROPERTY THE EXAMPLE NON-CORE ASSETS OF JSC «CENTER OF NUCLEAR INDUSTRY NONCORE ASSETS» STATE CORPORATION «ROSATOM»

    OpenAIRE

    Ilya I. Rodin

    2015-01-01

    The article describes the main measures to improve the management of assets, federally-owned or private of public corporations - an inventory of the property, the recognition of non-core assets, the organization of decision-making systems, the sale of non-core assets at market value. The article provides the rationale for the creation within the large state-owned corporations specialized management companies responsible for the restructuring of non-core assets and improve management of the pr...

  17. EXPERIMENTAL MEASUREMENTS OF TAILING UNDERWATER SEDIMENTS AND LIQUID INDUSTRIAL WASTES IN STORAGE TANK ON THE BASIS OF ECHOLOCATION AND GPS-SYSTEMS AT JSC “BELARUSKALI”

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2016-01-01

    Full Text Available The paper presents a new approach to calculate volume of tailing underwater sediments and liquid industrial wastes on the basis of innovative technologies. Two theodolites which are set at various points and a boat with a load for measuring water depth have been traditionally used for topographic survey of slime storage bottom. Horizontal directions have been simultaneously measured on the boat marker while using theodolites. Water depth has been determined while using  a 2-kg circular load which was descended into brine solution with the help of rope. In addition to rather large time and labour costs such technology has required synchronization in actions on three participants involved in the work: operators of two theodolites and boat team in every depth measuring point. Methodology has been proposed for more efficient solution of the problem. It presupposes the use of echolocation together with space localization systems (GPS-systems which can be set on a boat with the purpose to measure depth of a storage tank bed. An echolocation transducer has been installed under the boat bottom at the depth of 10 cm from the brine solution level in the slime storage.  An aerial of GPS-receiver has been fixed over the echo-sounder transducer. Horizontal positioning of bottom depth measuring points have been carried out in the local coordinate system. Formation of digital model for slime storage bottom has been executed after data input of the coordinate positioning that corresponded to corrected depths in the software package LISCAD Plus SEE. The formation has been made on the basis of a strict triangulation method.  Creation of the digital model makes it rather easy to calculate a volume between a storage bottom and a selected level (height of filling material. In this context it is possible to determine a volume and an area not only above but also lower of the datum surface. For this purpose it is recommended to use digital models which are developed for various time periods of slime  storage operation. 

  18. IMPROVEMENT OF STRATEGIC MANIPULATED FEDERAL PROPERTY THE EXAMPLE NON-CORE ASSETS OF JSC «CENTER OF NUCLEAR INDUSTRY NONCORE ASSETS» STATE CORPORATION «ROSATOM»

    Directory of Open Access Journals (Sweden)

    Ilya I. Rodin

    2015-01-01

    Full Text Available The article describes the main measures to improve the management of assets, federally-owned or private of public corporations - an inventory of the property, the recognition of non-core assets, the organization of decision-making systems, the sale of non-core assets at market value. The article provides the rationale for the creation within the large state-owned corporations specialized management companies responsible for the restructuring of non-core assets and improve management of the property. Also calculated the cost-effectiveness of the proposed measures on the example of the State Atomic Energy Corporation «Rosatom».

  19. Waveform Analysis of UWB GPR Antennas

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2009-03-01

    Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  20. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  1. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  2. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications

    Directory of Open Access Journals (Sweden)

    Yin De

    2017-12-01

    Full Text Available Based on transmission line theory and impedance transition, we design an ultra-wideband Transverse ElectroMagnetic (TEM horn antenna that takes advantage of index gradient structure and loading techniques and is optimized for highway Ground Penetrating Radar (GPR applications. We use numerical simulation to analyze the effects of different curved surfaces as an extension of the antenna and further improve the antenna performance by the use of a metallic reflective cavity and distributed resistor loading. We then fabricated an antenna based on the optimization results and determined the Voltage Standing Wave Ratio (VSWR of the antenna to be less than 2 for bandwidths ranging from 0.9–12.6 GHz. The waveform fidelity of the antenna is also good and when we applied this antenna to highway scenarios, it achieved good results.

  3. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  4. Method of remote powering and detecting multiple UWB passive tags in an RFID system

    Science.gov (United States)

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Faranak [San Ramon, CA; Benzel, David M [Livermore, CA; Dallum, Gregory E [Livermore, CA; Spiridon, Alex [Palo Alto, CA

    2012-05-29

    A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

  5. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  6. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  7. Full-wave receiver architecture for the homodyne motion sensor

    Science.gov (United States)

    Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

    2013-11-19

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  8. NLOS mitigation and ranging accuracy for building indoor positioning system in UWB using commercial radio modules

    Science.gov (United States)

    Alsudani, Ahlam

    2018-05-01

    In recent years, indoor positioning system (IPS) plays a very important role in several environments such as hospitals, airports, males, Etc. It is used to locate mobile stations such as human and robots inside buildings. Some of IPSs applications are: locating an elder or child needed for an urgent help in hospitals, emergency situations such as locating firefighters inside building on fire or policemen fitting terrorists inside building by a commander to help for expedite evacuation in case one of them need for help. In indoor positioning applications, the accuracy should be high as can as possible, in another word; the error should be less than 1 meter. The indoor environment is the major challenging to obtain such accuracy. In this paper, we present a novel algorithm to identify the line of sight (LOS) and non-line of sight (NLOS) channels and improve the positioning accuracy using ultra-wideband (UWB) technology implementing DW1000 devices.

  9. Modelling and Comparative Performance Analysis of a Time-Reversed UWB System

    Directory of Open Access Journals (Sweden)

    Popovski K

    2007-01-01

    Full Text Available The effects of multipath propagation lead to a significant decrease in system performance in most of the proposed ultra-wideband communication systems. A time-reversed system utilises the multipath channel impulse response to decrease receiver complexity, through a prefiltering at the transmitter. This paper discusses the modelling and comparative performance of a UWB system utilising time-reversed communications. System equations are presented, together with a semianalytical formulation on the level of intersymbol interference and multiuser interference. The standardised IEEE 802.15.3a channel model is applied, and the estimated error performance is compared through simulation with the performance of both time-hopped time-reversed and RAKE-based UWB systems.

  10. Amplify-and-Forward Cooperative Diversity for Green UWB-Based WBSNs

    Directory of Open Access Journals (Sweden)

    Heba Shaban

    2013-01-01

    Full Text Available This paper proposes a novel green cooperative diversity technique based on suboptimal template-based ultra-wideband (UWB wireless body sensor networks (WBSNs using amplify-and-forward (AF relays. In addition, it analyzes the bit-error-rate (BER performance of the proposed nodes. The analysis is based on the moment-generating function (MGF of the total signal-to-noise ratio (SNR at the destination. It also provides an approximate value for the total SNR. The analysis studies the performance of equally correlated binary pulse position modulation (EC-BPPM assuming the sinusoidal and square suboptimal template pulses. Numerical results are provided for the performance evaluation of optimal and suboptimal template-based nodes with and without relay cooperation. Results show that one relay node provides ~23 dB performance enhancement at BER, which mitigates the effect of the nondesirable non-line-of-sight (NLOS links in WBSNs.

  11. Performance of DS-UWB in MB-OFDM and multi-user interference over Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-18

    The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct-sequence (DS) UWB communication in the presence of multiband orthogonal frequency division multiplexing (MB-OFDM) UWB interfering transmissions. The channel fading is modeled according to Nakagami-m distribution, and multi-user interference is taken into account. The DS-UWB system performance is evaluated in terms of bit error rate (BER). Specifically, using the characteristic function approach, an analytical expression for the average BER is derived conditioned on the channel impulse response. Numerical and simulation results are provided and compared for different coexistence scenarios. © 2011 John Wiley & Sons, Ltd.

  12. Distributed detection in UWB sensor networks under non-orthogonal Nakagami-m fading

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    Several attractive features of ultra wideband (UWB) communications make it a good candidate for physical-layer of wireless sensor networks (WSN). These features include low power consumption, low complexity and low cost of implementation. In this paper, we present an opportunistic power assignment strategy for distributed detection in parallel fusion WSNs, considering a Nakagami-m fading model for the communication channel and time-hopping (TH) UWB for the transmitter circuit of the sensor nodes. In a parallel fusion WSN, local decisions are made by local sensors and transmitted through wireless channels to a fusion center. The fusion center processes the information and makes the final decision. Simulation results are provided for the global probability of detection error and relative performance gain to evaluate the efficiency of the proposed power assignment strategy in different fading environments. © 2011 IEEE.

  13. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  14. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  15. Transfer function fitting using a continuous Ant Colony Optimization (ACO algorithm

    Directory of Open Access Journals (Sweden)

    A. Reineix

    2015-03-01

    Full Text Available An original approach is proposed in order to achieve the  fitting of ultra-wideband complex frequency functions, such  as the complex impedances, by using the so-called ACO  (Ant Colony Optimization methods. First, we present the  optimization principle of ACO, which originally was  dedicated to the combinatorial problems. Further on, the  extension to the continuous and mixed problems is  explained in more details. The interest in this approach is  proved by its ability to define practical constraints and  objectives, such as minimizing the number of filters used in  the model with respect to a fixed relative error. Finally, the  establishment of the model for the first and second order  filter types illustrates the power of the method and its  interest for the time-domain electromagnetic computation.

  16. Accurate Analytical Multiple-Access Performance of Time-Hopping Biorthogonal PPM IR-UWB Systems

    Directory of Open Access Journals (Sweden)

    SVEDEK, T.

    2011-05-01

    Full Text Available In this paper, the characteristic function (CF method is used to derive the symbol error rate (SER expression for time-hopping impulse radio ultra-wideband (TH-IR-UWB systems with a biorthogonal pulse position modulation (BPPM scheme in the presence of a multi-user interference (MUI. The derived expression is validated with the Monte-Carlo simulation and compared with orthogonal PPM. Moreover, the analytical results are compared with the Gaussian approximation (GA of MUI which is shown to be inaccurate for a medium and large signal-to-noise ratio (SNR. It is also shown that the BPPM scheme outperforms the PPM scheme for all SNR. At the end, the influence of different system parameters on the BPPM performance is analyzed.

  17. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  18. A U-Shaped Slot UWB Antenna with Flexible and Wide Tunable Dual Notch Band

    Directory of Open Access Journals (Sweden)

    Zhang Zhongmin

    2016-01-01

    Full Text Available A coplanar waveguide (CPW fed ultra-wideband (UWB antenna with flexible and wide tunable dual bandnotched characteristics is proposed in this paper. The dual band-notched function is achieved by using an U-shaped slot inserted into the ellipse radiation patch and by using an elliptic parasitic slit placed near the ground plane. The wide tunable band-notched characteristic is implemented by adjusting the length of U-shaped slot and by adjusting the length of ellipse parasitic slit. The design aims to achieve wide reconfigurable band-notched features on the UWB antenna. The simulated results indicate that the proposed antenna has a wide bandwidth (VSWR under 2 from 2.9GHz to 12.6GHz with fractional bandwidth of 125%, and has a wide tunable notch band center frequency from 4.5GHz to 12.4GHz.

  19. Compact and Wide Stopband Lowpass Filter Using Open Complementary Split Ring Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. S. Karthikeyan

    2015-09-01

    Full Text Available A compact (0.16 λg x 0.08 λg and wide stop¬band lowpass filter design using open complementary split ring resonator (OCSRR and defected ground structure (DGS is presented in this paper. Low pass filter is con-structed using two cascaded stages of OCSRR. Since the rejection bandwidth of the OCSRR is narrow, tapered dumbbell shaped DGS section is placed under the OCSRR to enhance the bandwidth. The cutoff frequency (fc of the proposed lowpass filter is 1.09 GHz. The rejection band¬width of the filter covers the entire ultra wideband spec¬trum. Hence the spurious passband suppression is achieved up to 10 fc. The designed filter has been fabri¬cated and validated by experimental results

  20. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  1. A Novel RFID EMSICC-based Chipless Tag

    Directory of Open Access Journals (Sweden)

    S. Sakouhi

    2017-04-01

    Full Text Available A new Radio Frequency Identification (RFID chipless tag based on the Substrate Integrated Waveguide (SIW technology is proposed in this paper. The tag highlights the importance of using such technologies allowing a surface miniaturization, a high Q-factor and an original shape. Thus, the novel design consists of an Eight-Mode Substrate Integrated Circular Cavity (EMSICC associated to an Ultra Wideband (UWB bowtie-shaped antenna. The EMSICC is realized by bisecting the Quarter Mode Substrate Integrated Circular Cavity (QMSICC into two parts, while preserving the same resonant frequency and the original electric field distribution. Further, the operating frequency band is from 5 GHz to 8 GHz within a compact area of 4.97 × 1.05 cm2. The proposed design is experimentally validated in the frequency domain.

  2. Subspace Analysis of Indoor UWB Channels

    Directory of Open Access Journals (Sweden)

    Rachid Saadane

    2005-03-01

    Full Text Available This work aims at characterizing the second-order statistics of indoor ultra-wideband (UWB channels using channel sounding techniques. We present measurement results for different scenarios conducted in a laboratory setting at Institut Eurécom. These are based on an eigendecomposition of the channel autocovariance matrix, which allows for the analysis of the growth in the number of significant degrees of freedom of the channel process as a function of the signaling bandwidth as well as the statistical correlation between different propagation paths. We show empirical eigenvalue distributions as a function of the signal bandwidth for both line-of-sight and non-line-of-sight situations. Furthermore, we give examples where paths from different propagation clusters (possibly arising from reflection or diffraction show strong statistical dependence.

  3. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  4. UWB delay and multiply receiver

    Energy Technology Data Exchange (ETDEWEB)

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  5. Full-wave receiver architecture for the homodyne motion sensor

    Energy Technology Data Exchange (ETDEWEB)

    Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.; Romero, Carlos E.

    2015-09-29

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  6. Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2017-02-01

    Full Text Available This article presents the design of sectoral circular disc fractal antenna. The proposed antenna has been excited using CPW – feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 15.0 GHz. The measured and simulated results are compared and found in good agreement. The impedance match of the antenna throughout the band is improved by incorporating the rectangular slots in the ground plane. The measured radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The backscattering of antenna is also discussed and calculated for antenna mode and structural mode scattering. This type of antenna is useful for UWB system, microwave imaging and vehicular radar, precision positioning location.

  7. Target Localization with a Single Antenna via Directional Multipath Exploitation

    Directory of Open Access Journals (Sweden)

    Ali H. Muqaibel

    2015-01-01

    Full Text Available Target localization in urban sensing can benefit from angle dependency of the pulse shape at a radar receiver antenna. We propose a localization approach that utilizes the embedded directivity in ultra-wideband (UWB antennas to estimate target positions. A single radar unit sensing operation of indoor targets surrounded by interior walls is considered, where interior wall multipaths are exploited to provide target cross-range. This exploitation assumes resolvability of the multipath components, which is made possible by the virtue of using UWB radar signals. The proposed approach is most attractive when only few multipaths are detectable due to propagation obstructions or owing to low signal-to-noise ratios. Both simulated and experimental data are used to demonstrate the effectiveness of the proposed approach.

  8. TOPICAL REVIEW: Modelling the interaction of electromagnetic fields (10 MHz 10 GHz) with the human body: methods and applications

    Science.gov (United States)

    Hand, J. W.

    2008-08-01

    Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.

  9. Joint Direction-of-Departure and Direction-of-Arrival Estimation in a UWB MIMO Radar Detecting Targets with Fluctuating Radar Cross Sections

    Directory of Open Access Journals (Sweden)

    Idnin Pasya

    2014-01-01

    Full Text Available This paper presents a joint direction-of-departure (DOD and direction-of-arrival (DOA estimation in a multiple-input multiple-output (MIMO radar utilizing ultra wideband (UWB signals in detecting targets with fluctuating radar cross sections (RCS. The UWB MIMO radar utilized a combination of two-way MUSIC and majority decision based on angle histograms of estimated DODs and DOAs at each frequency of the UWB signal. The proposed angle estimation scheme was demonstrated to be effective in detecting targets with fluctuating RCS, compared to conventional spectra averaging method used in subband angle estimations. It was found that a wider bandwidth resulted in improved estimation performance. Numerical simulations along with experimental evaluations in a radio anechoic chamber are presented.

  10. Transient analysis of printed lines using finite-difference time-domain method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  11. Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme

    Science.gov (United States)

    He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo

    2018-05-01

    In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.

  12. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    International Nuclear Information System (INIS)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 μm CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm 2 .

  13. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    International Nuclear Information System (INIS)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun

    2010-01-01

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 μm CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  14. A 6-9 GHz 5-band CMOS synthesizer for MB-OFDM UWB

    Energy Technology Data Exchange (ETDEWEB)

    Chen Pufeng; Li Zhiqiang; Wang Xiaosong; Zhang Haiying; Ye Tianchun, E-mail: chenpufeng@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-07-15

    An ultra-wideband frequency synthesizer is designed to generate carrier frequencies for 5 bands distributed from 6 to 9 GHz with less than 3 ns switching time. It incorporates two phase-locked loops and one single-sideband (SSB) mixer. A 2-to-1 multiplexer with high linearity is proposed. A modified wideband SSB mixer, quadrature VCO, and layout techniques are also employed. The synthesizer is fabricated in a 0.18 {mu}m CMOS process and operates at 1.5-1.8 V while consuming 40 mA current. The measured phase noise is -128 dBc/Hz at 10 MHz offset, and the sideband rejection is -22 dBc at 7.656 GHz.

  15. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-09-15

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 {mu}m CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm{sup 2}.

  16. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  17. Modelling of Substrate Noise and Mitigation Schemes for UWB Systems

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Larsen, Torben

    2012-01-01

    tuned elements in the signal paths. However, for UWB designs this is not a viable option and other means are therefore required. Moreover, owing to the ultra-wideband nature and low power spectral density of the signal, UWB mixed-signal integrated circuits are more sensitive to substrate noise compared...... with narrow-band circuits. This chapter presents a study on the modeling and mitigation of substrate noise in mixed-signal integrated circuits (ICs), focusing on UWB system/circuit designs. Experimental impact evaluation of substrate noise on UWB circuits is presented. It shows how a wide-band circuit can......The last chapter of this first part of the book, chapter seven, is devoted to Modeling of Substrate Noise and Mitigation Schemes for Ultrawideband (UWB) systems, and is written by Ming Shen, Jan H. Mikkelsen, and Torben Larsen from Aalborg University, Denmark. In highly integrated mixed...

  18. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  19. Review of Key Technologies of 5G Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Shi Sha

    2015-01-01

    Full Text Available The 5th generation mobile communication system (5G is oriented towards a new generation of mobile communication system to the year of 2020 and beyond, and its development is still at the exploratory stage. Combining the latest trends in mobile communication development at home and abroad, in this article, we describe the key technologies of driving the 5G research direction. Furthermore, the technical innovation of 5G comes from both wireless and network technologies. In the field of wireless technologies, massive multiple-input multiple-output (MIMO, ultra-wideband spectral, ultra-dense heterogeneous networks, have already become the focus of global industry. In the field of network technologies, a new network architecture based on software-defined networking (SDN becomes the prevailing view worldwide. Additionally, there are some other potential technologies for 5G, such as NOMA, FBMC, mm Waves, and Multi-carrier technology aggregation.

  20. FDTD simulation of exposure of biological material to electromagnetic nanopulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States); Haynie, Donald T [Center for Applied Physics Studies and Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2005-01-21

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed using the finite difference-time domain (FDTD) method. The approach required the reparametrization of existing Cole-Cole model-based descriptions of dielectric properties of biological matter in terms of the Debye model without loss of accuracy. Several tissue types have been considered. Results show that the electromagnetic field inside biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behaviour inside tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 kV m{sup -1} nanopulses is insufficient to change the temperature of the exposed material for pulse repetition rates of 1 MHz or less, consistent with recent experimental results.

  1. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  2. A method of detection of respiration rate on Android using UWB Impulse Radar

    Directory of Open Access Journals (Sweden)

    Young-Jin Park

    2016-12-01

    Full Text Available Monitoring respiration rate is important because it can help to detect and prevent abnormal respiratory rates that can lead to cardiac arrest and chronic obstructive pulmonary disease. Nowadays, most medical measurement and monitoring devices are either invasive or wired but people are hesitant to attach physiological sensors to their body. In this study, we investigated whether real-time medical measurement of breathing using Novelda’s Ultra-Wideband Impulse Radio (IR-UWB–which does not need to be attached to the human body and is also non-invasive–is possible on Android. Experimental results obtained were found to be comparable to those of a commercial healthcare device.

  3. An Antenna Measurement System Based on Optical Feeding

    Directory of Open Access Journals (Sweden)

    Ryohei Hosono

    2013-01-01

    the advantage of the system is demonstrated by measuring an ultra-wideband (UWB antenna both by the optical and electrical feeding systems and comparing with a calculated result. Ripples in radiation pattern due to the electrical feeding are successfully suppressed by the optical feeding. For example, in a radiation measurement on the azimuth plane at 3 GHz, ripple amplitude of 1.0 dB that appeared in the electrical feeding is reduced to 0.3 dB. In addition, a circularly polarized (CP antenna is successfully measured by the proposed system to show that the system is available not only for amplitude but also phase measurements.

  4. A Review of Anti- Podal Vivaldi Antenna Operating in Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    Asim Alkhaibari

    2017-12-01

    Full Text Available The antenna proposed is a new geomantic structure of Ultra-Wideband (UWB Anti- Podal Vivaldi antenna (AVA. It remarkably offers an attractive performance over the bands of cellular networks. However, its benefits are not limited only in particular applications, whereas radar imaging, mining detection, the biomedical science in the heating of brain cancer tumor and treatment, and the wireless communication are considered as the main applications suitable for utilization. Therefore, the focus on this paper is to spot the light illuminating into the cellular communications network Systems. On the other hands, several characteristics of Vivaldi antenna have been provided such as the gain, return loss, Voltage Standing Wave Ratio (VSWR, current distribution and E- fields. Finally, the results illustrate the capability and feasibility of the designed antenna.

  5. Progress of compact Marx generators high power microwave source

    International Nuclear Information System (INIS)

    Liu Jinliang; Fan Xuliang; Bai Guoqiang; Cheng Xinbing

    2012-01-01

    The compact Marx generators, which can operate at a certain repetition frequency with small size, light weight, and high energy efficiency, are widely used in narrowband, wideband and ultra-wideband high power microwave (HPM) sources. This type of HPM source based on compact Marx generators is a worldwide research focus in recent years, and is important trend of development. The developments of this type of HPM source are described systemically in this paper. The output parameters and structural characteristics are reviewed, and the trends of development are discussed. This work provides reference and evidence for us to master the status of the HPM source based on compact Marx generators correctly and to explore its technical routes scientifically. (authors)

  6. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  7. 79 GHz UWB automotive short range radar – Spectrum allocation and technology trends

    Directory of Open Access Journals (Sweden)

    H.-L. Bloecher

    2009-05-01

    Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  8. Assessment of Cooperative and Heterogeneous Indoor Localization Algorithms with Real Radio Devices

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Noureddine, Hadi; Amiot, Nicolas

    2014-01-01

    In this paper we present results of real-life local- ization experiments performed in an unprecedented cooperative and heterogeneous wireless context. The experiments covered measurements of different radio devices packed together on a trolley, emulating a multi-standard Mobile Terminal (MT) along...... representative trajectories in a crowded office environment. Among all the radio access technologies involved in this campaign (including LTE, WiFi...), the focus is herein put mostly on Impulse Radio - Ultra Wideband (IR-UWB) and ZigBee sub-systems, which are enabled with peer-to-peer ranging capabilities based...... on Time of Arrival (ToA) estimation and Received Signal Strength (RSS) measurements respectively. Single-link model parameters are preliminarily drawn and discussed. In comparison with existing similar campaigns, new algorithms are also applied to the measurement data, showing the interest of advanced de...

  9. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  10. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Science.gov (United States)

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  11. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    Science.gov (United States)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  12. Pervasive Mobile and Ambient Wireless Communications COST Action 2100

    CERN Document Server

    Zanella, Alberto

    2012-01-01

    Pervasive Mobile and Ambient Wireless Communications reports the findings of COST 2100, a project of the European intergovernmental COST framework addressing various topics currently emerging in mobile and wireless communications. Drawing on experience developed in this and earlier COST projects, the text represents the final outcome of collaborative work involving more than 500 researchers in 140 institutions and 30 countries (including outside Europe). The book’s subject matter includes: • transmission techniques; • signal processing; • radio channel modelling and measurement; • radio network issues; and • recent paradigms including ultra-wideband, cooperative, vehicle-to-vehicle and body communications. The research reported comes from a variety of backgrounds: academic, equipment-manufacturing and operational. The information contained in this book will bring the study reported to a wider audience from all those spheres of work. Pervasive Mobile and Ambient Wireless Communications will be of i...

  13. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications

    Directory of Open Access Journals (Sweden)

    Giovanni Diraco

    2017-11-01

    Full Text Available Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation, this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing. The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase, with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  14. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications.

    Science.gov (United States)

    Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro

    2017-11-24

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  15. Desain dan Optimasi Antena Pita Lebar Planar Monopole Bentuk Sembarang dengan Algoritma Genetika dan Metode Momen

    Directory of Open Access Journals (Sweden)

    Joko Suryana

    2018-04-01

    Full Text Available This paper presents a new approach in designing an ultra wideband minimum dispersion antenna optimally to avoid the degradation of broadband communications system performance. Design and iterative optimization are applied to an arbitrary shape of planar monopole antenna using a genetic algorithm combined with the moment method, abbreviated as AGMM method, and implemented with Matlab. Two arbitrary shapes of planar monopole antennas have been implemented in compact physical size using AGMM optimization, each having 9.1 GHz and 7.4 GHz bandwidths, the lowest frequency of 1.9 GHz and 2.7 GHz and fidelity 0.6 and 0.64 for any arbitrary discrete antenna and edge profile antenna. This method can be applied to design any arbitrary shapes of an ultra-wideband antenna with each has wide bandwidth more than 7 GHz, the lowest frequency below 3 GHz and a minimum fidelity of 0,55 that is suitable for high- speed communication, such as 5G system. Makalah ini memaparkan pendekatan baru dalam perancangan optimal antena pita lebar dispersi minimum untuk menghindari penurunan kinerja sistem komunikasi kecepatan tinggi. Desain dan optimasi iteratif diterapkan pada antena planar monopole bentuk sembarang menggunakan algoritma genetika yang digabungkan dengan metode momen yang disingkat sebagai metode AGMM. Metode ini diimplementasikan dengan Matlab. Dua buah tipe antena planar monopole pita lebar bentuk sembarang dan ukuran fisik kompak berhasil dirancang dengan AGMM yang masing-masing memiliki lebar pita 9,1 GHz dan 7,4 GHz, frekuensi terendah 1,9 GHz dan 2,7 GHz serta memiliki fidelity 0,6 dan 0,64 untuk antena diskrit sembarang dan antena profil tepi sembarang. Metode ini dapat diterapkan untuk merancang antena pita lebar bentuk sembarang dengan lebar pita lebih dari 7 GHz, frekuensi terendah < 3 GHz dan memiliki fidelity di atas 0,55 yang cocok untuk komunikasi berkecepatan tinggi, misalnya sistem 5G.

  16. Micropower impulse radar technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J., LLNL

    1998-04-15

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  17. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  18. DEVELOPMENT OF A METHOD OF IMPROVEMENT OF QUALITY OF MILL PRODUCTS AND WEAR RESISTANCE OF THE TOOL AT THE ROLLING MILL 150 JSC «BSW – MANAGING COMPANY OF HOLDING «BMC»

    Directory of Open Access Journals (Sweden)

    I. A. Zuyeu

    2016-01-01

    Full Text Available Enhancement of calibration of mill rolls of the rolling mill 150, to improve of the mill products quality characteristics and to increase efficiency of the whole production is described in the article.

  19. Astronaut Anna Fisher practices control of the RMS in a trainer

    Science.gov (United States)

    1984-01-01

    Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.

  20. 75 FR 60076 - Initiation of Antidumping and Countervailing Duty Administrative Reviews and Requests for...

    Science.gov (United States)

    2010-09-29

    ... as Anvifish JSC) Anvifish Co., Ltd Asia Commerce Fisheries Joint Stock Company (aka as Acomfish JSC... Trading Company Limited Qingdao Tiger Hardware Factory Co., Ltd Qingyuan County Hongyi Hardware Products...