Coplanar strips for Josephson voltage standard circuits
International Nuclear Information System (INIS)
Schubert, M.; May, T.; Wende, G.; Fritzsch, L.; Meyer, H.-G.
2001-01-01
We present a microwave circuit for Josephson voltage standards. Here, the Josephson junctions are integrated in a microwave transmission line designed as coplanar strips (CPS). The new layout offers the possibility of achieving a higher scale of integration and to considerably simplify the fabrication technology. The characteristic impedance of the CPS is about 50 Ω, and this should be of interest for programmable Josephson voltage standard circuits with SNS or SINIS junctions. To demonstrate the function of the microwave circuit design, conventional 10 V Josephson voltage standard circuits with 17000 Nb/AlO x /Nb junctions were prepared and tested. Stable Shapiro steps at the 10 V level were generated. Furthermore, arrays of 1400 SINIS junctions in this microwave layout exhibited first-order Shapiro steps. Copyright 2001 American Institute of Physics
Microwave integrated circuit for Josephson voltage standards
Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)
1980-01-01
A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.
Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching
Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest
2017-09-01
A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k = 2) at 1 MHz and 0.5 part in 106 (k = 2) at 100 kHz is within reach.
BIPM direct on-site Josephson voltage standard comparisons: 20 years of results
International Nuclear Information System (INIS)
Solve, Stephane; Stock, Michael
2012-01-01
The discovery of the Josephson effect has for the first time given national metrology institutes (NMIs) the possibility of maintaining voltage references which are stable in time. In addition, the introduction in 1990 of a conventional value for the Josephson constant, K J-90 , has greatly improved world-wide consistency among representations of the volt. For 20 years, the Bureau International des Poids et Mesures (BIPM) has conducted an ongoing, direct, on-site key comparison of Josephson voltage standards among NMIs under the denominations BIPM.EM-K10.a (1 V) and BIPM.EM-K10.b (10 V) in the framework of the mutual recognition arrangement (CIPM MRA). The results of 41 comparisons illustrate the consistency among primary voltage standards and have demonstrated that a relative total uncertainty of a few parts in 10 10 is achievable if a few precautions are taken with regard to the measurement set-up. Of particular importance are the grounding, efficient filters and high insulation resistance of the measurement leads, and clean microwave distribution along the propagation line to the Josephson array. This paper reviews the comparison scheme and technical issues that need to be taken into account to achieve a relative uncertainty at the level of a few parts in 10 10 or even a few parts in 10 11 in the best cases. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kohlmann, Johannes; Kieler, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.43 ' ' Josephson-Schaltungen' '
2016-09-15
In this contribution we present the manufacturing technology for the fabrication of integrated superconducting Josephson serial circuits for voltage normals. First we summarize some foundations for Josephson voltage normals and sketch the concept and the setup of the circuits, before we describe the manufacturing technology form modern practical Josephson voltage normals.
Manufacturing technology for practical Josephson voltage normals
International Nuclear Information System (INIS)
Kohlmann, Johannes; Kieler, Oliver
2016-01-01
In this contribution we present the manufacturing technology for the fabrication of integrated superconducting Josephson serial circuits for voltage normals. First we summarize some foundations for Josephson voltage normals and sketch the concept and the setup of the circuits, before we describe the manufacturing technology form modern practical Josephson voltage normals.
The pulse-driven AC Josephson voltage normal; Das pulsgetriebene AC-Josephson-Spannungsnormal
Energy Technology Data Exchange (ETDEWEB)
Kieler, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.43 ' ' Josephson-Schaltungen' '
2016-09-15
In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.
The pulse-driven AC Josephson voltage normal
International Nuclear Information System (INIS)
Kieler, Oliver
2016-01-01
In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.
SHORT COMMUNICATION: Transportable Zener-diode Voltage Standard
Karpov, O. V.; Shulga, V. M.; Shakirzyanova, F. R.; Sarandi, A. E.
1994-01-01
Five transportable Zener-diode dc voltage standards have been developed, fabricated and investigated at the NPO VNIIFTRI. The standards were designed to transfer the unit of electromotive force (emf) from Josephson reference standards to measuring instruments. Following the results of these investigations, standard N 02 has been used for intercomparison of the Russian Josephson reference standards.
Solve, S.; Chayramy, R.; Maruyama, M.; Urano, C.; Kaneko, N.-H.; Rüfenacht, A.
2018-04-01
BIPM’s new transportable programmable Josephson voltage standard (PJVS) has been used for an on-site comparison at the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) (NMIJ/AIST, hereafter called just NMIJ unless otherwise noted). This is the first time that an array of niobium-based Josephson junctions with amorphous niobium silicon Nb x Si1-x barriers, developed by the National Institute of Standards and Technology4 (NIST), has been directly compared to an array of niobium nitride (NbN)-based junctions (developed by the NMIJ in collaboration with the Nanoelectronics Research Institute (NeRI), AIST). Nominally identical voltages produced by both systems agreed within 5 parts in 1012 (0.05 nV at 10 V) with a combined relative uncertainty of 7.9 × 10-11 (0.79 nV). The low side of the NMIJ apparatus is, by design, referred to the ground potential. An analysis of the systematic errors due to the leakage current to ground was conducted for this ground configuration. The influence of a multi-stage low-pass filter installed at the output measurement leads of the NMIJ primary standard was also investigated. The number of capacitances in parallel in the filter and their insulation resistance have a direct impact on the amplitude of the systematic voltage error introduced by the leakage current, even if the current does not necessarily return to ground. The filtering of the output of the PJVS voltage leads has the positive consequence of protecting the array from external sources of noise. Current noise, when coupled to the array, reduces the width or current range of the quantized voltage steps. The voltage error induced by the leakage current in the filter is an order of magnitude larger than the voltage error in the absence of all filtering, even though the current range of steps is significantly decreased without filtering.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Stephan; Palafox, Luis [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.63 ' ' Josephson-Effekt, Spannung' '
2016-09-15
This article first explains the fundamental principle of an impedance measurement bridge on the base of Josephson voltage normals, before both types of measurement bridges realized in the PTB are more precisely discussed.
New International Reference Standards of Voltage and Resistance.
Sirvastava, V. P.
1991-01-01
The introduction of the quantum standards of resistance and voltage, based on the Quantum Hall Effect (QHE) and the Josephson Effect, can be used to establish highly reproducible and uniform representations of the ohm and volt worldwide. Discussed are the QHE and the Josephson Effect. (KR)
Branching in current-voltage characteristics of intrinsic Josephson junctions
International Nuclear Information System (INIS)
Shukrinov, Yu M; Mahfouzi, F
2007-01-01
We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented
DEFF Research Database (Denmark)
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1976-01-01
The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...
The Josephson and Quantum Hall effect in metrology
International Nuclear Information System (INIS)
Lifka, E.
1990-01-01
This first generation of DC voltage standards based upon the Josephson effect made use of one tunnel junction coupled with microwaves via an external resonator. The needed output voltage level of 1 V was derived either by means of room temperature resistive divider or the cryogenic current comparator from the quantized microwave-induced voltage drop on the Josephson tunnel junction. In order to increase the accuracy of th standard, series arrays of Josephson tunnel junctions, in which the quantized voltage drops are added together thus providing reference voltage of several hundreds mV, are commonly used in some national laboratories. As the radiating frequency used is 70 GHz or higher the actual sample containing tunnel junction array takes form of an millimeter wave integrated circuit feeded by the thin film fin-line. This improved DC voltage standard has relative uncertainty lower by an amount which equals to the contribution of the resistive divider and allied measuring circuitry. This paper traces the present and future of studies involving the use of the Josephson and Quantum Hall Effect in meteorology
Josephson tunneling current in the presence of a time-dependent voltage
International Nuclear Information System (INIS)
Harris, R.E.
1975-01-01
The expression for the current through a small Josephson tunnel junction in the presence of a time-dependent voltage is presented. Four terms appear: the usual sine, cosine, and quasiparticle terms, and a reactive part of the quasiparticle current. The latter is displayed graphically as a function of both energy and temperature. It is shown that in the limit of zero dc voltage and small ac voltage, the Josephson device behaves linearly. Interpretation of the in- and out-of-phase components of the current in this linear limit is given to provide physical insight into some of the details of the general expression. Finally, the tunneling current in the linear limit is shown for thin tunneling barriers to be proportional to the current in a single superconductor in the presence of an electromagnetic field
International Nuclear Information System (INIS)
Shukrinov, Yu.M.; Mahfouzi, F.
2006-01-01
We study the current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β 2 1/β c , where β c is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors
International Nuclear Information System (INIS)
Wang, Gang; Zhang, Zhonghua; Li, Zhengkun; Xu, Jinxin; You, Qiang
2016-01-01
Measurement of the mutual inductance is one of the key techniques in the joule balance to determine the Planck constant h, where a standard-square-wave compensation method was proposed to accurately measure the dc value of the mutual inductance. With this method, analog switches are used to compose an analog-switch signal generator to synthesize the excitation and compensation voltages. However, the accuracy of the compensation voltage is influenced by the non-ideal behaviors of analog-switches. In this paper, the effect from these non-ideal switches is analyzed in detail and evaluated with the equivalent circuits. A programmable Josephson voltage standard (PJVS) is used to generate a reference compensation voltage to measure the time integration of the voltage waveform generated by the analog-switch signal generator. Moreover, the effect is also evaluated experimentally by comparing the difference between the mutual inductance measured with the analog-switch signal generator and the value determined by the PJVS-analog-switch generator alternately in the same mutual inductance measurement system. The result shows that the impact of analog switches is 1.97 × 10 −7 with an uncertainty of 1.83 × 10 −7 (k = 1) and confirms that the analog switch method can be used regularly instead of the PJVS in the mutual inductance measurement for the joule balance experiment. (paper)
International Nuclear Information System (INIS)
McAdory, R.T. Jr.
1988-01-01
A theory is presented for the nonequilibrium voltage states of an irradiated Josephson junction shunted by an external resistor but with no external current or voltage biasing. This device, referred to as a free-running Josephson junction, is modeled in a small--radiation-amplitude, deterministic regime extending the previous work of Shenoy and Agarwal. The time-averaged induced voltage is treated as a dynamical variable, the external radiation is modeled as a current source, and the induced junction-radiation vector potential, with and without a mode structure, is treated to first order in the driving currents. A dynamical equation for the time-averaged induced voltage yields a (nonequilibrium) steady-state relation between the time-averaged induced voltage and the incident radiation amplitude valid for a wide range of voltages, including zero. Regions of bistability occur in the voltage--versus--incident-amplitude curves, some of which are dependent on the external resistor. The zero-voltage state breaks down, as the external radiation amplitude is increased, at a critical value of the incident-radiation amplitude inversely proportional to the external resistance
Two coupled Josephson junctions: dc voltage controlled by biharmonic current
International Nuclear Information System (INIS)
Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J
2012-01-01
We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)
A programmable quantum current standard from the Josephson and the quantum Hall effects
Energy Technology Data Exchange (ETDEWEB)
Poirier, W., E-mail: wilfrid.poirier@lne.fr; Lafont, F.; Djordjevic, S.; Schopfer, F.; Devoille, L. [Quantum metrology group, Laboratoire National de métrologie et d' Essais, 29 avenue Roger Hennequin, 78197 Trappes (France)
2014-01-28
We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.
Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices
International Nuclear Information System (INIS)
Fistul, M.V.; Giuliani, G.F.
1997-01-01
We have developed a theory of the current-voltage characteristic of a Josephson junction in the presence of randomly distributed, pinned misaligned Abrikosov vortices oriented perpendicularly to the junction plane. Under these conditions the Josephson phase difference var-phi acquires an interesting stochastic dependence on the position in the plane of the junction. In this situation it is possible to define an average critical current which is determined by the spatial correlations of this function. Due to the inhomogeneity, we find that for finite voltage bias the electromagnetic waves propagating in the junction display a broad spectrum of wavelengths. This is at variance with the situation encountered in homogeneous junctions. The amplitude of these modes is found to decrease as the bias is increased. We predict that the presence of these excitations is directly related to a remarkable feature in the current-voltage characteristic. The dependence of the position and the magnitude of this feature on the vortex concentration has been determined. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Georgakopoulos, D; Budovsky, I; Hagen, T; Sasaki, H; Yamamori, H
2012-01-01
We have developed a programmable Josephson voltage standard that can produce voltages up to 20 V with a resolution of better than 0.1 µV over the whole voltage range and better than 1 nV for voltages up to 10 mV. The standard has two superconductor–normal metal–superconductor junction arrays connected in series and driven by two radiofrequency oscillators. The cryogenic part of the standard is based on a cryocooler. The new standard agrees with the primary quantum voltage standard maintained at the National Measurement Institute, Australia, within 10 nV and forms the basis of an automated calibration system for digital multimeters and voltage references. (paper)
Modeling Bloch oscillations in ultra-small Josephson junctions
Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose
In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.
Voltage splay modes and enhanced phase locking in a modified linear Josephson array
Harris, E. B.; Garland, J. C.
1997-02-01
We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=, where f is the magnetic frustration, while for 0tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N2 dependence, N being the number of series-connected junctions.
Wang, Hui; Blencowe, M. P.; Armour, A. D.; Rimberg, A. J.
2017-09-01
We give a semiclassical analysis of the average photon number as well as photon number variance (Fano factor F ) for a Josephson junction (JJ) embedded microwave cavity system, where the JJ is subject to a fluctuating (i.e., noisy) bias voltage with finite dc average. Through the ac Josephson effect, the dc voltage bias drives the effectively nonlinear microwave cavity mode into an amplitude squeezed state (F Armour et al., Phys. Rev. Lett. 111, 247001 (2013), 10.1103/PhysRevLett.111.247001], but bias noise acts to degrade this squeezing. We find that the sensitivity of the Fano factor to bias voltage noise depends qualitatively on which stable fixed point regime the system is in for the corresponding classical nonlinear steady-state dynamics. Furthermore, we show that the impact of voltage bias noise is most significant when the cavity is excited to states with large average photon number.
Energy Technology Data Exchange (ETDEWEB)
Karpov, O.V.; Koutovoi, V.D.; Sherstobitov, S.V. [Institute for Physical-Technical and Radiotechnical Measurements, VNIIFTRI, Gostandart of Russia, Mendeleevo, Moscow Region (Russian Federation); Niemeyer, J. [Physikalisch-Technische Bundesanstalt, PTB, Braunschweig (Germany)
2001-07-01
A high-precision comparison of dc voltages generated by a 10 GHz SINIS (superconductor/insulator/normal/insulator/superconductor) Josephson non-hysteretic junction array and a 70 GHz SIS (superconductor/insulator/superconductor) Josephson junction array is described. The paper also describes a method of minimizing the Type A measurement uncertainty. The measurements were carried out at the 10 mV level. The agreement between both output voltages was determined to 0.2 nV with a Type A uncertainty of 0.5 nV. (authors)
Phase-locked flux-flow Josephson oscillator
DEFF Research Database (Denmark)
Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.
1992-01-01
We report on the observation of large rf induced steps due to phase-locking of unidirectional flux-flow motion in long quasi-one-dimensional Josephson junctions. The external microwave irradiation in the frequency range 62–77 GHz was applied from the edge of the junction at which the fluxons enter....... The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...
Voltage splay modes and enhanced phase locking in a modified linear Josephson array
International Nuclear Information System (INIS)
Harris, E.B.; Garland, J.C.
1997-01-01
We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=(1)/(2), where f is the magnetic frustration, while for 0 p (f)=2aV dc /Φ 0 (1-2f). The locked splay modes are found to be tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N 2 dependence, N being the number of series-connected junctions. copyright 1996 The American Physical Society
rf power dependence of subharmonic voltage spectra of two-dimensional Josephson-junction arrays
International Nuclear Information System (INIS)
Hebboul, S.E.; Garland, J.C.
1993-01-01
We have measured the rf-bias-current dependence of the ν/2 subharmonic spectral response of planar 300x300 Nb-Au-Nb proximity-coupled Josephson-junction arrays. The ν/2 subharmonic voltage spectrum was examined at two rf-bias frequencies, ν/ν c ∼1.4, 2.0 (ν c ∼120 MHz), and in applied magnetic fields corresponding to f=0,1/2 flux quantum per plaquette. The measurements were compared to analytical predictions for an rf-biased asymmetric superconducting quantum interference device with non-negligble loop inductance and large rf-bias-current amplitudes, based on the resistively shunted Josephson-junction model. Reasonable agreement was found between experiment and theory, suggesting that a possible origin for the observed subharmonic behavior in arrays involves an interplay between array plaquette inductances and junction critical-current variations
Momentum-Space Josephson Effects
Hou, Junpeng; Luo, Xi-Wang; Sun, Kuei; Bersano, Thomas; Gokhroo, Vandna; Mossman, Sean; Engels, Peter; Zhang, Chuanwei
2018-03-01
The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.
International Nuclear Information System (INIS)
Kim, JunHo; Kim, Sang Hyeob; Sung, Gun Yong
2002-01-01
We designed and fabricated a rapid-single-flux-quantum T flip-flop (TFF) with high-T c interface-engineered Josephson junctions. Y 1 Ba 2 Cu 3 O 7-d and Sr 2 AlTaO 6 were deposited for the superconducting layer and the insulating layer, respectively. The Josephson junction was formed through an interface treatment process using Ar ion milling and vacuum annealing. We simulated a TFF circuit and designed a physical layout using WRspice and Xic. The fabricated TFF has a minimum junction width of 3 μ m. Through the measurement of the voltage divider operation, the maximum operation frequency was estimated to be 53 GHz at 22 K and 106 GHz at 12 K. (author)
Improved impedance transformation between microwave oscillator and Josephson junction series array
International Nuclear Information System (INIS)
Gutmann, P.; Vollmer, E.; Niemeyer, J.
1993-01-01
Superconducting microwave monolithic integrated circuits (S-MMIC), based on Josephson tunnel junctions, are a well-established tool to reproduce the volt at the highest level of accuracy. An external oscillator of a fixed frequency f supplies microwave energy through a waveguide to the S-MMIC. The wave changes its mode at a waveguide-antipodal finline-stripline taper before entering a series array stripline of up to 30 000 Josephson tunnel junctions and is dissipated as heat in a lossy stripline. Both striplines have a characteristic impedance Z of 2 to 5 Ω. An equivalent circuit is shown in figure 1. The oscillator is matched to the waveguide with a source resistance R G Z(waveguide) ∼ 550 Ω. The most critical part is the taper, which should work as a lossless impedance matching network at the frequency of the oscillator. Microwave energy is fed into the tunnel junctions by the surface current I HF of the travelling wave in the series array stripline producing an rf voltage amplitude U JHF across the capacitance C of each junction. The Josephson tunnel junctions work as self-oscillating parametric mixers producing steps of constant voltage V in the current-voltage characteristic whenever (nf - 2eV/h) = 0, with n denoting an integer and e and h denoting the elementary charge and Planck's constant, respectively. The equivalent circuit of a Josephson tunnel element used in a voltage standard for 1 V working at a frequency of f = 70 GHz is given by a lumped parallel resonant circuit with a nonlinear inductance on the order of L = φ 0 /2πI 0 ∼ 1 pH, flux quantum φ 0 = h/2e and a linear capacitance of C ∼ 40 pF. These tunnel junctions have a maximum zero voltage current of approximately I 0 ∼ 350 μA. (orig.)
The Josephson effect in atomic contacts; Effect Josephson dans les contacts atomiques
Energy Technology Data Exchange (ETDEWEB)
Chauvin, M
2005-11-15
The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)
Stochasticity in the Josephson map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.
1996-04-01
The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)
International Nuclear Information System (INIS)
Mel'nikov, V.I.; Suetoe, A.
1986-01-01
The minima of the potential energy for the dynamical variable phi of a Josephson junction are separated by barriers of height hI/sub c//e, where I/sub c/ is the critical current. At low temperatures, T hΩ/2π (Ω is the Josephson plasma frequency). We consider this problem for high-quality junctions (RCΩ>>1, R and C are the resistance and the capacitance of the junction), accounting for the effect of a Johnson-Nyquist noise and quantum tunneling at the barrier top. With a simplifying assumption, we derive a pair of integral equations containing an energy variable for the steady-state distribution of phi and phi-dot, and solve it by a modification of the Wiener-Hopf method. The result is a formula for the current dependence of the fluctuational voltage, valid for currents I 2 <<1
Shapiro and parametric resonances in coupled Josephson junctions
International Nuclear Information System (INIS)
Gaafar, Ma A; Shukrinov, Yu M; Foda, A
2012-01-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.
DEFF Research Database (Denmark)
Pankratov, A.L.; Sobolev, A.S.; Koshelets, V.P.
2007-01-01
We have numerically investigated the dynamics of a long linear Josephson tunnel junction with overlap geometry. Biased by a direct current (dc) and an applied dc magnetic field, the junction has important applications as tunable high frequency oscillator [flux-flow oscillator (FFO......) placed at both ends of the FFO. In our model, the damping parameter depends both on the spatial coordinate and on the amplitude of the ac voltage. In order to find the dc current-voltage curves, the damping parameter has to be calculated self-consistently by successive approximations and time integration...
Low frequency noise in resonant Josephson soliton oscillators
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.
1991-01-01
The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...
Shot noise in YBCO bicrystal Josephson junctions
DEFF Research Database (Denmark)
Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.
2003-01-01
We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....
Temperature behavior of SNS-like Nb/Al-AlO x/Nb Josephson junctions
International Nuclear Information System (INIS)
Lacquaniti, V.; Andreone, D.; Maggi, S.; Rocci, R.; Sosso, A.; Steni, R.
2006-01-01
Overdamped Nb/Al-AlO x /Nb Josephson junctions are an intermediate state between the SIS and SNS Josephson junctions. Stable and reproducible non-hysteretic current-voltage characteristics have been obtained with a proper choice of the fabrication parameters, featuring critical current densities J c up to 25 kA/cm 2 and characteristic voltages up to 450 μV. While these values make the junctions interesting for RSFQ electronic circuits, their response to an RF signal at 70 GHz has demonstrated their suitability for both programmable and ac voltage standard. In these work we analyse the temperature behavior of these junctions up to T/T c = 1, T c being the niobium critical temperature, which gives relevant information on the junction structure and, especially, on the oxide insulator/metallic film barrier, which is the key for the reproducible transition from an hysteretic to a non-hysteretic behavior. The results are also compared with other data of hysteretic and overdamped junctions
International Nuclear Information System (INIS)
Duwel, A.E.; Watanabe, S.; Trias, E.; Orlando, T.P.; van der Zant, H.S.; Strogatz, S.H.
1997-01-01
New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonic content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multimode extension of the harmonic balance analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit on the output power on the first two steps. copyright 1997 American Institute of Physics
The Josephson effect in atomic contacts
International Nuclear Information System (INIS)
Chauvin, M.
2005-11-01
The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)
Gravitation at the Josephson Junction
Directory of Open Access Journals (Sweden)
Victor Atanasov
2018-01-01
Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.
Parametric frequency conversion in long Josephson junctions
International Nuclear Information System (INIS)
Irie, F.; Ashihara, S.; Yoshida, K.
1976-01-01
Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)
Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope
International Nuclear Information System (INIS)
Naaman, O.; Teizer, W.; Dynes, R. C.
2001-01-01
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory
Electrical quantum standards and their role in the SI
Robinson, Ian; Georgakopoulos, Dimitrios
2012-12-01
The International System of Units, SI, is poised to make a quantum change and become a measurement system based entirely on the fundamental properties of the natural world. In the next version of the SI, the Planck constant h, the elementary charge e, the Avogadro constant NA and the Boltzmann constant k will be fixed, in addition to the already fixed values of the speed of light c and the ground state hyperfine splitting in caesium-133. As a result, six out of the seven base units of the SI will be based directly on true invariants of nature. A major part of this change has been enabled by the ready availability of electrical quantum standards of exquisite precision and mechanisms for using them to make measurements outside the electrical arena. The overall effect will be to eliminate the remaining imprecise definitions of physical units associated with the use of artefact standards and aid direct SI measurements without problems of scaling. Fixing the Planck constant and the elementary charge will have the effect of incorporating the best physical realizations of electrical quantities into the SI, providing a system of units fit for the 21st century. The purpose of this special feature is to review the status of electrical quantum standards and report the latest developments in those areas and their applications to other areas of metrology. The special feature coincides with the 50th anniversary of the seminal paper of Josephson, 'Possible new effects in superconductive tunnelling' [1], which established the basic physical principle upon which the quantum voltage standards are based. Josephson voltage standards are based on the inverse Josephson effect. When a junction of two superconducting electrodes, weakly linked through a thin insulator or a normal metal, is irradiated with a radiofrequency electromagnetic field of frequency f and is biased by a dc current, then the voltage across the junction is quantized (i.e. small changes in either the dc current or the
Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions
International Nuclear Information System (INIS)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.
1990-01-01
The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined
A semiconductor nanowire Josephson junction microwave laser
Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo
We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.
Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations
Fistul, M. V.
2001-01-01
We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing three small Josephson junctions. The current-voltage characteristics of such a system display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that...
High-qualitative face Josephson transitions Nb-Sisup(ast)-Nb
International Nuclear Information System (INIS)
Gudkov, A.L.; Likharev, K.K.; Makhov, V.I.
1985-01-01
Preliminary results of investigation into characteristics of face transitions on the basis of refractory materials (niobium and polycrystalline silicon) are reported. Measured values of characteristic voltage and normal resistance are given; typical current-voltage characteristics of Josephson transitions Nb-Sisub(*)-Nb are presented too
AC Josephson effect in YBa2Cu3O7-δ bicrystal grain boundary junctions
International Nuclear Information System (INIS)
Fischer, G.M.; Andreev, A.V.; Divin, Y.Ya.; Freltoft, T.; Mygind, J.; Pedersen, N.F.; Shen Yueqiang; Vase, P.
1994-01-01
The ac Josephson effect in YBa 2 Cu 3 O 7-δ bicrystal grain boundary junctions was studied in the temperature range from 4K to 90K. Junctions with widths from 0.2 to 50 μm were made on SrTiO 3 bicrystal substrates by laser ablation and e-beam lithography. The linewidth of the Josephson oscillations is derived from the shape of the dc voltage response to low-intensity, f = 70 GHz radiation at voltages V ≅ (h/2e) f, assuming the RSJ model. The effect of the size on the Josephson behavior of this type of high-T c junctions was studied. Close to T c the linewidth of the Josephson oscillations was shown to be determined by thermal fluctuations. (orig.)
Ballistic Josephson junctions based on CVD graphene
Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward
2018-04-01
Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.
Fine structures on zero-field steps in low-loss Josephson tunnel junctions
DEFF Research Database (Denmark)
Monaco, Roberto; Barbara, Paola; Mygind, Jesper
1993-01-01
The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....
Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers
Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.
2016-01-01
The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676
Repulsive fluxons in a stack of Josephson junctions perturbed by a cavity
DEFF Research Database (Denmark)
Madsen, Søren; Pedersen, Niels Falsig; Christiansen, Peter Leth
2008-01-01
The BSCCO type intrinsic Josephson junction has been modeled as a stack of inductively coupled long Josephson junctions, which were described by a system of coupled sine-Gordon equations. In a system of 10 long Josephson junctions coupled to a linear cavity, we numerically investigate how...... of the inductive coupling strength, we investigate the cavity current, fluxon phase difference, and current–voltage characteristic. The stack-cavity system with in-phase fluxon motion may be utilized as a THz oscillator....
10-bit rapid single flux quantum digital-to-analog converter for ac voltage standard
International Nuclear Information System (INIS)
Maezawa, M; Hirayama, F
2008-01-01
Digital-to-analog (D/A) converters based on rapid single flux quantum (RSFQ) technology are under development for ac voltage standard applications. We present design and test results on a prototype 10-bit version integrated on a single chip. The 10-bit chip includes over 6000 Josephson junctions and consumes a bias current exceeding 1 A. To reduce the effects of the high bias current on circuit operation, a custom design method was employed in part and large circuit blocks were divided into smaller ones. The 10-bit chips were fabricated and tested at low speed. The test results suggested that our design approach could manage large bias currents on the order of 1 A per chip
Macroscopic quantum effects in the zero voltage state of the current biased Josephson junction
International Nuclear Information System (INIS)
Clarke, J.; Devoret, M.H.; Martinis, J.; Esteve, D.
1985-05-01
When a weak microwave current is applied to a current-biased Josephson tunnel junction in the thermal limit the escape rate from the zero voltage state is enhanced when the microwave frequency is near the plasma frequency of the junction. The resonance curve is markedly asymmetric because of the anharmonic properties of the potential well: this behavior is well explained by a computer simulation using a resistively shunted junction model. This phenomenon of resonant activation enables one to make in situ measurements of the capacitance and resistance shunting the junction, including contributions from the complex impedance presented by the current leads. For the relatively large area junctions studied in these experiments, the external capacitive loading was relatively unimportant, but the damping was entirely dominated by the external resistance
Dynamics of fractional vortices in long Josephson junctions
International Nuclear Information System (INIS)
Gaber, Tobias
2007-01-01
In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)
Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))
1990-01-08
The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.
International Nuclear Information System (INIS)
Kromann, R.; Vase, P.; Shen, Y.Q.; Freltoft, T.
1993-01-01
The fabrication of Josephson junctions and SQUIDs using ceramic high T c superconductors continues to be a subject of great interest and activity. In the case of the YBCO family of superconductors, most of the research effort has been concentrated on the grain boundary junctions. This type of junction can be fabricated in a controlled way by a variety of approaches, such as the bi-crystal technique, the bi-epitaxial technique or the step-edge technique. From a fabrication point of view, the bi-crystal technique is by far the simplest of the three. The availability of (100) SrTiO 3 bi-crystals on a commercial basis has lead to the possibility of making Josephson junctions by a simple process involving only one deposition and one patterning step. Reproducibility of the junction parameters between junctions on the same chip is a key point for electronic applications of Josephson junctions requiring a large amount of Josephson junctions working at the same time, as for example in the voltage standard. Another key point is the uniformity of the barrier, i.e. the extent to which the junction behaves as an ideal SIS junction. In this work junction uniformity has been studied by Frauenhofer diffraction patterns. The Josephson junctions have also been used in the fabrication of dc SQUIDs. In this work we have tried to optimize the magnitude of the voltage modulation from the SQUID by varying the design parameters. The SQUIDs have been characterized in terms of I c , R n , voltage modulation and noise properties. (orig.)
Josephson junctions of multiple superconducting wires
Deb, Oindrila; Sengupta, K.; Sen, Diptiman
2018-05-01
We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.
NbN-AlN-NbN Josephson junctions on different substrates
Energy Technology Data Exchange (ETDEWEB)
Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)
2016-07-01
Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.
Dynamical properties of weakly coupled Josephson systems
International Nuclear Information System (INIS)
Lee, K.H.; Xia, T.K.; Stroud, D.
1990-01-01
This paper reviews recent work on the dynamical behavior of coupled resistively-shunted Josephson junctions, with emphasis on our own calculations. The authors present a model which allows for the inclusion of finite temperature, disorder, d.c. and a.c. applied currents, and applied magnetic fields. The authors discuss applications to calculations of critical currents and IV characteristics; harmonic generation and microwave absorption by finite clusters of Josephson junctions; critical energies for vortex depinning; and quantized voltage plateaus in arrays subjected to combined d.c. and a.c. currents. Possible connections to the behavior of granular high-temperature superconductors are briefly discussed
Spatially resolved detection of mutually locked Josephson junctions in arrays
International Nuclear Information System (INIS)
Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.
1997-01-01
Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics
Superconductor-Insulator transition in a single Josephson junction
International Nuclear Information System (INIS)
Sonin, E.B.; PenttilA, J.S.; Parts, O.; Hakonen, P.J.; Paalanen, M.A.
1999-01-01
For ultra small Josephson junctions, when quantum effects become important, dissipative phase transition (DPT) has been predicted. The physical origin of this transition is the suppression of macroscopic quantum tunneling of the phase by tile interaction with dissipative quantum-mechanical environment. Macroscopic quantum tunneling destroys superconductivity of a junction, whereas suppression of tunneling restores superconductivity. Hence, this transition is often called a superconductor-insulator transition (SIT). SIT was predicted for various systems, but its detection in a single Josephson junction is of principal importance since it is the simplest system where this transition is expected, without any risk of being masked by other physical processes, as is possible in more complicated systems like regular or' random Josephson junction arrays. In this Letter we present results of our measurements on R = dV/dI vs. I curves, for a variety of single small isolated Josephson junctions, shunted and un shunted, with different values of capacitance C and normal state tunneling resistance RT. We have detected a crossover. between two types of RI-curves with an essentially different behavior at small currents. On the basis of this crossover, we are able to map out the whole phase diagram for a Josephson junction. The position of the observed phase boundary did not agree with that expected from the original theory. However, the theory revised to take into account a finite accuracy of our voltage measurements (viz., the minimum voltage which we are able to detect), explains well the observed phase diagram. Our important conclusion is that the concept of dissipative phase transition (DPT) and superconductor-insulator transition (SIT) are not completely identical as assumed before. Both are accompanied by the sign change of the thermo resistance, which is traditionally considered as a signature of SIT. Thus any DPT is SIT, but not vice versa. We argue that the real signature
Fluxons in long and annular intrinsic Josephson junction stacks
Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R
2002-01-01
A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.
Fluxon dynamics in long annular Josephson tunnel junctions
DEFF Research Database (Denmark)
Martucciello, N.; Mygind, Jesper; Koshelets, V.P.
1998-01-01
Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts...... on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is low enough, this profile systematically shows pronounced deviations from the smooth predicted form...
Observation of supercurrent in graphene-based Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2015-07-01
Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.
Modeling Bloch oscillations in nanoscale Josephson junctions
Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.
2018-01-01
Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106
Negative Differential Resistance due to Nonlinearities in Single and Stacked Josephson Junctions
DEFF Research Database (Denmark)
Filatrella, Giovanni; Pierro, Vincenzo; Pedersen, Niels Falsig
2014-01-01
Josephson junction systems with a negative differential resistance (NDR) play an essential role for applications. As a well-known example, long Josephson junctions of the BSCCO type have been considered as a source of terahertz radiation in recent experiments. Numerical results for the dynamics...... shapes of NDR region are considered, and we found that it is essential to distinguish between current bias and voltage bias....
Localizing quantum phase slips in one-dimensional Josephson junction chains
International Nuclear Information System (INIS)
Ergül, Adem; Azizoğlu, Yağız; Schaeffer, David; Haviland, David B; Lidmar, Jack; Johansson, Jan
2013-01-01
We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R 0 , as well as current–voltage characteristics (IVC). The finite R 0 is explained by QPS and shows an exponential dependence on √(E J /E C ) with a distinct change in the exponent at R 0 = R Q = h/4e 2 . When R 0 > R Q , the IVC clearly shows a remnant of the Coulomb blockade, which evolves to a zero-current state with a sharp critical voltage as E J is tuned to a smaller value. The zero-current state below the critical voltage is due to coherent QPSs and we show that these are enhanced when the central link is weaker than all other links. Above the critical voltage, a negative, differential resistance is observed, which nearly restores the zero-current state. (paper)
Switching between dynamic states in intermediate-length Josephson junctions
DEFF Research Database (Denmark)
Pagano, S.; Sørensen, Mads Peter; Parmentier, R. D.
1986-01-01
The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber backgroun...
Strong mechanically induced effects in DC current-biased suspended Josephson junctions
McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros
2018-01-01
Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.
Josephson junctions with ferromagnetic interlayer
International Nuclear Information System (INIS)
Wild, Georg Hermann
2012-01-01
We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.
Josephson junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Wild, Georg Hermann
2012-03-04
We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.
International Nuclear Information System (INIS)
Gaitan, F.; Shenoy, S.R.
1995-05-01
We examine the dynamical consequences of Berry's phase for Josephson junctions, junction arrays, and their vortices. Josephson's equation and the related phase slip voltages are shown to be unaffected by Berry's phase. In an annular Josephson junction, Berry's phase is seen to generate a new current drive on a vortex. In the continuum limit, vortex is expected in a 2D array is shown to map onto that of a 2D film. A Hall sing anomaly is expected arrays; and the merits of arrays for studies of disorder on vortex motion is discussed. (author). 12 refs
International Nuclear Information System (INIS)
Chi, C.C.; Vanneste, C.
1990-01-01
A comprehensive picture of the dc current-voltage (I-V) characteristics of rf-driven Josephson junctions in the low-frequency regime is presented. The boundary of the low-frequency regime is roughly defined by the junction characteristic frequency for overdamped junctions, and by the inverse of the junction damping time for underdamped junctions. An adiabatic model valid for the low-frequency regime is used to describe the overall shapes of the I-V curves, which is in good agreement with both the numerical simulations and the experimental results. For underdamped junctions, the Shapiro steps are the prominent features on the I-V curves if the rf frequency is sufficiently below the boundary. As the rf frequency is increased towards the boundary, large negatively-going tails on top of the Shapiro steps are observed both experimentally and numerically. Numerical simulations using the resistively- and capacitively-shunted-junction model (RCSJ model) reveal that the negatively-going tail is a signature of the low-frequency boundary of the junction chaotic regime. With use of the adiabatic model and the existence of plasma oscillations for underdamped junctions, the onset of chaos and its effect on the Shapiro steps can be fully explained. The high-frequency limit of the adiabatic model and the chaotic behavior of the Josephson junctions beyond the low-frequency regime are also briefly discussed
Towards quantum signatures in a swept-bias Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)
2016-07-01
Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.
International Nuclear Information System (INIS)
Bradley, P.; Van Duzer, T.
1985-01-01
A destructive read-out (DRO) memory cell using three Josephson junctions has been devised whose operation depends only on the ratio of critical currents and application of the proper read/write voltages. The effects of run-to-run and across-thewafer variations in I /SUB c/ are minimized since all three junctions for a given cell are quite close to each other. Additional advantages are: immunity from flux trapping, high circuit density, and fast switching. Since destructive read-out is generally undesirable, a self-rewriting scheme is necessary. Rows and columns of cells with drivers and sense circuits, as well as small memory arrays and decoders have been simulated on SPICE. Power dissipation of cells and bias circuits for a 1K-bit RAM is estimated at about 2 mW. Inclusion of peripheral circuitry raises this by as much as a factor of five depending on the driving scheme and speed desired. Estimated access time is appreciably less than a nanosecond. Preliminary experimental investigations are reported
Current status of quantum electrical metrology
International Nuclear Information System (INIS)
Urano, Chiharu; Kaneko, Nobuhisa; Kiryu, Shogo
2005-01-01
Physical background, current status of proof systems and researches of the next generation standards of Josephson voltage and Quantized Hall Resistance (QHR) standard system are described. Josephson effect, the principle and theory of quantized hall effect, usual voltage standard system, standard feed of direct current resistance, and researches of voltage standard and direct current resistance standard are explained. The current-voltage of Josephson element in the usual voltage standard proof system and bias method, outline of typical Josephson voltage standard proof system and GaAs/AlGaAs heterostructure used as resistance standard are stated. Cryogenic Current Comparator (CCC) and Direct Current Comparator (DCC) proofread usual resistor. New Quantum Hall Array Resistance Standard (QHARS) is studied by BNM-LNE group in French, and the other new AC Quantized Hall Resistance (AC-QHR) by the European ACQHE Project. (S.Y.)
Electrical analog of a Josephson junction
International Nuclear Information System (INIS)
Goldman, A.M.
1979-01-01
It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions
Spectrum of resonant plasma oscillations in long Josephson junctions
International Nuclear Information System (INIS)
Holst, T.
1996-01-01
An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society
Phenomenological approach to bistable behavior of Josephson junctions
International Nuclear Information System (INIS)
Nishi, K.; Nara, S.; Hamanaka, K.
1985-01-01
The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity
International Nuclear Information System (INIS)
Vojtenko, A.I.; Gabovich, A.M.; Moiseev, D.P.; Postnikov, V.M.; Shpigel', A.S.
1990-01-01
Temperature dependences of the critical current I c across the symmetrical tunnel Josephson junctions between superconductors with partially-gapped electron spectrum were calculated. Densities J c of the critical current for the bulk Josephson-type samples and current-voltage characteristics of the tunnel-type were measured
Distributed amplifier using Josephson vortex flow transistors
International Nuclear Information System (INIS)
McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.
1986-01-01
A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz
Internal resonances in periodically modulated long Josephson junctions
DEFF Research Database (Denmark)
Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.
1995-01-01
Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...
Nonlinearity in superconductivity and Josephson junctions
International Nuclear Information System (INIS)
Lazarides, N.
1995-01-01
Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs
Proposed differential-frequency-readout system by hysteretic Josephson junctions
International Nuclear Information System (INIS)
Wang, L.Z.; Duncan, R.V.
1992-01-01
The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step
Time-resolved statistics of photon pairs in two-cavity Josephson photonics
Energy Technology Data Exchange (ETDEWEB)
Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)
2017-06-15
We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
High-quality planar high-Tc Josephson junctions
International Nuclear Information System (INIS)
Bergeal, N.; Grison, X.; Lesueur, J.; Faini, G.; Aprili, M.; Contour, J.P.
2005-01-01
Reproducible high-T c Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 μm wide) is firstly designed by ion irradiating a c-axis-oriented YBa 2 Cu 3 O 7-δ film through a gold mask such as the nonprotected part becomes insulating. A lower T c part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits
Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations
Fistul, M. V.
2002-03-01
We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing small Josephson junctions. The current-voltage characteristics of such systems display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that in the quantum regime as the system is driven on the resonance, coherent Rabi oscillations between the quantum levels of EOs occur. At variance with the classical regime the magnitude and the width of resonances are determined by the frequency of Rabi oscillations that in turn, depends in a peculiar manner on an externally applied magnetic field and the parameters of the system.
Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions
Wu, B. H.; Cao, J. C.; Timm, C.
2012-07-01
We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.
Josephson tunnel junction microwave attenuator
DEFF Research Database (Denmark)
Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.
1993-01-01
A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...
Shunted-Josephson-junction model. I. The autonomous case
DEFF Research Database (Denmark)
Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.
1977-01-01
The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....
International Nuclear Information System (INIS)
Drangeid, K.E.
1983-01-01
The author presents an introduction to Josephson junctions. After an introduction to the physical principles of superconductivity and the Josephson effect some applications are described with special regards to the implementation in digital circuits. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Gaber, Tobias
2007-07-01
In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)
Josephson admittance spectroscopy application for frequency analysis of broadband THz antennas
International Nuclear Information System (INIS)
Volkov, O Yu; Divin, Yu Yu; Gubankov, V N; Gundareva, I I; Pavlovskiy, V V
2010-01-01
Application of Josephson admittance spectroscopy for the spectral analysis of a broad-band log-periodic superconducting antenna was demonstrated at the frequency range from 50 to 700 GHz. The [001]-tilt YBa 2 Cu 3 O 7-x bicrystal Josephson junctions, integrated with sinuous log-periodic YBa 2 Cu 3 O 7-x antennas, were fabricated on NdGaO 3 bicrystal substrates. A real part of the antenna admittance ReY(f) as a function of the frequency f was reconstructed from the modification of the dc current-voltage characteristic of the junction, induced by the antenna. Resonance features were observed in the recovered ReY(f)-spectra with a periodicity in the logarithmic frequency scale, corresponding to log-periodic geometry of the antenna. The ReY(f)-spectra, recovered by Josephson spectroscopy, were compared with the ReY(f)-spectra, obtained by CAD simulation, and both spectra were shown to be similar in their main features. A value of 23 was obtained for an effective permittivity of the NdGaO3 bicrystal substrates by fitting simulated data to those obtained from Josephson spectroscopy.
Time-dependent photon heat transport through a mesoscopic Josephson device
Energy Technology Data Exchange (ETDEWEB)
Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn
2017-02-15
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.
Time-dependent photon heat transport through a mesoscopic Josephson device
International Nuclear Information System (INIS)
Lu, Wen-Ting; Zhao, Hong-Kang
2017-01-01
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.
Resonance modes in one-dimensional parallel arrays of Josephson junctions
International Nuclear Information System (INIS)
Van der Zant, H.S.J.; Delin, K.A.; Bock, R.D.; Berman, D.; Phillips, J.R.; Orlando, T.P.
1994-01-01
We investigate both experimentally and numerically the dynamics of discrete one-dimensional parallel arrays of underdamped Josephson junctions. In a magnetic field, measurements show steps in the current-voltage characteristics which are the discrete analogs of Fiske steps in a long Josephson junction. From the position of the steps, one can construct a plot of the dispersion relation ω(k). We observe a sine--dependence in the dispersion relation due to the discrete nature of our arrays. We also observe an additional, smaller gap at a k-value determined by the periodicity of the vortex lattice. Our measurements are supported by numerical simulations of the full dynamics. The Fiske steps provide an experimental method to measure the self-inductance of 1D parallel arrays. (orig.)
Memory states in small arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Braiman, Yehuda [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Neschke, Brendan [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Nair, Niketh S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Science Directorat; Glowinski, R. [Univ. of Houston, TX (United States). Dept. of Mathematics
2017-11-30
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
Dynamics of underdamped Josephson arrays in a magnetic field
International Nuclear Information System (INIS)
Octavio, M.; Whan, C.B.; Geigenmueller, U.; Lobb, C.J.
1994-01-01
We present simulations of the dynamics of underdamped classical Josephson arrays for values of the flux quanta per unit cell f=1/2. We find the dynamics of this system to be quite rich. The I-V characteristics are found to have two distinct regime as the damping is increased. At low voltages the current-voltage characteristics exhibit a regime which we characterize as flux-flow-like since it is dominated by the motion of the vortex superlattice. This regime may exhibit chaotic-like behavior as the damping parameter is increased. At high voltages the characteristics jump to an ohmic-like state in which the junctions are all oscillating. We present a potential model which is quite useful in understanding the dynamics of the system. (orig.)
International Nuclear Information System (INIS)
Bindslev Hansen, J.; Lindelof, P.E.
1985-01-01
In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)
Characteristic modes and the transition to chaos of a resonant Josephson circuit
Energy Technology Data Exchange (ETDEWEB)
Marcus, P M; Imry, Y [IBM Watson Research Center, Yorktown Heights, NY (USA)
1982-01-01
The periodic modes of a voltage-driven resonant small-junction Josephson circuit are studied by accurate numerical methods starting from large dissipation. As dissipation decreases, sections of the average current vs. voltage characteristic become unstable and new branches develop on those sections, corresponding to new modes which are exact subharmonics of the old mode. For low enough dissipation chaotic ranges of voltage occur, i.e., ranges with no stable periodic modes. This circuit is a component of many experimental circuits, e.g., finite junctions, DC and RF squids, etc., and so the behavior found here should occur widely.
Josephson spectroscopy of terahertz losses in [100]-tilt YBa2Cu3O7-x bicrystal junctions
International Nuclear Information System (INIS)
Divin, Y; Lyatti, M
2008-01-01
Terahertz losses in the [100]-tilt YBa 2 Cu 3 O 7-x grain-boundary junctions were studied using admittance Josephson spectroscopy. The I-Vcurves of the [100]-tilt YBa 2 Cu 3 O 7-x junctions, when annealed in atomic oxygen, were described by the resistively shunted junction model (RSJ) with an accuracy of better than 0.5% at the temperature range, where the characteristic voltage I c R n n -1 . At low temperatures, where I c R n >> kT/2e, the absorption of Josephson radiation by optical phonon modes in YBa 2 Cu 3 O 7-x was found to be reflected in the I-V curve of the [100]-tilt junctions. The most prominent structure is situated at the voltages V ∼ 9.5 mV, which gives the corresponding Josephson frequency of 4.6 THz in good agreement with the frequency of the strongest IR active optical phonon mode in YBa 2 Cu 3 O 7-x . Assignment of additional lines in the derived losses is discussed according to available data on lattice dynamic calculations and experimental data for a dynamic conduction Reσ 1 (f) of YBa 2 Cu 3 O 7-x . Josephson spectroscopy might be useful for study of low-energy excitations in high-T c materials
Nonlinear viscous vortex motion in two-dimensional Josephson-junction arrays
International Nuclear Information System (INIS)
Hagenaars, T.J.; Tiesinga, P.H.E.; van Himbergen, J.E.; Jose, J.V.
1994-01-01
When a vortex in a two-dimensional Josephson-junction array is driven by a constant external current it may move as a particle in a viscous medium. Here we study the nature of this viscous motion. We model the junctions in a square array as resistively and capacitively shunted Josephson junctions and carry out numerical calculations of the current-voltage characteristics. We find that the current-voltage characteristics in the damped regime are well described by a model with a nonlinear viscous force of the form F D =η(y)y=[A/(1+By]y, where y is the vortex velocity, η(y) is the velocity-dependent viscosity, and A and B are constants for a fixed value of the Stewart-McCumber parameter. This result is found to apply also for triangular lattices in the overdamped regime. Further qualitative understanding of the nature of the nonlinear friction on the vortex motion is obtained from a graphic analysis of the microscopic vortex dynamics in the array. The consequences of having this type of nonlinear friction law are discussed and compared to previous theoretical and experimental studies
Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector
Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki
2000-06-01
We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.
Thermal and quantum escape of fractional Josephson vortices
Energy Technology Data Exchange (ETDEWEB)
Poehler, Hanna; Kienzle, Uta; Buckenmaier, Kai; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut, Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Universitaet Karlsruhe (Germany)
2009-07-01
By using a pair of tiny current injectors one can create an arbitrary {kappa} discontinuity of the phase in a long Josephson junction (LJJ) and a fractional Josephson vortex (FJV), carrying a fraction {phi}/{phi}{sub 0}={kappa}/2{pi}{<=}1 of the magnetic flux quantum {phi}{sub 0}{approx}2.07 .10{sup -15} Wb, which is pinned at the discontinuity. If a bias current I, exceeds the critical value I{sub c}({kappa}), an integer fluxon is torn off the discontinuity and the LJJ switches to the voltage state. Due to thermal or quantum fluctuations this escape event may occur at I
Fabrication and characterization of intrinsic Josephson junctions in RE-123 whiskers
International Nuclear Information System (INIS)
Okutsu, T.; Ueda, S.; Ishii, S.; Nagasawa, M.; Takano, Y.
2008-01-01
The series of REBa 2 Cu 3 O 7-δ RE-123; RE = Y, Eu, Gd, Dy, Ho, Er, Tm, and Lu) single-crystal whiskers have been successfully grown using the Te- or Sb-doping method. Intrinsic Josephson junctions (IJJs) were fabricated from the whiskers using a focused ion beam (FIB). As-grown IJJs with T c > 70 K showed a Josephson current but no multi-branches in the current-voltage (I-V) characteristics. Under-doped specimens were obtained by a post-annealing process. As-grown IJJs with lower T c and all the specimens of the post-annealed IJJs showed clear multi-branched structure. The post-annealing reduced the critical temperature (T c ) and the critical current density (J c ) of the IJJs, and increased the anisotropic parameter γ
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Imaging of the dynamic magnetic structure in a parallel array of shunted Josephson junctions
DEFF Research Database (Denmark)
Doderer, T.; Kaplunenko, V. K.; Mygind, Jesper
1994-01-01
A one-dimensional (1D) parallel array of shunted Josephson junctions is one of the basic elements in the family of rapid single-flux quantum logic circuits. It was found recently that current steps always show up in the current-voltage curve of the generator junction when an additional bias current...
Quantum and thermal phase escape in extended Josephson systems
International Nuclear Information System (INIS)
Kemp, A.
2006-01-01
In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)
Effect of colored noise on an overdamped Josephson junction
Genchev, Z. D.
2001-03-01
In this paper my attention is restricted to stochastic differential equation in phase function φ(t), describing an overdamped Josephson junction. I accept the RSJ (resistively shunted junction) modeling, when the contact characterized by resistance R and critical current I c is under the action of a given direct current I and stochastic current source Ĩ(t) (=0) : {ℏ}/{2 eR }{dφ }/{dt }+I csinφ=I+ Ĩ(t). In our case the thermal noise is a Gaussian process and obeys the Johnson-Nyquistr correlation law C(t)== {ℏ}/{2πR}∫ -∞∞dω ω coth{ℏω}/{2k BT }cosωt. The effective Fokker-Planck equation is derived and the current-voltage characteristics (CVCs) of the Josephson junction are calculated for weakly colored noise. In the limit limℏ→0C(t)= {2k BT }/{R}δ(t) the well-known results for white noise are recovered.
Quantum and thermal phase escape in extended Josephson systems
Energy Technology Data Exchange (ETDEWEB)
Kemp, A.
2006-07-12
In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)
International Nuclear Information System (INIS)
Herrmann, K.
1994-03-01
In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)
Logic design of Josephson network. II
International Nuclear Information System (INIS)
Nakajima, K.; Onodera, Y.
1978-01-01
By numerical calculations of the differential-difference sine-Gordon equation, we have discussed the discrete Josephson-junction transmission lines which are constructed of a series of small-area Josephson junctions connected by superconducting strips. It is shown that the discrete Josephson lines containing D lines, N lines, T turning points, and S turning points are elementarily characterized by the discreteness parameter (2πLI/sub c//Phi 0 )/sup 1/2/. On the discrete Josephson logic circuits there exists a region of forbidden propagation in the (2πLI/sub c//Phi 0 )/sup 1/2/-γ (bias-current parameter) plane for single flux quanta. A single flux quantum can be stuffed in a small area of the discrete Josephson logic circuits. The discrete circuits can be conveniently and easily linked to each other, in a practical fabrication of a Josephson network
Perturbation treatment of mixing in Josephson junctions
International Nuclear Information System (INIS)
Levinsen, M.T.; Ulrich, B.T.
1975-01-01
A current biased, resistively shunted Josephson Junction irradiated at two frequencies is considered. The perturbation technique introduced by Aslamasov and Larkin is used in the calculations, and both signals are treated as perturbations. The second order calculation yields the size of the mixing steps at V/sub +-/ = h(ω 1 +- ω 2 )/2e. As in the case of a single frequency, subharmonic mixing steps are absent. The amplitude of the voltage oscillation at the difference and sum frequencies is shown to be non-zero at all voltages. The microwave resistance is calculated for one frequency ω 2 to third order in the perturbation. There are negative resistance regions near V/sub +-/ (as well as near V 2 = hω 2 /2e). Near V/sub -/, the negative resistance region appears for bias voltage V just above V/sub -/, while near V the region appears for V just below V/sub +/. This means that when an incident frequency mixes with a cavity mode, the mixing step at V/sub -/ will be inverted compared to the cavity step itself
Energy Technology Data Exchange (ETDEWEB)
Freitas, Gustavo Quereza; Moreto, Jeferson Aparecido [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano (IFGO), Rio Verde, GO (Brazil); Zadorosny, Rafael; Silveira, Joao Borsil; Carvalho, Claudio Luiz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil); Cena, Cicero Rafael, E-mail: gustavoquereza@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Birigui, SP (Brazil)
2016-03-15
A homemade Josephson junction was successfully obtained using a superconductor thin film of the BSCCO system. The film was deposited on a lanthanum aluminate, produced from a commercial powder with a nominal composition Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}CaCu{sub 2}O{sub x}, was thermally treated by a domestic microwave oven. The XRD analysis of the film indicated the coexistence of Bi-2212 and Bi-2223 phases and SEM images revealed that a typical superconductor plate-like morphology was formed. From the electrical characterization, performed using DC four probes technique, it was observed an onset superconducting transition temperature measured around 81K. At the current-voltage characteristics curve, a step of electric current at zero-voltage could be observed, an indicative that the tunneling Josephson occurred. (author)
A Josephson radiation comb generator.
Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F
2015-07-20
We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.
Planar intrinsic Josephson junctions with in-plane aligned YBCO films
Zhang, L; Kobayashi, T; Goto, T; Mukaida, M
2002-01-01
Planar type devices were fabricated by patterning in-plane aligned YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) films. The current-voltage characteristics along the c-axis at various temperatures and oxygen contents were measured. The current voltage curves showing supercurrent and hysteresis were obtained for the samples annealed at an oxygen pressure of 1.3 x 10 sup 4 Pa, while the supercurrent and hysteresis became smaller and even disappeared as the oxygen pressure decreased. The relationships between the critical currents and temperatures are similar to those of d-wave superconducting tunnel junctions. These results indicate the formation of stacks of intrinsic Josephson junctions, which are useful for developing high-frequency electron devices.
Planar intrinsic Josephson junctions with in-plane aligned YBCO films
International Nuclear Information System (INIS)
Zhang, L; Moriya, M; Kobayashi, T; Goto, T; Mukaida, M
2002-01-01
Planar type devices were fabricated by patterning in-plane aligned YBa 2 Cu 3 O 7-δ (YBCO) films. The current-voltage characteristics along the c-axis at various temperatures and oxygen contents were measured. The current voltage curves showing supercurrent and hysteresis were obtained for the samples annealed at an oxygen pressure of 1.3 x 10 4 Pa, while the supercurrent and hysteresis became smaller and even disappeared as the oxygen pressure decreased. The relationships between the critical currents and temperatures are similar to those of d-wave superconducting tunnel junctions. These results indicate the formation of stacks of intrinsic Josephson junctions, which are useful for developing high-frequency electron devices
What happens in Josephson junctions at high critical current densities
Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.
2017-07-01
The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.
An ion-beam-assisted process for high-Tc Josephson junctions
International Nuclear Information System (INIS)
Huang, M.Q.; Chen, L.; Zhao, Z.X.; Yang, T.; Nie, J.C.; Wu, P.J.; Xiong, X.M.
1997-01-01
We have developed a non-ion-etching ion-beam-assisted-deposition (IBAD) process for fabricating high critical-temperature (T c ) grain boundary Josephson junctions through a photoresist liftoff mask. The YBa 2 Cu 3 O 7 (YBCO) junctions fabricated through this process exhibited the resistively-shunted-junction (RSJ)-like I - V characteristics. The well-defined Shapiro steps have been seen on the I - V curves under microwave radiation. The magnetic modulation of critical current of a 4 μm width YBCO junction tallied with the prior simulated Fraunhofer diffraction pattern of a Josephson junction with a spatially homogeneous critical current density. The maximum peak-to-peak modulation voltage across the dc superconducting quantum interference device (SQUID) fabricated by using these junctions reached up to 32 μV at 77 K. The magnetic modulation of the SQUID exhibited periodic behavior with the observed modulation period of 5.0x10 -4 G. copyright 1997 American Institute of Physics
The transfer voltage standard for calibration outside of a laboratory
Directory of Open Access Journals (Sweden)
Urekar Marjan
2017-01-01
Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019
Doped Josephson tunneling junction for use in a sensitive IR detector
International Nuclear Information System (INIS)
Fletcher, J.C.; Saffren, M.M.
1975-01-01
A superconductive tunneling device having a modified tunnel barrier capable of supporting Josephson tunneling current is provided. The tunnel barrier located between a pair of electrodes includes a molecular species which is capable of coupling incident radiation of a spectrum characteristic of the molecular species into the tunnel barrier. The coupled radiation modulates the known Josephson characteristics of the superconducting device. As a result of the present invention, a superconductive tunneling device can be tuned or made sensitive to a particular radiation associated with the dopant molecular species. The present invention is particularly useful in providing an improved infrared detector. The tunnel barrier region can be, for example, an oxide of an electrode or frozen gas. The molecular species can be intermixed with the barrier region such as the frozen gas or deposited as one or more layers of molecules on the barrier region. The deposited molecules of the molecular species are unbonded and capable of responding to a radiation characteristic of the molecules. Semi-conductor material can be utilized as the molecular species to provide an increased selective bandwidth response. Finally, appropriate detector equipment can be utilized to measure the modulation of any of the Josephson characteristics such as critical current, voltage steps, Lambe-Jaklevic peaks and plasma frequency. (auth)
2016-09-01
both from SSC Pacific) and Marc Tukeman, Chuck Vinson and Mr. Mark Flemon with the procurement process . We acknowledge Deep Gupta, Saad Sarwana, and...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices
Steady-state properties of Josephson junctions with direct conductivity
International Nuclear Information System (INIS)
Zubkov, A.A.; Kupriyanov, M.Y.; Semenov, V.K.
1981-01-01
A new criterion for determining the kinetic inductance of Josephson junctions is introduced. The effects of temperature T, the critical temperatures of the superconducting electrodes T/sub c/1 and T/sub c/2, and the weak-link length on the kinetic inductance of ''dirty'' junctions with direct conductivity are analyzed within the framework of the Usadel equations. Numerical calculations show that both a large characteristic voltage and a nearly harmonic dependence of the current on the phase difference of the superconducting-electrode wave functions cannot be obtained by varying the junction parameters
Laminar phase flow for an exponentially tapered Josephson oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
2000-01-01
Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...
Method of manufacturing Josephson junction integrated circuits
International Nuclear Information System (INIS)
Jillie, D.W. Jr.; Smith, L.N.
1985-01-01
Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed
International Nuclear Information System (INIS)
Krive, I.V.; Rozhavsky, A.S.
1990-07-01
We predict novel voltage oscillations of the effective capacitance of small Josephson junctions. This macroscopic effect involves coherent charge fluctuations with charge 2e, leading to a period of oscillations, V c = 2e/C, where C is the junction capacitance. The amplitude of the effect decreases with temperature as exp(-π 2 T/ε c ), where ε c = (2e) 2 /C. (author). 6 refs
International Nuclear Information System (INIS)
Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.
2007-01-01
We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one
Oscillation of Critical Current by Gate Voltage in Cooper Pair Transistor
International Nuclear Information System (INIS)
Kim, N.; Cheong, Y.; Song, W.
2010-01-01
We measured the critical current of a Cooper pair transistor consisting of two Josephson junctions and a gate electrode. The Cooper pair transistors were fabricated by using electron-beam lithography and double-angle evaporation technique. The Gate voltage dependence of critical current was measured by observing voltage jumps at various gate voltages while sweeping bias current. The observed oscillation was 2e-periodic, which shows the Cooper pair transistor had low level of quasiparticle poisoning.
Conduction channels of an InAs-Al nanowire Josephson weak link
International Nuclear Information System (INIS)
Goffman, M F; Urbina, C; Pothier, H; Nygård, J; Marcus, C M; Krogstrup, P
2017-01-01
We present a quantitative characterization of an electrically tunable Josephson junction defined in an InAs nanowire proximitized by an epitaxially-grown superconducting Al shell. The gate-dependence of the number of conduction channels and of the set of transmission coefficients are extracted from the highly nonlinear current–voltage characteristics. Although the transmissions evolve non-monotonically, the number of independent channels can be tuned, and configurations with a single quasi-ballistic channel achieved. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-03-01
In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.
Fractional Josephson vortices in two-gap superconductor long Josephson junctions
Kim, Ju
2014-03-01
We investigated the phase dynamics of long Josephson junctions (LJJ) with two-gap superconductors in the broken time reversal symmetry state. In this LJJ, spatial phase textures (i-solitons) can be excited due to the presence of two condensates and the interband Joesphson effect between them. The presence of a spatial phase texture in each superconductor layer leads to a spatial variation of the critical current density between the superconductor layers. We find that this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in Josephson vortices with fractional flux quanta. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, the fractionalization of a Josephson vortex arises as a response to either periodic or random excitation of i-solitions. This suggests that magnetic flux measurements may be used to probe i-soliton excitations in multi-gap superconductor LJJs.
International Nuclear Information System (INIS)
Przybysz, J.X.
1989-01-01
This paper gives a review of Josephson shift register circuits that were designed, fabricated, or tested, with emphasis on work in the 1980s. Operating speed is most important, since it often limits system performance. Older designs used square-wave clocks, but most modern designs use offset sine waves, with either two or three phases. Operating margins and gate bias uniformity are key concerns. The fastest measured Josephson shift register operated at 2.3 GHz, which compares well with a GaAs shift register that consumes 250 times more power. The difficulties of high-speed testing have prevented many Josephson shift registers from being operated at their highest speeds. Computer simulations suggest that 30-GHz operation is possible with current Nb/Al 2 O 3 /Nb technology. Junctions with critical current densities near 10 kA/cm 2 would make 100-GHz shift registers feasible
Energy scales in YBaCuO grain boundary biepitaxial Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Tafuri, F., E-mail: tafuri@na.infn.it [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [DPMC, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Lucignano, P. [CNR-ISC, sede di Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Galletti, L. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); Massarotti, D. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Montemurro, D. [NEST and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa (Italy); Papari, G. [INPAC - Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Pulsed Fields Group, K.U. Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Barone, A.; Tagliacozzo, A. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy)
2012-09-15
Self-assembled nanoscale channels may naturally arise in the growth process of grain boundaries (GBs) in high critical temperature superconductor (HTS) systems, and deeply influence the transport properties of the GB Josephson junctions (JJs). By isolating nano-channels in YBCO biepitaxial JJs and studying their properties, we sort out specific fingerprints of the mesoscopic nature of the contacts. The size of the channels combined to the characteristic properties of HTS favors a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Thouless energy emerges as a characteristic energy of these types of Josephson junctions. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed, along with elements to take into account when designing HTS nanostructures.
Josephson junction at the onset of chaos: A complete devil's staircase
International Nuclear Information System (INIS)
Alstrom, P.; Levinsen, M.T.
1985-01-01
By analog computer calculations of the resistively and capacitively shunted Josephson junction model, I-V characteristics are measured for several choices of the parameters in the Josephson equation. The points, where hysteresis sets in, are related to cubic inflection points in the return map. For different values of the amplitude and the frequency of the imposed ac field the critical line is determined in the (I,G) space, where I is the dc current and G is the damping factor. Furthermore, the subharmonic steps along the critical line form a complete devil's staircase with a fractal dimension Dapprox.0.87 and a decay exponent for the (1/Q)-steps deltaapprox.3. Besides the hysteresis which gives occasion for a chaotic behavior everywhere below a certain critical voltage, hysteresis also turns up locally. It is suggested that the critical points where local hysteresis occurs can be found by use of a local approximation
Maassen van den Brink, A.; Odintsov, A.A.; Bobbert, P.A.; Schön, G.
1991-01-01
Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI–V
Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem
International Nuclear Information System (INIS)
Duzer, Theodore van; Feng Yijun; Meng Xiaofan; Whiteley, Stephen R; Yoshikawa, Nobuyuki
2002-01-01
The history of the development of superconductive memory for Josephson digital systems is presented along with the several current proposals. The main focus is on a proposed combination of the highly developed CMOS memory technology with Josephson peripheral circuits to achieve memories of significant size with subnanosecond access time. Background material is presented on the cryogenic operation of CMOS. Simulations and experiments on components of memory with emphasis on the important input interface amplifier are presented
Extended Josephson Relation and Abrikosov lattice deformation
International Nuclear Information System (INIS)
Matlock, Peter
2012-01-01
From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.
Anomalous Josephson Effect between Even-and Odd-Frequency Superconductors
Tanaka, Yukio; Golubov, Alexandre Avraamovitch; Kashiwaya, Satoshi; Ueda, Masahito
2007-01-01
We demonstrate that, contrary to standard wisdom, the lowest-order Josephson coupling is possible between odd- and even-frequency superconductors. The origin of this effect is the induced odd- (even-)frequency pairing component at the interface of bulk even- (odd-)frequency superconductors. The
Development of a Josephson vortex two-state system based on a confocal annular Josephson junction
DEFF Research Database (Denmark)
Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.
2018-01-01
We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential...
Towards a 16 kilobit, subnanosecond Josephson RAM
International Nuclear Information System (INIS)
Herr, Q.P.; Eaton, L.
1999-01-01
A critical component of ultrahigh-speed Josephson logic systems is compatible memory. We are developing a fast Josephson memory that could be used as a small memory or first-level cache. Performance goals include sub-ns access and cycle time, 16 kbit cm -2 integration scale, low power consumption and appreciable yield. Initial test results on circuits fabricated in TRW's standard Nb integrated circuit process indicate that all these goals may be achieved. A 5 bit parallel decoder and 1 kbit memory array have been tested at 0.5 GHz. The maximum operating frequency of the memory array was limited by the test equipment. Circuit density is consistent with 16 kbit cm -2 . The top-level architecture has been chosen to achieve high throughput and low skew. The architecture is word organized, multiported and interleaved. (author)
Topology-induced critical current enhancement in Josephson networks
International Nuclear Information System (INIS)
Silvestrini, P.; Russo, R.; Corato, V.; Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M.; Cirillo, M.; Trombettoni, A.; Sodano, P.
2007-01-01
We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays
Topology-induced critical current enhancement in Josephson networks
Energy Technology Data Exchange (ETDEWEB)
Silvestrini, P. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy)], E-mail: p.silvestrini@cib.na.cnr.it; Russo, R. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Corato, V. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Cirillo, M. [Dipartimento di Fisica and INFM, Universita di Roma ' Tor Vergata' , 00173 Roma (Italy); Trombettoni, A. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Sodano, P. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Dipartimento di Fisica, Universita di Perugia, 06123 Perugia, and Sezione INFN, Perugia (Italy); Progetto Lagrange, Fondazione C.R.T. e Fondazione I.S.I., Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10124 Torino (Italy)
2007-10-29
We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays.
Quasioptical Josephson oscillator
International Nuclear Information System (INIS)
Wengler, M.J.; Pance, A.; Liu, B.
1991-01-01
This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer
Stability of fluxon motion in long Josephson junctions at high bias
DEFF Research Database (Denmark)
Pagano, S.; Sørensen, Mads Peter; Christiansen, Peter Leth
1988-01-01
In long Josephson junctions the motion of fluxons is revealed by the existence of current steps, zero-field steps, in the current-voltage characteristics. In this paper we investigate the stability of the fluxon motion when high values of the current bias are involved. The investigation is carried...... dissipations and of the junction length on the switching-current value is investigated. A simple boundary model is able to describe, for junctions of overlap geometry, the qualitative dependence of the switching current on the system parameters....
Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model
DEFF Research Database (Denmark)
Sobolev, A.; Pankratov, A.; Mygind, Jesper
2006-01-01
We have numerically investigated the dynamics of a long Josephson junction (flux-flow oscillator) biased by a DC current in the presence of magnetic field. The study is performed in the frame of the modified sine-Gordon model, which includes the surface losses, RC-load at both FFO ends and the self-pumping...... effect. In our model the dumping parameter depends both on the spatial coordinate and the amplitude of the AC voltage. In order to find the DC FFO voltage the damping parameter has to be calculated by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model...
Investigations of the structure of Nb-NbO/sub x/-Pb Josephson tunnel elements
International Nuclear Information System (INIS)
Koehler, H.J.; Seidel, P.; Weber, P.; Bluethner, K.; Linke, S.; Haedrich, T.; Berthel, K.H.
1983-01-01
Nb-NbO/sub x/-Pb tunnel junctions with tunnel areas of 100x100 μm 2 to 3x3 μm 2 are investigated. The temperature dependence of the current-voltage characteristic, of the effective niobium energy gap and of the critical Josephson current are compared with the BCS curves. The deviation of the experimentally determined values is caused by a proximity layer. With a proximity effect model the parameters of this proximity layer can be found by fitting the calculated values to the experimental values. Moreover, current density distribution in tunnel junctions are determined, which can be calculated from the dependence of the critical Josephson current on the magnetic field by means of a theoretical model. The dependences of the current density distributions on tunnel areas and the changes in time are investigated. (author)
Studies of chaos and thermal noise in a driven Josephson junction using an electronic analog
International Nuclear Information System (INIS)
Pegrum, C.M.; Gurney, W.S.C.; Nisbet, R.M.
1989-01-01
Using an electronic analog of a resistively shunted driven Josephson junction, the authors have demonstrated a number of effects, including the appearance of a devil's staircase in the current-voltage characteristic, the onset of chaos, and the effect of noise on these phenomena. The authors stress that the analog is simple, but models the junction behavior with a high degree of accuracy and detail
Energy Technology Data Exchange (ETDEWEB)
Sprungmann, Dirk
2010-01-28
The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Fractional Solitons in Excitonic Josephson Junctions
Su, Jung-Jung; Hsu, Ya-Fen
The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.
Squeezed States in Josephson Junctions.
Hu, X.; Nori, F.
1996-03-01
We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.
Effect of environment fluctuations on a Josephson current
International Nuclear Information System (INIS)
Galaktionov, A.V.
2017-01-01
Highlights: • Josephson current is influenced differently by environment fluctuations. • Two types of environment are studied: ohmic and resonant-mode one. • A crossover to a Josephson π-junction is possible for both of them. - Abstract: An influence of an electromagnetic environment on a Josephson current through a tunnel junction is studied with the aid of Ambegaokar-Eckern-Schön effective action. Two types of environment are investigated: one, characterized by a resonant mode, and an ohmic one. The crossover to a Josephson π-junction is possible for both of them. In addition the resonant-mode environment results in an increase of a Josephson current when the ratio of the doubled superconducting gap to the frequency of the mode is close to an integer number.
Modern aspects of Josephson dynamics and superconductivity electronics
Askerzade, Iman; Cantürk, Mehmet
2017-01-01
In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.
Equivalent Josephson junctions
International Nuclear Information System (INIS)
Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe
2008-01-01
The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru
Ultimately short ballistic vertical graphene Josephson junctions
Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong
2015-01-01
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386
Magnetic properties of slablike Josephson-junction arrays
International Nuclear Information System (INIS)
Chen, D.; Sanchez, A.; Hernando, A.
1994-01-01
Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed
Hikino, S.; Yunoki, S.
2015-07-01
We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization exhibits a discontinuous peak at each resonance dc voltage Vn=n ℏ ωS/2 e (n : integer) when dc voltage V as well as ac voltage vac(t ) with frequency ωS are both applied to the S /F 1 /N /F 2 /S junction. This is because MII(d ,θ ) oscillates generally in time t (ac magnetization) with d θ /d t =2 e [V +vac(t ) ]/ℏ and thus =0 , but can be converted into the time-independent dc magnetization for the dc voltage at Vn. We also discuss that the magnetization induced in the N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between the two S s in Josephson junctions. Our results
Niobium nitride Josephson tunnel junctions with magnesium oxide barriers
International Nuclear Information System (INIS)
Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.
1985-01-01
Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K
Mesoscopic fluctuations in the critical current in InAs-coupled Josephson junctions
International Nuclear Information System (INIS)
Takayanagi, Hideaki; Hansen, J.B.; Nitta, Junsaku
1994-01-01
Mesoscopic fluctuations were confirmed for the critical current in a p-type InAs-coupled Josephson junction. The critical current was measured as a function of the gate voltage corresponding to the change in the Fermi energy. The critical current showed a mesoscopic fluctuation and its behavior was the same as that of the conductance measured at the same time in both the weak and strong localization regimes. The magnitude and the typical period of the fluctuation are discussed and compared to theoretical predictions. ((orig.))
Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques
Chasse, Dominique
L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous
Vertical Josephson Interferometer for Tunable Flux Qubit
Energy Technology Data Exchange (ETDEWEB)
Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)
2006-06-01
We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.
International Nuclear Information System (INIS)
Dobrowolski, Tomasz
2012-01-01
The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.
Waintal, Xavier; Gaury, Benoit; Weston, Joseph
With single coherent electron sources and electronic interferometers now available in the lab, the time resolved dynamics of electrons can now be probed directly. I will discuss how a fast raise of voltage propagates inside an electronic interferometer and leads to an oscillating current of well controled frequency. This phenomena is the normal counterpart to the AC josephson effect. I will also briefly advertize our software for computing quantum transport properties, Kwant (http://kwant-project.org) and its time-dependent extension T-Kwant.
Hamdipour, Mohammad
2018-04-01
We study an array of coupled Josephson junction of superconductor/insulator/superconductor type (SIS junction) as a model for high temperature superconductors with layered structure. In the current-voltage characteristics of this system there is a breakpoint region in which a net electric charge appear on superconducting layers, S-layers, of junctions which motivate us to study the charge dynamics in this region. In this paper first of all we show a current voltage characteristics (CVC) of Intrinsic Josephson Junctions (IJJs) with N=3 Junctions, then we show the breakpoint region in that CVC, then we try to investigate the chaos in this region. We will see that at the end of the breakpoint region, behavior of the system is chaotic and Lyapunov exponent become positive. We also study the route by which the system become chaotic and will see this route is bifurcation. Next goal of this paper is to show the self similarity in the bifurcation diagram of the system and detailed analysis of bifurcation diagram.
Effect of single Abrikosov vortices on the properties of Josephson tunnel junctions
International Nuclear Information System (INIS)
Golubov, A.A.; Kupriyanov, M.Yu.
1987-01-01
The effect of single Abrikosov vortices, trapped in the electrodes of a Josephson tunnel junction perpendicularly to the junction surface, on the tunnel current through the junction is studied within the framework of the microscopic theory. The current-voltage characteristic and the critical junction current I c are calculated for temperatures 0 c . It is shown that if the vortices at the junction are misaligned, singularities on the current-voltage characteristic appear at eV Δ (T), and in some cases the magnitude of suppression of I c may be of the order of magnitude of I c itself. The temperature dependence of the critical current is calculated for the case of one of the electrodes being a two-dimensional superconducting film in which the creation of opposite sign vortex pairs is significant
Majorana splitting from critical currents in Josephson junctions
Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa
2017-11-01
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.
DEFF Research Database (Denmark)
Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper
1994-01-01
on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...
Phase-flip bifurcation in a coupled Josephson junction neuron system
Energy Technology Data Exchange (ETDEWEB)
Segall, Kenneth, E-mail: ksegall@colgate.edu [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Guo, Siyang; Crotty, Patrick [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Schult, Dan [Department of Mathematics, Colgate University, Hamilton, NY 13346 (United States); Miller, Max [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States)
2014-12-15
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry.
Phase-flip bifurcation in a coupled Josephson junction neuron system
International Nuclear Information System (INIS)
Segall, Kenneth; Guo, Siyang; Crotty, Patrick; Schult, Dan; Miller, Max
2014-01-01
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry
Chaos and related nonlinear noise phenomena in Josephson tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Miracky, R.F.
1984-07-01
The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10/sup 6/ K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10/sup 3/ K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ..omega../sub p/ and a mode at the half harmonic ..omega../sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references.
Chaos and related nonlinear noise phenomena in Josephson tunnel junctions
International Nuclear Information System (INIS)
Miracky, R.F.
1984-07-01
The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10 6 K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10 3 K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ω/sub p/ and a mode at the half harmonic ω/sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references
A search for the coherently radiating fluxon state in stacks of long intrinsic Josephson junctions
Lee, H J; Bae, M H; Wang, H; Yamashita, T
2002-01-01
We studied the motion of fluxons in a stack of intrinsic Josephson junctions (IJJs) of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta single crystals in a long junction limit. Driven by the tunnelling bias, current Josephson fluxons excite plasma oscillations and move in resonance with the plasma propagation modes. We examined two types of samples in this study; mesa structure (UD1) and a stack of junctions sandwiched between normal-metallic electrodes (DSC1). In a high magnetic field, the hysteresis in the I-V characteristics of both-types of samples vanished. The resulting single I-V curve exhibited a cusp structure at characteristic bias voltages which were believed to be boundaries of different moving fluxon configurations. We studied the sample-geometry dependence of the cusp characteristics by comparing the results from the two types of samples.
Low voltage excess noise and shot noise in YBCO bicrystal junctions
DEFF Research Database (Denmark)
Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.
2002-01-01
The spectral density of background noise emitted by symmetric bicrystal YBaCuO Josephson junctions on sapphire substrates have been measured by a low noise cooled HEMT amplifier for bias voltages up to V approximate to 50 mV. At relatively low voltages V noise rise has been...... registered. At large bias voltages V > 30 mV a clear dependence of noise power. exactly coinciding to the asymptote of the Schottky shot noise function, has been observed for the first time. Experimental results are discussed in terms of multiple Andreev reflections which may take place in d...
Spectroscopy of fractional Josephson vortex molecules
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2010-07-01
Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.
A review of the quantum current standard
International Nuclear Information System (INIS)
Kaneko, Nobu-Hisa; Nakamura, Shuji; Okazaki, Yuma
2016-01-01
The electric current, voltage, and resistance standards are the most important standards related to electricity and magnetism. Of these three standards, only the ampere, which is the unit of electric current, is an International System of Units (SI) base unit. However, even with modern technology, relatively large uncertainty exists regarding the generation and measurement of current. As a result of various innovative techniques based on nanotechnology and novel materials, new types of junctions for quantum current generation and single-electron current sources have recently been proposed. These newly developed methods are also being used to investigate the consistency of the three quantum electrical effects, i.e. the Josephson, quantum Hall, and single-electron tunneling effects, which are also known as ‘the quantum metrology triangle’. This article describes recent research and related developments regarding current standards and quantum-metrology-triangle experiments. (topical review)
Josephson plasma resonance in vortex filament state of high temperature superconductors
International Nuclear Information System (INIS)
Matsuda, Yuji; Gaifullin, M.B.
1996-01-01
High temperature superconductors have the crystalline structure in which two-dimensional CuO 2 planes are piled in layers, consequently, the anisotropy of electroconductivity arises, and this brings about stable and low energy Josephson plasma in superconducting state. Also as to the vortex filament state of high temperature superconductors, the effect of thermal fluctuation due to low dimensionality, short coherence length and high transition temperature becomes conspicuous. In reality, these plasma and vortex filament state are related closely. Light reflection and plasma edge in superconducting state, Josephson plasma resonance in the vortex filament state of BiO 2 Sr 2 CaCu 2 O 8+δ , the plasma vibration in Josephson junction, Josephson plasma in magnetic field, Josephson plasma in the liquid state of vortex filament, Josephson plasma in the solid state of vortex filament, and Josephson plasma in parallel magnetic field are reported. The Josephson plasma resonance is the experimental means for exploring vortex filament state from microscopic standpoint, and its development hereafter is expected. (K.I.)
Exponentially tapered Josephson flux-flow oscillator
DEFF Research Database (Denmark)
Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.
1996-01-01
We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train...... of fluxons moving toward the unbiased smaller end, as in the standard flux-flow oscillator. An exponentially shaped junction provides several advantages over a rectangular junction including: (i) smaller linewidth, (ii) increased output power, (iii) no trapped flux because of the type of current injection...
Some chaotic features of intrinsically coupled Josephson junctions
International Nuclear Information System (INIS)
Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.
2013-01-01
Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions
Ultralow power artificial synapses using nanotextured magnetic Josephson junctions
Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.
2018-01-01
Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787
Markovian Dynamics of Josephson Parametric Amplification
Directory of Open Access Journals (Sweden)
W. Kaiser
2017-09-01
Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Markovian Dynamics of Josephson Parametric Amplification
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Josephson cross-sectional model experiment
International Nuclear Information System (INIS)
Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.
1985-01-01
This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time
One-third (period three) harmonic generation in microwave-driven Josephson tunnel junctions
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Clarke, J.; Mygind, Jesper
1986-01-01
One-third harmonic signals have been generated in the zero voltage state of a Josephson tunnel junction driven with a microwave current in the frequency range 8–20 GHz. The signal was as much as 50 dB above the noise level of the detector with a linewidth of less than 100 Hz. The junction...... parameters and microwave current were measured in situ in separate experiments. The subharmonic generation occurred for ranges of microwave current and frequency that were in reasonable agreement with the results of digital computer simulations. Applied Physics Letters is copyrighted by The American...
Soliton excitations in Josephson tunnel junctions
DEFF Research Database (Denmark)
Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth
1982-01-01
A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...
Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model
International Nuclear Information System (INIS)
Sobolev, A.S.; Pankratov, A.L.; Mygind, J.
2006-01-01
We have numerically investigated the dynamics of a long Josephson junction (flux-flow oscillator) biased by a DC current in the presence of magnetic field. The study is performed in the frame of the modified sine-Gordon model, which includes the surface losses, RC-load at both FFO ends and the self-pumping effect. In our model the dumping parameter depends both on the spatial coordinate and the amplitude of the AC voltage. In order to find the DC FFO voltage the damping parameter has to be calculated by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model, which accounts for the presence of the superconducting gap, gives better qualitative agreement with experimental results compare to the conventional sine-Gordon model
Topologically protected loop flows in high voltage AC power grids
International Nuclear Information System (INIS)
Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I
2016-01-01
Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)
Fractional Solitons in Excitonic Josephson Junctions
Hsu, Ya-Fen; Su, Jung-Jung
2015-01-01
The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ? 0 applied. The system is mapped into a pseudospin ferromagnet then described numeric...
Electromagnetic waves in single- and multi-Josephson junctions
International Nuclear Information System (INIS)
Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko
2008-01-01
The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed
Power spectrum of an injection-locked Josephson oscillator
International Nuclear Information System (INIS)
Stancampiano, C.V.; Shapiro, S.
1975-01-01
Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf
Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)
2009-07-01
So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.
Josephson effects in a Bose–Einstein condensate of magnons
International Nuclear Information System (INIS)
Troncoso, Roberto E.; Núñez, Álvaro S.
2014-01-01
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations
Josephson effects in a Bose–Einstein condensate of magnons
Energy Technology Data Exchange (ETDEWEB)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2014-07-15
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.
Hamdipour, Mohammad
2017-12-01
By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.
Dynamics of Josephson junction arrays
International Nuclear Information System (INIS)
Hadley, P.
1989-01-01
The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices
Solve, S.; Chayramy, R.; Ben Salah, B.; Mallat, A.; Abene, L.; Stock, M.
2016-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.a and b, a comparison of the 1 V and 10 V voltage reference standards of the BIPM and the Laboratoire de Métrologie Electrique, DEFNAT (Tunisia), was carried out from February to March 2016. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPMC (ZC) and BIPM6 (Z6), were transported by freight to DEFNAT and back to BIPM. In order to keep the Zeners powered during their transportation phase, a BIPM in-house voltage stabiliser was connected in parallel to the internal battery. The voltage stabiliser consists of a set of two batteries, electrically protected from surcharge-discharge, easy to recharge and is designed to power two transfer standards for 10 consecutive days. At DEFNAT, the reference standard for DC voltage is a Josephson Voltage Standard. The output EMF (Electromotive Force) of each travelling standard was measured by direct comparison with the primary standard. At the BIPM, the travelling standards were calibrated, before and after the measurements at DEFNAT, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and ambient atmospheric pressure. The final result of the comparison is presented as the difference between the values assigned to DC voltage standards by DEFNAT, at the level of 1.018 V and 10 V, at DEFNAT, UDEFNAT, and those assigned by the BIPM, at the BIPM, UBIPM, at the reference date of the 26th of February 2016. UDEFNAT - UBIPM = + 0.07 μV uc = 0.04 μV, at 1.018 V UDEFNAT - UBIPM = + 0.38 μV uc = 0.10 μV, at 10 V where uc is the combined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML, based on KJ-90, and the uncertainty related to the comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which
Simulations of fine structures on the zero field steps of Josephson tunnel junctions
DEFF Research Database (Denmark)
Scheuermann, M.; Chi, C. C.; Pedersen, Niels Falsig
1986-01-01
Fine structures on the zero field steps of long Josephson tunnel junctions are simulated for junctions with the bias current injected into the junction at the edges. These structures are due to the coupling between self-generated plasma oscillations and the traveling fluxon. The plasma oscillations...... are generated by the interaction of the bias current with the fluxon at the junction edges. On the first zero field step, the voltages of successive fine structures are given by Vn=[h-bar]/2e(2omegap/n), where n is an even integer. Applied Physics Letters is copyrighted by The American Institute of Physics....
Flux-flow drag in coupled Josephson junctions
International Nuclear Information System (INIS)
Parmentier, R.D.; Barbara, P.; Costabile, G.; DAnna, A.; Malomed, B.A.; Soriano, C.
1997-01-01
We present a detailed analysis of the interaction between two fluxon chains in parallel magnetically coupled long Josephson junctions, one of which is biased (open-quotes generatorclose quotes) while another is unbiased (open-quotes detectorclose quotes). The main effect is that the driven fluxon chain in the generator may drag the chain in the detector. We note that five different regimes of the interaction are possible: both chains may be pinned by the external magnetic field; both may move in a locked state, inducing the same dc voltage in both junctions; in an unlocked state they may move at different velocities; the chain in the detector may remain pinned while the one in the generator is moving; and, finally, in a limited range of parameters the mean detector voltage may be negative, which implies that the detector chain is moving in the direction opposite to that of the chain in the generator. We consider a simplified model based on the assumptions that the fluxon chains are dense and rigid, and that their motion is nonrelativistic. In this model, each chain is represented by a single degree of freedom (its coordinate). Numerical and analytical consideration of the simplified model demonstrates that it is able to reproduce correctly all the dynamical regimes except for the negative-voltage one. To explain the existence of the latter regime, we introduce another model, suggested by the simulations, which is based on the presence of two fluxons and one antifluxon in the generator, and a single fluxon in the detector. The negative voltage is produced by motion of the antifluxon in a bound state with the detector close-quote s fluxon. The existence region of this state is limited by its collisions with free fluxons in the generator. copyright 1997 The American Physical Society
Phase dynamics of low critical current density YBCO Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2014-08-15
Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.
Observation of the Josephson effect on Ba-122 iron pnictide single crystals
Energy Technology Data Exchange (ETDEWEB)
Hasan, Noor; Schmidt, Stefan; Doering, Sebastian; Tympel, Volker; Schmidl, Frank; Seidel, Paul [Friedrich-Schiller- Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany); Wolf, Thomas [Karlsruhe Institute of Technology, Institut fuer Festkoerperphysik, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2015-07-01
Since the discovery of the first Fe-based superconductors in 2006, extensive effort has been directed characterizing and modeling the novel properties of these exotic materials. Therefore Josephson junction offer ways to investigate the fundamental properties of iron pnictides. We use Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} single crystals, prepared by a self-flux method, with an optimal Co concentration of 0.065 (critical temperature T{sub c}=23.5 K). We realize Josephson junctions along the c-axis. To prepare them a newly developed surface polishing as well as standard thin film technologies are used. The artificial barrier consists of thin sputtered layers of various materials, normal conductors as well as insulators. A thermally evaporated double layer film of Pb and In was used as the counter electrode. For the characterization of the Josephson effect we will present temperature dependent I-V characteristics as well as I{sub c} R{sub n} - T dependencies and measurements under microwave radiation, including. Additionally results from tunneling and Andreev spectroscopy i.e temperature dependent dI/dV - V spectra are shown.
The need for a common standard for voltage levels of HVDC VSC technology
International Nuclear Information System (INIS)
Müller, H.K.; Torbaghan, S. Shariat; Gibescu, M.; Roggenkamp, M.M.; Meijden, M.A.M.M. van der
2013-01-01
The expansion of offshore wind energy as well as the increase in electricity trade between the North Sea countries leads to a growing need for additional transmission capacity. Due to the predominantly remote locations of offshore wind farms, the majority of future connections will be high-voltage direct current (HVDC) connections. In order to make the construction of offshore infrastructure more efficient, the North Sea states are currently discussing the development of a common offshore grid. Although this development still stands at the very beginning, we argue in this paper that some crucial elements should be standardized from the outset; the most important one being a common voltage level. Without such standardization, the development of a European offshore grid may be suboptimal, not cost-efficient and might even be prevented from coming into existence. We examine the technical and legal issues associated with introducing a common voltage level for the use of HVDC VSC technology, and discuss the optimal standard as well as the way in which this common standard can best be achieved. - Highlights: • We highlight the need for a common standard for HVDC VSC technology. • We outline that a standardized voltage level at ± 500 kV should be the initial focus. • We discuss the developments regarding standardization of HVDC VSC technology. • We conclude that current developments are not sufficient
Anomalous Josephson effect controlled by an Abrikosov vortex
Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.
2017-12-01
The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.
Fractional Josephson vortices: oscillating macroscopic spins
Energy Technology Data Exchange (ETDEWEB)
Gaber, T.; Buckenmaier, K.; Koelle, D.; Kleiner, R.; Goldobin, E. [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)
2007-11-15
Fractional Josephson vortices carry a magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. We consider a fractional vortex which spontaneously appears at a phase discontinuity. Its properties are very different from the properties of the usual integer fluxon. In particular, a fractional vortex is pinned and may have one of two possible polarities - just like a usual spin 1/2 particle. The fractional vortex may also oscillate around its equilibrium position with an eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux {phi} and on the bias current. The experimental results are in good agreement with theoretical predictions. Positive result of this experiment is a cornerstone for further investigation of more complex fractional vortex systems such as fractional vortex molecules and tunable bandgap materials. (orig.)
Versatile multi-layer Josephson junction process for vortex molecules
Energy Technology Data Exchange (ETDEWEB)
Meckbach, Johannes Maximilian; Buehler, Simon; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, KIT (Germany); Buckenmaier, Kai; Gaber, Tobias; Kienzle, Uta; Neumaier, Benjamin; Goldobin, Edward; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II, Universitaet Tuebingen (Germany)
2012-07-01
In long Josephson junctions magnetic flux may penetrate the barrier resulting in a so-called Josephson-Vortex carrying one flux quantum Φ{sub 0}. In recent years a new type of Josephson-Vortex became available, which carries any arbitrary fraction Φ = -Φ{sub 0}κ/2π of magnetic flux. These fractional vortices (p-vortices) spontaneously appear at discontinuities of the Josephson phase along the junction, which in turn are created using a pair of current injectors. We present a new Nb/Al-AlO{sub x}/Nb process for the fabrication of Josephson junctions of very high quality. Placing two injector pairs along the strongly underdamped long junctions allows the investigation of fractional vortex molecules. The topological charge of each vortex and their interaction can be altered even during experiment by changing the individual injector currents. Vortex molecule states have been measured using asymmetric DC-SQUIDs coupled to the vortices by overlying pick-up loops. To uphold the p-vortices we use persistent currents, which can be altered using heat switches. Fractional vortex molecules are promising candidates for a new type of qubits.
The critical current of point symmetric Josephson tunnel junctions
International Nuclear Information System (INIS)
Monaco, Roberto
2016-01-01
Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.
Dynamics of a nanoscale Josephson junction probed by scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Ast, Christian R.; Jaeck, Berthold; Eltschka, Matthias; Etzkorn, Markus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Institut de Physique de la Matiere Condensee, EPFL, Lausanne (Switzerland)
2015-07-01
The Josephson effect is an intriguing phenomenon as it presents an interplay of different energy scales, such as the Josephson energy ε{sub J} (critical current), charging energy ε{sub C}, and temperature T. Using a scanning tunneling microscope (STM) operating at a base temperature of 15 mK, we create a nanoscale superconductor-vacuum-superconductor tunnel junction in an extremely underdamped regime (Q>>10). We observe extremely small retrapping currents also owing to strongly reduced ohmic losses in the well-developed superconducting gaps. While formally operating in the zero temperature limit, i.e. the temperature T is smaller than the Josephson plasma frequency ω{sub J} (k{sub B}T<<ℎω{sub J}=√(8ε{sub J}ε{sub C})), experimentally other phenomena, such as stray photons, may perturb the Josephson junction, leading to an effectively higher temperature. The dynamics of the Josephson junction can be addressed experimentally by looking at characteristic parameters, such as the switching current and the retrapping current. We discuss the dynamics of the Josephson junction in the context of reaching the zero temperature limit.
Loss models for long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1984-01-01
A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....
International Nuclear Information System (INIS)
Seidel, P.; Heinz, E.; Pfuch, A.; Machalett, F.; Krech, W.; Basler, M.
1996-06-01
Different many-junction arrays of Josephson junctions were studied theoretically to analyse the mechanisms of synchronization, the influence of internal and external parameters and the maximal allowed spread of parameters for the single junctions. Concepts to realize arrays using standard high-T c superconductor technology were created, e.g. the new arrangement of multijunction superconducting loops (MSL). First experimental results show the relevance of this concept. Intrinsic one-dimensional arrays in thin film technology were prepared as mesas out of Bi or Tl 2212 films. to characterize HTSC Josephson junctions methods based on the analysis of microwave-induced steps were developed. (orig.) [de
Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator
DEFF Research Database (Denmark)
Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper
1991-01-01
An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...
Solve, S.; Chayramy, R.; Matlejoane, A. M.; Magagula, L.; Stock, M.
2018-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.a and b, a comparison of the 1.018 V and 10 V voltage reference standards of the BIPM and the National Metrology Institute of South Africa, NMISA (South Africa), was carried out from April to June 2017. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPMA (ZA) and BIPMB (ZB), were transported by freight to NMISA and back to BIPM. In order to keep the Zeners powered during their transportation phase, a voltage stabilizer developed by BIPM was connected in parallel to the internal battery. It consists of a set of two batteries, electrically protected from surcharge-discharge, easy to recharge and is designed to power two transfer standards for ten consecutive days. At NMISA, the reference standard for DC voltage is a Josephson Voltage Standard. The output EMF (Electromotive Force) of each travelling standard was measured by direct comparison with the primary standard. At the BIPM, the travelling standards were calibrated, before and after the measurements at NMISA, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and atmospheric pressure. The final result of the comparison is presented as the difference between the values assigned to DC voltage standards by NMISA, at the level of 1.018 V and 10 V, at NMISA, UNMISA, and those assigned by the BIPM, at the BIPM, UBIPM, at the reference dates of the 19th and 18th of May 2017, respectively. UNMISA - UBIPM = + 0.07 μV uc = 0.02 μV, at 1.018 V UNMISA - UBIPM = + 0.001 μV uc = 0.34 μV, at 10 V where uc is the combined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NMISA, based on KJ-90, and the uncertainty related to the comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which
Dynamical phase transition in a fully frustrated Josephson array on a square lattice
International Nuclear Information System (INIS)
Fisher, K. D.; Stroud, D.; Janin, L.
1999-01-01
We study dynamical phase transitions at temperature T=0 in a fully frustrated square Josephson junction array subject to a driving current density, which has nonzero components i x , i y parallel to both axes of the lattice. Our numerical results show clear evidence for three dynamical phases: a pinned vortex lattice characterized by zero time-averaged voltages x > t and y > t , a ''plastic'' phase in which both x > t and y > t are nonzero, and a moving lattice phase in which only one of the time-average voltage components is nonzero. The last of these has a finite transverse critical current: if a current is applied in the x direction, a nonzero transverse current density i y is required before y > t becomes nonzero. The voltage traces in the moving lattice phase are periodic in time. By contrast, the voltages in the plastic phase have continuous power spectra that are weakly dependent on frequency. This phase diagram is found numerically to be qualitatively unchanged by the presence of weak disorder. We also describe two simple analytical models that recover some, but not all, the characteristics of the three dynamical phases, and of the phase diagram calculated numerically. (c) 1999 The American Physical Society
Logic delays of 5-μm resistor coupled Josephson logic
International Nuclear Information System (INIS)
Sone, J.; Yoshida, T.; Tahara, S.; Abe, H.
1982-01-01
Logic delays of resistor coupled Josephson logic (RCJL) have been investigated. An experimental circuit with a cascade chain of ten RCJL OR gates was fabricated using Pb-alloy Josephson IC technology with 5-μm minimum linewidth. Logic delay was measured to be as low as 10.8 ps with power dissipation of 11.7 μW. This demonstrates a switching operation faster than those reported for other Josephson gate designs. Comparison with computer-simulation results is also presented
Long Josephson Junction Stack Coupled to a Cavity
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.
2007-01-01
A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....
Josephson effect in high-Tc superconductors and in structures using them
International Nuclear Information System (INIS)
Kupriyanov, M.Yu.; Likharev, K.K.
1990-01-01
A review of the investigations of the Josephson effect in HTS materials and HTS Josephson structures is represented. The influence of the synthesis conditions and a surface etching on the surface properties of the HTS/Ag(Au) are briefly discussed. On the basis of these results the experimental data obtained in various types of the Josephson junctions (point contacts, tunnel junctions, weak links, break and bulk junctions and crystal type break junctions) are considered. These data are compared with theoretical results obtained from different BCS models of the Josephson junctions. It is concluded that now it is impossible to make either the conclusion on the applicability of the BCS theory for HTS superconductors or the unambiguous identification of the principal physical structure of the junctions. The directions of the future experimental investigations of the Josephson effect in HTS tunnel junctions and weak links are discussed
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
Self-organization of the critical state in Josephson lattices and granulated superconductors
International Nuclear Information System (INIS)
Ginzburg, S.L.
1994-01-01
A number of models of a Josephson medium and granulated superconductors are studied. It is shown that an important parameter is the quantity V∼j c a 3 /Φ 0 , where j c is the Josephson-current density, a is the granule size, and Φ 0 is the quantum of flux. In the limit V>>1 the continuum approximation is inapplicable. In this case the Josephson medium is transformed into a system in which pinning is realized on elementary loops that incorporate Josephson junctions. Here, nonlinear properties of these junctions obtain. The equations obtained for the currents of the Josephson lattice are identical to the standard formulation in the problem of self-organized criticality, while in granulated superconductors a problem of self-organized criticality with a different symmetry arises-a problem not of sites, but of loop. From the point of view of the critical state in granulated superconductors the concept of self-organized criticality radically changes the entire customary picture. The usual equations of the critical state describe only the average values of the magnetic field in the hydrodynamic approximation. However, it follows from the concept of self-organized criticality that the critical state has an extremely complicated structure, much more complicated than that which follows from the equation of the critical state. In particular, the fluctuations of various quantities in the critical state are much stronger than the ordinary statistical fluctuations, since there are large-scale fluctuations of the currents and fields, with a power-law (scaling) behavior that extends up to scales of the order of the size of the system, as in a turbulent medium. On the other hand, the basic equations in it reflect all the features of pinning - hysteresis and threshold behavior. Therefore, the self-organization of the critical state of a superconductor is a natural realization of this extremely general problem. 15 refs., 4 figs
Magnetic field behavior of current steps in long Josephson junctions
International Nuclear Information System (INIS)
Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.
1980-01-01
The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)
Y-junction of superconducting Josephson chains
International Nuclear Information System (INIS)
Giuliano, Domenico; Sodano, Pasquale
2009-01-01
We show that, for pertinent values of the fabrication and control parameters, an attractive finite coupling fixed point emerges in the phase diagram of a Y-junction of superconducting Josephson chains. The new fixed point arises only when the dimensionless flux f piercing the central loop of the network equals π and, thus, does not break time-reversal invariance; for f≠π, only the strongly coupled fixed point survives as a stable attractive fixed point. Phase slips (instantons) have a crucial role in establishing this transition: we show indeed that, at f=π, a new set of instantons-the W-instantons-comes into play to destabilize the strongly coupled fixed point. Finally, we provide a detailed account of the Josephson current-phase relationship along the arms of the network, near each one of the allowed fixed points. Our results evidence remarkable similarities between the phase diagram accessible to a Y-junction of superconducting Josephson chains and the one found in the analysis of quantum Brownian motion on frustrated planar lattices
Study and operating conditions of HTS Josephson arrays for metrological application
International Nuclear Information System (INIS)
Sosso, A.; Lacquaniti, V.; Andreone, D.; Cerri, R.; Klushin, A.M.
2006-01-01
We report an experimental study of metrological properties of high-temperature superconductor arrays, made of shunted bicrystal YBCO Josephson junctions. The work is mainly based on a direct comparison against a low temperature array. Owing to the high sensitivity of the measurements, we observed at nanovolt level the changes in the HTS array voltage on a step. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results of low sensitivity techniques, confirming that our method is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was also applied in the derivation of the temperature dependence of the critical current, providing insights on the behavior of the HTS array
Microwave oscillator using arrays of long Josephson junctions
International Nuclear Information System (INIS)
Pagano, S.; Monaco, R.; Costabile, G.
1989-01-01
The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed
Using ion irradiation to make high-Tc Josephson junctions
International Nuclear Information System (INIS)
Bergeal, N.; Lesueur, J.; Sirena, M.; Faini, G.; Aprili, M.; Contour, J. P.; Leridon, B.
2007-01-01
In this article we describe the effect of ion irradiation on high-T c superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-T c film and a mesa one defined in a trilayer structure
Self-field effects in window-type Josephson tunnel junctions
DEFF Research Database (Denmark)
Monaco, Roberto; Koshelets, Valery P; Mukhortova, Anna
2013-01-01
The properties of Josephson devices are strongly affected by geometrical effects such as those associated with the magnetic field induced by the bias current. The generally adopted analysis of Owen and Scalapino (1967 Phys. Rev. 164, 538) for the critical current, Ic, of an in-line Josephson tunnel...
Phase transition in nonuniform Josephson arrays: Monte Carlo simulations
Lozovik, Yu. E.; Pomirchy, L. M.
1994-01-01
Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.
Numerical simulations of flux flow in stacked Josephson junctions
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig
2005-01-01
We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...
Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Caruso, R. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Pal, A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, New York 11961 (United States); Pepe, G.P. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Blamire, M.G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tafuri, F. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy)
2017-02-15
Highlights: • We study the phase dynamics of ferromagnetic NbN/GdN/NbN Josephson junctions. • The ferromagnetic insulator GdN barrier generates spin-filtering properties. • Spin filter junctions fall in the underdamped regime. • MQT occurs with the same phenomenology as in conventional Josephson junctions. • Dissipation is studied in a wide range of critical current density values. - Abstract: A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (J{sub c}), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low J{sub c} values.
Microscopic tunneling theory of long Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm
1992-01-01
We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...
Experiments on phase retrapping in φ Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Menditto, Rosina; Koelle, Dieter; Kleiner, Reinhold [University of Tuebingen, Tuebingen (Germany); Weides, Martin [KIT, Karlsruhe (Germany)
2015-07-01
We experimentally study retrapping of the phase in φ Josephson junctions (JJs) based on superconductor-insulator-ferromagnet-superconductor (SIFS) 0-π heterostructures. Such φ JJs have a doubly degenerate ground state (two potential energy wells) with the phases ±φ (0 < φ < π). We study in which of these two wells the phase is trapped upon return of the JJ to the zero voltage state. We find that for T>T* ∼ 2.4 K (large damping) the phase is always trapped in the +φ state. However, for lower T (small damping) the trapping result is a statistical mixture of the +φ and the -φ states due to the presence of noise in the system. The probability for retrapping to the -φ state increases and oscillates as T is decreasing below T*, reaching a saturation value of ∝ 30% for T
Nonlinear optical control of Josephson coupling in cuprates
Energy Technology Data Exchange (ETDEWEB)
Casandruc, Eliza
2017-03-15
In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between
Critical current of Josephson contacts with accidental position of vortexes
International Nuclear Information System (INIS)
Fistul', M.V.
1989-01-01
Josephson contact critical current dependence on magnetic field under different concentrations of Abrikosov vortices (AV) in superconducting shores is found. Pinned vortex concentration as well as correlation in the vortex position can be determined by Josephson current dependence on magnetic field
Josephson effect far-infrared detector
International Nuclear Information System (INIS)
Shapiro, S.
1971-01-01
Four Josephson effect schemes for detection of far-infrared radiation are reviewed: Video broad-band detection, regenerative detection, conventional mixing for monochromatic signals, and self-mixing or frequency conversion. (U.S.)
Josephson junction analog and quasiparticle-pair current
DEFF Research Database (Denmark)
Bak, Christen Kjeldahl; Pedersen, Niels Falsig
1973-01-01
A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...
Phase transition in one Josephson junction with a side-coupled magnetic impurity
Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang
2018-04-01
This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.
Propagation and generation of Josephson radiation in superconductor/insulator superlattices
International Nuclear Information System (INIS)
Auvil, P.R.; Ketterson, J.B.
1987-01-01
The wave propagation and generation characteristics of a metal-insulator superlattice are calculated in a low-field Landau--Ginzburg model, including Josephson coupling through the insulating layers. It is shown that a significant increase in the phase velocity of the electromagnetic waves propagating in the superlattice occurs when the thickness of the superconducting layers becomes much less than the London penetration depth, suggesting that increased output of Josephson radiation may be achieved from such structures. Wave generation via the ac Josephson effect (in the presence of applied dc electric and magnetic fields) is studied for both parallel and series driven multilayer structures
Flux Cloning in Josephson Transmission Lines
International Nuclear Information System (INIS)
Gulevich, D.R.; Kusmartsev, F.V.
2006-01-01
We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The 'baby' vortex arises at the moment when a 'mother' vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect
A quantum accurate waveform synthesizer as a voltage reference for an electronic primary thermometer
Pollarolo, Alessio; Benz, Samuel; Rogalla, Horst; Dresselhaus, Paul
2014-03-01
We are using a quantum voltage noise source (QVNS) for use as an intrinsically accurate voltage reference for a new type of electronic temperature standard. In Johnson Noise Thermometry (JNT) the noise of a resistor is used to measure temperature or Boltzmann's constant k, because the Nyquist equation =4kTR Δf shows that the power spectral density is proportional to k, temperature T, resistance R and measurement bandwidth Δf . The QVNS is a digital to analog converter used to synthesize a voltage waveform that resembles pseudo-random noise comparable in amplitude to the resistor noise. The signal generated is a frequency comb of harmonics tones that are equally spaced in frequency, all having identical amplitudes but random phases. The QVNS is an array superconducting Josephson junctions that are biased with a pulsed waveform clocked at 10 GHz. The accuracy of the voltage waveform derives from the identical voltage pulses produced by each junction that are perfectly quantized because their time-integrals are always equal to flux quantum h/2 e. The time-dependent output voltage waveform is determined by the number of pulses and their density in time. The measurement electronics exploits cross-correlation techniques to reduce the uncorrelated measurement noise so as to reveal the resistor noise, both of which are on the order of 2 nV/ √Hz. With this technique we have measured k with an uncertainty of about one part in 105, which we hope to improve by another order of magnitude with further research.
75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines
2010-04-06
... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...
Josephson comparator switching time
Energy Technology Data Exchange (ETDEWEB)
Herr, Quentin P; Miller, Donald L; Przybysz, John X [Northrop Grumman, Baltimore, MD (United States)
2006-05-15
Comparator performance can be characterized in terms of both sensitivity and decision time. Delta-sigma analogue-to-digital converters are tolerant of sensitivity errors but require short decision time due to feedback. We have analysed the Josephson comparator using the numerical solution of the Fokker-Planck equation, which describes the time evolution of the ensemble probability distribution. At balance, the result is essentially independent of temperature in the range 5-20 K. There is a very small probability, 1 x 10{sup -14}, that the decision time will be longer than seven single-flux-quantum pulse widths, defined as Phi{sub 0}/(I{sub c}R{sub n}). For junctions with a critical current density of 4.5 kA, this decision time is only 20 ps. Decision time error probability decreases rapidly with lengthening time interval, at a rate of two orders of magnitude per pulse width. We conclude that Josephson comparator performance is quite favourable for analogue-to-digital converter applications.
International Nuclear Information System (INIS)
Watanabe, S.; Strogatz, S.H.; van der Zant, H.S.J.; Orlando, T.P.
1995-01-01
We analyze the damped driven discrete sine-Gordon equation. For underdamped, highly discrete systems, we show that whirling periodic solutions undergo parametric instabilities at certain drive strengths. The theory predicts novel resonant steps in the current-voltage characteristics of discrete Josephson rings, occurring in the return path of the subgap region. We have observed these steps experimentally in a ring of 8 underdamped junctions. An unusual prediction, verified experimentally, is that such steps occur even if there are no vortices in the ring. Numerical simulations indicate that complex spatiotemporal behavior occurs past the onset of instability
International Nuclear Information System (INIS)
Shenoy, S.R.; Karlsruhe Univ.
1983-07-01
A two-dimensional NXN array of coupled Josephson junctions, each of size tau 0 and Josephson length lambdasub(JO)>>tau 0 , is shown to exhibit macroscopic weak superconductivity. The Josephson phase coherence here extends across the array, vanishing discontinuously at the Kosterlitz-Thouless transition temperature. The transverse size Ntau 0 must be smaller than a few times the effective Josephson screening length lambdasub(J)sup(eff) proportional to lambdasub(JO), for a sharp transition to be seen. (author)
Power, O.; Solve, S.; Chayramy, R.; Stock, M.
2011-01-01
As a part of the ongoing BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from March to April 2011. Two BIPM Zener diode-based travelling standards (Fluke 732B) were transported by freight to NSAI-NML. At NSAI-NML, the 10 V output EMF of each travelling standard was measured by direct comparison with a group of characterized Zener diode-based electronic voltage standards. At the BIPM, the travelling standards were calibrated before and after the measurements at NSAI-NML, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages on internal temperature and ambient pressure. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated expanded uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Measurement of microchannel fluidic resistance with a standard voltage meter
International Nuclear Information System (INIS)
Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.
2013-01-01
Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.
Quantum dynamics of a strongly driven Josephson Junction
Energy Technology Data Exchange (ETDEWEB)
Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)
2015-07-01
A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.
Response of high Tc superconducting Josephson junction to nuclear radiation
International Nuclear Information System (INIS)
Ding Honglin; Zhang Wanchang; Zhang Xiufeng
1992-10-01
The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed
Josephson current at atomic scale: Tunneling and nanocontacts using a STM
International Nuclear Information System (INIS)
Rodrigo, J.G.; Crespo, V.; Vieira, S.
2006-01-01
Using a scanning tunneling microscope, STM, with a superconducting tip, we have measured the Josephson current in atomic size tunnel junctions and contacts with a small number of quantum channels of conduction. We analyze our results in terms of the Ivanchenko and Zil'berman model for phase diffusion. The effect of the thermal energy and the electromagnetic environment on the Josephson current is discussed in terms of the transmissions of the individual quantum channels. These results suppose an initial step to the control of Scanning Josephson Spectroscopy at atomic level
Pinning of Josephson vortex chain in periodically heterogeneous junctions: theory and experiment
International Nuclear Information System (INIS)
Malomed, B.A.; Ustinov, A.V.
1989-01-01
Critical values of the density of extrinsic current of rigid Josephson vortex chain depinning in a long Josephson junction are calculated in terms of the perturbation theory. The dynamics of the chain is considered. In particular, a minimum value of the current density is estimated which permits the chain free motion through the transition on dissipation. The dependence of critical current, Jc, on external magnetic field H is measured for long Josephson junctions Nb-NbO x -Pb with artificial spatially periodic heterogeneities of dielectric barrier. For multiple values of H, the curve Jc(H) is found to display some peaks which, by the theory, are responsible for by an increase in the force of Josephson vortex chain and the heterogeneity lattice are commensurate
Global stability of phase lock near a chaotic crisis in the rf-biased Josephson junction
International Nuclear Information System (INIS)
Kautz, R.L.
1987-01-01
The global stability of phase lock in the rf-biased Josephson junction is studied through digital simulations. Global stability is determined by calculating the lifetime of the phase-locked state in the presence of thermal noise. This lifetime, the mean time required for thermal noise to induce a 2π phase slip, increases exponentially with inverse temperature in the limit of low temperatures, and the low-temperature asymptote can be parametrized in terms of an activation energy E-script and an attempt time tau 0 . The activation energy is a useful measure of global stability for both periodic and chaotic phase-locked states. The behavior of E-script and tau 0 is studied over a range of critical-current densities which take the system from a region of harmonic motion through a period-doubling cascade and into a region of phase-locked chaotic behavior which is ended by a chaotic crisis. At the crisis point, the activation energy goes to zero and the attempt time goes to infinity. The results are used to determine the optimum critical-current density for series-array voltage standards
Quantum logical states and operators for Josephson-like systems
International Nuclear Information System (INIS)
Faoro, Lara; Raffa, Francesco A; Rasetti, Mario
2006-01-01
We give a formal algebraic description of Josephson-type quantum dynamical systems, i.e., Hamiltonian systems with a cos θ-like potential term. The two-boson Heisenberg algebra plays for such systems the role that the h(1) algebra does for the harmonic oscillator. A single Josephson junction is selected as a representative of Josephson systems. We construct both logical states (codewords) and logical (gate) operators in the superconductive regime. The codewords are the even and odd coherent states of the two-boson algebra: they are shift-resistant and robust, due to squeezing. The logical operators acting on the qubit codewords are expressed in terms of operators in the enveloping of the two-boson algebra. Such a scheme appears to be relevant for quantum information applications. (letter to the editor)
High-Voltage-Input Level Translator Using Standard CMOS
Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.
2011-01-01
proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors
Two-dimensional macroscopic quantum tunneling in multi-gap superconductor Josephson junctions
International Nuclear Information System (INIS)
Asai, Hidehiro; Kawabata, Shiro; Ota, Yukihiro; Machida, Masahiko
2014-01-01
Low-temperature characters of superconducting devices yield definite probes for different superconducting phenomena. We study the macroscopic quantum tunneling (MQT) in a Josephson junction, composed of a single-gap superconductor and a two-gap superconductor. Since this junction has two kinds to the superconducting phase differences, calculating the MQT escape rate requires the analysis of quantum tunneling in a multi-dimensional configuration space. Our approach is the semi-classical approximation along a 1D curve in a 2D potential- energy landscape, connecting two adjacent potential (local) minimums through a saddle point. We find that this system has two plausible tunneling paths; an in-phase path and an out-of-phase path. The former is characterized by the Josephson-plasma frequency, whereas the latter is by the frequency of the characteristic collective mode in a two-band superconductor, Josephson- Leggett mode. Depending on external bias current and inter-band Josephson-coupling energy, one of them mainly contributes to the MQT. Our numerical calculations show that the difference between the in-phase path and the out-of-phase path is manifest, with respect to the bias- current-dependence of the MQT escape rate. This result suggests that our MQT setting be an indicator of the Josephson-Leggett mode
Bifurcation and chaos in a dc-driven long annular Josephson junction
DEFF Research Database (Denmark)
Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1991-01-01
Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...
Static properties of small Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monaco, R.; Aarøe, Morten; Mygind, Jesper
2008-01-01
The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...
Nogawa, Tomoaki
2012-05-22
We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.
Critical current fluctuation in a microwave-driven Josephson junction
International Nuclear Information System (INIS)
Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng
2007-01-01
Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations
High-performance DC SQUIDs with submicrometer niobium Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.
High-performance dc SQUIDs with submicrometer niobium Josephson junctions
de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.
Microwave phase locking of Josephson-junction fluxon oscillators
DEFF Research Database (Denmark)
Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.
1990-01-01
Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...
Superconducting Coset Topological Fluids in Josephson Junction Arrays
Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.
2006-01-01
We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.
PECVD SiO2 dielectric for niobium Josephson IC process
International Nuclear Information System (INIS)
Lee, S.Y.; Nandakumar, V.; Murdock, B.; Hebert, D.
1991-01-01
PECVD SiO 2 dielectric has been evaluated as an insulator for a Nb-based, all-refractory Josephson integrated circuit process. First, the properties of PECVD SiO 2 films were measured and compared with those of evaporated SiO films. Second, the PECVD SiO 2 dielectric film was used in our Nb-based Josephson integrated circuit process. The main problem was found to be the deterioration of the critical temperature of the superconducting niobium adjacent to the SiO 2 . The cause and a solution of the problem were investigated. Finally, a Josephson integrated sampler circuit was fabricated and tested. This paper shows acceptable junction I-V characteristics and a measured time resolution of a 4.9 ps pulse in liquid helium
Hybrid Josephson-CMOS Memory in Advanced Technologies and Larger Sizes
International Nuclear Information System (INIS)
Liu, Q; Van Duzer, T; Fujiwara, K; Yoshikawa, N
2006-01-01
Recent progress on demonstrating components of the 64 kb Josephson-CMOS hybrid memory has encouraged exploration of the advancement possible with use of advanced technologies for both the Josephson and CMOS parts of the memory, as well as considerations of the effect of memory size on access time and power dissipation. The simulations to be reported depend on the use of an approximate model for 90 nm CMOS at 4 K. This model is an extension of the one we developed for 0.25 μm CMOS and have already verified. For the Josephson parts, we have chosen 20 kA/cm 2 technology, which was recently demonstrated. The calculations show that power dissipation and access time increase rather slowly with increasing size of the memory
The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction
Pahlavanias, Hassan
2018-03-01
The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.
Coordinate transformation in the model of long Josephson contacts: geometrically equivalent contacts
International Nuclear Information System (INIS)
Semerdzhieva, E.G.; Boyadzhiev, T.L.; ); Shukrinov, Yu.M.; Physical Technical Institute Dushanbe, 734063
2005-01-01
The transition from model of long Josephson variable-width contact to the contact model with coordinate-dependent Josephson current amplitude is realized by transforming the coordinates. This sets up a correspondence between Josephson contacts of variable width and quasi-one-dimensional contacts of variable thickness barrier layer. It is shown, that for contacts of exponentially varying width the barrier layer of the corresponding quasi-one-dimensional contact contains the distributed resistive inhomogeneity which is an attractor to magnetic flux vortices. With numerical experiments, a 'critical current-magnetic field' dependence for a resistive microinhomogeneity Josephson contact was plotted, and its comparison with the critical curve for a contact of exponentially varying width was made. Thus, this demonstrates that the distributed inhomogeneity may be replaced by a local one at the JC end what technologically, may offer definite advantages
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.
The two Josephson junction flux qubit with large tunneling amplitude
International Nuclear Information System (INIS)
Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.
2008-01-01
In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution
Indian Academy of Sciences (India)
Laboratory (NPL), New Delhi in the realization of the unit of volt based on the a.c. Josephson effect. A voltage standard at 1 mV level using a Nb-Nb point contact junction has been established and the as-maintained volt based on a bank of standard cells has been intercompared against it using a 1:1000 voltage divider.
International Nuclear Information System (INIS)
Devoret, M.H.; Esteve, D.; Martinis, J.M.; Cleland, A.; Clarke, J.
1987-01-01
A current-biased Josephson tunnel junction in its zero-voltage state can be modeled as a Brownian particle in a potential well from which it can escape by thermal activation at a rate Γ(0). The enhancement γ = Γ(I/sub m/)/Γ(0) of the escape rate has been measured in the presence of a microwave current of amplitude I/sub m/, which represents a weak, sinusoidal force driving the particle. When the microwave frequency is varied, lnγ peaks approximately at the natural frequency at which the particle oscillates at the bottom of the anharmonic potential well. At higher frequencies, lnγ exhibits a sharp roll-off that steepens as the quality factor Q of the junction is increased, while at lower frequencies lnγ has a long tail with a shape which is almost independent of Q. These features are qualitatively consistent with the theories of Ivlev and Mel'nikov and Larkin and Ovchinnikov, which we discuss. These theories however, are not able to predict analytically the behavior of lnγ near the peak. To overcome this difficulty a detailed series of computer simulations has been performed. These simulations, together with certain scaling properties of the theories, have been used to construct an empirical formula for lnγ that is in qualitative agreement with the experimentally determined frequency dependence of lnγ. The experimentally observed dependences of lnγ on temperature and microwave amplitude are in good quantitative agreement with predictions
Resonator coupled Josephson junctions; parametric excitations and mutual locking
DEFF Research Database (Denmark)
Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper
1991-01-01
Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...
A fully operational 1-kb variable threshold Josephson RAM
International Nuclear Information System (INIS)
Kurosawa, I.; Nakagawa, H.; Aoyagi, M.; Kosaks, S.; Takada, S.
1991-01-01
This paper describes the first fully operational Josephson RAM in LSI level integration. The chip was designed as a 4-b x 256-word data RAM unit for a 4-b Josephson computer, The variable threshold memory cell and the relating memory architecture were used. They are so simple in structure that the fabrication is satisfied by the current Josephson junction technology. A directly coupled driver gate for a resistive bit line applies an accurate and stable driving current to the memory cell array. The RAM chip was fabricated with a 3-μm Nb/Al-oxide/Nb junction technology. For obtaining reliable RAM chips, a plasma-enhanced CVD silicon dioxide layer was introduced for insulation between the ground plane and the base electrode. The thermal uniformity of the wafer was improved during the oxidation process for making a tunnel barrier in this work
Josephson tunnel junctions in niobium films
International Nuclear Information System (INIS)
Wiik, Tapio.
1976-12-01
A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)
Josephson junctions with ferromagnetic alloy interlayer
Energy Technology Data Exchange (ETDEWEB)
Himmel, Nico
2015-07-23
Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially
Josephson junctions with ferromagnetic alloy interlayer
International Nuclear Information System (INIS)
Himmel, Nico
2015-01-01
Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of
Effect of the subgap conductance on the metastable states in a Josephson tunnel junction
International Nuclear Information System (INIS)
Cristiano, R.; Pagano, S.; Silvestrini, P.; Gray, K.E.; Liengme, O.
1987-09-01
An investigation of the decay rate of metastable states in Josephson tunnel junctions in presence of thermal noise is presented. We have observed that, in the extremely underdamped regime, there is an exponential temperature dependence of the best fit value for the shunt conductance. Such a dependence shows a close relation with the temperature dependence of the subgap conductance, suggesting that the effective conductance for the escape from the metastable states obeys to a quasi-particle thermal activation mechanism. The introduction of this effective conductance into the lifetime expression for the zero-voltage states leads to significant changes in the width of the switching current distributions. A comparisons of the experimental data with the proposed model is reported. 7 refs., 2 figs
High-Tc SNS Junctions: A New Generation of Proximity-Coupled Josephson Devices
Kleinsasser, A. W.
1997-01-01
This paper reviews this evolution of proximity - coupled Josephson jucntion from the early investigations on low temperature superconductor-normal -superconductor junctions through the introduction of hybrid superconductor-semiconductor devices and the resulting interest in mesoscopic Josephson junctions, to the recent development of high temperature devices.
Tests of operating conditions for metrological application of HTS Josephson arrays
International Nuclear Information System (INIS)
Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M
2006-01-01
We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array
Microwave Josephson generation in thin film superconducting bridges
International Nuclear Information System (INIS)
Gubankov, V.N.; Koshelets, V.P.; Ovsyannikov, G.A.
1975-01-01
Thin-film bridges have some advantage over other types of superconducting weak links: good definition of electromagnetic parameters and of weak region geometry. Up to now Josephson properties of bridges have been investigated by using indirect methods (the effect of magnetic field on the critical current I 0 , the bridge behavior in a microwave field, etc.). Direct experimental observation of Josephson radiation from autonomous thin film bridges is reported. Microwave radiation in tin bridges of 'variable' thickness has been investigated where the thickness of the film forming the bridge is far less than the thickness of the bank films. (Auth.)
Long Josephson tunnel junctions with doubly connected electrodes
DEFF Research Database (Denmark)
Monaco, R.; Mygind, J.; Koshelets, V. P.
2012-01-01
of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply...... connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy...
International Nuclear Information System (INIS)
Hamasaki, K.; Yoshida, K.; Irie, F.; Enpuku, K.
1982-01-01
The microwave response of the dc quasiparticle tunneling current in Josephson tunnel junctions, where the Josephson current is suppressed by an external magnetic field, has been studied quantitatively in order to clarify its characteristics as a probe for the measurement of the junction capacitance. Extensive experiments for both small and long junctions are carried out for distinguishing between microwave behaviors of lumped and distributed constant junctions. It is shown that the observed voltage dependence of the dc quasiparticle tunneling current modified by an applied rf field is in good agreement with a theoretical result which takes into account the influence of the microwave circuit connected to the junction. The comparison between theory and experiment gives the magnitude of the internal rf field in the junction. Together with the applied rf field, this internal rf field leads to the junction rf impedance which is dominated by the junction capacitance in our experimental condition. In the case of lumped junctions, this experimental rf impedance is in reasonable agreement with the theoretical one with the junction capacitance estimated from the Fiske step of the distributed junction fabricated on the same substrate; the obtained ratio of the experimental impedance to the theoretical one is approximately 0.6--1.7. In the case of distributed junctions, however, experimental values of their characteristic impedances are approximately 0.2--0.3 of theoretical values calculated by assuming the one-dimensional junction model and taking account of the standing-wave effect in the junction
Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it
2017-05-15
Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.
Fractional flux quanta in Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, E.; Buckenmaier, K.; Gaber, T.; Kemmler, M.; Pfeiffer, J.; Koelle, D.; Kleiner, R. [Physikalisches Inst. - Experimentalphysik II, Univ. Tuebingen (Germany); Weides, M.; Kohlstedt, H. [Center of Nanoelectronic Systems for Information Technology (CNI), Research Centre Juelich (Germany); Siegel, M. [Inst. fuer Mikro- und Nanoelektronische Systeme, Univ. Karlsruhe (Germany)
2007-07-01
Fractional Josephson vortices may appear in the so-called 0-{kappa} Josephson junctions ({kappa} is an arbitrary number) and carry magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Their properties are very different from the usual integer fluxons: they are pinned, and often represent the ground state of the system with spontaneous circulating supercurrent. They behave as well controlled macroscopic spins and can be used to construct bits, qubits, tunable photonic crystals and to study the (quantum) physics of spin systems. In this talk we discuss recent advances in 0-{pi} junction technology and present recent experimental results: evidence of the spontaneous flux in the ground state, spectroscopy of the fractional vortex eigenfrequencies and observation of dynamics effects related to the flipping of the fractional vortices. (orig.)
Phase-dependent noise in Josephson junctions
Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano
2018-03-01
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.
Josephson Circuits as Vector Quantum Spins
Samach, Gabriel; Kerman, Andrew J.
While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Josephson tunneling and nanosystems
Ovchinnikov, Yurii; Kresin, Vladimir
2010-01-01
Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.
International Nuclear Information System (INIS)
Savel'ev, Sergey; Yampol'skii, Valery; Rakhmanov, Alexander; Nori, Franco
2005-01-01
We show that a moving Josephson vortex in spatially modulated layered superconductors generates out-of-plane THz radiation. Remarkably, the magnetic and in-plane electric fields radiated are of the same order, which is very unusual for any good-conducting medium. Therefore, the out-of-plane radiation can be emitted to the vacuum without the standard impedance mismatch problem. Thus, the proposed tunable THz emitter for out-of-plane radiation can be more efficient than the standard one which radiates only along the ab-plane
Effect of quasi-particle injection on retrapping current of Josephson junction
Utsunomiya, K.; Yagi, Ryuta
2006-01-01
We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.
Josephson junction in the quantum mesoscopic electric circuits with charge discreteness
Pahlavani, H.
2018-04-01
A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.
Josephson soliton oscillators in a superconducting thin film resonator
DEFF Research Database (Denmark)
Holm, J.; Mygind, Jesper; Pedersen, Niels Falsig
1993-01-01
Josephson soliton oscillators integrated in a resonator consisting of two closely spaced coplanar superconducting microstrips have been investigated experimentally. Pairs of long 1-D Josephson junctions with a current density of about 1000 A/cm2 were made using the Nb-AlOx-Nb trilayer technique....... Different modes of half-wave resonances in the thin-film structure impose different magnetic field configurations at the boundaries of the junctions. The DC I-V characteristic shows zero-field steps with a number of resonator-induced steps. These structures are compared to RF-induced steps generated...
Planar Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monacoa, R.; Aarøe, Morten; Mygind, Jesper
2007-01-01
demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...
International Nuclear Information System (INIS)
Hahlbohm, H.D.; Luebbig, H.; Luther, H.
1975-01-01
Analog computer calculations of the current-voltage characteristic involving the voltage dependence of the amplitudes of the tunneling current equation explicitly, for the case of a current driven tunneling junction at different temperatures are reported on. These studies are based upon the adiabatic representation of the current-phase relation. The influence of retarding effects is not included. Therefore the computational results can lead to practical consequences at best in the range near the transition temperature. (Auth.)
Realization of φ Josephson junctions with a ferromagnetic interlayer
International Nuclear Information System (INIS)
Sickinger, Hanna Sabine
2014-01-01
In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.
Instanton glass generated by noise in a Josephson-junction array.
Chudnovsky, E M
2009-09-25
We compute the correlation function of a superconducting order parameter in a continuous model of a two-dimensional Josephson-junction array in the presence of a weak Gaussian noise. When the Josephson coupling is large compared to the charging energy, the correlations in the Euclidian space decay exponentially at low temperatures regardless of the strength of the noise. We interpret such a state as a collective Cooper-pair insulator and argue that it resembles properties of disordered superconducting films.
Lu, Wen-Ting; Zhao, Hong-Kang; Wang, Jian
2018-03-01
Photon heat current tunneling through a series coupled two mesoscopic Josephson junction (MJJ) system biased by dc voltages has been investigated by employing the nonequilibrium Green’s function approach. The time-oscillating photon heat current is contributed by the superposition of different current branches associated with the frequencies of MJJs ω j (j = 1, 2). Nonlinear behaviors are exhibited to be induced by the self-inductance, Coulomb interaction, and interference effect relating to the coherent transport of Cooper pairs in the MJJs. Time-oscillating pumping photon heat current is generated in the absence of temperature difference, while it becomes zero after time-average. The combination of ω j and Coulomb interactions in the MJJs determines the concrete heat current configuration. As the external and intrinsic frequencies ω j and ω 0 of MJJs match some specific combinations, resonant photon heat current exhibits sinusoidal behaviors with large amplitudes. Symmetric and asymmetric evolutions versus time t with respect to ω 1 t and ω 2 t are controlled by the applied dc voltages of V 1 and V 2. The dc photon heat current formula is a special case of the general time-dependent heat current formula when the bias voltages are settled to zero. The Aharonov-Bohm effect has been investigated, and versatile oscillation structures of photon heat current can be achieved by tuning the magnetic fluxes threading through separating MJJs.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
Edge currents in frustrated Josephson junction ladders
Marques, A. M.; Santos, F. D. R.; Dias, R. G.
2016-09-01
We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.
Visualization of the current density in Josephson junctions with 0- and π-facets
International Nuclear Information System (INIS)
Guerlich, Christian
2010-01-01
With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j s in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j s . In this thesis ramp-type Nd 2-x Ce x CuO 4-y /Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al 2 O 3 /NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d x 2 -y 2 -symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and π facets. With the LTSEM 0-, π-, 0-π-, 0-π-0-, 0/2-π-0/2-, 20 x (0-π)- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm 2 at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-π-boundary was found. (orig.)
International Nuclear Information System (INIS)
Rivera, V.A.G.; Sergeenkov, S.; Marega, E.; Araujo-Moreira, F.M.
2009-01-01
Results on the temperature and magnetic field dependence of current-voltage characteristics (CVC) are presented for SNS-type 2D ordered array of Nb-Cu 0.95 Al 0.05 -Nb junctions. The critical current I C (T,H) and the power exponent a(T,H)=1+Φ 0 I C (T,H)/2k B T of the nonlinear CVC law V=R[I-I C (T,H)] a(T,H) are found to have a maximum at non-zero value of applied magnetic field H p =225 Oe, which is attributed to manifestation of π-type Josephson contacts in our sample.
Terahertz Josephson spectral analysis and its applications
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sakai, S
1998-01-01
We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...
Dissipative current in SIFS Josephson junctions
Vasenko, A.; Kawabata, S.; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu; Hekking, F.W.J.
2010-01-01
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bilayer are decoupled. We calculate quantitatively the
Collective modes and radiation from gliding Josephson vortex lattice in layered superconductors
International Nuclear Information System (INIS)
Artemenko, S.N.; Remizov, S.V.
1999-01-01
We found that stability of moving lattice of Josephson vortices driven by the transport current is limited by the critical velocity which agrees with the maximum velocity observed in BSCCO in the flux-flow regime. We also predict a peak of the radiation at Josephson plasma frequency which may be observed in high magnetic field. (orig.)
International Nuclear Information System (INIS)
Mandal, S.S.; Mukherjee, S.P.
2007-01-01
Full text: The recent discovery of the superconductivity in the heavy fermionic compound CePt 3 Si have attracted much of the attention of the physics community. The presence of strong Rashba kind of spin-orbit coupling in them split the otherwise degenerate electronic band into two nondegenerate bands. This peculiarity in the band structure gives rise to complicated kind of order parameter whose exact nature is unknown till date. Traditionally Josephson junctions in superconductors draw interest both scientifically and its applicability in making devices. It has been used in several cases as a probe to the order parameter symmetry of the superconductor. It has also been studied in unconventional superconductors like spin-singlet cuprate and spin-triplet Sr 2 RuO 4 superconductors. However no Josephson junction between nonmagnetic superconductors is known to generate spin-polarized current. The purpose of this work is to theoretically show that the direction dependent tunneling matrix element across the junction between two recently discovered non-centrosymmetric superconductors like CePt 3 Si, leads to tunneling of both spin-singlet and spin-triplet Cooper pairs. As a consequence, nonvanishing spin-Josephson current is viable along with the usual charge-Josephson current. This novel spin-Josephson current depends on the relative angle xi between the axes of non-centrosymmetry {n} L and that {n} R in the left and right side of the junction respectively. This angular dependence may be used to make Josephson spin switch. (authors)
Josephson supercurrent in a topological insulator without a bulk shunt
International Nuclear Information System (INIS)
Snelder, M; Molenaar, C G; Golubov, A A; Van der Wiel, W G; Hilgenkamp, H; Golden, M S; Brinkman, A; Pan, Y; Wu, D; Huang, Y K; De Visser, A
2014-01-01
A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . We show that the transport in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced superconductivity. We prepared Josephson junctions with widths in the order of 40 nm and lengths in the order of 50–80 nm on several Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 flakes and measured down to 30 mK. The Fraunhofer patterns unequivocally reveal that the supercurrent is a Josephson supercurrent. The measured critical currents are reproducibly observed on different devices and upon multiple cooldowns, and the critical current dependence on temperature as well as magnetic field can be well explained by diffusive transport models and geometric effects. (paper)
A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Jäck, Berthold, E-mail: b.jaeck@fkf.mpg.de; Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Hardock, Andreas [Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg, 21079 Hamburg (Germany); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
2015-01-05
Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.
International Nuclear Information System (INIS)
Marconi, Veronica I.; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels
2003-05-01
We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied perpendicular to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IV curve with voltage noise, Lyapunov exponents and Poincare sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model. (author)
Josephson oscillation and self-trapping in momentum space
Zheng, Yi; Feng, Shiping; Yang, Shi-Jie
2018-04-01
The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.
Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm
Ghaemi, Pouyan; Nair, V. P.
2016-01-01
In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.
Power, O.; Solve, S.; Chayramy, R.; Stock, M.
2010-01-01
As a part of the ongoing BIPM key comparisons BIPM.EM-K11.a and b, a comparison of the 1.018 V and 10 V voltage reference standards of the BIPM and of the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from March to April 2010. Two BIPM Zener diode-based travelling standards were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage is maintained at the 10 V level by means of a group of characterized Zener diode-based electronic voltage standards. The output EMF of each travelling standard, at the 10 V output terminals, was measured by direct comparison with the group standard. Measurements of the output EMF of the travelling standards at the 1.018 V output terminals were made using a potentiometer, standardized against the local 10 V reference standard. At the BIPM, the travelling standards were calibrated at both voltages before and after the measurements at NSAI-NML, using the BIPM Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages on internal temperature and ambient pressure. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated expanded uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Multiwall carbon nanotube Josephson junctions with niobium contacts
International Nuclear Information System (INIS)
Pallecchi, Emiliano
2009-01-01
The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)
Multiwall carbon nanotube Josephson junctions with niobium contacts
Energy Technology Data Exchange (ETDEWEB)
Pallecchi, Emiliano
2009-02-17
The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)
Implementation of the Grover search algorithm with Josephson charge qubits
International Nuclear Information System (INIS)
Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang
2007-01-01
A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology
Energy Technology Data Exchange (ETDEWEB)
Voss, Gerhard [Ingenieurbuero IGV Elektrotechnik, Ladenburg (Germany)
2008-11-15
With enhanced exchange box systems many low voltage switch devices can be equipped more compact (less volume demand), cost friendly and more reliable because of advanced arc discharge safety engineering. Presented is utilization and operation in the facility managment and industrial applications in detail. In the last years operation-important standards have been revised for planners and users. So users and planners have to occupy with new standards for medium-voltage switching devices. This knowledge forms the conditions to design devices in future extensively to individual demands of the company and according to standards. (GL)
Effective boundary field theory for a Josephson junction chain with a weak link
International Nuclear Information System (INIS)
Giuliano, Domenico; Sodano, Pasquale
2005-01-01
We show that a finite Josephson junction (JJ) chain, ending with two bulk superconductors, and with a weak link at its center, may be regarded as a condensed matter realization of a two-boundary sine-Gordon model. Computing the partition function yields a remarkable analytic expression for the DC Josephson current as a function of the phase difference across the chain. We show that, in a suitable range of the chain parameters, there is a crossover of the DC Josephson current from a sinusoidal to a sawtooth behavior, which signals a transition from a regime where the boundary term is an irrelevant operator to a regime where it becomes relevant
The gatemon: a transmon with a voltage-variable superconductor-semiconductor junction
Petersson, Karl
We have developed a superconducting transmon qubit with a semiconductor-based Josephson junction element. The junction is made from an InAs nanowire with in situ molecular beam epitaxy-grown superconducting Al contacts. This gate-controlled transmon, or gatemon, allows simple tuning of the qubit transition frequency using a gate voltage to vary the density of carriers in the semiconductor region. In the first generations of devices we have measured coherence times up to ~10 μs. These coherence times, combined with stable qubit operation, permit single qubit rotations with fidelities of ~99.5 % for all gates including voltage-controlled Z rotations. Towards multi-qubit operation we have also implemented a two qubit voltage-controlled cPhase gate. In contrast to flux-tuned transmons, voltage-tunable gatemons may simplify the task of scaling to multi-qubit circuits and enable new means of control for many qubit architectures. In collaboration with T.W. Larsen, L. Casparis, M.S. Olsen, F. Kuemmeth, T.S. Jespersen, P. Krogstrup, J. Nygard and C.M. Marcus. Research was supported by Microsoft Project Q, Danish National Research Foundation and a Marie Curie Fellowship.
Structured chaos in a devil's staircase of the Josephson junction.
Shukrinov, Yu M; Botha, A E; Medvedeva, S Yu; Kolahchi, M R; Irie, A
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Linewidth of Josephson oscillations in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Divin, Yu. Ya.; Mygind, Jesper; Pedersen, Niels Falsig
1993-01-01
The AC Josephson effect in YBa2Cu3O7-x grain-boundary junctions (GBJs) was studied in the temperature range from 4 K to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured, and it is shown that the derived effective noise temperature of GBJ mig...... Josephson oscillations observed at 77 K was equal to 380 MHz, which demonstrates the applicability of GBJ, particularly in the field of radiation spectroscopy, even at liquid nitrogen temperatures...
Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre
2018-02-08
Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.
Measurement of microchannel fluidic resistance with a standard voltage meter.
Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J
2013-01-03
A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Search for a correlation between Josephson junctions and gravity
International Nuclear Information System (INIS)
Robertson, Glen A.
2000-01-01
Woodward's transient mass shift (TMS) formula has commonality with Modanese's anomalous coupling theory (ACT) and Woodward's capacitor experiment has commonality with Podkletnov's layered superconductor disk experiment. The TMS formula derives a mass fluctuation from a time-varying energy density. The ACT suggests that the essential ingredient for the gravity phenomenon is the presence of strong variations or fluctuations of the Cooper pair density (a time-varying energy density). Woodward's experiment used a small array of capacitors whose energy density was varied by an applied 11 kHz signal. Podkletnov's superconductor disk contained many Josephson junctions (small capacitive like interfaces), which were radiated with a 3-4 MHz signal. This paper formulates a TMS for superconductor Josephson junctions. The equation was compared to the 2% mass change claimed by Podkletnov in his gravity shielding experiments. The TMS is calculated to be 2% for a 2-kg superconductor with an induced total power to the multiple Josephson junctions of about 3.3-watts. A percent mass change equation is then formulated based on the Cavendish balance equation where the superconductor TMS is used for the delta change in mass. An experiment using a Cavendish balance is then discussed
Observation of nonresonant vortex motion in a long Josephson tunnel junction
International Nuclear Information System (INIS)
Rajeevakumar, T.V.; Przybysz, J.X.; Chen, J.T.; Langenberg, D.N.
1980-01-01
We have observed resistive branches in the I-V characteristics of long Josephson junctions which can be simply understood in terms of the motion of individual Josephson fluxoids with reflection as antifluxoids at the junction edges. The characteristics of these resistive branches differ qualitatively from those of the current singularities previously reported by Chen et al. and by Fulton and Dynes. Our results indicate that the current singularities are not simply related to the motion of individual fluxoids
Tunable Nitride Josephson Junctions.
Energy Technology Data Exchange (ETDEWEB)
Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We have developed an ambient temperature, SiO_{2}/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the Ta_{x}N barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlO_{x} barriers for low - power, high - performance computing.
Field modulation of the critical current in magnetic Josephson junctions
International Nuclear Information System (INIS)
Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A
2013-01-01
The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)
Relaxation oscillation logic in Josephson junction circuits
International Nuclear Information System (INIS)
Fulton, T.A.
1981-01-01
A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed
The role of magnetic fields for curvature effects in Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Jarmoliński, A.; Dobrowolski, T., E-mail: dobrow@up.krakow.pl
2017-06-01
The large area Josephson junction is considered. On the basis of Maxwell equations the influence of the magnetic field on fluxion dynamics is considered. The presented studies show that assumptions presumed in the literature do not restrict experimental settings adopted in the considerations of the fluxion movement in the Josephson junction. It is shown that the particular orientation of the magnetic fields is not needed in order to study physical effects of curvature and therefore they do not restrict the experimental arrangements.
International Nuclear Information System (INIS)
Nakamura, Y.; Chen, C.D.; Tsai, J.S.
1996-01-01
We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society
0-π phase-controllable thermal Josephson junction
Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco
2017-05-01
Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.
Josephson shift register design and layout
International Nuclear Information System (INIS)
Przybysz, J.X.; Buttyan, J.; Blaugher, R.D.
1989-01-01
Integrated circuit chips were designed and fabricated, based on Josephson shift register circuit that simulated operation at 25 GHz using the SPICE program. The 6.25 mm square chip featured a twelve-gate, four-stage shift register fabricated with Nb/AlO/sub x//Nb Josephson junctions with a design value of 2000 A/cm/sup 2/ critical current density. SUPERCOMPACT, a general program for the design of monolithic microwave integrated circuits, was used to model the effects of layout geometry on the uniformity and phase coherence of logic gate bias currents. Gate bias resistors were treated as resistive transmission lines. A layout geometry for the superconductive transmission lines and thin film bias resistors was developed. The original SPICE-designed circuit was modified as a result of these calculations. Modeling indicated that bias current variations could be limited to 3% for all possible logic states of the shift register, and phase coherence of the gates could be maintained to within 2 degrees of 10 Ghz. The fundamental soundness of the circuit design was demonstrated by the proper operation of fabricated shift registers
Solve, S.; Chayramy, R.; Stock, M.; Power, O.
2015-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland - National Metrology Laboratory (NSAI - NML), Dublin, Ireland, was carried out in February and March 2015. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPM6 (Z6) and BIPMC (ZC), were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage at the 10 V level consists of a group of characterized Zener diode-based electronic voltage standards. The output EMF (Electromotive Force) of each travelling standard was measured by direct comparison with the group standard. At the BIPM the travelling standards were calibrated, before and after the measurements at NSAI-NML, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and ambient atmospheric pressure. The final resultof the comparison is presented as the difference between the values assigned to DC voltage standards by NSAI - NML, at the level of 10 V,at NSAI - NML, UNML, and those assigned by the BIPM, at the BIPM, UBIPM, at the reference date of 24 February 2015. UNML - UBIPM = - 0.82 mV; uc = 1.35 mV , at 10 V where uc is the combined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML, based on KJ-90, and the uncertainty related to the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Solve, S.; Chayramy, R.; Power, O.; Stock, M.
2016-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland - National Metrology Laboratory (NSAI - NML), Dublin, Ireland, was carried out in January and February 2016. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPM7 (Z7) and BIPM9 (Z9), were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage at the 10 V level consists of a group of characterized Zener diode-based electronic voltage standards. The output EMF (Electromotive Force) of each travelling standard was measured by direct comparison with the group standard. At the BIPM the travelling standards were calibrated, before and after the measurements at NSAI-NML, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and ambient atmospheric pressure. The final result of the comparison is presented as the difference between the values assigned to DC voltage standards by NSAI - NML, at the level of 10 V, at NSAI - NML, UNML, and those assigned by the BIPM, at the BIPM, UBIPM, at the reference date of the 31 of January 2016. UNML - UBIPM = + 0.22 μV uc = 1.35 μV , at 10 V where uc is the combined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML, based on KJ-90, and the uncertainty related to the comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
Flux flow in high-Tc Josephson junctions
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig
1993-01-01
The possibility of achieving fluxon nucleation in nonhysteretic high-T(c) Josephson junctions due to the presence of inhomogeneities is investigated numerically. For a large range of parameters the I- V characteristics in presence of such discontinuities show a strong similarity with those obtain...
THz detectors using surface Josephson plasma waves in layered superconductors
International Nuclear Information System (INIS)
Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco
2006-01-01
We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves
Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors
International Nuclear Information System (INIS)
Wang, H. B.; Wu, P. H.; Yamashita, T.
2001-01-01
High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation
Anisotropic Josephson-vortex dynamics in layered organic superconductors
International Nuclear Information System (INIS)
Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.
2010-01-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET) 2 Cu(NCS) 2 and β-(BDA-TTP) 2 SbF 6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET) 2 Cu(NCS) 2 , in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP) 2 SbF 6 . The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Is there a relationship between curvature and inductance in the Josephson junction?
Dobrowolski, T.; Jarmoliński, A.
2018-03-01
A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.
R.f.-induced steps in mutually coupled, two-dimensional distributed Josephson tunnel junctions
International Nuclear Information System (INIS)
Klein, U.; Dammschneider, P.
1991-01-01
This paper reports on the amplitudes of the current steps in the I-V characteristics of mutually coupled two-dimensional distributed Josephson tunnel junctions driven by microwaves. For this purpose we use a numerical computation algorithm based on a planar resonator model for the individual Josephson tunnel junctions to calculate the d.c. current density distribution. In addition to the fundamental microwave frequency, harmonic contents of the tunneling current are also considered. The lateral dimensions of the individual junctions are small compared to the microwave wavelength and the Josephson penetration depth, giving an almost constant current density distribution. Therefore, the coupled junctions can give much greater step amplitudes than a single junction with an equal tunneling area, because of their nonuniform current density distribution
Symmetry of trapped-field profiles in square columnar Josephson-junction arrays
International Nuclear Information System (INIS)
Moreno, J.J.; Chen, D.; Hernando, A.
1995-01-01
The remanence of NxN square-columnar Josephson-junction arrays with normalized maximum junction current i max is calculated from the dc and ac Josephson equations, the Ampere theorem, and the gauge invariance. A transition line on the i max- N plane is obtained, on the high-i max side of which the remanence is nonzero. It is found that in the nonzero remanence state the symmetry degree of field profile can be lower than expected by intuition. The meaning and importance of this finding are discussed
Pumping $ac$ Josephson current in the Single Molecular Magnets by spin nutation
Abdollahipour, B.; Abouie, J.; Rostami, A. A.
2012-01-01
We demonstrate that an {\\it ac} Josephson current is pumped through the Single Molecular Magnets (SMM) by the spin nutation. The spin nutation is generated by applying a time dependent magnetic field to the SMM. We obtain the flowing charge current through the junction by working in the tunneling limit and employing Green's function technique. At the resonance conditions some discontinuities and divergencies are appeared in the normal and Josephson currents, respectively. Such discontinuities...
Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.
2018-05-01
In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.
Fluxon density waves in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig
1993-01-01
Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....
Thermalization of a quenched Bose-Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)
2015-07-01
The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
DEFF Research Database (Denmark)
Davidson, A.; Pedersen, Niels Falsig; Dueholm, B.
1985-01-01
We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions.......We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions....
Hu, Chen; Chen, Mian-zhou; Li, Hong-bin; Zhang, Zhu; Jiao, Yang; Shao, Haiming
2018-05-01
Ordinarily electronic voltage transformers (EVTs) are calibrated off-line and the calibration procedure requires complex switching operations, which will influence the reliability of the power grid and induce large economic losses. To overcome this problem, this paper investigates a 110 kV on-site calibration system for EVTs, including a standard channel, a calibrated channel and a PC equipped with the LabView environment. The standard channel employs a standard capacitor and an analogue integrating circuit to reconstruct the primary voltage signal. Moreover, an adaptive full-phase discrete Fourier transform (DFT) algorithm is proposed to extract electrical parameters. The algorithm involves the process of extracting the frequency of the grid, adjusting the operation points, and calculating the results using DFT. In addition, an insulated automatic lifting device is designed to realize the live connection of the standard capacitor, which is driven by a wireless remote controller. A performance test of the capacitor verifies the accurateness of the standard capacitor. A system calibration test shows that the system ratio error is less than 0.04% and the phase error is below 2‧, which meets the requirement of the 0.2 accuracy class. Finally, the developed calibration system was used in a substation, and the field test data validates the availability of the system.
Solve, S.; Chayramy, R.; Power, O.; Stock, M.
2014-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out in February and March 2014. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPM_4 (Z4) and BIPM_5 (Z5), were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage at the 10 V level consists of a group of characterized Zener diode-based electronic voltage standards. The output EMF (Electromotive Force) of each travelling standard was measured by direct comparison with the group standard. At the BIPM the travelling standards were calibrated, before and after the measurements at NSAI-NML, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and ambient atmospheric pressure. The final result of the comparison is presented as the difference between the value assigned to DC voltage standard by NSAI-NML, at the level of 10 V, at NSAI-NML, UNML, and that assigned by the BIPM, at the BIPM, UBIPM, at the reference date of 10 March 2014. UNML - UBIPM = -0.64 µV uc = 1.35 µV, at 10 V where uc is thecombined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML,based on KJ-90, and the uncertainty related to the comparison. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated standard uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to
Parameter optimization for transitions between memory states in small arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Rezac, Jacob D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematical Sciences; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate; Braiman, Yehuda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate;
2017-01-11
Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilized for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10^{-19}–5×10^{-18} J. Numerical simulations are validated with approximate analytical results.
Anisotropic Josephson-vortex dynamics in layered organic superconductors
Energy Technology Data Exchange (ETDEWEB)
Yasuzuka, S., E-mail: yasuzuka@chem.tsukuba.ac.j [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003 (Japan); Koga, H.; Yamamura, Y.; Saito, K. [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Akutsu, H.; Yamada, J. [Department of Material Science, Graduate School of Material Science, University of Hyogo, Ako-gun, Hyogo 678-1297 (Japan)
2010-06-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} under magnetic fields precisely parallel to the conducting planes. For {kappa}-(ET){sub 2}Cu(NCS){sub 2}, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for {beta}-(BDA-TTP){sub 2}SbF{sub 6}. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Josephson plasma resonance in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig
1999-01-01
We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....
Cavity syncronisation of underdamped Josephson junction arrays
DEFF Research Database (Denmark)
Barbara, P.; Filatrella, G.; Lobb, C.
2003-01-01
the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...
Coherent Voltage Oscillations in Superconducting Polycrystalline Y1Ba2Cu3O7-x
International Nuclear Information System (INIS)
Altinkok, A; Yetis, H; Olutas, M; Kilic, K; Kilic, A; Cetin, O
2006-01-01
We have investigated the voltage response of superconducting polycrystalline bulk Y 1 Ba 2 Cu 3 O 7-x (YBCO) material to a bidirectional square wave current with long periods and dc current by means of the evolution of the voltage-time (V-t) curves near the critical temperature. In a well-defined range of amplitudes and periods of driving current, and temperatures, it was observed that a non-linear response to bidirectional square wave current rides on a time independent background voltage value and manifests itself as regular sinusoidal-like voltage oscillations. It was found that the non-linear response disappears when the bidirectional current was switched to dc current. The spectral content of the voltage oscillations analyzed by the Fast Fourier Transform of the corresponding V-t curves revealed that the fundamental harmonics is comparable to the frequency of bidirectional square wave current. The coherent voltage oscillations were discussed mainly in terms of the dynamic competition between pinning and depinning together with the disorder in the coupling strength between the superconducting grains (i.e Josephson coupling effects). The density fluctuations and semi-elastic coupling of the flux lines with the pinning centers were also considered as possible physical mechanisms in the interpretation of the experimental results
75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines
2010-04-22
... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529 in the issue of Tuesday, April 6, 2010, make the following correction...
Observation of asymmetric transverse voltage in granular high-T c superconductors
International Nuclear Information System (INIS)
Luz, M.S. da; Carvalho, F.J.H. de; Santos, C.A.M. dos; Shigue, C.Y.; Machado, A.J.S.; Ricardo da Silva, R.
2005-01-01
This work reports the influence of the granularity on the transverse voltage as a function of the temperature, V XY (T), in polycrystalline samples of Bi 2 Sr 2 Ca 0.8 Pr 0.2 Cu 2 O 8+δ composition. It is observed nonzero transverse voltage at zero external magnetic field in the vicinity of the superconducting transition while far away from it, both above and below, no such voltage was detected. Measurements of V XY (T) in both directions of magnetic field allowed to calculate the symmetric and asymmetric transverse voltages in the full range of the applied magnetic field studied (zero up to 9 T). The symmetric transverse voltage as a function of the temperature presents sign reversal of the Hall resistance and positive Hall voltage at normal state such as expected for hole-doped high critical temperature superconductors. On the other hand, the asymmetric component of V XY (T) shows a peak near the superconducting transition which has been recently reported in literature. V XY (T) curves measured in a sample with double superconducting transition, which was confirmed by ac-susceptibility measurements and hysteresis loops of the magneto-resistance, present two peaks in the asymmetric component. These peaks are related to the intergranular and intragranular transitions and can be explained within the framework of Josephson and Abrikosov vortices and anti-vortices motion. By comparing the temperature dependence of the asymmetric transverse voltage and the derivative of longitudinal voltage is possible to observe a specific relation between both transport properties, which is noted to be valid not only at zero applied magnetic field but also under applied field
International Nuclear Information System (INIS)
Dominguez, D.; Jose, J.V.; Northeastern Univ., Boston, MA
1994-01-01
This is a review of recent work on the dynamic response of Josephson junction arrays driven by dc and ac currents. The arrays are modeled by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, including self-induced magnetic fields as well as disorder. The relevance of the self-induced fields is measured as a function of a parameter κ = λ L /a, with λ L the London penetration depth of the arrays, and a the lattice spacing. The transition from Type II (κ > 1) to Type I (κ < 1) behavior is studied in detail. The authors compare the results for models with self, self + nearest-neighbor, and full inductance matrices. In the κ = ∞ limit, they find that when the initial state has at least one vortex-antivortex pair, after a characteristic transient time these vortices unbind and radiate other vortices. These radiated vortices settle into a parity-broken, time-periodic, axisymmetric coherent vortex state (ACVS), characterized by alternate rows of positive and negative vortices lying along a tilted axis. The ACVS produces subharmonic steps in the current voltage (IV) characteristics, typical of giant Shapiro steps. For finite κ they find that the IV's show subharmonic giant Shapiro steps, even at zero external magnetic field. They find that these subharmonic steps are produced by a whole family of coherent vortex oscillating patterns, with their structure changing as a function of κ. In general, they find that these patterns are due to a breakdown of translational invariance produced, for example, by disorder of antisymmetric edge-fields. The zero field case results are in good qualitative agreement with experiments in Nb-Au-Nb arrays
Power, O.; Chayramy, R.; Solve, S.; Stock, M.
2014-01-01
As part of the ongoing BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from January to February 2013. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPM_8 (Z8) and BIPM_9 (Z9), were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage at the 10 V level consists of a group of characterized Zener diode-based electronic voltage standards. The output EMF (electromotive force) of each travelling standard was measured by direct comparison with the group standard. At the BIPM the travelling standards were calibrated, before and after the measurements at NSAI-NML, with the Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages of the Zener standards on internal temperature and ambient atmospheric pressure. The final result of the comparison is presented as the difference between the value assigned to DC voltage standard by NSAI-NML, at the level of 10 V, at NSAI-NML, UNML, and that assigned by the BIPM, at the BIPM, UBIPM, at the reference date of 5 February 2013. UNML - UBIPM = -0.63 µV uc = 1.31 µV, at 10 V where uc is thecombined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML,based on KJ-90, and the uncertainty related to the comparison. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated standard uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
Energy Technology Data Exchange (ETDEWEB)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V. [State Research Center, Kiev (Ukraine)
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
International Nuclear Information System (INIS)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.
1994-01-01
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented
Accurate Control of Josephson Phase Qubits
2016-04-14
for Bits and Atoms and Department of Physics, MIT, Cambridge , Massachusetts 02139, USA 2Solid State and Photonics Laboratory, Stanford University...computing to simulate tun- neling effects in Josephson junction qubits, illustrating how quantum computing is useful in modeling and simulating the...Computation and Quantum Information ~ Cambridge University Press, Cambridge , 2000!. 2 J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 ~1995!. 3 Y
Hysteresis development in superconducting Josephson junctions
International Nuclear Information System (INIS)
Refai, T.F.; Shehata, L.N.
1988-09-01
The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs
Josephson junctions in high-T/sub c/ superconductors
Falco, C.M.; Lee, T.W.
1981-01-14
The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.
Josephson tunnel junctions in a magnetic field gradient
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelets, V.P.
2011-01-01
We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer...
Stationary Josephson effect in a weak-link between nonunitary triplet superconductors
International Nuclear Information System (INIS)
Rashedi, G; Kolesnichenko, Yu.A.
2005-01-01
A stationary Josephson effect in a weak-link between misorientated nonunitary triplet superconductors is investigated theoretically. The non-self-consistent quasiclassical Eilenberger equation for this system has been solved analytically. As an application of this analytical calculation, the current-phase diagrams are plotted for the junction between two nonunitary bipolar f-wave superconducting banks. A spontaneous current parallel to the interface between superconductors has been observed. Also, the effect of misorientation between crystals on the Josephson and spontaneous currents is studied. Such experimental investigations of the current-phase diagrams can be used to test the pairing symmetry in the above-mentioned superconductors
Search for the in-phase Flux Flow mode in stacked Josephson junctions
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2006-01-01
Josephson vortex flux flow states in stacked Josephson junctions are investigated numerically. The aim of the work is to understand the mechanisms behind the formation of triangular (anti-phase) and square (in-phase) vortex lattices, and is motivated by recent experiments on layered BSCCO type high......-T-c superconductors in a magnetic field. In order to keep the problem as simple as possible we consider in detail only the case with two junctions in the stack. (c) 2006 Elsevier B.V. All rights reserved....
Prediction of breakdown voltages in novel gases for high voltage insulation
International Nuclear Information System (INIS)
Koch, M.
2015-01-01
This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media
Directory of Open Access Journals (Sweden)
Sophie S. Shamailov, Joachim Brand
2018-03-01
Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.
Structured chaos in a devil's staircase of the Josephson junction
International Nuclear Information System (INIS)
Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.
2014-01-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values
Chemically etched edges of YBa2Cu3O7 films for interconnects, crossovers and Josephson junctions
International Nuclear Information System (INIS)
Poppe, U.; Faley, M.I.; Urban, K.; Soltner, H.
1993-01-01
To produce damage-free edges is one of the main problems during the preparation of Josephson edge-type junctions and interconnects in multilayer structures including high temperature superconductors. The inherently short and anisotropic coherence length in high temperature superconductors makes it also difficult to fabricate Josephson junctions from these materials. One promising technique which helps to overcome such problems using a nonaqueous chemical etching with a Br-ethanol solution was first presented in a recent publication. Here we report results obtained with the use of this method: test of insulation properties of PrBa 2 Cu 3 O 7 , PrBa 2 Cu 2.85 Ga 0.15 O 7 , and SrTiO 3 used for crossovers and Josephson junctions. Some features of interconnects and Josephson junctions, prepared on the basis of the chemical technique are also discussed. (orig.)
Directory of Open Access Journals (Sweden)
Fernando Gimeno Bellver
Full Text Available In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems.The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software.Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper. Keywords: Electrical analogy, Network Simulation Method, Josephson junction, Chaos indicator, Fast Fourier Transform
Josephson junctions and circle maps
Energy Technology Data Exchange (ETDEWEB)
Bak, P; Bohr, T; Jensen, M H; Christiansen, P V
1984-01-01
The return map of a differential equation for the current driven Josephson junction, or the damped driven pendulum, is shown numerically to be a circle map. Phase locking, noise and hysteresis, can thus be understood in a simple and coherent way. The transition to chaos is related to the development of a cubic inflection point. Recent theoretical results on universal behavior at the transition to chaos can readily be checked experimentally by studying I-V characteristics. 17 references, 1 figure.
Josephson current in ballistic graphene Corbino disk
Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina
2018-06-01
We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.
Fractional Josephson vortices at YBa$_2$Cu$_3$O$_{7-x}$ grain boundaries
Mints, R. G.; Papiashvili, Ilya
2001-01-01
We report numerical simulations of magnetic flux patterns in asymmetric 45$^{\\circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density $j_c(x)$ alternating along the junctions. We demonstrate the existence of Josephson vortices with fractional flux quanta for both periodic and random $j_c(x)$. A method is proposed to extract fractional vortices from experimental flux patterns.
Dynamics of the resistive state of a narrow superconducting channel in the ac voltage-driven regime
International Nuclear Information System (INIS)
Yerin, Yu.S.; Fenchenko, V.N.
2013-01-01
Within the time-dependent Ginzburg-Landau equations the dynamics of the order parameter in superconducting narrow channels of different lengths is investigated in the ac voltage-driven regime. The resistive state of the system at low frequencies of the applied voltage is characterized by the formation of periodic-in-time groups of oscillating phase-slip centers (PSC). An increase in frequency reduces the duration of the existence of these periodic groups. Depending on the length of the channel the ac voltage either tends to revert the channel to the state with one central PSC in periodic groups or minimizes the number of forming PSCs and orders their pattern in the system. A further increase in frequency for rather short channels leads to suppression of the order parameter without any creation of PSCs. For systems, whose length exceeds the specified limit, the formation of PSC occurs after a certain time which increases rapidly with frequency. The current-voltage characteristics of rather short channels at different applied voltage frequencies are calculated too. It is found that the current-voltage characteristics have a step-like structure, and the height of the first step is determined by the quadruple value of the Josephson frequency.
Prediction of breakdown voltages in novel gases for high voltage insulation
Energy Technology Data Exchange (ETDEWEB)
Koch, M.
2015-07-01
This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.
Defect formation in long Josephson junctions
DEFF Research Database (Denmark)
Gordeeva, Anna; Pankratov, Andrey
2010-01-01
We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...... to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density....
Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions
Kim, Ju H.
In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.
Coupled Josephson local oscillator and detector experiments in the terahertz regime
International Nuclear Information System (INIS)
Robertazzi, R.P.; Hallen, H.D.; Buhrman, R.A.
1988-01-01
Recent coupled Josephson junction experiments in the authors' laboratory have demonstrated that high critical current density tunnel junctions can serve as effective local oscillators at frequencies up to and in excess of the gap sum frequency of the junction, i.e. well above 1 Terahertz for a niobium or niobium compound tunnel junction. While the details of the behavior of such a THz. oscillator were found not to be in accord with the predictions of the accepted theory of the A.C. Josephson effect in the gap region significant radiation could be capacitively coupled from the oscillator junction to an adjacent junction, sufficient for SIS mixer experiments at Terahertz frequencies. Research efforts are now under way to further extend and expand these studies. A high critical current density all NbN tunnel junction system is now under development for Terahertz applications and a new set of coupled Josephson oscillator - SIS detector experiments is being initiated using NbN tunnel junctions. In this paper the authors review the original coupled junction high frequency experiments and report on the recent progress of the current NbN tunnel junction experiments
High temperature superconducting Josephson transmission lines for pulse and step sharpening
International Nuclear Information System (INIS)
Martens, J.S.; Wendt, J.R.; Hietala, V.M.; Ginley, D.S.; Ashby, C.I.H.; Plut, T.A.; Vawter, G.A.; Tigges, C.P.; Siegal, M.P.; Hou, S.Y.; Phillips, J.M.; Hohenwarter, G.K.G.
1992-01-01
An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
Properties on niobium-based Josephson tunneling elements in junction microstructures
International Nuclear Information System (INIS)
Albrecht, G.; Richter, J.; Weber, P.
1982-01-01
We describe the fabrication and electrical characteristics of niobium oxide-barrier tunnel junctions with counterelectrodes of lead/lead alloy. Primary attention is directed to the experimental conditions necessary to obtain high-quality tunnel barriers as well as studies on characterizing the atomic structure of the barrier region. In order to study the tunnel barrier homogeneity in the tunneling region the magnetic field dependence of the critical Josephson current is investigated. The I--V characteristics and dependence of the critical Josephson current on temperature are analyzed quantitatively by using a proximity effect model. Finally, we discuss experimental results on the improvement of junction quality by including traces of carbon in the rf argon plasma during the sputter cleaning of niobium base electrodes
Vortex dynamics in Josephson ladders with II-junctions
DEFF Research Database (Denmark)
Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.
2004-01-01
Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...
Aspects of stochastic resonance in Josephson junction, bimodal
Indian Academy of Sciences (India)
We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...
Aspects of stochastic resonance in Josephson junction, bimodal ...
Indian Academy of Sciences (India)
Abstract. We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the ...
International Nuclear Information System (INIS)
Cleland, A.N.
1991-01-01
Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias
Transient chaos in weakly coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Koch, B P; Bruhn, B
1988-01-01
This paper considers periodic excitations and coupling of nonlinear Josephson oscillators. The Melnikov method is used to prove the existence of horseshoes in the dynamics. The coupling of two systems yields a reduction of the chaos threshold in comparison with the corresponding threshold of a single system. For some selected parameter values the theoretical predictions are checked by numerical methods.
Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials
Energy Technology Data Exchange (ETDEWEB)
Kline, Jeffrey S; Oh, Seongshik; Pappas, David P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Wang Haohua; Martinis, John M [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: klinej@nist.gov
2009-01-15
We have found that crystalline Josephson junctions have problems with the control of critical current density that decrease the circuit yield. We present a superconducting quantum bit circuit designed to accommodate a factor of five variation in critical current density from one fabrication run to the next. The new design enables the evaluation of advanced tunnel barrier materials for superconducting quantum bits. Using this circuit design, we compare the performance of Josephson phase qubits fabricated with MgO and Al{sub 2}O{sub 3} advanced crystalline tunnel barriers to AlO{sub x} amorphous tunnel barrier qubits.
Modulated microwave absorption spectra from Josephson junctions on a scratched niobium wire
International Nuclear Information System (INIS)
Rubins, R.S.; Hutton, S.L.; Ravindran, K.; Subbaraman, K.; Drumheller, J.E.
1997-01-01
Modulated microwave absorption (MMA) spectra from Josephson junction formations on a scratched Nb wire have been studied at 9.3 GHz and 4 K. The peak-to-peak separation, δH of the Josephson lines was found to vary linearly with P 1/2 , where P is the applied microwave power, in contrast to a recent interpretation of junction formation in pressed lead pieces by Rubins, Drumheller, and Trybula. The interpretation of the MMA data on Nb are given in terms of the theory of Vichery, Beuneu, and Lejay for superconducting loops containing weak links. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Darula, M.; Seidel, P.; Misanik, B.; Busse, F.; Heinz, E.; Benacka, S.
1994-01-01
The phase-locking stability is investigated theoretically in two structures: linear arrays of Josephson junctions shunted by resistive load and arrays closed into superconducting loop. In both cases the quasi-identical junctions are supposed to be in arrays. The stability as a function of spread in Josephson junction parameters as well as a function of other circuit parameters is investigated. Using Floquet theory it is shown that spread in critical currents of Josephson junction limit the stability of phase-locking state. From the simulations it follows that the phase-locking in arrays closed into superconducting loop is more stable against the spread in junction parameters than in the case of linear array of Josephson junctions. (orig.)
Miniaturization of Josephson logic circuits
International Nuclear Information System (INIS)
Ko, H.; Van Duzer, T.
1985-01-01
The performances of Current Injection Logic (CIL) and Resistor Coupled Josephson Logic (RCJL) have been evaluated for minimum features sizes ranging from 5 μm to 0.2 μm. The logic delay is limited to about 10 ps for both the CIL AND gate and the RCJL OR gate biased at 70% of maximum bias current. The maximum circuit count on an 6.35 x 6.35 chip is 13,000 for CIL gates and 20,000 for RCJL gates. Some suggestions are given for further improvements
delta-biased Josephson tunnel junctions
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelet, V.
2010-01-01
Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...
Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations
Huard, B.
2006-07-01
This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
Self-heating in Josephson junction chains. New insight from old circuits
Energy Technology Data Exchange (ETDEWEB)
Cole, Jared [Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia); Marthaler, Michael [Institute fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Duty, Timothy [Centre for Engineered Quantum Systems (EQuS), School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia)
2016-07-01
The conduction properties of arrays of Josephson junctions are been studied for decades, yet the experimental results never really match the predictions of the idealised theoretical models. Many reasons have been given for this, including imperfections in the measurement, in the fabrication process or in the theoretical models used. Recently, using a combination of systematic numerical and experimental studies, the gap between theory and experiment is closing. As an example of this, we discuss the role of self-heating in the transport properties of one-dimensional Josephson junction chains. We show tantalising experimental measurements and how these can be compared to various theoretical models for the self-heating processes within the chains.
Energy Technology Data Exchange (ETDEWEB)
Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2014-09-15
Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.
International Nuclear Information System (INIS)
Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco
2014-01-01
Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate
Thermal and quantum depinning of a fractional Josephson vortex
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalische Institut, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Meckbach, Max; Kaiser, Christoph; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, University of Karlsruhe, Hertzstrasse 16, 76187, Karlsruhe (Germany)
2011-07-01
We investigate the bias current induced depinning of a fractional Josephson vortex in a 0-{kappa} Josephson junction, where the {kappa}-discontinuity of the phase is induced by current injectors. At high temperatures T>or similar 100 mK the depinning is governed by thermal fluctuations. By measuring a depinning current histogram and extracting the effective barrier height vs. {kappa}, one can see the signatures of fractional vortex escape. At low T
Josephson effect in point contacts between 'f-wave' superconductors
International Nuclear Information System (INIS)
Mahmoodi, R.; Shevchenko, S.N.; Kolesnichenko, Yu.A
2002-01-01
A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt 3 and Sr 2 RuO 4 . The consequence of misorientation of crystals in the superconducting banks on this effect is considered. We show that different models for the order parameter lead to quit different current-phase relations. For certain angles of misorientation a boundary between superconductors can generate a spontaneous current parallel to the surface. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase relations of small junctions can be used for determination of the order parameter symmetry in the superconductors mentioned above
Coherent Josephson radiation from an array of two Dayem bridges
International Nuclear Information System (INIS)
Lidelof, P.E.; Hansen, J.B.; Mygind, J.; Pedersen, N.F.; Soerensen, O.H.
1977-01-01
Phase-locking of two independently baised thin-film microbridge (Josephson)-oscillators separated by a short length of superconductor has been observed experimentally using a broad band microwave coupling of the bridges to the receiver. (Auth.)
Power, O.; Solve, S.; Chayramy, R.; Stock, M.
2012-01-01
As part of the on-going BIPM key comparison BIPM.EM-K11.b, a comparison of the 10 V voltage reference standards of the BIPM and the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from February to March 2012. Two BIPM Zener diode-based travelling standards (Fluke 732B), BIPM_C (ZC) and BIPM_D (ZD), were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage at the 10 V level consists of a group of characterized Zener diode-based electronic voltage standards. The output EMF (electromotive force) of each travelling standard was measured by direct comparison with the group standard. At the BIPM the travelling standards were calibrated, before and after the measurements at NSAI-NML, with the Josephson voltage standard. Results of all measurements were corrected for the dependence of the output voltages on internal temperature and ambient atmospheric pressure. The final result of the comparison is presented as the difference between the value assigned to DC voltage standard by NSAI-NML, at the level of 10 V, at NSAI-NML, UNML, and that assigned by the BIPM, at the BIPM, UBIPM, at the reference date of 23 February 2012. UNML - UBIPM = +0.83 µV, uc = 1.35 µV, at 10 V where uc is the combined standard uncertainty associated with the measured difference, including the uncertainty of the representation of the volt at the BIPM and at NSAI-NML, based on KJ-90, and the uncertainty related to the comparison. The final result is impacted by the anomalous offset between the NSAI-NML results for the two transfer standards. The reason for this offset hasn't been determined. However, the difference remains within the total combined standard uncertainty. Therefore, the comparison result shows that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated expanded uncertainties, on the mean date of the comparison. Main text. To reach the main text of
Long Josephson tunnel junctions with doubly connected electrodes
Monaco, R.; Mygind, J.; Koshelets, V. P.
2012-03-01
In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy. The theoretical findings are supported by measurements on a number of samples having different geometrical configuration. The experiments demonstrate that a very large signal-to-noise ratio can be achieved in the flux quanta detection.
Majorana zero modes in Dirac semimetal Josephson junctions
Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander
We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.
Experimental study of macroscopic quantum tunnelling in Bi2212 intrinsic Josephson junctions
International Nuclear Information System (INIS)
Matsumoto, Tetsuro; Kashiwaya, Hiromi; Shibata, Hajime; Kashiwaya, Satoshi; Kawabata, Shiro; Eisaki, Hiroshi; Yoshida, Yoshiyuki; Tanaka, Yukio
2007-01-01
The quantum dynamics of Bi 2 Sr 2 CaCu 2 O 8+δ intrinsic Josephson junctions (IJJs) is studied based on escape rate measurements. The saturations observed in the escape temperature and in the width of the switching current below 0.5 K (= T * ) indicate the transition of the switching mechanism from thermal activation to macroscopic quantum tunnelling. It is shown that the switching properties are consistently explained in terms of the underdamped Josephson junction with a quality factor of 70 ± 20 in spite of possible damping due to the nodal quasiparticles of d-wave superconductivity. The present result gives the upper limit of the damping of IJJs
Millimetre and sub-mm wavelength radiation sources based on discrete Josephson junction arrays
International Nuclear Information System (INIS)
Darula, M.; Beuven, S.; Doderer, T.
1999-01-01
This paper reviews the present status and future perspectives of discrete Josephson junction arrays for applications as sub-mm wavelength radiation sources. It is intended to cover the whole field, i.e. theory, fabrication and experimental results. The theoretical part reviews the fundamental aspects of Josephson junctions for oscillator applications and introduces the different possible array types. The recent results of analytical as well as numerical investigations are discussed. After the description of the fabrication of both low-T c as well as high-T c superconductor Josephson junctions and arrays, methods to investigate the array dynamics experimentally are mentioned. Finally, the recent experimental results are reviewed. This topic is divided into two parts, the first dealing with low-T c arrays, the second with high-T c arrays. The different possibilities to design arrays and to include them in practical applications are discussed and compared, with special emphasis on those experiments where radiation was generated successfully. The article is completed with a discussion of the most important experimental results. (author)
Two Superconducting Charge Qubits Coupled by a Josephson Inductance
Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen
2007-03-01
When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.
Effect of transparency on the Josephson junction between D-wave superconductors
International Nuclear Information System (INIS)
Rashedi, G
2008-01-01
In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave) with arbitrary reflection coefficient has been investigated theoretically following the famous paper [Y. Tanaka and S. Kashiwaya 1996 Phys. Rev. B 53, R11957]. For the case of High T c superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The effect of transparency and mis-orientation on the currents is studied both analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in High T c superconductors
Coherent terahertz emission from Bi2Sr2CaCu2O8+δ intrinsic Josephson junction stacks
International Nuclear Information System (INIS)
Gross, Boris Andre
2013-01-01
In recent years, terahertz technology has become a rapidly growing sector, driven by the demands of a vast range of (potential) applications. The terahertz spectral range roughly spans from 300 GHz to 30 THz. In the low terahertz range, there is a lack of good and compact devices, that emit electromagnetic waves. Particularly, coherent, narrow-band and continuous-wave sources are lacking, and researchers are following many different approaches to fill this gap. The thesis at hand contributes to the exploration of one of those sources: Operating intrinsic Josephson junctions as emitters in the terahertz spectral range. Josephson junctions (JJs) work as direct current (dc) voltage to frequency converters, if operated in the resistive state. 1 mV voltage drop generates a frequency of about 484 GHz. Intrinsic Josephson junctions (IJJs) in the high temperature superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (BSCCO) are adequate candidates for emitting devices; the layered structure of the material intrinsically provides stacks consisting of 1.5 nm thick, nearly perfectly equal JJs. The fabrication of a series of hundreds of JJs in a stack of micrometer thickness is easily feasible, which is essential for high power frequency generation. Further, the energy gap of BSCCO is in principle large enough to allow for frequencies up to more than 10 THz. The key challenge is the synchronization of all IJJs in order to produce coherent radiation. In 2007, a research team from Argonne National Laboratories succeeded in detecting coherent terahertz radiation from more than 500 synchronized IJJs in a mesa structure. The frequencies ranged from 350 to 850 GHz with output powers up to 0.5 μW. They proposed the formation of electromagnetic standing waves in the cavity of the mesa as synchronization mechanism. Coming from the fully resistive state (nonzero voltage across all junctions), the radiation occurred in the bias regime, where groups of junctions switch back to the zero voltage state
Chaos controlling problems for circuit systems with Josephson junction
International Nuclear Information System (INIS)
Gou, X-F; Wang, X; Xie, J-L
2008-01-01
The complex dynamical characters of the Josephson junction circuit system are studied and the tunnel effect is considered. The dynamical equation of the system is established. The route from periodic motion to chaos is illustrated using bifurcation diagram. An adscititious coupling controller is constructed to control the chaos
Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions
golovchanskiy, I.A.; Bol'ginov, V.V.; Stolyarov, V.S.; Abramov, N.N.; Ben Hamida, A.; Emelyanova, O.V.; Stolyarov, B.S.; Kupriyanov, M..Y.; Golubov, Alexandre Avraamovitch; Ryazanov, V.V.
2016-01-01
In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
DEFF Research Database (Denmark)
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...
Phase locking between Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1990-01-01
We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...
A High Voltage Swing 1.9 GHz PA in Standard CMOS
Aartsen, W.A.J.; Annema, Anne J.; Nauta, Bram
2002-01-01
A circuit technique for RF power amplifiers that reliably handle voltage peaks well above the nominal supply voltage is presented. To achieve this high-voltage tolerance the circuit implements switched-cascode transistors that yield reliable operation for voltages up to 7V at RF frequencies in a
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2004-01-01
Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate
Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet
Ghosh, Roopayan; Maiti, Moitri; Shukrinov, Yury M.; Sengupta, K.
2017-11-01
We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time-dependent magnetic field both without and in the presence of an external ac drive. We provide an analytic, albeit perturbative, solution for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time dependence oriented along the easy axis of the nanomagnet's magnetization and in the limit of weak dimensionless coupling ɛ0 between the JJ and the nanomagnet. We show the existence of Shapiro-type steps in the I -V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external ac drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.
Neutron induced permanent damage in Josephson junctions
International Nuclear Information System (INIS)
Mueller, G.P.; Rosen, M.
1982-01-01
14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%
Josephson junctions array resonators
Energy Technology Data Exchange (ETDEWEB)
Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)
2016-07-01
We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.
Magnetic Field Dependence and Q of the Josephson Plasma Resonance
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.
1972-01-01
of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...
International Nuclear Information System (INIS)
Haddad, T; Engert, S; Toepfer, H; Wetzstein, O; Ortlepp, T
2011-01-01
The Josephson comparator is one of the fundamental building blocks of rapid single flux quantum (RSFQ) electronics. Within this circuit family it is the exclusive device which provides logical data processing. The Josephson comparator is also the basic decision element for very fast analog-to-digital converters and sampler circuits for low input power and high-bandwidth signals based on the RSFQ technique. The performance of those devices is fundamentally determined by the characteristics of the Josephson comparator. In this study the gray zone dependency on the clock frequency of a Josephson comparator is investigated by simulations concerning the influence of thermal noise. This investigation is performed for a series of operating points defined by the bias current and different noise levels defined by the operating temperature. In contrast to former investigations, we analyzed the comparator embedded in a realistic environment for output data processing. We identified a characteristic clock frequency f c for a comparator topology designed for a 1 kA cm -2 niobium fabrication technology. The gray zone of 8 μA remains constant for clock frequencies below f c = 15 GHz and starts to increase for larger frequencies. We also found out that this characteristic frequency is independent of the intensity of thermal noise and therefore independent of temperature.
Thin film hybrid Josephson junctions with Co doped Ba-122
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Stefan; Doering, Sebastian; Schmidl, Frank; Tympel, Volker; Grosse, Veit; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany); Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, Helmholtzstrasse 20, 01069 Dresden (Germany); Moench, Ingolf [IFW Dresden, Institut fuer Integrative Nanowissenschaften, Helmholtzstrasse 20, 01069 Dresden (Germany)
2011-07-01
Josephson junctions are a strong tool to investigate fundamental superconducting properties, such as gap behaviour, dependencies from external fields and the order parameter symmetry. Finding secure values enables the possibility of theoretical descriptions to understand the physical processes within the new iron-based superconductors. Based on Co-doped BaFe{sub 2}As{sub 2} (Ba-122) layers produced via pulsed laser deposition (PLD) on (La,Sr)(Al,Ta)O{sub 3} substrates, we manufactured superconductor-normal conductor-superconductor (S-N-S) junctions structures by using photolithography, ion beam etching as well as insulating SiO{sub 2} layers. We present working Ba-122/Au/PbIn thin film Josephson junctions with different contact areas and barrier thicknesses, their temperature dependence and response to microwave irradiation. The calculated I{sub c}R{sub N} product is in the range of a couple of microvolts.
Study of a high critical temperature superconductor through Josephson effect and tunnel spectroscopy
International Nuclear Information System (INIS)
Grison, X.
2000-11-01
This work, mainly experimental, is dedicated to the study of the Josephson effect and the tunnel spectroscopy of superconducting films. Thin films of YBa 2 Cu 3 O 7-δ oriented towards [0,0,1], [1,0,3], [1,1,0] or [1,0,0] axis have been made. The results concerning the [0,0,1] orientation are consistent with an order parameter having a d(x 2 -y 2 ) symmetry but with a small component of s symmetry due to the orthorombicity of YBa 2 Cu 3 O 7δ . The results concerning the [1,1,0] orientation show the existence (near (1,1,0)-type surfaces) of an order parameter whose symmetry is d(x 2 -y 2 ) ± i*s or more likely d(x 2 - y 2 ) ± i*d(xy). The latter term implies the breaking of the time reversing symmetry. The i*d(xy) component is responsible for the Josephson coupling along the [1,1,0] axis, which means that the coupling is not or is little carried by the Andreev bound states contrarily to recent predictions. It is also shown that Josephson junctions can be fabricated by using ion irradiation. (A.C.)
Scattering theory of superconductive tunneling in quantum junctions
International Nuclear Information System (INIS)
Shumeiko, V.S.; Bratus', E.N.
1997-01-01
A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure
Spin-triplet supercurrent in Co-based Josephson junctions
International Nuclear Information System (INIS)
Khasawneh, Mazin A; Khaire, Trupti S; Klose, Carolin; Pratt, William P Jr; Birge, Norman O
2011-01-01
In the past year several groups have reported experimental evidence for spin-triplet supercurrents in Josephson junctions containing strong ferromagnetic materials. In this paper we present several new experimental results that follow up on our previous work. We study Josephson junctions of the form S/X/N/SAF/N/X/S, where S is a superconductor (Nb), N is a normal metal, SAF is a synthetic antiferromagnet of the form Co/Ru/Co and X is an ferromagnetic layer necessary to induce spin-triplet correlations in the structure. Our work is distinguished by the fact that the generation of spin-triplet correlations is tuned by the type and thickness of the X layers. The most important new result reported here is the discovery that a conventional, strong ferromagnetic material, Ni, performs well as the X layer, if it is sufficiently thin. This discovery rules out our earlier hypothesis that out-of-plane magnetocrystalline anisotropy is an important attribute of the X layers. These results suggest that the spin-triplet correlations are most likely induced by noncollinear magnetization between the X layers and adjacent Co layers.
On the Josephson effect between superconductors in singlet and triplet spin-pairing states
International Nuclear Information System (INIS)
Pals, J.A.; Haeringen, W. van
1977-01-01
An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)
Microwave oscillator based on an intrinsic BSCCO-type Josephson junction
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2005-01-01
. The resulting model is a set of coupled nonlinear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined intrinsic Josephson junction and cavity system can be understood on the basis of general concepts of nonlinear oscillators...
Josephson current through a molecular transistor in a dissipative environment
DEFF Research Database (Denmark)
Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten
2005-01-01
We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find...
Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal
2018-02-01
We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.
Superconducting digital logic amplifier
International Nuclear Information System (INIS)
Przybysz, J.X.
1989-01-01
This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions
Effect of surface losses on soliton propagation in Josephson junctions
DEFF Research Database (Denmark)
Davidson, A.; Pedersen, Niels Falsig; Pagano, S.
1986-01-01
We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term pla...
Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications
Niedzielski, Bethany Maria
A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this
Chaos synchronization in a Josephson junction system via active sliding mode control
International Nuclear Information System (INIS)
Zhao Yang; Wang Wei
2009-01-01
In this letter, two types of active siding control methods are proposed and applied to achieve chaotic synchronization in a Josephson junction system. Numerical simulations are used to verify the proposed control techniques.
Ferromagnetic Josephson Junctions for Cryogenic Memory
Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.
2015-03-01
Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.
Negative differential resistance in Josephson junctions coupled to a cavity
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.
2014-01-01
or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find...
Phase dynamics of single long Josephson junction in MgB2 superconductor
Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.
2018-05-01
A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
International Nuclear Information System (INIS)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M.; Megrant, A.; Chaudhuri, S.
2015-01-01
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB across a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit
Sheikhzada, Ahmad; Gurevich, Alex
2015-12-07
Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.
Energy Technology Data Exchange (ETDEWEB)
Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.
2009-09-01
Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.
International Nuclear Information System (INIS)
Levinsen, M.T.
1982-01-01
The Stewart-McCumber model of a Josephson junction has been shown to exhibit period-doubling bifurcation cascades, as described by the Feigenbaum bifurcation theory. Chaotic states, sometimes associated with the bifurcations, are also prevalent. The present paper deals with the questions of subharmonic generation and chaotic states in the aforementioned model, and in addition with the problem of the ubiquitous noise rise found in Josephson junction parametric amplifiers. The bifurcation is first discussed by drawing on analytical results on the Duffing equation which is an approximation to the complete ac-driven Stewart-McCumber model. The complete model is then solved on an analog computer. Thereafter it is shown that besides the even subharmonics predicted by the bifurcation theory, the natural subharmonic to expect at small dc currents is the odd. This may then have associated its own bifurcation tree. The role of spontaneous symmetry breaking will be discussed. This reconciles the earlier treatment of the 3-photon amplifier with the Feigenbaum scheme. Finally, analog calculations on a model of an externally pumped Josephson junction parametric amplifier will be discussed. The conclusion seems to be that chaotic noise cannot account for the noise rise
International Nuclear Information System (INIS)
Ammendola, G.; Parlato, L.; Peluso, G.; Pepe, G.
1998-01-01
Tunnel quasi-particle injection into a superconducting film provides useful information on the non-equilibrium state inside the perturbed superconductor as well as on the potential application to electronic devices. Three terminal injector-detector superconducting devices have a long history in non-equilibrium superconductivity. In the recent past non-equilibrium phenomena have attracted again considerable attention because of many superconducting based detectors involve processes substantially non-equilibrium in nature. The possibility of using a stacked double tunnel junction to study the influence of non-equilibrium superconductivity on the Josephson critical current is now considered. An experimental study of the effect of quasi-particle injection on the Josephson current both in steady-state and pulsed experiments down to T=1.2 K is presented using 3 terminal Nb-based stacked double tunnel devices. The feasibility of a new class of particle detectors based on the direct measurement of the change in the Josephson current following the absorption of a X-ray quantum is also discussed in terms of non-equilibrium theories. (orig.)
Charge-transport in Josephson-junctions with ferromagnetic Ni3Al-interlayer
International Nuclear Information System (INIS)
Born, F.
2006-01-01
The present dissertation reports on experimental studies about superconducting coupling through a thin Ni 76 Al 24 film. A new patterning process has been developed, which allows in combination with the wedge shaped deposition technique the in situ deposition of 20 single Nb/Al/Al 2 O 3 /Ni 3 Al/Nb multilayers, each with its own well defined Ni 3 Al thickness. Every single multilayer consists of 10 different sized Josephson junctions, showing a high reproducibility and scaling with its junction area. Up to six damped oscillations of the critical current density against F-layer thickness were observed, revealing three single 0-π-transitions in the ground state of Josephson junctions. Contrary to former experimental studies, the exponential decay length is one magnitude larger than the oscillation period defining decay length. The theoretical predictions based on linearised Eilenberger equations results in excellent agreement of theory and experimental results. (orig.)
Kim, Minsoo; Park, Geon-Hyoung; Yi, Jongyoon; Lee, Jae Hyeong; Park, Jinho; Lee, Hu-Jong
2H-NbSe2 is a layered two-dimensional superconducting material, which can be constructed into a van der Waals heterostructure with versatile functionality. Here we fabricated a vertically stacked NbSe2 - graphene - NbSe2 heterostructure by the dry transfer technique, where defect-free contact via van der Waals force provides the high interfacial transparency. Insertion of an atomically thin graphene layer between two NbSe2 flakes ensures the formation of highly coherent proximity Josephson coupling. Observed temperature dependence of the junction critical current (Ic) and large value of IcRn product (as large as 2.3ΔNbSe 2) reveal the short and ballistic Josephson coupling characteristics. Large junction critical current density of 104 A/cm2, multiple Andreev reflection in the subgap structure of the differential conductance, and magnetic field modulation of Ic also suggest the strong Josephson coupling via the graphene layer.
Josephson edge junctions on YBa2Cu3O7 thin films prepared with Br-ethanol etching
International Nuclear Information System (INIS)
Faley, M.I.; Poppe, U.; Daehne, U.; Goncharov, Yu.G.; Klein, N.; Urban, K.; Soltner, H.
1993-01-01
To produce damage-free edges is one of the main problems in the preparation of the Josephson edge-type junctions and interconnects in multilayer structures including high temperature superconductors. The commonly used ion beam etching has the disadvantages of the risk of contamination by redeposited material and structural damage to the surface of the edge. Vasquez et al and Gurvitch et al introduced a nonaqueous Br-ethanol etching for the preparation of clean surfaces of YBa 2 Cu 3 O 7 single crystals and thin films. We have developed a procedure of deep-UV-photolithography combined with nonaqueous Br-ethanol etching for the preparation of the Josephson edge-type junctions. Here we present the improvement of this method and report further results on the study of the electron transport properties of Josephson junctions with the edges of YBa 2 Cu 3 O 7 thin films produced by this technique. (orig.)
Josephson effect in superfluid helium 3 during flow through small hole
International Nuclear Information System (INIS)
Kopnin, N.B.
1986-01-01
The Josephson current flowing in helium 3 through a small hole near the critical temperature is calculated. In diffusion particle reflection from vessel walls the critical current is proportional to (T c -T) 2 , and in mirror reflection it is proportional to (T c -T)
Experimental Evidence for Phase-Locked States in Stacked Long Josephson Junctions
DEFF Research Database (Denmark)
Carapella, Giovanni; Costabile, Giovanni; Mancher, Martin
1997-01-01
We fabricated and tested samples consisteing of two long stacked Josephson junctions with direct access to the intermediate electrode, whose thickness is smaller than the London penetration depth $\\lambda _L$. The electrodes are patterned so that the junctions can be idependently biased in the ov...
International Nuclear Information System (INIS)
Mejlikhov, E.Z.; Farzetdinova, R.M.
1997-01-01
Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution
Frequency Combs in a Lumped-Element Josephson-Junction Circuit
Khan, Saeed; Türeci, Hakan E.
2018-04-01
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped-element L C oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be different from those studied in microcavity frequency combs and mode-locked lasers. We then address the fate of the comblike spectrum in the regime of strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.
Manipulating Josephson junctions in thin-films by nearby vortices
International Nuclear Information System (INIS)
Kogan, V.G.; Mints, R.G.
2014-01-01
Highlights: • Vortex located in a bank of a planar Josephson junction changes its character. • Vortex located at some discreet positions in thin strip bank suppresses to zero the zero-field current. • The number of these positions is equal to the number of vortices trapped. • Critical current-field patterns are strongly affected by the vortex position. - Abstract: It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I c (H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I c (H) has zero at H=0 instead of the traditional maximum of ‘0-type’ junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction–vortex separation exceeds ∼W, the strip width, I c (H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges
Nanometer-scale patterning of high-Tc superconductors for Josephson junction-based digital circuits
International Nuclear Information System (INIS)
Wendt, J.R.; Plut, T.A.; Corless, R.F.; Martens, J.S.; Berkowitz, S.; Char, K.; Johansson, M.; Hou, S.Y.; Phillips, J.M.
1994-01-01
A straightforward method for nanometer-scale patterning of high-T c superconductor thin films is discussed. The technique combines direct-write electron beam lithography with well-controlled aqueous etches and is applied to the fabrication of Josephson junction nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 . We present the results of our studies of the dimensions, yield, uniformity, and mechanism of the junctions along with the performance of a representative digital circuit based on these junctions. Direct current junction parameter statistics measured at 77 K show critical currents of 27.5 μA±13% for a sample set of 220 junctions. The Josephson behavior of the nanobridge is believed to arise from the aggregation of oxygen vacancies in the nanometer-scale bridge
49 CFR 234.221 - Lamp voltage.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...
International Nuclear Information System (INIS)
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)
Josephson oscillations and noise temperatures in YBa2Cu3O7-x grain-boundary junctions
DEFF Research Database (Denmark)
Yu, Ya. Divin; Mygind, Jesper; Pedersen, Niels Falsig
1992-01-01
The ac Josephson effect was studied in YBa2Cu3O7−x grain-boundary junctions (GBJ) in the temperature range from 4 to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured and it is shown that the derived effective noise temperatures may be as low...... as the physical temperature in the temperature range investigated. In the millimeter-wave range, linewidths as low as 380 MHz were found at liquid-nitrogen temperatures. Applied Physics Letters is copyrighted by The American Institute of Physics....
DEFF Research Database (Denmark)
Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig
1997-01-01
Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...
Josephson effect in SIFS junctions at arbitrary scattering
International Nuclear Information System (INIS)
Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.
2011-01-01
Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the
Harmonic synchronization in resistively coupled Josephson junctions
International Nuclear Information System (INIS)
Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.
1994-01-01
The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed
International Nuclear Information System (INIS)
Davidson, A.; Pedersen, N.F.; Dueholm, B.
1985-01-01
We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity Sine-Gordon solitons in real Josephson tunnel junctions
Turbulence, chaos and thermal noise in globally coupled Josephson junction arrays
International Nuclear Information System (INIS)
Dominguez, D.
1995-03-01
We discuss the effects of thermal noise in underdamped Josephson junction series arrays that are globally coupled through a resistive load and driven by an rf current. We study the breakdown of the law of large numbers in the turbulent phase of the Josephson arrays. This corresponds to a saturation of the broad band noise S 0 for a large number N of junctions. We find that this phenomenon is stable against thermal fluctuations below a critical temperature T cl . The behaviour of S 0 vs. T, for large N, shows three different regimes. For 0 cl , S 0 decreases when increasing T, and there is turbulence and the breakdown of the law of large numbers. For T cl c2 , S 0 is constant and the dynamics is dominated by the chaos of the individual junctions. Finally for T > T c2 , S 0 in mainly due to thermal fluctuations, since it increases linearly with T. (author). 23 refs, 6 figs
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)
2013-12-04
We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.
A Josephson ternary associative memory cell
International Nuclear Information System (INIS)
Morisue, M.; Suzuki, K.
1989-01-01
This paper describes a three-valued content addressable memory cell using a Josephson complementary ternary logic circuit named as JCTL. The memory cell proposed here can perform three operations of searching, writing and reading in ternary logic system. The principle of the memory circuit is illustrated in detail by using the threshold-characteristics of the JCTL. In order to investigate how a high performance operation can be achieved, computer simulations have been made. Simulation results show that the cycle time of memory operation is 120psec, power consumption is about 0.5 μW/cell and tolerances of writing and reading operation are +-15% and +-24%, respectively
Quantum dynamics of small Josephson junctions: an application to superconductivity in granular films
International Nuclear Information System (INIS)
Fisher, M.P.A.
1986-01-01
This thesis is devoted to a study of the quantum dynamics of small Josephson junctions. Of interest are those features of the junction's behavior which depend explicitly on the quantum mechanical nature of the phase difference phi between the superconductors. In Chapters I and II several calculations are described which focus on the junction's DC resistance. A fully quantum mechanical Hamiltonian is employed that incorporates the dissipative effects due to the unpaired electrons by coupling to a bath of harmonic oscillators. It is shown that the model exhibits a novel zero temperature phase transition as a function of the strength of the dissipation. In the low dissipation regime the phase is free to tunnel quantum mechanically and the junction's resistance is finite; in response to an external current, tunnelling induces successive 2π phase slips leading to a finite voltage state. In contrast, in the high dissipation regime, tunnelling is suppressed and the junction behaves as a superconductor carrying current with no resistive losses. In Chapters III and IV, these results are applied in an attempt to explain the recent observation that in ultra thin Sn films there is apparently a universal normal state sheet resistance above which superconductivity cannot be established
Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators
DEFF Research Database (Denmark)
Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.
1997-01-01
Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect...
Kink propagation and trapping in a two-dimensional curved Josephson junction
DEFF Research Database (Denmark)
Gorria, Carlos; Gaididei, Yuri Borisovich; Sørensen, Mads Peter
2004-01-01
for Josephson junctions of overlap type. A collective variable approach based on the kink position and the kink width depending on the transversal coordinate is developed. The latter allows to take into account both longitudinal and centrifugal forces which act on the nonlinear excitation moving in a region...
International Nuclear Information System (INIS)
Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.
2007-01-01
The authors have studied the annealing effect in the transport properties of high T c Josephson junctions (JJs) made by ion irradiation. Low temperature annealing (80 deg. C) increases the JJ coupling temperature (T J ) and the I c R n product, where I c is the critical current and R n the normal resistance. They have found that the spread in JJ characteristics can be reduced by sufficient long annealing times, increasing the reproducibility of ion irradiated Josephson junctions. The characteristic annealing time and the evolution of the spread in the JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one
Binary circuitry including switching elements utilizing superconductive tunneling effects
International Nuclear Information System (INIS)
Baechtold, W.; Gueret, P.L.
1976-01-01
Two Josephson gates are connected in series to a low impedance voltage source. Each junction is bridged by a load impedance. The feed voltage is maintained in the order of the gap voltage which correponds to the voltage drop across a Josephson junction when it is in its single-particle-tunneling state. Therefore, only one out of both Josephson elements can exist in the voltage state at a time, and the other junction is forced to assume the superconducting pair-tunneling state. In its symmetric form, the basic circuit can be used as flip-flop or storage means. If asymmetric, the basic circuit shows monostable switching behavior, and it can be used as logic gate. Circuit asymmetry can be caused either by design using different junction areas or electrically by proper bias control currents applied to either or both gates of the basic circuit. The degree of symmetry or asymmetry can even be shifted with electrical means. AND and OR gates and inverting embodiments which perform logic NAND and NOR functions are shown
Energy Technology Data Exchange (ETDEWEB)
Guerlich, Christian
2010-05-11
With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j{sub s} in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j{sub s}. In this thesis ramp-type Nd{sub 2-x}Ce{sub x}CuO{sub 4-y}/Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al{sub 2}O{sub 3}/NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d{sub x{sup 2}-y{sup 2}}-symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and {pi} facets. With the LTSEM 0-, {pi}-, 0-{pi}-, 0-{pi}-0-, 0/2-{pi}-0/2-, 20 x (0-{pi})- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm{sup 2} at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-{pi}-boundary was found. (orig.)
Josephson tunnel junctions with ferromagnetic interlayer
International Nuclear Information System (INIS)
Weides, M.P.
2006-01-01
Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)
Josephson tunnel junctions with ferromagnetic interlayer
Energy Technology Data Exchange (ETDEWEB)
Weides, M.P.
2006-07-01
Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)
30 CFR 75.804 - Underground high-voltage cables.
2010-07-01
... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...
Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength
International Nuclear Information System (INIS)
Blaney, T.G.; Knight, D.J.E.
1974-01-01
A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron
External magnetic field and self-field effects in stacked long Josephson junctions
DEFF Research Database (Denmark)
Carapella, G.; Costabile, G.; Mygind, Jesper
1996-01-01
We have fabricated and tested samples consisting of two long stacked Josephson junctions with direct access to the intermediate electrode, whose thickness is smaller than London penetration depth lambda(L). The electrodes are patterned so that the junctions can be independently biased in the over...
Static properties of small Josephson tunnel junctions in an oblique magnetic field
DEFF Research Database (Denmark)
Monaco, Roberto; Aarøe, Morten; Mygind, Jesper
2009-01-01
We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular...
Double-well potential in annular Josephson junction
International Nuclear Information System (INIS)
Shaju, P.D.; Kuriakose, V.C.
2004-01-01
A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits
Fluoride barriers in Nb/Pb Josephson junctions
Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.
1985-03-01
Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.
Vortices trapped in discrete Josephson rings
International Nuclear Information System (INIS)
Van der Zanta, H.S.J.; Orlando, T.P.; Watanabe, Shinya; Strogatz, S.H.
1994-01-01
We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.))
Vortices trapped in discrete Josephson rings
Energy Technology Data Exchange (ETDEWEB)
Van der Zanta, H.S.J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Orlando, T.P. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watanabe, Shinya [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Strogatz, S.H. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
1994-12-01
We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.)).
International Nuclear Information System (INIS)
Cleland, A.N.
1991-04-01
Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
International Nuclear Information System (INIS)
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-01-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
International Nuclear Information System (INIS)
Endo, T.; Sakamoto, Y.; Shiota, F.; Nakayama, K.; Nezu, Y.; Kikuzawa, M.; Hara, K.
1989-01-01
The authors describe an improvement of the preliminary superconducting magnetic levitation system in progress for the absolute determination of the magnetic flux quantum. This improvement includes the development of the flux-up method to determine the flux in terms of the Josephson voltage. The improvement is essential for the determination of the magnetic flux quantum as well as of the coil current in terms of the Josephson voltage and quantized Hall resistance
The submm wave Josephson flux flow oscillator; Linewidth measurements and simple theory
DEFF Research Database (Denmark)
Mygind, Jesper; Koshelets, V. P.; Samuelsen, Mogens Rugholm
2005-01-01
The Flux Flow Oscillator (FFO) is a long Josephson junction in which a DC bias current and a DC magnetic field maintain a unidirectional viscous flow of magnetic flux quanta. The theoretical linewidth of the electromagnetic radiation generated at the end boundary is due to internal current...
30 CFR 75.813 - High-voltage longwalls; scope.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of this...
Josephson junction between two high Tc superconductors with arbitrary transparency of interface
Directory of Open Access Journals (Sweden)
GhR Rashedi
2010-03-01
Full Text Available In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coefficient via which the tunneling will occur. We have solved the nonlocal Eilenberger equations and obtained the corresponding and suitable Green functions analytically. Then, using the obtained Green functions, the current-phase diagrams have been calculated. The effect of the potential barrier and mis-orientation on the currents is studied analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in high Tc superconductors.
International Nuclear Information System (INIS)
Nie, Qing-Miao; Zhang, Sha-Sha; Chen, Qing-Hu; Zhou, Wei
2012-01-01
On the basis of resistively-shunted junction dynamics, we study vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically single and bimodulated periodic pinning potential for the full range of vortex density f. The ratchet effect occurring at a certain range of temperature, current, and f, is observed in our simulation. We explain the microscopic behavior behind this effect by analyzing the vortex distribution and interaction. The reversal of the ratchet effect can be observed at several f values for a small driven current. This effect is stronger when the asymmetric potential is simultaneously introduced in two directions. -- Highlights: ► The ratchet effect in Josephson junction arrays strongly depends on vortex density. ► The reversed ratchet effect can be observed at several f for a small current. ► The interaction between vortices can explain the reversed ratchet effect. ► The ratchet effect is enhanced by injecting the bimodulated asymmetric potential.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Competing boundary interactions in a Josephson junction network with an impurity
International Nuclear Information System (INIS)
Giuliano, Domenico; Sodano, Pasquale
2010-01-01
We analyze a perturbation of the boundary Sine-Gordon model where two boundary terms of different periodicities and scaling dimensions are coupled to a Kondo-like spin degree of freedom. We show that, by pertinently engineering the coupling with the spin degree of freedom, a competition between the two boundary interactions may be induced, and that this gives rise to nonperturbative phenomena, such as the emergence of novel quantum phases: indeed, we demonstrate that the strongly coupled fixed point may become unstable as a result of the 'deconfinement' of a new set of phase-slip operators - the short instantons - associated with the less relevant boundary operator. We point out that a Josephson junction network with a pertinent impurity located at its center provides a physical realization of this boundary double Sine-Gordon model. For this Josephson junction network, we prove that the competition between the two boundary interactions stabilizes a robust finite coupling fixed point and, at a pertinent scale, allows for the onset of 4e superconductivity.
Multiple frequency generation by bunched solitons in Josephson tunnel junctions
DEFF Research Database (Denmark)
Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth
1981-01-01
A detailed numerical study of a long Josephson tunnel junction modeled by a perturbed sine-Gordon equation demonstrates the existence of a variety of bunched soliton configurations. Thus, on the third zero-field step of the V-I characteristic, two simultaneous adjacent frequencies are generated...... in a narrow bias current range. The analysis of the soliton modes provides an explanation of recent experimental observations....
DEFF Research Database (Denmark)
Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.
2000-01-01
The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...
Kjaergaard, M.; Suominen, H. J.; Nowak, M.P.; Akhmerov, A.R.; Shabani, J.; Palmstrøm, C. J.; Nichele, F.; Marcus, C.M.
2017-01-01
Measurement of multiple Andreev Reflection (MAR) in a Josephson junction made from an InAs quantum well heterostructure with epitaxial aluminum is used to quantify a highly transparent effective semiconductor-superconductor interface with near-unity transmission. The observed temperature
Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition
International Nuclear Information System (INIS)
Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi
2014-01-01
A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)
Measured Temperature Dependence of the cos-phi Conductance in Josephson Tunnel Junctions
DEFF Research Database (Denmark)
Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig
1977-01-01
The temperature dependence of the cosϕ conductance in Sn-O-Sn Josephson tunnel junctions has been measured just below the critical temperature, Tc. From the resonant microwave response at the junction plasma frequency as the temperature is decreased from Tc it is deduced that the amplitude of the...
Images of interlayer Josephson vortices in single-layer cuprates
International Nuclear Information System (INIS)
Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.
2000-01-01
The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ
A novel ternary logic circuit using Josephson junction
International Nuclear Information System (INIS)
Morisue, M.; Oochi, K.; Nishizawa, M.
1989-01-01
This paper describes a novel Josephson complementary ternary logic circuit named as JCTL. This fundamental circuit is constructed by combination of two SQUIDs, one of which is switched in the positive direction and the other in the negative direction. The JCTL can perform the fundamental operations of AND, OR, NOT and Double NOT in ternary form. The principle of the operation and design criteria are described in detail. The results of the simulation show that the reliable operations of these circuits can be achieved with a high performance
Transition behaviours in two coupled Josephson junction equations
International Nuclear Information System (INIS)
Wang Jiazeng; Zhang Xuejuan; You Gongqiang; Zhou Fengyan
2007-01-01
The dynamics of two coupled Josephson junction equations are investigated via mathematical reasoning and numerical simulations. We show that for a fixed coupling K, the whole parameter space can be comparted into three regions: a quenching region, a synchronized running periodic region and a region where these two states coexist. It is further shown that with the increase of the coupling K, the system may transit from a synchronizing state to a quenching state. The characteristic of the critical line K*(b) which separates these two states is mathematically analysed
Generation of cluster states with Josephson charge qubits
International Nuclear Information System (INIS)
Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang
2007-01-01
A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology
DEFF Research Database (Denmark)
Kofoed, Bent; Særmark, Knud
1973-01-01
We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak is observ......We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak...
Thick Bi2Sr2CaCu2O8+δ films grown by liquid-phase epitaxy for Josephson THz applications
Simsek, Y.; Vlasko-Vlasov, V.; Koshelev, A. E.; Benseman, T.; Hao, Y.; Kesgin, I.; Claus, H.; Pearson, J.; Kwok, W.-K.; Welp, U.
2018-01-01
Theoretical and experimental studies of intrinsic Josephson junctions (IJJs) that naturally occur in high-T c superconducting Bi2Sr2CaCu2O8+δ (Bi-2212) have demonstrated their potential for novel types of compact devices for the generation and sensing of electromagnetic radiation in the THz range. Here, we show that the THz-on-a-chip concept may be realized in liquid-phase epitaxial-grown (LPE) thick Bi-2212 films. We have grown μm thick Bi-2212 LPE films on MgO substrates. These films display excellent c-axis alignment and single crystal grains of about 650 × 150 μm2 in size. A branched current-voltage characteristic was clearly observed in c-axis transport, which is a clear signature of underdamped IJJs, and a prerequisite for THz-generation. We discuss LPE growth conditions allowing improvement of the structural quality and superconducting properties of Bi-2212 films for THz applications.
High Tc Josephson Junctions, SQUIDs and magnetometers
International Nuclear Information System (INIS)
Clarke, J.
1991-01-01
There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned
Spectroscopy of the fractional vortex eigenfrequency in a long Josephson 0-{kappa} junction
Energy Technology Data Exchange (ETDEWEB)
Buckenmaier, K.; Gaber, T.; Schittenhelm, I.; Kleiner, R.; Koelle, D.; Goldobin, E. [Physikalisches Inst., Experimentalphysik II, Univ. Tuebingen (Germany); Siegel, M. [Univ. Karlsruhe (Germany). Inst. fuer Mikro- und Nanoelektronische Systeme
2007-07-01
In long Josephson junctions with a {kappa}-phase discontinuity, created by two current injectors, a fractional Josephson vortex (FJV) is spontaneously formed at the interface between the 0- and {kappa}-part. A FJV carries an arbitrary fraction {phi}/{phi}{sub 0}={kappa}/2{pi} of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. In contrast to fluxons, FJVs are pinned at the discontinuity point, but in underdamped systems they are able to oscillate around their equilibrium point with characteristic eigenfrequencies. To experimentally determine the eigenfrequency we stimulated a FJV by irradiating our sample with microwaves. At resonance the junction switches to the resistive state. A measurement of the switching probability thus allows to determine the FJV eigenfrequency as a function of bias current and {kappa}. We compare our results with the prediction of the perturbed sine-Gordon equation. (orig.)
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Graphene-Based Josephson-Junction Single-Photon Detector
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
Q factor and resonance amplitude of Josephson tunnel junctions
International Nuclear Information System (INIS)
Broom, R.F.; Wolf, P.
1977-01-01
The surface impedance of the superconducting films comprising the electrodes of Josephson tunnel junctions has been derived from the BCS theory in the extreme London limit. Expressions have been obtained for (i) the dependence of the penetration depth lambda on frequency and temperature, and (ii) the quality factor Q of the junction cavity, attributable to surface absorption in the electrodes. The effect of thin electrodes (t 9 or approx. = lambda) is also included in the calculations. Comparison of the calculated frequency dependence of lambda with resonance measurements on Pb-alloy and all-Nb tunnel junctions yields quite good agreement, indicating that the assumptions made in the theory are reasonable. Measurements of the (current) amplitude of the resonance peaks of the junctions have been compared with the values obtained from inclusion of the calculated Q in the theory by Kulik. In common with observations on microwave cavities by other workers, we find that a small residual conductivity must be added to the real part of the BCS value. With its inclusion, good agreement is found between calculation and experiment, within the range determined by the simplifying assumptions of Kulik's theory. From the results, we believe the calculation of Q to be reasonably accurate for the materials investigated. It is shown that the resonance amplitude of Josephson junctions can be calculated directly from the material constants and a knowledge of the residual conductivity
Chaos synchronization in RCL-shunted Josephson junction via active control
International Nuclear Information System (INIS)
Ucar, Ahmet; Lonngren, Karl E.; Bai, E.-W.
2007-01-01
This paper investigates the synchronization of coupled RCL-shunted Josephson junction that is of interest in high-frequency applications. A nonlinear controller is developed in order to achieve the desired behavior. The synchronization is obtained using the slave-master technique and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are illustrate and verify the proposed method
Onset of chaos in Josephson junctions with intermediate damping
International Nuclear Information System (INIS)
Yao, X.; Wu, J.Z.; Ting, C.S.
1990-01-01
By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed
Josephson magnetization of Y--Ba--Cu--O superconductors near the critical temperature
International Nuclear Information System (INIS)
Ivanchenko, Y.M.; Lisyansky, A.A.; Tsindlekht, M.I.
1991-01-01
Experimental and theoretical data for the rectifying properties in a ceramic Y--Ba--Cu--O cylindrical sample are presented. A sample is subjected to the influence of a very small perturbation just to have the linear rectifying regime. Theoretical analysis using the Josephson medium concept gives qualitative agreement with the observed experimental results
Storage and detection of a single flux quantum in Josephson junction devices
International Nuclear Information System (INIS)
Gueret, P.
1975-01-01
It is shown both by computer simulations and experimentally that a single Josephson junction has memory and can therefore be used for information storage. Means of reading-out the information content of such a memory element are demonstrated. Finally, memory operation, writing and reading, is described as a direct application of these concepts