WorldWideScience

Sample records for jet mixer overblow

  1. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  2. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  3. Spectrometric Analysis for Pulse Jet Mixer Testing

    International Nuclear Information System (INIS)

    ZEIGLER, KRISTINE

    2004-01-01

    The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could be correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions

  4. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  5. Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2004-01-01

    With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.

  6. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    International Nuclear Information System (INIS)

    HASSAN, NEGUIB

    2004-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables

  7. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    International Nuclear Information System (INIS)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-01-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford's 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for 'just-suspended velocity', solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  8. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials

    OpenAIRE

    Ma, CY; Liu, JJ; Zhang, Y; Wang, XZ

    2015-01-01

    Reactor performance of confined jet mixers for continuous hydrothermal flow synthesis of nanomaterials is investigated for the purpose of scale-up from laboratory scale to pilot-plant scale. Computational fluid dynamics (CFD) models were applied to simulate hydrothermal fluid flow, mixing and heat transfer behaviours in the reactors at different volumetric scale-up ratios (up to 26 times). The distributions of flow and heat transfer variables were obtained using ANSYS Fluent with the tracer c...

  9. Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

    Directory of Open Access Journals (Sweden)

    Wojtas Krzysztof

    2015-06-01

    Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

  10. Blow-off of hydrogen using an optimized design of discharge jet-mixer arrangement

    International Nuclear Information System (INIS)

    Ristow, Torsten

    2011-01-01

    Hydrogen is ignitable in air at volume concentrations between 4 % and 75 %. Therefore, in the case of an emergency evacuation of a hydrogen-cooled generator in nuclear power plants, the gas has to be safely blown-off above the turbine building. Especially, a leakage at the hydrogen containing piping system at the generator has gained more and more importance in the context of safety assessments. The design of a blow-off system respects two safety aspects: Firstly, a short blow-off time is necessary to reduce the hydrogen release inside the turbine building in case of a leakage. Secondly, for the postulated ignition of the released hydrogen on the roof of the building the resulting pressure load must remain below the maximum admissible one of the turbine building roof. In order to fulfill the first condition an appropriate fast evacuation piping system from the generator to the blow-off outlet is designed. Regarding the latter the blow-off system uses special discharge nozzles placed horizontally in a radial-symmetric configuration. In this respect, the influence of strong wind conditions during the evacuation process is also considered. The resulting ignitable volume of the overlapping H2-air clouds does not exceed the maximum allowed ignitable volume. In the following the underlying process of blow-off by a fast hydrogen evacuation system is discussed. First the transient general blow-off behavior in the dedicated piping system is analyzed with the fluid piping tool ROLAST. The results of these calculations are boundary conditions for the subsequent qualification of the blow-off jet-mixer. Here a proof of the general functionality is given (2D CFD). Subsequently the blow-off behavior of the H2-air mixture is discussed in independent 3D CFD calculations with and without wind. From these analyses the possible ignitable gas volumes are determined. Final step is a simplified semi-analytical assessment of the resulting possible deflagration loads on the civil structure

  11. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  12. Terahertz radiation mixer

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  13. Analýza podnikatelské příležitosti v oblasti míchání a čištění ropných nádrží moderní technologií DS Jet Mixers

    OpenAIRE

    Dundr, Zdeněk

    2008-01-01

    Scope of work was technical-commercial analyze with the aim of finding out if the foundation of a specialized subsidiary company by maintenance department outsourcing would have a real and economical justness. The specialized subsidiary would receive right and know-how of patented modern technology the DS Jet mixers designated for crude oil tank mixing and cleaning. Outcome of the thesis is found break-even point when applies the plan in terms of organizational-economical matters and which ac...

  14. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad; Masri, Assaad Rachid

    2014-01-01

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable

  15. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  16. Hydrodynamic studies in a mixer of mixer settler system

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, K T; Ghosh, S K; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Pump-mix mixer settlers, with high throughput, are widely used in hydrometallurgical processing for recovery of uranium, copper etc. by solvent extraction. Detailed knowledge of hydrometallurgic behaviour in the mixer and settler is necessary for design. The paper presents the experimental study carried out on mixer hydrodynamics. The work was carried out on 40 litre, cubical, continuous flow mixer with bottom inlet and top discharge. The impeller was top shrouded turbine and working medium was water. Parameters such as impeller diameter, impeller clearance, inlet orifice size, impeller speed and flow rate were studied for effect on pumping head developed and power consumed by the mixer. Data are presented in the terms of dimensionless groups. Importance of the design variables is discussed. (author). 2 refs., 7 figs., 2 tabs.

  17. Hydrodynamic studies in a mixer of mixer settler system

    International Nuclear Information System (INIS)

    Shenoy, K.T.; Ghosh, S.K.; Keni, V.S.

    1994-01-01

    Pump-mix mixer settlers, with high throughput, are widely used in hydrometallurgical processing for recovery of uranium, copper etc. by solvent extraction. Detailed knowledge of hydrometallurgic behaviour in the mixer and settler is necessary for design. The paper presents the experimental study carried out on mixer hydrodynamics. The work was carried out on 40 litre, cubical, continuous flow mixer with bottom inlet and top discharge. The impeller was top shrouded turbine and working medium was water. Parameters such as impeller diameter, impeller clearance, inlet orifice size, impeller speed and flow rate were studied for effect on pumping head developed and power consumed by the mixer. Data are presented in the terms of dimensionless groups. Importance of the design variables is discussed. (author)

  18. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  19. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    In recent years many museums have experimented with different approaches to involving users through digital media. We explore how remixing and content sharing can be used as a means for user participation. Remix culture is seen as a culture that allows and encourages the production of derivative...... works; works that are based on already existing works. This cultural practice thrives throughout the Internet, most notably on web2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here...... the museum users can produce, deconstruct, reconstruct and finally publish and share digital media content. The media content is created by the user in the museums physical environment, but it can be mixed with material from local or global archives. In that way the gap between the analogue and the digital...

  20. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    2011-01-01

    content. The media content is created by the user in the museum's physical environment, but it can be mixed with material from web archives. It is the intention that the users learn about media through participatory and creative processes with media where the borders between producing, playing......We explore how remixing and content sharing can be used as a means for user participation in a digital museum age. Remix culture is seen as a culture that allows and encourages the production of derivative works; works that are based on already existing works. This cultural practice thrives...... throughout the Internet, most notably on web 2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here the museum users can produce, deconstruct, reconstruct and finally publish and share digital media...

  1. MM wave quasioptical SIS mixers

    International Nuclear Information System (INIS)

    Hu, Qing; Mears, C.A.; Richards, P.L.; Lloyd, F.L.

    1988-08-01

    We have tested the performance of planar SIS mixers with log-periodic antennas at near millimeter and submillimeter wave frequencies from 90 to 360 GHz. The large ωR/sub N/C product (/approximately/10 at 90 GHz) of our Nb/NbO/sub x//Pb-In-Au junctions requires an integrated inductive tuning element to resonate the junction capacitance at the operating frequencies. We have used two types of integrated tuning element, which were designed with the aid of measurements using a Fourier transform spectrometer. Preliminary results indicate that the tuning elements can give very good mixer performance up to at least 200 GHz. An inductive wire in parallel with a 5-junction array gives a minimum mixer noise temperature of 115K (DSB) at 90 GHz with a FWHM bandwidth of 8 GHz. An open-ended microstrip stub in parallel with a single junction, gives minimum mixer noise temperatures of 150 and 200K (DSB) near 90 and 180 GHz with FWHM bandwidths of 4 and 3 GHz, respectively. The relatively high mixer noise temperatures compared to those of waveguide SIS mixers in a similar frequency range are attributed mainly to the losses in our optical system, which is being improved. 13 refs., 6 figs., 1 tab

  2. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  3. Mixer Assembly for a Gas Turbine Engine

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  4. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  5. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  6. Turbulent measurements in the lobe mixer of a turbofan engine. Turbofan engine lobe mixer nagare no ranryu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Ogawa, Yuji; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo, (Japan) Nippon Steel Corp., Tokyo, (Japan) The Univ. of Tokyo, Tokyo, (Japan). Faculty of Engineering The Univ. of Tsukuba, Tsukuba, (Japan)

    1990-01-25

    In order to examine the flow generated by the lobe mixer of a turbofan engine precisely, after measuring a three dimensional turbulent flow by a hot-wire anemometer, the mixing process of a bypass flow and a core flow with cross-sectional vortexes, and factors generating the vortex were clarified experimentally using the scale model of an exhaust duct with the lobe mixer. As a result, the mixing process was strongly affected by a lobe tip figure and a lobe figure near a center-body, and affected by the minimum gap between the lobe and center-body. The subsequent mixing process was scarcely affected by the ratio of a core flow velocity to a bypass flow one, although strongly affected by flow conditions on a lobe surface. Since the lobe mixer promoted the mixing around a center axis shifting a fast core flow outwards, it was unfavorable to mixing, however, it was expected to be useful for reducing engine jet noise. 3 refs., 7 figs.

  7. Realization of THz Band Mixer Using Graphene

    Directory of Open Access Journals (Sweden)

    E. Ghasemi Mizuji

    2014-05-01

    Full Text Available In this article a new method for creating mixer component in infrared and THz is suggested. Since the nonlinear property of admittance creates frequency components that do not exist in the input signal and the electrical conductivity is associated with admittance, in our work we have proven and simulated that the nonlinear property of graphene admittance can produce mixer component. The simulation results show that the mixer component is larger than other components, therefore the mixer works properly. Because of nano scale of graphene structure, this method paves the road to achieve super compact circuits.

  8. Flashback resistant pre-mixer assembly

    Science.gov (United States)

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  9. Spare mitigation/retrieval mixer pumps

    International Nuclear Information System (INIS)

    Taylor, S.

    1995-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a waste tank mixer pump. The mixer pump will be operated to eliminate the periodic releases of large quantities of flammable gas (e.g., hydrogen) from Hanford Site waste tanks and also to accommodate retrieval of tank waste

  10. Submersible canned motor mixer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.

    1997-01-01

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs

  11. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1994-01-01

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications

  12. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

    Science.gov (United States)

    Kise, Drew P; Magana, Donny; Reddish, Michael J; Dyer, R Brian

    2014-02-07

    We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

  13. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  14. Quantum limited quasiparticle mixers at 100 GHz

    International Nuclear Information System (INIS)

    Mears, C.A; Hu, Qing; Richards, P.L.; Worsham, A.H.; Prober, D.E.; Raeisaenen, A.V.

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1μm 2 ) Ta/Ta 2 O 5 /Pb 0.9 Bi 0.1 tunnel junctions. We have measured an added mixer noise of 0.61 +/- 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs

  15. Apparatus for controlled mixing in a high intensity mixer

    International Nuclear Information System (INIS)

    Crocker, Z.; Gupta, V.P.

    1982-01-01

    An apparatus and a process is disclosed for controlled mixing of a mixable material in a high intensity mixer. The system enables instantaneous, precise and continual monitoring of a batch in a high intensity mixer which heretofore could not be achieved. The process comprises the steps of feeding a batch of material into a high intensity mixer, agitating the batch in the mixer, monitoring batch temperature separately from mixer temperature and discharging the batch from the mixer when the batch temperature reaches a final predetermined level. The apparatus includes means for monitoring batch temperature in a high intensity mixer separately from mixer temperature, and means responsive to the batch temperature to discharge the batch when the batch temperature reaches a final predetermined level

  16. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  17. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  18. A Formal Model of Identity Mixer

    DEFF Research Database (Denmark)

    Camenisch, Jan; Mödersheim, Sebastian Alexander; Sommer, Dieter

    2010-01-01

    Identity Mixer is an anonymous credential system developed at IBM that allows users for instance to prove that they are over 18 years old without revealing their name or birthdate. This privacy-friendly tech- nology is realized using zero-knowledge proofs. We describe a formal model of Identity...

  19. A general numerical analysis of the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  20. Pre-design mixer-settler based on phase inversion

    International Nuclear Information System (INIS)

    Widiatmo, Djarot S.W

    1998-01-01

    The mixer settler was designed to extract uranium from organic phase by n-Dodecane and to separate heavy metal from liquid waste. The mixer settler was designed to save solvent without reducing the extraction efficiency. Extraction efficiency depend on : two phase dispersion on mixing, the type of droplet formation and completeness phase separation. The mixer settler has three main part i.e. mixer chamber, droplet formation device and phase inversion column. Mixer chamber was operated in laminar mixing, the total flow rate 200 ml.second -1 . The mixer chamber dimensions was 5 cm diameter and 7 cm height. It was completed with paddle mixer 3 cm diameter, 1 cm height and the speed rotation was 300 rpm. The droplet formation device was perforated plate 5 cm diameter with 1 mm holes. Phase Inversion column dimensions was 5 cm diameter and 50 cm height. (author)

  1. A niobiumnitride mixer with niobium tuning circuit

    International Nuclear Information System (INIS)

    Plathner, B.; Schicke, M.; Lehnert, T.; Gundlach, K.H.; Rothermel, H.; Aoyagi, M.; Takada, S.

    1996-01-01

    This letter reports a low noise submillimeter-wave mixer using NbN tunnel junctions integrated in Nb matching circuits. The double side band receiver noise temperature was 245 K at 345 GHz. Plasma conditions for NbN film deposition on quartz substrates at room temperature are created by using a second Nb target as a selective nitrogen pump. Electrodes for tunnel junctions with critical temperatures above 15 K and normal state resistivities in the range from 130 to 160 μΩcm were obtained. This permits integrating NbN junctions into normal metal or non-NbN superconducting matching circuits, which is of great interest for THz mixers. copyright 1996 American Institute of Physics

  2. Study on installation of the submersible mixer

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; He, X H; Xu, Y H; Jiang, H

    2013-01-01

    Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice

  3. Matlab GUI for a Fluid Mixer

    Science.gov (United States)

    Barbieri, Enrique

    2005-01-01

    The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two

  4. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    Science.gov (United States)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  5. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix...

  6. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  7. Transitory powder flow dynamics during emptying of a continuous mixer

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2013-01-01

    International audience; This article investigates the emptying process of a continuous powder mixer, from both experimental and modelling points of view. The apparatus used in this work is a pilot scale commercial mixer Gericke GCM500, for which a specific experimental protocol has been developed to determine the hold up in the mixer and the real outflow. We demonstrate that the dynamics of the process is governed by the rotational speed of the stirrer, as it fixes characteristic values of th...

  8. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  9. CERN Entrepreneur Mixer | 21 June | Pas perdus

    CERN Multimedia

    2016-01-01

      CERN Knowledge Transfer group is hosting an Entrepreneur Mixer, an event dedicated to building bridges between CERN innovative entrepreneurs. This will be a unique opportunity to discover business projects initiated by former CERN people, and to see how CERN technology is being exploited by start-up companies. The deadline for registration is Friday, 17 June. For more information, please visit the Indico page of the event: https://indico.cern.ch/event/537167/

  10. Design and Fabrication of a Foundry Sand Mixer Using Locally ...

    African Journals Online (AJOL)

    Most small foundry shops mix their sand manually which is not efficient since homogenous mix cannot be guaranteed and even when foundry mixer are available most of them are imported costing the nation huge foriegn exchange. A foundry sand mixer capable of mixing foundry sand has been designed and fabricated ...

  11. CONTINUOUS PRODUCTION OF HYDROXYPROPYL STARCH IN A STATIC MIXER REACTOR

    NARCIS (Netherlands)

    LAMMERS, G; STAMHUIS, EJ; BEENACKERS, AACM

    A novel type of reactor for the chemical derivatization of starch pastes is presented. The design is based on the application of static mixers. The reactor shows excellent plug flow behaviour with a Peclet number of about 100. The viscosity behaviour of concentrated starch pastes in the static mixer

  12. Criticality calculation method for mixer-settlers

    International Nuclear Information System (INIS)

    Gonda, Kozo; Aoyagi, Haruki; Nakano, Ko; Kamikawa, Hiroshi.

    1980-01-01

    A new criticality calculation code MACPEX has been developed to evaluate and manage the criticality of the process in the extractor of mixer-settler type. MACPEX can perform the combined calculation with the PUREX process calculation code MIXSET, to get the neutron flux and the effective multiplication constant in the mixer-settlers. MACPEX solves one-dimensional diffusion equation by the explicit difference method and the standard source-iteration technique. The characteristics of MACPEX are as follows. 1) Group constants of 4 energy groups for the 239 Pu-H 2 O solution, water, polyethylene and SUS 28 are provided. 2) The group constants of the 239 Pu-H 2 O solution are given by the functional formulae of the plutonium concentration, which is less than 50 g/l. 3) Two boundary conditions of the vacuum condition and the reflective condition are available in this code. 4) The geometrical bucklings can be calculated for a certain energy group and/or region by using the three dimentional neutron flux profiles obtained by CITATION. 5) The buckling correction search can be carried out in order to get a desired k sub(eff). (author)

  13. Feasibility Study on Using Two Mixer Pumps for Tank 241-AY-102 Waste Mixing

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E.

    2004-01-01

    The current waste retrieval plan at Hanford calls for using two mixer pumps to mix the waste stored in double-shell Tank 214-AY-102. The objective of this evaluation was to determine whether two rotating 300-hp mixer pumps placed 22 ft (6.7 m) off-center in the tank could adequately mix the AY-102 waste. The tank currently contains high-level waste that is 248 inches (6.3 m) deep, comprising 62 inches (1.58 m) of sludge and 186 inches (4.72 m) of supernatant liquid (Galbraith and others 2002). Based on the available data, AY-102 waste properties were determined, including the densities of liquid and agglomerated settled solids and crystals, the volume fraction of settled solids, the solid particle size distribution, the liquid and slurry viscosities, and the yield stress in shear (shear strength) of the settled solids layer. To evaluate the likely and bounding cases of AY-102 waste mixing, sludge erosion modeling was performed with a median value of 1,090 Pa (likely condition) and a conservative (more difficult to erode) 97.5 percentile value of 2,230 Pa for shear strength. According to model predictions, the two rotating mixer pumps would erode 89% of the sludge with shear strength of 1,090 Pa. They would erode sludge up to 41 ft (12.5 m) away from the mixer pumps but would not mobilize the bottom 2.5 inches (0.06-m) of sludge or sludge in the areas next to the tank wall, more than 26 ft (7.9 m) away. Once the sludge is mobilized, the solids were predicted to be uniformly suspended within the tank within a 1-vol% concentration variation except those in few inches at the bottom. With shear strength of 2,230 Pa, the two pumps would erode 85% of the sludge, slightly less than the 1,090-Pa shear strength case. In this case, the pump jets would mobilize the sludge up to 38 ft (11.6 m), except the bottom 2.5 inches of sludge. The mixer pumps would also leave the sludge at the tank wall, which is 20 ft or more from the pumps. Similar to the 1,090 Pa case, the solids were

  14. Scale-up of the mixer of a mixer-settler model used in a uranium solvent extraction process

    International Nuclear Information System (INIS)

    Santana, A.O. de; Dantas, C.C.

    1995-01-01

    Scale-up relations were obtained for the mixer of a box type mixer-settler used in an uranium extraction process from chloridric leaches. Three box type mixers of different sizes and with the same geometry were used for batch and continuous-flow experiments. The correlations between the extraction rate and he specific power input, D/T ratio(=turbine diameter/mixer width) and residence time were experimentally determined. The results showed that the extraction rate increases with the power input at a constant D/T ratio equal to 1/3, remaining however, independent from the mixer size for a specific value of the power input. This behaviour was observed for power input values ranging from 100 to 750 W/m 3 . (author) 8 refs.; 8 figs.; 4 tabs

  15. Mechatronic thermostatic water mixer for building automation

    Directory of Open Access Journals (Sweden)

    Stefano Mauro

    2015-05-01

    Full Text Available The use of sanitary water is a main aspect of comfort and healthiness within a house or a public environment as gyms or beauty farms. At the same time, water waste should be limited to a minimum in order to preserve both water and the energy required to warm it. To obtain these results, it is necessary to rule quickly and in a precise way the temperature. It is also necessary to check the presence of possible contemporary flow requested by different users in order to optimize distribution in the house network. This work describes a mechatronic water mixer that was developed to ensure fast and precise control of flow and temperature of delivered water. The flow control is based on modulating digital valves driven in pulse code modulation and on a microcontroller board. The electronic unit is designed to interface with a domotic network for remote control and total consumption monitoring and optimization.

  16. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  17. Methodology for calculating power consumption of planetary mixers

    Science.gov (United States)

    Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.

    2018-03-01

    The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.

  18. Two-phase LMMHD mixer-development experiments

    International Nuclear Information System (INIS)

    Fabris, G.; Dunn, P.F.; Chow, J.C.F.

    1978-01-01

    The results of a series of experiments conducted to evaluate the fluid mechanical performance of various two-phase LMMHD mixer designs are presented. The results from both flow visualization studies of the local two-phase flows downstream from various mixer-element configurations and local measurements performed to characterize these flows are presented. A conceptual LMMHD mixer design is described that insures the generation of small bubbles, prevents the formation of gas slugs and separated regions, and favors the stabilization of a homogeneous foam flow

  19. The development of terahertz superconducting hot-electron bolometric mixers

    International Nuclear Information System (INIS)

    Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Huebers, Heinz-Wilhelm

    2004-01-01

    We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model

  20. Development of air pulsed ejector mixer settlers of different capacities

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, C V; Periasamy, K; Koganti, S B [Reprocessing Programme, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    Nuclear industry has made significant contributions in the development of liquid-liquid contactors, for the separation of one or more solutes from feed solutions wherein they provide a more economical alternative compared to other unit operations. The various equipment that are used can be broadly classified into three categories: (1) mixer settlers (2) liquid pulsed sieve plate columns (3) centrifugal contactors. Each one has its own merits and demerits. Mixer settlers score over the other contactors in their simple design and reliable operation over a wide range of process conditions. Air pulsed mixer settlers of different designs are in use in the fuel reprocessing industry. The present paper describes the development of a new type of mixer settler based on ejector as the mixing device. (author). 7 refs., 3 figs., 1 tab.

  1. Scale-up of mixer-settler for uranium extraction

    International Nuclear Information System (INIS)

    Santana, A.O. de.

    1990-05-01

    The aim of this work was to obtain scale-up relations for a box type mixer-settler used in uranium extraction process for chloridric leaches. Three box type units with different sizes and with the same geometry were used for scale-up of the mixer. The correlation between extraction rate and specific power input, D/T ratio (stirrer diameter/mixer length) and residence time were experimentally obtained. The results showed that the extraction increases with power input for a constant value of D/T equal to 1/3, remaining however independent from mixer sizes for a specific value of power input. This behavior was observed for power input values ranging from 100 to 750 w/m 9 . (author). 23 refs, 22 figs, 23 tabs

  2. Mixer-settler performance evaluation in actinide extraction

    International Nuclear Information System (INIS)

    Camilo, R.L.; Goncalves, M.A.; Carvalho, E.I.; Nakazone, A.K.; Araujo, B.F. de; Araujo, J.A.

    1988-07-01

    This paper deals with four conceptions of mixer-settlers used for actinide purification and recovery. By means of the uranium concentration profiles in the organic and aqueous phases, the evaluation of each mixer-settler was made. The main purpose of this work is the data acquisition, for adapting the different contactor types to actinide recovery by liquid-liquid extraction, in the nuclear fuel cycle. (autor) [pt

  3. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  4. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  5. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    International Nuclear Information System (INIS)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0

  6. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  7. Research of UHPC properties prepared with industrial mixer

    Science.gov (United States)

    Šerelis, E.; Vaitkevičius, V.; Kerševičius, V.

    2017-09-01

    Ultra-high performance concrete (UHPC) mixture with advanced mechanical and durability properties was created using decent Zyklos ZZ50HE mixer. Zyklos ZZ50HE rotating pan mixer is similar to mixer which has common concrete plants. In experiment UHPC was prepared with Zyklos ZZ50HE mixer and thereafter best composition was selected and prepared with industrial HPGM 1125 mixer. Experiment results revealed that UHPC with W/C=0.29 and advanced mechanical and durability properties can be prepared. In experiment tremendous amount of micro steel fibres (up to 147 kg/m3) were incorporated in UHPC. Concrete with excellent salt scaling resistance and great mechanical properties was obtained. Compressive strength was increased about 30 % from 116 MPa to 150 MPa and flexural strength was increased about 5 times from 6.7 to 36.2 MPa. Salt-scaling resistance at 40 cycles in 3 % NaCl solution varied from 0.006 kg/m2 to 0.197 kg/m2. There were a few attempts to create UHPC and UHPFRC with decent technology, however, unsuccessfully till now. In the world practice this new material is currently used in the construction of bridges and viaducts.

  8. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  9. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  10. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  11. Antenna-coupled 30 THz hot electron bolometer mixers

    OpenAIRE

    Shcherbatenko, M.; Lobanov, Y.; Benderov, O.; Shurakov, A.; Ignatov, A.; Titova, N.; Finkel, M.; Maslennikov, S.; Kaurova, N.; Voronov, B.M.; Rodin, A.; Klapwijk, T.M.; Gol'tsman, G.N.

    2015-01-01

    We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 ?m (30 THz) range where O3, NH3, CO2, CH4, N2O, …. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the ra...

  12. Quantum noise in a terahertz hot electron bolometer mixer

    OpenAIRE

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The ?-factor (the quantum efficiency ...

  13. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  14. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    International Nuclear Information System (INIS)

    THOMAS, W.K.

    2000-01-01

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field

  15. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228...

  16. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3

  17. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  18. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    Science.gov (United States)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  19. A Sideband-Separating Mixer Upgrade for ALMA Band 9

    NARCIS (Netherlands)

    Hesper, R.; Gerlofsma, G.; Mena, P.; Spaans, M.; Baryshev, A.

    2009-01-01

    The ALMA band 9 (600-720 GHz) receiver cartridge, as currently being produced, features two single-ended (dual sideband) SIS mixers in orthogonal polarisations. In the case of spectral line observations in the presence of atmospheric backgound, the integration time to reach a certain desired signal

  20. Sideband Separating Mixer for 600-720 GHz

    NARCIS (Netherlands)

    Khudchenko, Andrey; Hesper, Ronald; Barychev, Andrey; Gerlofma, Gerrit; Mena, Patricio; Zijlstra, Tony; Klapwijk, Teun; Spaans, Marco; Kooi, Jacob W.; Zhang, C; Zhang, XC; Siegel, PH; He, L; Shi, SC

    2010-01-01

    The ALMA Band 9 receiver cartridge (600-720 GHz) based on Dual Sideband (DSB) superconductor-insulator-superconductor (SIS) mixer is currently in full production. In the case of spectral line observations, the integration time to reach a certain signal-to-noise level can be reduced by about a factor

  1. Quantum noise in a terahertz hot electron bolometer mixer

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model

  2. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  3. PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZr – Hf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  4. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  5. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    International Nuclear Information System (INIS)

    Leshikar, G.A.

    1997-01-01

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump

  6. RF Performance of a 600-720 GHz Sideband Separating Mixer with All-Copper Micromachined Waveguide Mixer Block

    NARCIS (Netherlands)

    Mena, F. P.; Kooi, J.; Baryshev, A. M.; Lodewijk, C. F. J.; Klapwijk, T. M.; Wild, W.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, V.; Wild, Wolfgang

    2008-01-01

    Here we report on the RF performance of a 2SB mixer (600-720 GHz) fabricated in a new method that combines traditional micromachining with waveguide components fabricated by photolithography and electroplating. The latter allows reaching, in a reproducible way, the stringent accuracies necessary for

  7. Numerical simulation and PEPT measurements of a 3D conical helical-bla de mixer: A high potential solids mixer for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Schutyser, M.A.I.; Briels, Willem J.; Rinzema, A.; Boom, R.M.; Boom, R.M.

    2003-01-01

    Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with

  8. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Briels, W.J.; Rinzema, A.; Boom, R.M.

    2003-01-01

    Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with

  9. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  10. Review of mixer design for low voltage - low power applications

    Science.gov (United States)

    Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.

    2017-09-01

    A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.

  11. Terahertz hot electron bolometer waveguide mixers for GREAT

    OpenAIRE

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on the...

  12. Superconducting terahertz mixer using a transition-edge microbolometer

    Science.gov (United States)

    Prober, D. E.

    1993-01-01

    We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.

  13. A general numerical analysis program for the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  14. Research on Mixer Parametric Modeling System Based on Redevelopment of ANSYS

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available In this paper, the mixer parametric modeling system software was developed by using VB which was taken as the foreground development program, and the paper combined with ANSYS software to create the finite element model of mixer blade and cylinder for the following numerical simulation of the flow field and parameter optimization of mixer. The software user interface was developed by VB and the pre-process model was created by invoking APDL of ANSYS in background. Therefore, the operation of modeling, meshing, component-building of mixer blade and cylinder were completed by using APDL and the graphic and text were outputted and displayed on the mixer parametric modeling system user interface which was developed by VB. Practice proved that it is convenient to modify the mixer solid model created by the parametric design language of ANSYS due to the similar structure.

  15. Calculation of lobe mixer flow with reynolds stress model. Oryoku hoteishiki model ni yoru lobe mixer ryu no suchi keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)

    1990-02-25

    It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.

  16. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O

    2006-01-01

    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers

  17. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  18. Jet Noise Modeling for Supersonic Business Jet Application

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  19. Introduction and utilization of mixer-settler for uranium purification

    International Nuclear Information System (INIS)

    Tri-Murni

    2002-01-01

    A mixer settler made by Amersham was designed to separate U from the waste arising from 9 9 M o production using enriched U > 93 % 2 35 U as the raw material to be fissioned. The separation is based on liquid-liquid extraction, organic and aqueous phase, with counter current, the solution continuously flows while the two phases are mixed and settled. This equipment consists of two cycles, the first one for separation U from fission products while the second cycle for separating U from Pu. Each cycle consists of 10 extraction stages, 6 scrubbing stages, 12 stripping stages, 1 stages for solvent washing and another 1 stage for solvent conditioning. From the first cycle to the second one is equipped with solvent washing unit so that the solvent can be used continuously. It is also equipped with micro pumps to regulate the suction and emission of the waste and feed thanks of feed and solvent, as well as burette containing the reagent. Ever since the commissioning this mixer settler has been utilized. This equipment can be utilized for U purification from heavy metals using the product of U processing as the feed material by studying the appropriate solution and applicable solvent. The same also will do for U separation from impurities is the waste of fuel production and other wastes solvent. The same also will do for U separation from impurities in the waste of fuel production and other wastes containing U generated from research activities. The centers within BATAN that can utilize this mixer settler are P2BGGN, P2TBDU, P2PLR, P3TkN and P3TM

  20. Design and Fabrication of an Industrial Poultry Feed Tumble Mixer

    Directory of Open Access Journals (Sweden)

    Osokam Shadrach ONYEGU

    2012-08-01

    Full Text Available This paper presents the design and fabrication of a poultry feed industrial tumble mixer. The design computations to handle a 50Kg mass of feed was done in the MS Excel environment for proper machine design approach. The machine was designed using AUTOCAD 2D/3D design software and proper material selection was done before the assembling and fabrication of parts. The efficiency of the machine, its associated cost of production and the product obtained after few minutes of mixing were outstanding, thereby, making the design acceptable and cost effective.

  1. High-Tc superconducting Josephson mixers for terahertz heterodyne detection

    International Nuclear Information System (INIS)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N.; Ulysse, C.; Faini, G.; Febvre, P.; Sirena, M.

    2014-01-01

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa 2 Cu 3 O 7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f c of the junctions

  2. Modeling emulsification processes in rotary-disk mixers

    Science.gov (United States)

    Laponov, S. V.; Shulaev, N. S.; Ivanov, S. P.; Bondar', K. E.; Suleimanov, D. F.

    2017-10-01

    This article presents the experimental studies results of emulsification processes in liquid-liquid systems in rotary-disk mixers, allowing regulating the distribution of dispersed particles by changing the process conditions and the ratio of the dispersed phase. It is shown that with the increase of mixer’s revolutions per minute (RPM), both the size of dispersed particles and the deviation of dispersed particles sizes from the average decrease. The increase of the dispersed particles part results in the increase of particles average sizes at the current energy consumption. Discovered relationships can be used in the design of industrial equipment and laboratory research.

  3. Boosted jets

    International Nuclear Information System (INIS)

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  4. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  5. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  6. Emerging jets

    International Nuclear Information System (INIS)

    Schwaller, Pedro; Stolarski, Daniel

    2015-02-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  7. The modeling of continuous mixers. Part I: The corotating twin-screw extruder

    NARCIS (Netherlands)

    Meijer, H.E.H.; Elemans, P.H.M.

    1988-01-01

    In many operations in polymer processing, such as polymer blending, devolatilization, or incorporation of fillers in a polymeric matrix, continuous mixers are used; e.g., corotating twin-screw extruders (ZSK), Buss Cokneaders and Farrel Continuous Mixers. Theoretical analysis of these machines tends

  8. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  9. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  10. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  11. First Results of the Sideband-Separating Mixer for ALMA Band 9 Upgrade

    NARCIS (Netherlands)

    Khudchenko, Andrey; Hesper, Ronald; Baryshev, Andrey; Mena, F. Patricio; Gerlofma, Gerrit; Zijlstra, Tony; Klapwijk, Teun M.; Kooi, Jacob W.; Spaans, Marco

    2011-01-01

    Last year, the design and implementation details of a new modular sideband-separating mixer block, intended as an upgrade for the current single-ended ALMA Band 9 mixers, were presented at this conference. In high-frequency observation bands like ALMA Band 9 (600-720 GHz), which is strongly

  12. Conversion Matrix Analysis of SiGe HBT Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2004-01-01

    The frequency response of SiGe HBT active mixers based on the Gilbert cell topology is analyzed theoretically. The time-varying operation of the Gilbert cell mixer is taken into account by applying conversion matrix analysis. The main bandwidth limiting mechanisms experienced in SiGe HBT Gilbert ...

  13. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...

  14. A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2013-01-01

    In this paper, a passive double balanced mixer in SiGe HBT technology is presented. Due to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode connected HBTs. The mixer is optimized for use in doppler radars and is highly linear with 1 dB compressio...

  15. Conversion Matrix Analysis of GaAs HEMT Active Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Krozer, Viktor

    2006-01-01

    In this paper, the nonlinear model of the GaAs HEMT active Gilbert cell mixer is investigated. Based on the model, the conversion gain expression of active Gilbert cell mixers is derived theoretically by using conversion matrix analysis method. The expression is verified by harmonic balance simul...

  16. MOSFET-Only Mixer/IIR Filter with Gain using Parametric Amplification

    DEFF Research Database (Denmark)

    Custódio, José R.; Oliveira, J.; Oliveira, L. B.

    2010-01-01

    This paper describes the design of a discrete-time passive Mixer/IIR filter. The use of an improved MOS Parametric Amplification leads to a moderate gain in the signal path and improved noise performance, instead of the conversion loss inherent to passive mixers. Simulation results demonstrate th...

  17. Heat transfer and the continuous production of hydroxypropyl starch in a static mixer reactor

    NARCIS (Netherlands)

    Lammers, Gerard; Beenackers, Antonie A. C. M.

    1994-01-01

    A novel continuous reactor for the chemical derivation of aqueous starch solutions based on static mixers is proposed. Both the experimentally observed axial and radial temperature gradients in the static mixer could be accurately described by a pseudohomogeneous two-dimensional heat transfer (PTHT)

  18. Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.

    1980-01-01

    This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs

  19. Low noise Nb-SIS mixers at far above the gap frequency

    NARCIS (Netherlands)

    Gao, [No Value; vandeStadt, H; Jegers, JBM; Kovtonyuk, S; Hulshoff, W; Whyborn, ND; Klapwijk, TM; deGraauw, T; Liao, FJ; Liu, JY

    1996-01-01

    There are great interests in developing Nb SIS mixers because of the extremely low noise temperatures and because of the need of low local oscillator (LO) power. Several groups have demonstrated experimentally that Nb SIS mixers with integrated tuning elements can perform near the quantum noise

  20. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  1. Granular flow in static mixers by coupled DEM/CFD approach

    Directory of Open Access Journals (Sweden)

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  2. Design of Ka-band antipodal finline mixer and detector

    International Nuclear Information System (INIS)

    Yao Changfei; Xu Jinping; Chen Mo

    2009-01-01

    This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carried out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.

  3. Open source laboratory sample rotator mixer and shaker

    Directory of Open Access Journals (Sweden)

    Karankumar C. Dhankani

    2017-04-01

    Full Text Available An open-source 3-D printable laboratory sample rotator mixer is developed here in two variants that allow users to opt for the level of functionality, cost saving and associated complexity needed in their laboratories. First, a laboratory sample rotator is designed and demonstrated that can be used for tumbling as well as gentle mixing of samples in a variety of tube sizes by mixing them horizontally, vertically, or any position in between. Changing the mixing angle is fast and convenient and requires no tools. This device is battery powered and can be easily transported to operate in various locations in a lab including desktops, benches, clean hoods, chemical hoods, cold rooms, glove boxes, incubators or biological hoods. Second, an on-board Arduino-based microcontroller is incorporated that adds the functionality of a laboratory sample shaker. These devices can be customized both mechanically and functionally as the user can simply select the operation mode on the switch or alter the code to perform custom experiments. The open source laboratory sample rotator mixer can be built by non-specialists for under US$30 and adding shaking functionality can be done for under $20 more. Thus, these open source devices are technically superior to the proprietary commercial equipment available on the market while saving over 90% of the costs.

  4. A planar microfluidic mixer based on logarithmic spirals

    International Nuclear Information System (INIS)

    Scherr, Thomas; Nandakumar, Krishnaswamy; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Hayes, Daniel; Monroe, W Todd; Tiersch, Terrence; Choi, Jin-Woo

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. (paper)

  5. 241-SY-101 mixer pump lifetime expectancy. Final report

    International Nuclear Information System (INIS)

    Shaw, C.P.

    1995-01-01

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ''safety envelope''. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ''how long will this test pump last and how will the essential features fail?'' During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually

  6. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  7. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Science.gov (United States)

    2010-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  8. Problems of bentonite rebonding of synthetic system sands in turbine mixers

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-12-01

    Full Text Available Turbine (rotor mixers are widely used in foundries for bentonite rebonding of synthetic system sands. They form basic equipment in modern sand processing plants. Their major advantage is the short time of the rebond mixing cycle.Until now, no complete theoretical description of the process of mixing in turbine mixers has been offered. Neither does it seem reasonable to try to adapt the theoretical backgrounds of the mixing process carried out in mixers of other types, for example, rooler mixers [1], to the description of operation of the turbine mixers. Truly one can risk the statement that the individual fundamental operations of mixing in rooler mixers, like kneading, grinding, mixing and thinning, are also performed in turbine mixers. Yet, even if so, in turbine mixers these processes are proceeding at a rate and intensity different than in the roller mixers. The fact should also be recalled that the theoretical backgrounds usually relate to the preparation of sand mixtures from new components, and this considerably restricts the field of application of these descriptions when referred to rebond mixing of the system sand. The fundamentals of the process of the synthetic sand rebonding with bentonite require determination and description of operations, like disaggregation, even distribution of binder and water within the entire volume of the rebonded sand batch, sand grains coating, binder activation and aeration.This study presents the scope of research on the sand rebonding process carried out in turbine mixers. The aim has been to determine the range and specific values of the designing and operating parameters to get optimum properties of the rebonded sand as well as energy input in the process.

  9. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  10. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis

    International Nuclear Information System (INIS)

    Kise, Drew P; Reddish, Michael J; Brian Dyer, R

    2015-01-01

    We report on a microfluidic mixer fabrication platform that increases the versatility and flexibility of mixers for biomolecular applications. A sandwich-format design allows the application of multiple spectroscopic probes to the same mixer. A polymer spacer is ‘sandwiched’ between two transparent windows, creating a closed microfluidic system. The channels of the mixer are defined by regions in the polymer spacer that lack material and therefore the polymer need not be transparent in the spectral region of interest. Suitable window materials such as CaF 2 make the device accessible to a wide range of optical probe wavelengths, from the deep UV to the mid-IR. In this study, we use a commercially available 3D printer to print the polymer spacers to apply three different channel designs into the passive, continuous-flow mixer, and integrated them with three different spectroscopic probes. All three spectroscopic probes are applicable to each mixer without further changes. The sandwich-format mixer coupled with cost-effective 3D printed fabrication techniques could increase the applicability and accessibility of microfluidic mixing to intricate kinetic schemes and monitoring chemical synthesis in cases where only one probe technique proves insufficient. (paper)

  11. Development of maleated starches using an internal mixer

    International Nuclear Information System (INIS)

    Dias, Fernanda T.G.; Andrade, Cristina T.

    2009-01-01

    Novel maleated starches (MSt) were prepared by chemical modification of cornstarch with maleic anhydride (MA), using an internal mixer as a reactor. Benzoyl peroxide (BPO) was chosen as initiator. Physico-chemical parameters were determined for the process carried out at different MA contents, under the same reaction conditions. Processing was carried out at 50 deg C, 30 rpm for 8 min.Torque developed during processing was given by the digital display of the rheometer, and the total specific mechanical energy (SME) input was estimated. FTIR measurements confirmed the successful incorporation of MA into the starch backbone. In addition, WAXS diffraction analyses revealed disruption of the crystalline structure of native starch for the products. Such reactions promoted by MA reduced the crystallinity of the products. The results indicated that the MA content had a significant effect on the characteristics of the processed starch samples. (author)

  12. Photonics-Based Microwave Image-Reject Mixer

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2018-03-01

    Full Text Available Recent developments in photonics-based microwave image-reject mixers (IRMs are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed.

  13. Phase separation in an experimental mixer-settler

    International Nuclear Information System (INIS)

    Eckert, N.L.; Gormely, L.S.

    1989-01-01

    An experimental investigation was undertaken to study the factors affecting phase separation in a laboratory scale mixer-settler using a laboratory-prepared commercial oxime-copper system, and a system obtained from the Key Lake uranium extraction circuit. Besides being dependent on specific settler flow, the dispersion band thickness was found to be a function of the phase ratio and dispersion introduction level (uranium system only), and temperature. Drop size was found to be independent of dispersion throughout, a weak function of impeller speed, and a relatively strong function of the phase ratio. Microscopic examination of the uranium dispersion revealed the existence of drops within drops. With the exception of the organic continuous copper system, it was possible to distinguish two horizontal sublayers within the dispersion band. This structure conforms to the model provided by Barnea and Mizrahi. (author)

  14. Design Mixers to Minimize Effects of Erosion and Corrosion Erosion

    Directory of Open Access Journals (Sweden)

    Julian Fasano

    2012-01-01

    Full Text Available A thorough review of the major parameters that affect solid-liquid slurry wear on impellers and techniques for minimizing wear is presented. These major parameters include (i chemical environment, (ii hardness of solids, (iii density of solids, (iv percent solids, (v shape of solids, (vi fluid regime (turbulent, transitional, or laminar, (vii hardness of the mixer's wetted parts, (viii hydraulic efficiency of the impeller (kinetic energy dissipation rates near the impeller blades, (ix impact velocity, and (x impact frequency. Techniques for minimizing the wear on impellers cover the choice of impeller, size and speed of the impeller, alloy selection, and surface coating or coverings. An example is provided as well as an assessment of the approximate life improvement.

  15. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  16. Numerical investigation of the effects of geometric parameters on transverse motion with slanted-groove micro-mixers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joo; Cho, Jae Yong; Choi, Se Bin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    We investigated hydrodynamic phenomena inside several passive microfluidic mixers using a Lattice Boltzmann method (LBM) based on particle mesoscopic kinetic equations. Mixing processes were simulated in a Slanted grooved micro-mixer (SGM), a Staggered herringbone grooved micro-mixer (SHM), and a Bi-layered staggered herringbone grooved micro-mixer (BSHM). Then, the effects of six geometric mixer parameters (i.e., groove height to channel height ratio, groove width to groove pitch length ratio, groove pitch to groove height ratio, groove intersection angle, herringbone groove asymmetric ratio and bi-layered groove asymmetric ratio) on mixing were investigated using computed cross-flow velocity and helicity density distributions in the flow cross-section. We demonstrated that helicity density provides sufficient information to analyze micro helical motion within a micro-mixer, allowing for micro-mixer design optimization.

  17. Design and Characterization of 1.8-3.2 THz Schottky-based Harmonic Mixers

    OpenAIRE

    Bulcha, BT; Hesler, JL; Drakinskiy, V; Stake, J; Valavanis, A; Dean, P; Li, LH; Barker, NS

    2016-01-01

    A room-temperature Schottky diode-based WM-86 (WR-0.34) harmonic mixer was developed to build high-resolution spectrometers, and multi-pixel receivers in the THz region for applications such as radio astronomy, plasma diagnostics, and remote sensing. The mixer consists of a quartz-based Local Oscillator (LO), Intermediate-Frequency (IF) circuits, and a GaAs-based beam-lead THz circuit with an integrated diode. Measurements of the harmonic mixer were performed using a 2 THz solid-state source ...

  18. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  19. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  20. Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications

    Science.gov (United States)

    Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.

  1. A discussion on the safety classification of the tank 241-SY-101 mixer pump

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1997-01-01

    An analysis, consistent with the methodology used in the draft TWRS FSAR (HNF-SD-WM-SAR-067), is presented to show that the classification of the mixer pump in tank 241-SY-101 should be safety significant

  2. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  3. FDC Mentor-Mentee Mixer Breaks the Ice Between Investigators and Trainees | Poster

    Science.gov (United States)

    The Frederick Diversity Committee’s mentor-mentee mixer gave research trainees, senior investigators, scientists, and administrative staff a chance to meet and mingle over refreshments and games following the Spring Research Festival.

  4. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  5. On-line separation of iodine species in reactor water using mixer-settlers

    International Nuclear Information System (INIS)

    Malmbeck, R.; Skarnemark, G.

    1995-01-01

    A method for separation of iodine species from water has been developed. It is based on liquid-liquid extraction and separation is achieved in four extraction steps. A system based on this method for continuous separation of iodine species using mixer-settlers has been developed. It consists of four mixer-settler batteries with 4,4,6 and 6 mixer-settler stages each. As organic phase an aliphatic kerosene is used and the separation is improved if the organic solvent has been pretreated with iodine carrier, stripped and washed. With an aqueous feed flowrate of 10 ml/min and mixer-settler battery phase flowratios of approximately 0.1 except for the elementary iodine strip battery with a phase flowratio of 1, the system separation performance is 92% for methyl iodide, 97% for iodate and elementary iodine and 99% for iodide. (orig.)

  6. Extraction of indium from sulphate solutions with D2EHPA solutions using static mixers

    International Nuclear Information System (INIS)

    Nacevski, N.; Poposka, F.; Nikov, B.

    1995-01-01

    The possible use of static mixers as a reactor for the extraction of indium from sulphate solutions was investigated. The experimental work was focused on ''Kenics'' type static mixers, since these were found simplest and cheapest among a variety of models, and yet yielded acceptable preliminary results with low pressure drop along the reactor. A series of experiments was carried out in a stirred continuous flow reactor to compare the results. It was found that under certain (different) conditions both reactors perform satisfactorily. The energy consumption of a static mixer is of the same order of magnitude as that of a stirred vessel. The most significant achievement of the experimental work is establishing that the residence time in a static mixer is about two orders of magnitude less than that in a stirred reactor. (orig.)

  7. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    Science.gov (United States)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The

  8. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.

    Science.gov (United States)

    Kawasaki, Shin-ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2010-01-01

    Novel micro swirl mixers were developed to synthesize nanoparticles, and the effect of their mixing performance on the characteristics of the synthesized nanoparticles was determined. The results were compared with those obtained using simple T-shaped mixers under the same reaction conditions. The synthesis of NiO, whose characteristics depend on the mixing performance of the mixer, was chosen as a model reaction. Initial investigations highlighted that the average particle size decreased from 32 to 23 to 20 nm as the inner diameter of the swirl mixers was decreased from 3.2 mm (Swirl mixer, SM-3.2) to 0.8 mm (Micro swirl mixer, MSM-0.8) to 0.5 mm (Micro swirl mixer, MSM-0.5), respectively. On the other hand, a similar decrease in the average particle size from 34 to 20 nm was observed with a decrease in the inner diameter of the T-shaped mixers from 1.3 mm (Tee union, T-1.3) to 0.3 mm (Micro tee union, T-0.3), respectively. Further, narrow particle size distributions were observed with a decrease in the inner diameter of each mixer. Furthermore, a computational fluid dynamics (CFD) simulation indicated an excellent mixing mechanism, which contributed to the improvement in the heating rate and the formation of nanoparticles of smaller size with a narrow particle size distribution. The result presented here indicates that the micro swirl mixers produce high-quality metal oxide nanoparticles. The size of the obtained particles with improved size distributions was comparable to that of the particles obtained using the T-shaped mixers, although the inner diameter of the swirl mixers was larger. Therefore, preliminary evidence suggests that the swirl flow mixers have the ability to produce rapid and homogeneous fluid mixing, thus controlling the particle size.

  9. Design of the ME-I powder mixer. Report of the design and construction of the powder mixer, according to the safety requisites of the pellets fabrication process

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-03-01

    In order to fulfill the requirements of preparation of powder of UO 2 ; according to procedure P-M-PP-01, rev. 0, for the process of production of pellets, it was designed and manufactured a powders mixer to incorporate the lubricant one (zinc stearate) to the powder of UO 2 . This equipment allows to mix the powder of UO 2 evenly with the one zinc stearate, without forming considerable quantities of fine of UO 2 , besides a sure control for the operators of the process and an easy access to the mixer to inspect the mixture. (Author)

  10. Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

    Science.gov (United States)

    Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik

    2008-03-01

    We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

  11. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  12. Numerical Investigation on Aerodynamic and Combustion Performance of Chevron Mixer Inside an Afterburner.

    Science.gov (United States)

    Yong, Shan; JingZhou, Zhang; Yameng, Wang

    2014-11-01

    To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.

  13. Flow regimes in a T-mixer operating with a binary mixture

    Science.gov (United States)

    Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria

    2015-11-01

    Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.

  14. Design of mixer settler extraction cycles II for recovery uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abdul Jami; Hafni Lissa Nuri

    2013-01-01

    Mixer settler is technically designed for extraction and separation process of uranium from phosphoric acid solution. Design calculation results shows that: the mixer settler consists of two parts: part of extraction process in the mixer tank and part of separation process in settler tank. The mixer tank type of box with 4 baffles, the size of mixer tank, 0.8 m width, 0.8 m length, 1 m high of liquid, 1.05 m high of mixer tank, stirrer type of disk 6 blade, and power of mixing 4 hp and the settler tank type of rectangular with size of settler tank, 0.8 m width 5 m length, 1 m high of liquid, 1.05 m high of settler tank. For uranium recovery efficiency up to 91%, extraction process is done in 3 stage counter current flow using a solvent Organic (O) DEHPA-TOPO in Kerosene at a phase of ratio A/O of 2:1. The aqueous enter through stage 3 and the organic solvent enter through stage 1. The process of settling occurred with the value of settling velocity is 0.000694 m/s, dispersion factor Ψ = 0.3638 and the light fraction as the dispersed phase and value of Reynolds number (NRE) = 3,438. Because of the Reynolds number is lower than 5,000, it indicates that the quality of the separation is very good. (author)

  15. The development of mixer machine for organic animal feed production: Proposed study

    Science.gov (United States)

    Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq

    2017-09-01

    Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.

  16. Study of a new static mixer for two-phase and single-phase flows

    International Nuclear Information System (INIS)

    Foucrier, Michel

    1996-01-01

    The subject of this work is the study of OptimiX, a new static mixer, which is fully designed using an inverse method taking the final product features as input and based on the physical properties of the fluid to mix. The work began with the construction of an experimental loop which allowed us to qualify the mixer in two-phase and single-phase flow conditions. Next, a chemical method using a new test reaction and a micro-mixing model have been used to further characterise the mixer. This test reaction and the micro-mixing model have been developed by the 'Laboratoire des Sciences du Genie Chimique' of Nancy. The mixer OptimiX has proved to be an excellent device for both macro- and micro-mixing. The capability of this mixer to foster rapid reactions was also demonstrated. The well organised flow pattern of OptimiX, which results from its design, provides it with the unusual feature of being fully calculable. This work emphasizes the internal hydrodynamics of this mixer, justifies the universality of the design procedures, which validation is supported by the completed qualification work. (author) [fr

  17. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    International Nuclear Information System (INIS)

    Bontha, J.R.; Golcar, G.R.; Hannigan, N.

    2000-01-01

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%

  18. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  19. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    International Nuclear Information System (INIS)

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532 0 F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established

  20. Interfacial effects in a multistage mixer-settler operation

    International Nuclear Information System (INIS)

    Jiinshiung Horng; Daluh Lu; Yingchu Hoh

    1988-01-01

    A pilot-scale mixer-settler with twenty-one stages was used to investigate the interfacial tension change during extraction cycle for the complicated system: NdCl 3 -SmCl 3 -EuCl 3 -GdCl 3 -TbCl 3 -DyCl 3 -HCl- 1 M D2EHPA-kerosene. Interfacial tension, total rare earth (TRE) concentrations in both phases, aqueous acidities, and organic entrainment in the raffinate, etc., were measured for each stage. Murphree stage efficiencies based on organic phase were calculated and related to the interfacial tension profiles. In general, the lower the interfacial tension, the higher the stage efficiency observed. For the extraction section, the stage efficiency ranged from 80% - 100%, but for stripping (including scrubbing) section, it varied from 100% - 15%. For high acidic stripping agent, 5 M HCl, the relatively lower stage efficiency might be due to the protonation of the acidic extractant, therefore the interfacial resistance increased significantly. From the information of stage efficiency, mass transfer direction, and interfacial tension versus solute concentration etc., the Marangoni effect could be used to explain the interfacial phenomena of this complicated extraction system. The results of real stream tests in this investigation will be useful in future plant design. (author)

  1. Can fractal objects operate as efficient inline mixers?

    Science.gov (United States)

    Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team

    2011-11-01

    Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.

  2. Comparison of SX of uranium using mixer settler and columns

    International Nuclear Information System (INIS)

    Grinbaum, B.; Kotze, M.; Buchalter, E.

    2010-01-01

    Two types of equipment are used in the industry for solvent extraction (SX) of U: mixer-settlers (MS) and columns. Currently the only published type of columns applied in U SX is the Bateman Pulsed Columns (BPC). These columns have been applied for extraction of U for more than 13 years in Olympic Dam plant in Australia and in recent years were also introduced to additional plants in Australia and South Africa. Other plants are using MS of various types. The columns are currently used in the extraction battery only. For stripping and scrubbing only MS are currently used. Although pilot tests prove that the pH gradient required in the stripping may be successfully obtained in the BPC, they have not yet been applied in the industry. The paper compares the extraction and stripping in both types of equipment, regarding the capital cost, operating costs and operating conditions. The capital cost of the BPC is lower by 33-40%, depending on the size of the plant and the quality of the ore. The operating costs with the BPC are slightly lower, due to smaller losses of solvent. From operating point of view the BPC has the ability to recover from phase inversion and precipitation of yellow cake without the need to shut down the plant, if the problem is addressed within a few minutes. (author)

  3. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  4. Performance analysis of vortex based mixers for confined flows

    Science.gov (United States)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  5. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  6. Jet Crackle

    Science.gov (United States)

    2015-06-23

    crackle is correlated to signals with intermittent periods of steepened shock-like waves followed by weaker, longer, rounded rarefaction regions, but to...turbulence is concentrated in a weakly curved (for a typical round jet) shear layer between the high-speed potential core flow and the surrounding co-flow...decreases into the acoustic field. The effect of varying dc between −0.1 and −0.003δm(t)/∆U causes the Nδm/Lx curves to shift downward as fewer waves

  7. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    Science.gov (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  8. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers

    Directory of Open Access Journals (Sweden)

    Mubashshir Ahmad Ansari

    2018-04-01

    Full Text Available Vortex flow increases the interface area of fluid streams by stretching along with providing continuous stirring action to the fluids in micromixers. In this study, experimental and numerical analyses on a design of micromixer that creates vortex flow were carried out, and the mixing performance was compared with a simple micro T-mixer. In the vortex micro T-mixer, the height of the inlet channels is half of the height of the main mixing channel. The inlet channel connects to the main mixing channel (micromixer at the one end at an offset position in a fashion that creates vortex flow. In the simple micro T-mixer, the height of the inlet channels is equal to the height of the channel after connection (main mixing channel. Mixing of fluids and flow field have been analyzed for Reynolds numbers in a range from 1–80. The study has been further extended to planar serpentine microchannels, which were combined with a simple and a vortex T-junction, to evaluate and verify their mixing performances. The mixing performance of the vortex T-mixer is higher than the simple T-mixer and significantly increases with the Reynolds number. The design is promising for efficiently increasing mixing simply at the T-junction and can be applied to all micromixers.

  9. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  10. Flux intensification during microfiltration of distillery stillage using a kenics static mixer

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2017-01-01

    Full Text Available The present work studies the effect of operating parameters (pH, feed flow rate, and transmembrane pressure on microfiltration of distillery stillage. Experiments were conducted in the presence of a Kenics static mixer as a turbulence promoter, and its influence on the flux improvement and specific energy consumption was examined. Response surface methodology was used to investigate the effect of selected factors on microfiltration performances. The results showed that response surface methodology is an appropriate model for mathematical presentation of the process. It was found that the use of a static mixer is justified at the feed flow rates higher than 100 L/h. In contrast, the use of a static mixer at low values of feed flow rate and transmembrane pressure has no justification from an economic point of view. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31002

  11. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  12. Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.

    Science.gov (United States)

    Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve

    2010-01-01

    A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.

  13. Complete Procedure for Fabrication of a Fused Silica Ultrarapid Microfluidic Mixer Used in Biophysical Measurements

    Directory of Open Access Journals (Sweden)

    Dena Izadi

    2017-01-01

    Full Text Available In this paper we present a method to fabricate a fused silica microfluidic device by employing low viscosity KMPR photoresists. The resulting device is a continuous-flow microfluidic mixer based on hydrodynamic focusing. The advantages of this new fabrication method compared to the traditional approach using a poly-silicon mask are simplification, and time and cost reduction, while still preserving the quality and the performance of the mixers. This process results in devices in which the focusing channel has an aspect ratio of 10:1. The newly-fabricated mixer is successfully used to observe the folding of the Pin1 WW domain at the microsecond time scale.

  14. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  15. Hydrodynamic study of the rotating cylinder mixer of a laboratory centrifugal extractor

    International Nuclear Information System (INIS)

    Philipponeau, Yannick.

    1979-08-01

    As part of a research programme on solvent extraction kinetics the Fontenay-aux-Roses Nuclear Research Centre has undertaken to build a new centrifugal extractor prototype. The work was centred on a hydrodynamic study of the rotating cylinder mixer of the extractor, using a test apparatus specially designed for this purpose. This apparatus was used to determine the flow conditions of a liquid alone in the annular space of the mixer as a function of the working specifications. The existence of several types of flow was established. The stability region of which was determined as a function of different parameters for a number of liquid-liquid systems. The experiments showed in addition that two kinds of dispersion can be obtained, differing by the nature of the continuous phase. This was determined for various parameters of certain liquid-liquid systems. From this research the hydrodynamic behavior of the CEA centrifugal extractor prototype mixer is thus known [fr

  16. Study on hydrodynamics and mass transfer of the critically safe multistage mixer-settler

    International Nuclear Information System (INIS)

    Zhang Weibo; Jiao Rongzhou; Liu Bingren

    1992-08-01

    The study on structure of critically safe multistage mixer-settler for the extraction process of high enriched uranium and plutonium has been completed. The mixer-settler has simple structure, good critical safety, flexibility in operation (O/A from 0.5 to 5) and high extraction efficiency (E x > 90%). These performances have been proved in the hydrodynamics and mass transfer experiments at a three stages cascade mixer-settler. Based on the others experience, a trapezoidal impeller combined with half-open turbine is developed which has stronger pumping and well mixing function at low rotating speed. The optimal rotating speed is 250 to 280 r/min obtained by experiments

  17. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form....... By regarding the nominal control system as the desired model, an augmented control system is constructed through the model-matching formulation, such that the current robust control techniques can be usedto synthesize these dynamical modules. One extension of this method with respect to the performance...... recovery besides the functionality recovery is also discussed under this framework. Comparing with the conventional control mixer method, the proposed method considers the recon gured system's stability, performance and robustness simultaneously. Finally, the proposed method is illustrated by a case study...

  18. Jet Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; O'Hara, G.W.; Pollard, I.E.

    1988-07-01

    The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)

  19. Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer

    Science.gov (United States)

    Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...

  20. Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus; Johansen, Tom; Tamborg, Kjeld

    2012-01-01

    This paper describes an investigation on the influences in 1/f noise of LO-leakage and DC-offset cancellation for X-band mixers. Conditions for LO-leakage cancellation and zero DC-offset is derived. Measurements on a double balanced diode mixer shows an improvement in noise figure from 14.3dB to ...

  1. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor (...

  2. Numerical simulation of experimental data from planar SIS mixers with integrated tuning elements

    International Nuclear Information System (INIS)

    Mears, C.A.; Hu, Qing; Richards, P.L.

    1988-08-01

    We have used the full Tucker theory including the quantum susceptance to fit data from planar lithographed mm-wave mixers with bow tie antennas and integrated RF coupling elements. Essentially perfect fits to pumped IV curves have been obtained. The deduced imbedding admittances agree well with those independently calculated from the geometry of the antenna and matching structures. We find that the quantum susceptance is essential to the fit and thus to predictions of the mixer performance. For junctions with moderately sharp gap structures, the quantum susceptance is especially important in the production of steps with low and/or negative dynamic conductance. 15 refs., 4 figs

  3. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP)

  4. A Wideband Balun LNA I/Q-Mixer combination in 65nm CMOS

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    An inductor-less LNA-mixer topology merges an I/Q current-commutating mixer with a noise-canceling balun/LNA. The topology achieves >18dB conversion gain, a flat NF<5.5dB, IIP2=+20dBm and IIP3=-3dBm from 500MHz to 7GHz. The core circuit consumes 16mW and occupies less than 0.01mm2 in 65nm CMOS.

  5. High linearity current communicating passive mixer employing a simple resistor bias

    International Nuclear Information System (INIS)

    Liu Rongjiang; Guo Guiliang; Yan Yuepeng

    2013-01-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB. (semiconductor integrated circuits)

  6. Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments

    Science.gov (United States)

    Inguva, Venkatesh; Perot, Blair

    2015-11-01

    Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.

  7. The status of simulation codes for extraction process using mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Lee, Eil Hee; Kwon, Seong Gil; Kim, Kwang Wook; Yang, Han Beom; Chung, Dong Yong; Lim, Jae Kwan; Shin, Hyun Kyoo; Kim, Soo Ho

    1999-10-01

    We have studied and analyzed the mixer-settler simulation codes such as three kinds of SEPHIS series, PUBG, and EXTRA.M, which is the most recently developed code. All of these are sufficiently satisfactory codes in the fields of process/device modeling, but it is necessary to formulate the accurate distribution data and chemical reaction mechanism for the aspect of accuracy and reliability. In the aspect of application to be the group separation process, the mixer-settler model of these codes have no problems, but the accumulation and formulation of partitioning and reaction equilibrium data of chemical elements used in group separation process is very important. (author)

  8. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control...... system is constructed through a model-matching strategy. The stability, performance and robustness of the reconfigured system can be guaranteed when some conditions are satisfied. To illustrate the effectiveness of the proposed method, a robot system subjected to failures is used to demonstrate...

  9. Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process

    International Nuclear Information System (INIS)

    Sayah, Abdeljalil; Thivolle, Pierre-Antoine; Parashar, Virendra K; Gijs, Martin A M

    2009-01-01

    The powder-blasting method is used to fabricate structures with a three-dimensional topography in glass using elastomeric masks. The relation between the mask opening width and the erosion depth is exploited to fabricate microstructures with varying depth in a single micropatterning step. As an application, planar three-dimensional micro-mixers were fabricated, which consist of a repeating convergent microfluidic nozzle structure. Three different designs of the micro-mixers were considered. The mixing of co-flowing laminar streams results from the generation of multiple vortices at the exit of the different convergent nozzles

  10. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  11. Understanding jet noise.

    Science.gov (United States)

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  12. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  13. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell

  14. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  15. Complex modeling of technological processes in pneumatic mixers for production of dry construction mixtures

    Science.gov (United States)

    Orekhova, T. N.; Nosov, O. A.; Prokopenko, V. S.; Kachaev, A. E.

    2018-03-01

    The improvement of the design of the pneumatic mixers aimed at the possibility of obtaining homogeneous disperse systems, while the resource and energy saving issues play an important role in the conditions of enterprises that use this type of equipment in their technological chain, is described in the article.

  16. Unified Frequency-Domain Analysis of Switched-Series-RC Passive Mixers and Samplers

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; de Boer, Pieter-Tjerk; van Vliet, Frank Edward; Nauta, Bram

    2010-01-01

    Abstract—A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper

  17. Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength

    International Nuclear Information System (INIS)

    Blaney, T.G.; Knight, D.J.E.

    1974-01-01

    A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron

  18. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    Science.gov (United States)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  19. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  20. A simple image-reject mixer based on two parallel phase modulators

    Science.gov (United States)

    Hu, Dapeng; Zhao, Shanghong; Zhu, Zihang; Li, Xuan; Qu, Kun; Lin, Tao; Zhang, Kun

    2018-02-01

    A simple photonic microwave image-reject mixer (IRM) using two parallel phase modulators is proposed. First, a photonic microwave mixer with phase shift ability is achieved using two parallel phase modulators (PMs), an optical bandpass filter, three polarization controllers, three polarization beam splitters and two balanced photodetectors. At the output of the mixer, two frequency downconverted signals with tunable frequency difference can be obtained. By adjusting the phase difference as 90° and utilizing an electrical 90° hybrid, the useless components can be eliminated, and the image reject operation is realized. The key advantage of the proposed scheme is the usage of PM, which avoid the DC bias shifting problem and make the system simple and stable. A simulation is performed to verify the proposed scheme, a relative - 90° or 90° phase shift can be obtained between the two output ports of the photonic microwave mixer, at the output of the IRM, 60 dB image-reject ratio is obtained.

  1. Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    micrographs, and simulations and analytical models of bead trajectories, capture efficiencies, and capture distributions. We show that the efficiencies of both systems compare favorably to those in the literature. For the studied geometries, the mixer is demonstrated to increase the bead capture...

  2. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  3. The presence and growth of Legionella species in thermostatic shower mixer taps: an exploratory field study

    NARCIS (Netherlands)

    Joost van Hoof; P.W.J.J. van der Wielen; E. van der Blom; O.W.W. Nuijten; L. Hornstra

    2014-01-01

    Legislation in the Netherlands requires routine analysis of drinking water samples for cultivable Legionella species from high-priority installations. A field study was conducted to investigate the presence of Legionella species in thermostatic shower mixer taps. Water samples and the interior of

  4. Mixer pump long term operations plan for Tank 241-SY-101 mitigation

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1994-01-01

    This document provides the general Operations Plan for performance of the mixer pump long term operations for Tank 241-SY-101 mitigation of gas retention and periodic release in Tank 101-SY. This operations plan will utilize a 112 kW (150 hp) mixing pump to agitate/suspend the particulates in the tank

  5. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    Science.gov (United States)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  6. design and fabrication of a fou fabrication of a foundry sand mixer

    African Journals Online (AJOL)

    eobe

    favourably with the the imported existing one which urably with the the imported existing one which foundry shops will eliminate the use manual effort save the the country of huge save the the country of huge foreign exchange used i foreign exchange used i. Keywords: Keywords:foundry,sand mixer,fabrication,design,bla.

  7. The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2008-01-01

    Abstract—This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a

  8. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  9. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Erqiang; Thoroddsen, Sigurdur T; Salama, Khaled N.

    2016-01-01

    in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted

  10. Development of a micro-mixer-settler for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Sampath, M.; Sivakumar, D.; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Nuclear solvent extraction was traditionally performed with packed columns, pulse columns, mixer-settlers and centrifugal extractors. However for rapid separations at micro-flow level, micro mixer-settlers were desired and in the past, few of them were actually designed and operated in nuclear solvent extraction research. In the current era of micro-reactor and microchannel devices, there is a renewed interest for micro-mixer-settlers for costly solvents and specialty solutes where small flow-rate is not an issue. In this article, development of a simple but effective micro-mixer-settler for nuclear solvent extraction is reported. The developed unit was tested with 30% TBP/n-dodecane/nitric acid system and in both the regimes of mass transfer c → d (mass transfer from continuous phase to dispersed phase, also written as c → d) and d → c (mass transfer from dispersed phase to continuous phase, also written as d → c) nearly 100% efficiency was observed in extraction as well as stripping modes of operation. (author)

  11. AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments

    Science.gov (United States)

    Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.

    1992-01-01

    The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  12. Double Modulation Scheme for Switching Mixers Controlled by Sigma-Delta Modulators

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    1998-01-01

    . This modification can be carried out on a large variety of mixers including the above mentioned. Although the principle was meant to be used to down convert analog signals, the principle is general and can be used in digital circuits too. This paper verifies the new mixing scheme and compares it to the traditional...

  13. Influence of gas inlet angle on the mixing process in a Venturi mixer

    Directory of Open Access Journals (Sweden)

    Romańczyk Mathias

    2017-01-01

    Full Text Available In this paper numerical analysis were performed to investigate the influence of gas inlet angle on mixing process in a Venturi mixer. Performance of an industrial gas engine depends significantly on the quality of mixing air and fuel; therefore, on the homogeneity of the mixture. In addition, there must be a suitable, adapted to the current load of fuel, air ratio. Responsible for this fact, among others, is the mixer located before entering the combustion chamber of the engine. Incorrect mixture proportion can lead to unstable operation of the engine, as well as higher emissions going beyond current environmental standards in the European Union. To validate the simulation the Air-Fuel Ratio (AFR was mathematically calculated for the air-fuel mixture of lean combustion gas engine. In this study, an open source three-dimensional computational fluid dynamics (CFD modelling software OpenFOAM has been used, to investigate and analyse the influence of different gas inlet angles on mixer characteristics and their performances. Attention was focused on the air-fuel ratio changes, pressure loss, as well as improvement of the mixing quality in the Venturi mixer.

  14. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  15. Comparative evaluation of a two stroke compressed natural gas mixer design using simulation and experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, D.; Bakar, R.A.; Rahim, M.F.; Noor, M.M. [Malaysia Pahang Univ., Pahang (Malaysia). Automotive Focus Group

    2008-07-01

    A study was conducted in which a two-stroke engine was converted for use with bi-fuel, notably compressed natural gas and gasoline. The excessive by-products generated by two-stroke engine combustion can be attributed to the inefficient combustion process. This prototype uniflow-type single-cylinder engine was equipped with a bi-fuel conversion system. A dedicated mixer was also developed to meter the gaseous fuel through the engine intake system. It was designed to meet air and fuel requirement similar to its gasoline counterpart. The mixer was modeled to obtain optimum orifice diameter using three different sizes of 14, 16 and 18 mm respectively. A standard computational fluid dynamics (CFD) software package was used to simulate the flow. A pressure reading was obtained during the prototype test. The drop in pressure across the venturi was shown to be an important parameter as it determined the actual fuel-air ratio in the actual engine. A good agreement of CFD outputs with that of the experimental outputs was recorded. The experimental technique validated the pressure distribution predicted by CFD means on the effects of the three insert rings in the CNG mixer. The simulation exercise can be used to predict the amount of CNG consumed by the engine. It was concluded that the 14 mm throat ring was best suited for the CNG mixer because it provided the best suction. Once the mixer is tested on a real engine, it will clear any doubts as to whether the throat can function at high engine speeds. 5 refs., 3 tabs., 8 figs.

  16. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  17. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Lallia, P.; O'Hara, G.W.; Pollard, I.E.

    1987-06-01

    The paper presents the annual report of the Joint European Torus (JET) Joint Undertaking, 1986. The report is divided into two parts: a part on the scientific and technical programme of the project, and a part setting out the administration and organisation of the Project. The first part includes: a summary of the main features of the JET apparatus, the JET experimental programme, the position of the Project in the overall Euratom programme, and how JET relates to other large fusion devices throughout the world. In addition, the technical status of JET is described, as well as the results of the JET operations in 1986. The final section of the first part outlines the proposed future programme of JET. (U.K.)

  18. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  19. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    Science.gov (United States)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  20. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  1. AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

    International Nuclear Information System (INIS)

    WHITE, D.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS)

  2. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  3. On jet substructure methods for signal jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Powling, Alexander [School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Siodmok, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences,ul. Radzikowskiego 152, 31-342 Kraków (Poland); CERN, PH-TH,CH-1211 Geneva 23 (Switzerland)

    2015-08-17

    We carry out simple analytical calculations and Monte Carlo studies to better understand the impact of QCD radiation on some well-known jet substructure methods for jets arising from the decay of boosted Higgs bosons. Understanding differences between taggers for these signal jets assumes particular significance in situations where they perform similarly on QCD background jets. As an explicit example of this we compare the Y-splitter method to the more recently proposed Y-pruning technique. We demonstrate how the insight we gain can be used to significantly improve the performance of Y-splitter by combining it with trimming and show that this combination outperforms the other taggers studied here, at high p{sub T}. We also make analytical estimates for optimal parameter values, for a range of methods and compare to results from Monte Carlo studies.

  4. Work plan for vibration cable re-route and water flush system modifications for 107-AN mixer pump

    International Nuclear Information System (INIS)

    Leshikar, G.A.

    1995-01-01

    A mixer pump (75 horsepower Hazleton submersible) is to be installed in the central pump pit of Double-Shell Tank 241-AN-107 for the Caustic Addition Project. The mixer pump will be used as a platform to inject, mix, and entrain caustic with the waste, in order to bring the waste hydroxyl ion concentration into compliance with Tank Farm operating specifications. Testing of the mixer pump and caustic addition system revealed that the mixer pump's vibration cable picks up electromagnetic interference from the motor power cable during variable speed operation of the pump. Also, it was noted that the mixer pump's water flush system may not be as effective as desired. Ergo this work plan for improving the operation of these mixer pump subsystems. A new vibration cable shall be routed entirely outside the mixer pump support column pipe, up thru a new penetration in the pump mounting flange. The existing penetration in the side of the pipe is to be plugged. Increasing the distance between power and instrument cables may reduce or eliminate electromagnetic interference to the vibration monitor. The mixer pump water flush system shall be modified to allow pressure isolation of individual branches. A header is to be installed on the middle section of the support column. Each branch (there are three) shall contain a solenoid valve (normally open) to control flow into the branch. The solenoid cables shall be routed up thru three new penetrations in the pump mounting flange to a new electrical box mounted on the flange. The existing flush piping to the inlet screen will remain but the continuation of the flush piping to the pump discharge nozzles is to be removed and the tee plugged. New stainless steel tubing is to be run down to the pump discharge nozzles. Pressure isolation of individual branches will maximize the flush system's effectiveness at blasting potential sediment clogs out of the pump discharge nozzles

  5. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  6. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  7. Handling support for mixer-settlers in hot cells with biological protection

    International Nuclear Information System (INIS)

    Lobao, Afonso dos Santos Tome; Forbicini, Sergio; Camilo, Ruth Luqueze

    1996-01-01

    The solvent extraction research facilities of IPEN/CNEN-SP carries out researching work in irradiated materials separation. This installation is provided with two cells with five operating windows, being that, each once of then has a pair of manipulators (master-slave type-MA-11 La Calhene). Solvent extraction research are carried out in acrylic mixer-settlers inside of the shielded cells. These equipment undergo an intense chemical attack which product failures in the acrylic material, so it is necessary to replace them periodically. The developed equipment is able to change the mixer-settlers without its rigidness,, level and the adjustment of the determined coordinates of the mechanical assemblage inside the cell. The definitive implantation of the equipment depends on the final tests on the cells where the fine adjustments will be made. (author)

  8. Modeling and Optimization of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applicaitons

    Science.gov (United States)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.; Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.

    1996-01-01

    The development of a YBa(sub 2)Cu(sub 3)O(sub 7-(kronecker delta))(YBCO) hot-electron bolometer (HEB) quasioptical mixer for a 2.5 heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of heat diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated....a single sideband temperature of less than 2000k is predicted.

  9. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, R.F.

    1994-10-05

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14.

  10. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14

  11. Numerical Investigation of the Performance of Kenics Static Mixers for the Agitation of Shear Thinning Fluids

    OpenAIRE

    A. Mahammedi; H. Ameur; A. Ariss

    2017-01-01

    The laminar flow of non-Newtonian fluids through a Kenics static mixer is investigated by using the CFD (Computational Fluid Dynamics) tool. The working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. We focus on the effect of Reynolds number, fluid properties, twist angle and blade pitch on the flow characteristics and energy cost. The pressure drop information obtained from the simulations was compared to several experimental correlations and data available in the...

  12. Predicting bulk powder flow dynamics in a continuous mixer operating in transitory regimes

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2012-01-01

    International audience; Over recent years there has been increasing interest in continuous powder mixing processes, due mainly to the development of on-line measurement techniques. However, our understanding of these processes remains limited, particularly with regard to their flow and mixing dynamics. In the present work, we study the behaviour of a pilot-scale continuous mixer during transitory regimes, in terms of hold-up weight and outflow changes. We present and discuss experimental resu...

  13. Granular flow in static mixers by coupled DEM/CFD approach

    OpenAIRE

    Pezo Lato; Pezo Milada; Jovanović Aca; Kosanić Nenad; Petrović Aleksandar; Lević Ljubinko

    2016-01-01

    The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modell...

  14. An experimentally validated DEM study of powder mixing in a paddle blade mixer

    OpenAIRE

    Pantaleev, Stefan; Yordanova, Slavina; Janda, Alvaro; Marigo, Michele; Ooi, Jin

    2017-01-01

    An investigation on the predictive capabilities of Discrete Element Method simulations of a powder mixing process in a laboratory scale paddle blade mixer is presented. The visco-elasto-plastic frictional adhesive DEM contactmodel of Thakur et al. (2014) was used to represent the cohesive behaviour of an aluminosilicate powder in which the model parameters were determined using experimental flow energy measurements from the FT4powder rheometer. DEM simulations of the mixing process using the ...

  15. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  16. Structural analysis: Flexible receiver yoke brace for the 241SY101 mixer pump

    International Nuclear Information System (INIS)

    Jones, K.M.

    1994-01-01

    This report documents the structural analysis of the flexible-receiver yoke brace that will be used to maintain the mixer pump lifting yoke in a vertical position during the removal of the mixer pump from waste tank 241SY101. During the removal process, the crane is connected to a lifting yoke which is attached to the lifting on the mounting flange of the mixer pump. The pump then can be lifted from the tank. At one point in the removal procedure, the crane will be disconnected from the lifting yoke. At this time, it is possible for the lifting yoke to rotate around the pinned connection between it and the pump if it is subjected to a horizontal load. To prevent the rotation of the lifting yoke, the yoke brace was designed to maintain the yoke in a vertical position while it is disconnected from the crane. This analysis addressed the adequacy of the yoke brace to provide support for the lifting yoke during high winds and a seismic event. The results of this analysis show that, when subjected to a combined design wind and seismic load, the yoke brace design is acceptable to maintain the lifting yoke in a vertical position when the yoke is disconnected from the crane

  17. Analysis of a high-Tc hot-electron superconducting mixer for terahertz applications

    International Nuclear Information System (INIS)

    Karasik, B.S.; McGrath, W.R.; Gaidis, M.C.

    1997-01-01

    The prospects of a YBa 2 Cu 3 O 7-δ hot-electron bolometer mixer for a THz heterodyne receiver are discussed. The modeled device is a submicron bridge made from a 10-nm-thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of phonon diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated. The intrinsic conversion efficiency and the noise temperature have been calculated as functions of the device size, local oscillator (LO) power, and ambient temperature. Assuming thermal fluctuations and Johnson noise to be the main sources of noise, a minimum single sideband mixer noise temperature of congruent 2000 K is predicted. For our modeled device the intrinsic conversion loss at an intermediate frequency of 2.5 GHz is less than 10 dB and the required LO power is ∼1 endash 10 μW. copyright 1997 American Institute of Physics

  18. A compact D-band monolithic APDP-based sub-harmonic mixer

    Science.gov (United States)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  19. High-k Scattering Receiver Mixer Performance for NSTX-U

    Science.gov (United States)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  20. Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths

    Science.gov (United States)

    McGrath, W. R.

    1995-01-01

    Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.

  1. Flow optimisation of a biomass mixer; Stroemungstechnische Optimierung eines Biomasse-Ruehrwerks

    Energy Technology Data Exchange (ETDEWEB)

    Casartelli, E.; Waser, R. [Hochschule fuer Technik und Architektur Luzern (HTA), Horw (Switzerland); Fankhauser, H. [Fankhauser Maschinenfabrik, Malters (Switzerland)

    2007-03-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the optimisation of a mixing system used in biomass reactors. Aim of this work was to improve the fluid dynamic qualities of the mixer in order to increase its efficiency while, at the same time, maintaining robustness and low price. Investigative work performed with CFD (Computational Fluid Dynamics) is reported on. CFD is quoted by the authors as being very effective in solving such optimisation problems as it is suited to flows that are not easily accessible for analysis. Experiments were performed on a fermenter / mixer model in order to confirm the computational findings. The results obtained with two and three-dimensional simulations are presented and discussed, as are those resulting from the tests with the 1:10 scale model of a digester. Initial tests with the newly developed mixer-propellers in a real-life biogas installation are reported on and further tests to be made are listed.

  2. Scale-up of a mixer-settler extractor using a unit operations approach

    International Nuclear Information System (INIS)

    Lindholm, D.C.; Bautista, R.G.

    1976-01-01

    The results of scale-up studies on a continuous, multistage horizontal mixer-settler extractor are presented. The chemical and mechanical system involves the separation of lanthanum from a mixture of rare earth chlorides using di(2-ethylhexyl) phosphoric acid as the solvent and dilute HCl as a scrub solution in a bench scale extractor. Each stage has a hold-up of 2.6 l. A single stage unit is utilized for scale-up studies. Results are obtained on four sizes of geometrically similar units, the largest being six times the volume of the original bench size. A unit operations technique is chosen so that mixing and settling can be examined independently. Variables examined include type of continuous phase, flow rate of inlet streams, and power input to the mixer. Inlet flow-rate ratios are kept constant for all tests. Two potential methods of unbaffled pump-mixer scale-up are explored; the maintenance of constant impeller tip speed and constant power input. For the settler, the previously successful method of basing design on constant flow-rate per unit cross-sectional area is used

  3. Field measurement of mixing degree in coal mixer by later activable tracer method

    International Nuclear Information System (INIS)

    Yokooji, Makoto; Uemura, Katsumi; Adachi, Syoichi

    1975-01-01

    Mixing effectiveness in a rotary drum mixer for coke production was examined. Though the method to use the dispersion of characteristic values such as ash content or volatile components is common for measuring the mixing effectiveness, here the later activable tracer method with radioisotopes was employed, because the former method includes the dispersion of the characteristic values for raw materials themselves, and is poor in detectability. In a preliminary test, the expression for mixing degree was determined, and the tracer nuclide was selected. Coal mixture was irradiated in the TRIGA II reactor of St. Paul University for 4 hours at 100 kW. then further preliminary test was performed for La and Mn which were selected among the typical usable elements listed up by reviewing their γ-spectra. Finally, Mn was adopted by comparing both elements regarding their time required for activation analysis and economy. Manganese concentration originally contained in the coal mixture was 38 ppm. Mixing degree after passing through the coal mixer was 99.8%. The results of the regular test are shown in a table, and indicate that the mixer fully attained its aim. (Wakatsuki, Y.)

  4. Phenomenology of jets

    International Nuclear Information System (INIS)

    Walsh, T.F.

    1980-05-01

    The basic idea of these lectures is very simple. Quarks and gluons - the elementary quanta of quantum chromodynamics or QCD - are produced with perturbarively calculable rates in short distance processes. This is because of asymptotic freedom. These quanta produced at short distances are, in a sense, 'visible' as jets of hadrons. (The jets do not contain the colored QCD quanta if - as we will assume - color is confined. The jets contain only colorless hadrons.) The distribution of these jets is the distribution of the original quanta, apart from fluctuations generated in the (long distance) jet formation process. The distribution of the jets can thus thest QCD in a particularly clear way at the parton level, at distance of order 5 x 10 -16 cm (PETRA/PEP energies). (orig.)

  5. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  6. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  7. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1988-03-01

    The paper is a JET progress report 1987, and covers the fourth full year of JET's operation. The report contains an overview summary of the scientific and technical advances during the year, and is supplemented by appendices of detailed contributions of the more important JET articles published during 1987. The document is aimed at specialists and experts engaged in nuclear fusion and plasma physics, as well as the general scientific community. (U.K.)

  8. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  9. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  10. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  11. Are jets really there

    International Nuclear Information System (INIS)

    Lillethun, E.

    1976-09-01

    Based on the results of high energy proton-proton collisions obtained at the CERN ISR in 1972-73, the production of 'jets' is discussed. Jets in e + e - collisions are also discussed and the parameters 'sphericity' and 'rapidity' are used in analysis of the data. The jets studied have been defined as having at least one particle of high transverse momentum. It is not clear whether the jets represent new physics or are another way of stating that resonances (rho,K*, Δ, N* etc.) are produced with high p(sub T), and that in such production the high transverse momentum must be balanced essentially locally in the collision. (JIW)

  12. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  13. AZ-101 Mixer Pump Demonstration and Tests Data Management Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, D.G.

    2000-02-22

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  14. AZ-101 Mixer Pump Demonstration and Tests: Data Management (Analysis) Plan

    International Nuclear Information System (INIS)

    DOUGLAS, D.G.

    2000-01-01

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  15. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  16. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  17. Jet physics in ALICE

    International Nuclear Information System (INIS)

    Loizides, C.A.

    2005-01-01

    The ALICE experiment is one of the experiments currently prepared for the Large Hadron Collider (LHC) at CERN, Geneva, starting operation end of 2007. ALICE is dedicated to the research on nucleus-nucleus collisions at ultra-relativistic energies, which addresses the properties of strongly interacting matter under varying conditions of high density and temperature. The conditions provided at the LHC allow significant qualitative improvement with respect to previous studies. In particular, energetic probes, light quarks and gluons, will be abundantly produced. These probes might be identified by their fragmentation into correlated particles, so called jets, of high enough energy to allow full reconstruction of jet properties; even in the underlying heavy-ion environment. Understanding the dependence of high-energy jet production and fragmentation influenced by the dense medium created in the collision region is an open field of active research. Generally, one expects energy loss of the probes due to medium-induced gluon radiation. It is suggested that hadronization products of these, rather soft gluons may be contained within the jet emission cone, resulting in a modification of the characteristic jet fragmentation, as observed via longitudinal and transverse momentum distributions with respect to the direction of the initial parton, as well as of the multiplicity distributions arising from the jet fragmentation. Particle momenta parallel to the jet axis are softened (jet quenching), while transverse to it increased (transverse heating). The present thesis studies the capabilities of the ALICE detectors to measure these jets and quantifies obtainable rates and the quality of jet reconstruction, in both proton-proton and lead-lead collisions at the LHC. In particular, it is addressed whether modification of the jet fragmentation can be detected within the high-particle-multiplicity environment of central lead-lead collisions. (orig.)

  18. Deformations of free jets

    Science.gov (United States)

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  19. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description of the s....... With an RF frequency of 640 GHz, this design achieves a conversion gain of −13.5 dB with a LO-power of only −2.5 dBm....

  20. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  1. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  2. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  3. Jet physics at CDF

    International Nuclear Information System (INIS)

    Melese, P.

    1997-05-01

    We present high E T jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at √s = 1800 GeV with ∼ 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The summation E T cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at √s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with √s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions

  4. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  5. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    Science.gov (United States)

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  6. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    Science.gov (United States)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  7. Computational Fluid Dynamics and Experimental Studies of a New Mixing Element in a Static Mixer as a Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Konopacki Maciej

    2015-03-01

    Full Text Available The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.

  8. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  9. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  10. Jets and QCD

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  11. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  12. Experimental investigation of the mixing processes in a Jet-in-Crossflow arrangement; Experimentelle Untersuchung von Vermischungsvorgaengen in einer Jet-in-Crossflow-Anordnung

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C.; Suntz, R.; Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Technische Chemie und Polymerchemie

    2008-07-15

    The Jet-in-Crossflow flow arrangement is a geometrically simple flow configuration in which an open jet is injected vertically into a constant crossflow and the two flows are thus mixed with one another. This flow arrangement is frequently encountered in industrial applications and also in nature. Examples can be found in industrial burners, RQL gas turbines, T-mixers, smoke plumes from stacks and volcanoes, and the jets emitted by aviation gas-turbines and by rockets. The subject of this publication is quantitative experimental determination of the Reynolds flows and stresses in a Jet-in-Crossflow arrangement. The variables stated reflect turbulence-induced elevated mass transfer in a turbulent vis-a-vis a laminar flow and are thus intimately linked to mixing processes. Their experimental determination is of great importance for the generation and validation of numerical turbulence models. Simultaneous use of two laser-diagnosis methods, 2D LIF (Two-dimensional Laser-induced Fluorescence) and PIV (Particle Image Velocimetry) makes it possible to establish 2D concentration and velocity fields simultaneously and determine the variables mentioned directly. (orig.)

  13. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure

    International Nuclear Information System (INIS)

    Ma Yanbao; Sun, Chien-Pin; Fields, Michael; Ho, Chih-Ming; Li Yang; Haake, David A; Churchill, Bernard M

    2008-01-01

    An unsteady microfluidic T-form mixer driven by pressure disturbances was designed and investigated. The performance of the mixer was examined both through numerical simulation and experimentation. Linear Stokes equations were used for these low Reynolds number flows. Unsteady mixing in a micro-channel of two aqueous solutions differing in concentrations of chemical species was described using a convection-dominated diffusion equation. The task was greatly simplified by employing linear superimposition of a velocity field for solving a scalar species concentration equation. Low-order-based numerical codes were found not to be suitable for simulation of a convection-dominated mixing process due to erroneous computational dissipation. The convection-dominated diffusion problem was addressed by designing a numerical algorithm with high numerical accuracy and computational-cost effectiveness. This numerical scheme was validated by examining a test case prior to being applied to the mixing simulation. Parametric analysis was performed using this newly developed numerical algorithm to determine the best mixing conditions. Numerical simulation identified the best mixing condition to have a Strouhal number (St) of 0.42. For a T-junction mixer (with channel width = 196 µm), about 75% mixing can be finished within a mixing distance of less than 3 mm (i.e. 15 channel width) at St = 0.42 for flow with a Reynolds number less than 0.24. Numerical results were validated experimentally by mixing two aqueous solutions containing yellow and blue dyes. Visualization of the flow field under the microscope revealed a high level of agreement between numerical simulation and experimental results

  14. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer.

    Science.gov (United States)

    Wichert, William R A; Han, Donghoon; Bohn, Paul W

    2016-03-07

    The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.

  15. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  16. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  17. Metallurgical investigation of 2 austenitic stainless steel sodium mixers cracked in service by thermal fatigue

    International Nuclear Information System (INIS)

    Donati, J.R.; Keroulas, F.de; Masse, J.

    1979-01-01

    Two sodium mixers in the sodium heated steam generator test circuit at the EDF Renardieres centre developed leaks after approximately 7,000 hours operation under power. In both cases the investigation found cracking due to plastic fatigue caused by stresses of thermal origin. In one case the damage is explained solely by the size of the temperature oscillations; in the other case, unfavourable geometry reduced the duration of the initiation phase. Different types of cracking characteristic of thermal fatigue in sodium are presented. (author)

  18. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  19. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  20. Flexible receiver adapter and secondary bagger support frame analysis for 241AP102 mixer pump removal

    International Nuclear Information System (INIS)

    Axup, M.D.; Egger, J.

    1995-01-01

    As part of the Grout Process startup, the 241AP102 Mixer Pump, failed in 1993, is scheduled to be removed. A structural analysis was performed on two components to be used in the bagging process for the failed pump. The loading criteria was based on a worst case accident of the entire pump weight (including a 50% impact load) being applied over a small localized area. The results show that the design of each structure is adequate to protect against failure, i.e., yield

  1. Interphase transfer kinetics of uranium using the drop method, Lewis cell, and Kenics mixer

    International Nuclear Information System (INIS)

    Horner, D.E.; Mailen, J.C.; Thiel, S.W.; Scott, T.C.; Yates, R.G.

    1979-05-01

    The rate constants for the interphase transfer of uranium between 3.5 M HNO 3 and tributyl phosphate (TBP) - normal hydrocarbon diluent solutions have been measured using the single drop method, Lewis cell method, and a Kenics mixer - centrifugal separator. Rate constants obtained by all methods were the same within experimental error. The variables studied that affect the rate constants include the TBP concentration, the acidity and total neutral nitrate concentrations of the aqueous phase, and temperature. Results of these tests indicate that the rate controlling mechanism is chemical reaction at the interface

  2. 3D printed microfluidic mixer for point-of-care diagnosis of anemia.

    Science.gov (United States)

    Plevniak, Kimberly; Campbell, Matthew; Mei He

    2016-08-01

    3D printing has been an emerging fabrication tool in prototyping and manufacturing. We demonstrated a 3D microfluidic simulation guided computer design and 3D printer prototyping for quick turnaround development of microfluidic 3D mixers, which allows fast self-mixing of reagents with blood through capillary force. Combined with smartphone, the point-of-care diagnosis of anemia from finger-prick blood has been successfully implemented and showed consistent results with clinical measurements. Capable of 3D fabrication flexibility and smartphone compatibility, this work presents a novel diagnostic strategy for advancing personalized medicine and mobile healthcare.

  3. Simulation Modeling of Non-Homogeneous Mixture in the Horizontal Drum Mixer

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Ostroukh

    2015-05-01

    Full Text Available The paper proposes a simulation model of the diffusion mixing of solids, based on the theory of probability and stochastic diffusion model of imperfect processes of solid particles. It is assumed that the particles have different sizes and density. Model of the program implemented in the AnyLogic SoftWare. Developed a simulation model to evaluate the differences between the intense mixing processes in time and assess their impact on the course of other processes in a horizontal drum mixer.

  4. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  5. A multi-purpose ultrasonic streaming mixer for integrated magnetic bead ELISAs

    International Nuclear Information System (INIS)

    Brandhoff, Lukas; Lang, Walter; Vellekoop, Michael J; Zirath, Helene; Peham, Johannes; Wiesinger-Mayr, Herbert; Salas, Mariugenia; Haller, Anna; Spittler, Andreas; Schnetz, Guntram

    2015-01-01

    We present an ultrasonic streaming mixer for disposable and on-chip magnetic bead ELISAs. The ultrasonic transducer is placed at system-level to keep cost per chip as low as possible, and is coupled to the chip by means of a solid ultrasonic horn. The system provides mixing of liquids, as well as dispersion of the superparamagnetic beads in the ELISA. Additionally it can be used clean the chamber surface from nonspecifically bound proteins during the washing steps in the ELISA protocol. Using our system the time for the ELISA protocol has been greatly reduced down to 30 min. (paper)

  6. High-T{sub c} superconducting Josephson mixers for terahertz heterodyne detection

    Energy Technology Data Exchange (ETDEWEB)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N. [Laboratoire de Physique et d' Etude des Matériaux—UMR8213-CNRS-ESPCI ParisTech-UPMC-PSL university, 10 Rue Vauquelin—75005 Paris (France); Ulysse, C.; Faini, G. [Laboratoire de Photonique et de Nanostructures LPN-CNRS, Route de Nozay, 91460 Marcoussis (France); Febvre, P. [IMEP-LAHC—UMR 5130 CNRS, Université de Savoie, 73376 Le Bourget du Lac cedex (France); Sirena, M. [Centro Atómico Bariloche, Instituto Balseiro—CNEA and Univ. Nac. de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina)

    2014-08-21

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa{sub 2}Cu{sub 3}O{sub 7} Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f{sub c} of the junctions.

  7. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  8. Effects of Crust Ingestion on Mixer Pump Performance in Tank 241-SY-101: Workshop Results

    International Nuclear Information System (INIS)

    Brennen, C.E.; Stewart, C.W.; Meyer, P.A.

    1999-01-01

    In August 1999, a workshop was held at Pacific Northwest National Laboratory to discuss the effects of crust ingestion on mixer pump performance in Hanford Waste Tank 241-SY-101. The main purpose of the workshop was to evaluate the potential for crust ingestion to degrade mixing and/or damage the mixer pump. The need for a previously determined 12-inch separation between the top of the mixer pump inlet and the crust base was evaluated. Participants included a representative from the pump manufacturer, an internationally known expert in centrifugal pump theory, Hanford scientists and engineers, and operational specialists representing relevant fields of expertise. The workshop focused on developing an understanding of the pump design, addressing the physics of entrainment of solids and gases into the pump, and assessing the effects of solids and gases on pump performance. The major conclusions are summarized as follows: (1) Entrainment of a moderate amount of solids or gas from the crust should not damage the pump or reduce its lifetime, though mixing effectiveness will be somewhat reduced. (2) Air binding should not damage the pump. Vibrations due to ingestion of gas, solids, and objects potentially could cause radial loads that might reduce the lifetime of bearings and seals. However, significant damage would require extreme conditions not associated with the small bubbles, fine solids, and chunks of relatively weak material typical of the crust. (3) The inlet duct extension opening, 235 inches from the tank bottom, should be considered the pump inlet, not the small gap at 262 inches. (4) A suction vortex exists at the inlet of all pumps. The characteristics of the inlet suction vortex in the mixer pump are very hard to predict, but its effects likely extend upward several feet. Because of this, the current 12-inch limit should be replaced with criteria based on actual monitored pump performance. The most obvious criterion (in addition to current operational

  9. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  10. Intermediate PT jet spectrometers

    International Nuclear Information System (INIS)

    Gutay, L.J.; Koltick, D.; Hauptman, J.; Stork, D.; Theodosiou, G.

    1988-01-01

    A design is presented for a limited solid angle, high resolution double arm spectrometer at 90 degree to the begin, with a vertex detector and particle identification in both arms. The jet arm is designed to accept a complete jet, and identify its substructure of sub-jets, hadrons, and leptons. The particle arm would measure e,π,K,p ratios for P T 0 to the beam for the purpose of tagging Higgs production by boson fusion, 1 gauge boson (WW, ZZ, and WZ) scattering 2 L, and other processes involving the interactions of virtual gauge bosons

  11. Latest results from JET

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1989-01-01

    The Joint European Torus (JET) is a large tokamak designed with the essential objective of obtaining and studying plasmas with parameters close to those envisaged for an eventual power-generating, nuclear-fusion reactor. JET is situated on a site near Abingdon, Oxon, UK. JET is the largest single project of the nuclear fusion research programme of the European Atomic Energy Community (EURATOM). The tokamak started operation in mid 1983 after a five year construction period. The scientific and technical results achieved so far are summarised in this article. (orig.)

  12. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  13. Analysis of core samples from jet grouted soil

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1995-10-01

    Superplasticized cementitious grouts were tested for constructing subsurface containment barriers using jet grouting in July, 1994. The grouts were developed in the Department of Applied Science at Brookhaven National Laboratory. The test site was located close to the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, NM. Sandia was responsible for the placement contract. The jet grouted soil was exposed to the service environment for one year and core samples were extracted to evaluate selected properties. The cores were tested for strength, density, permeability (hydraulic conductivity) and cementitious content. The tests provided an opportunity to determine the performance of the grouts and grout-treated soil. Several recommendations arise from the results of the core tests. These are: (1) grout of the same mix proportions as the final grout should be used as a drilling fluid in order to preserve the original mix design and utilize the benefits of superplasticizers; (2) a high shear mixer should be used for preparation of the grout; (3) the permeability under unsaturated conditions requires consideration when subsurface barriers are used in the vadose zone; and (4) suitable methods for characterizing the permeability of barriers in-situ should be applied

  14. Measurements of Jets in ALICE

    CERN Document Server

    Nattrass, Christine

    2016-01-01

    The ALICE detector can be used for measurements of jets in pp , p Pb, and Pb–Pb collisions. Measurements of jets in pp collisions are consis- tent with expectations from perturbative calculations and jets in p Pb scale with the number of nucleon–nucleon collisions, indicating that cold nuclear matter effects are not observed for jets. Measurements in Pb–Pb collisions demonstrate suppression of jets relative to expectations from binary scaling to the equivalent number of nucleon–nucleon collisions

  15. Jet lag prevention

    Science.gov (United States)

    ... lose time. Symptoms of jet lag include: Trouble falling asleep or waking up Tiredness during the day ... at your destination. For longer trips, before you leave, try to adapt to the time schedule of ...

  16. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  17. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  18. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  19. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    Science.gov (United States)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  20. Phase-locking of a terahertz solid-state source using a superconducting hot-electron bolometer mixer

    International Nuclear Information System (INIS)

    Miao, W; Zhang, W; Zhou, K M; Li, S L; Zhang, K; Duan, W Y; Yao, Q J; Shi, S C

    2013-01-01

    We report on a scheme whereby the local-oscillator (LO) of a THz heterodyne receiver can be phase-locked by the mixer of the heterodyne receiver. This scheme is demonstrated for the phase-locking of an 847.6 GHz Gunn oscillator and multiplier chain combined source with a superconducting hot-electron bolometer (HEB) mixer. We show that with this technique the phase-locked beat signal can reach a signal-to-noise ratio higher than 70 dB in a resolution bandwidth (RBW) of 1 Hz. This phase-locking scheme should find good use in THz heterodyne spectrometers. (paper)

  1. A SiGe High Gain and Highly Linear F-Band Single-Balanced Subharmonic Mixer

    OpenAIRE

    Seyedhosseinzadeh, Neda; Nabavi, Abdolreza; Carpenter, Sona; He, Zhongxia Simon; Bao, Mingquan; Zirath, Herbert

    2017-01-01

    A compact, broadband, high gain, second-order active down-converter subharmonic mixer is demonstrated using a 130-nm SiGe BiCMOS technology. The mixer adopts a bottom-LO Gilbert topology, on-chip RF and LO baluns and two emitter-follower buffers to realize a high gain wideband operation in both RF and IF frequencies. The measured performance exhibits a flat conversion gain (CG) of about 11 dB from 90 to 130 GHz with an average LO power of +3 dBm and high 2LO-RF isolation better than 60 dB. Th...

  2. Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    OpenAIRE

    Kivekäs, Kalle

    2002-01-01

    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion ...

  3. Protostellar Jets in Context

    CERN Document Server

    Tsinganos, Kanaris; Stute, Matthias

    2009-01-01

    This volume contains the proceedings of the Conference Protostellar Jets in Context held by the JETSET Marie Curie Research Training Network in July 2008. This meeting not only served to showcase some of the network's achievements but was also a platform to hear from, discuss and debate the recent findings of world-class astrophysicists in the field of protostellar jet research. Jets from young stars are of course not an isolated astrophysical phenomenon. It is known that objects as diverse as young brown dwarfs, planetary nebulae, symbiotic stars, micro-quasars, AGN, and gamma-ray bursters produce jets. Thus in a series of talks, protostellar jets were put in context by comparing them with their often much larger brethren and also by considering the ubiquitous accretion disks that seem to be necessary for their formation. With this spectrum of contributions on observations and the theory of astrophysical jets and accretion disks, this book serves as a comprehensive reference work for researchers and students...

  4. Method for qualification of cementation processes and its application to a vibration mixer

    International Nuclear Information System (INIS)

    Vicente, R.; Rzyski, B.M.; Suarez, A.A.

    1987-01-01

    In this paper the definition of homogeneneity is discussed and methods to measure the 'degree of heterogeneity' of waste forms are proposed. These measurements are important as aids for mixing process qualification, and as tools in quality assurance procedures and in the development of waste management standards. Homogeneity is a basic quality requirement for waste forms to be accepted in final sites. It do not depend on the matrix immmobilization, rather it is one mean for qualification of the immobilization process. The proposed methods were applied to a vibration assisted mixing process and has proved to an useful mean to judge process improvements. There are many conceivable methods to evaluate homogeneity of waste forms. Some were selected as screening tests aiming at quickly reaching a promising set of process variables. Others were selected to evaluate the degree of excellence of the process in respect to product quality. These envisaged methods were: visual inspection, the use of cement dye as tracer, scanning of radioactive tracers, and measurements of variations of density, water absorption, porosity and mechanical strength across the waste form sample. The process variables were: waste-cement and water-cement ratios, mixer geometry, mixing time and vibration intensity. Some of the apparatus details were change during the experimental work in order to improve product quality. Experimental methods and results statistically analysed and compared with data obtained from samples prepared with a planetary paddle mixer, which were adopted as the homogeneity standard. (Author) [pt

  5. Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment

    International Nuclear Information System (INIS)

    Fischer, S.R.; Clark, J.

    1993-01-01

    The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations

  6. Study of Crud Formation Using One Stage Mixer Settler for U-Th Extraction

    International Nuclear Information System (INIS)

    Busron-Masduki; Mashudi; Didiek-Herhady, R; Endang-Susiantini

    2000-01-01

    It was carried out solvent extraction of used fuel simulation solution ofU-Th using one stage of mixer settler. The ratio of U/Th was 1/9. Thesolution of U- Th and extractant of 30% TBP diluted in the diluent ofn-dodecane filled in the mixer chamber with the ratio of 1/1 then stirred.The first experiment determined equilibrium time and optimum rpm and thensearched the influenced parameter of crud formation of thorium, zirconium(fission product), phosphate acid, butanol, bentonite powder (represent offines solid), ferrum, silicium according to the TBP degradation of DBP.Zirconium and thorium are significant parameter of crud formation. Theequilibrium time was 1.5 hour, optimum rpm was 1800. The weightest crud wasobtained related to the cumulative parameter which result of 250 gram crud.According to this result and for radiation dose of 1 watt, the extractantmust be regenerated before exceed 48 days to hold the crud formation whichdisturbance the extraction process. (author)

  7. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver

    International Nuclear Information System (INIS)

    Xu Jian; Zhou Zheng; Wu Yiqiang; Wang Zhigong; Chen Jianping

    2015-01-01

    A passive current switch mixer was designed for the second IF down-conversion in a DRM/DAB receiver. The circuit consists of an input transconductance stage, a passive current switching stage, and a current amplifier stage. The input transconductance stage employs a self-biasing current reusing technique, with a resistor shunt feedback to increase the gain and output impedance. A dynamic bias technique is used in the switching stage to ensure the stability of the overdrive voltage versus the PVT variations. A current shunt feedback is introduced to the conventional low-voltage second-generation fully balanced multi-output current converter (FBMOCCII), which provides very low input impedance and high output impedance. With the circuit working in current mode, the linearity is effectively improved with low supply voltages. Especially, the transimpedance stage can be removed, which simplifies the design considerably. The design is verified with a SMIC 0.18 μm RF CMOS process. The measurement results show that the voltage conversation gain is 1.407 dB, the NF is 16.22 dB, and the IIP3 is 4.5 dBm, respectively. The current consumption is 9.30 mA with a supply voltage of 1.8 V. This exhibits a good compromise among the gain, noise, and linearity for the second IF mixer in DRM/DAB receivers. (paper)

  8. Self Oscillating Mixer with Dielectric Resonator for Low Noise Block Application

    Directory of Open Access Journals (Sweden)

    Endon Bharata

    2011-08-01

    Full Text Available In this paper, the development of a self oscillating mixer (SOM as part of a low noise block (LNB for a satellite television receiver is investigated numerically and experimentally. In contrast to other mixers, the developed SOM requires no separate local oscillator as it generates own local oscillator signal. The SOM is developed using a monolithic microwave integrated circuit (MMIC comprised of two bipolar transistors coupled as a Darlington pair and a dielectric resonator to establish a local oscillator signal. The SOM is designed to oscillate at 3.62GHz driven from 50W signal generator. The prototype of SOM is fabricated on a dielectric substrate of glass-reinforced hydrocarbon/ceramic lamination (RO4350B board which has a thickness of 0.762mm and relative permittivity of 3.66. The prototype is then characterized experimentally and exhibits a conversion gain of 8dB with the input and output voltage standing wave ratio (VSWR less than 2 across the 2520MHz to 2670MHz operating frequency band.

  9. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.; Younis, Mohammad I.

    2016-01-01

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  10. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  11. Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.

    Science.gov (United States)

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  12. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  13. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  14. PROTOTIPE ALAT PENGEKSTRAK PATI SAGU TIPE MIXER ROTARY BLADE BERTENAGA MOTOR BAKAR Prototype of Mixer Rotary Blade of Sago Starch Extractor Powered by Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Darma Darma

    2012-05-01

    Full Text Available Papua and West Papua Province have a large potential of sago. Approximately 994,000 hectares, mostly natural sago forest was existed in this area. Sago starch has long been an important source of nutrition troughout Papua. Product of sago palm is not only starch as source of carbohydrate for food stuff, but also for basic material of industries such as paper, plywood, hardboard, and food indutries. Traditional methods are used for starch extraction in almost all part of Papu, which is not efficient and production capacity is very low. The effort to increase sago starch production could be carry out by introducing mechanical equipment (traditional to mechanized processing. The objective of this research was to design mixer rotary blade of sago starch extraction powered by internal combustion engine. The result was prototype of mechanical sago starch extractor. The prototype has high performance with extraction capacity 160 kg of disintegrated pith per hour or equal to 33 kg of wet starch per hour, extractable starch more than 99 % while starch losses in hampas less lhan 1 %. Hopefully, application of this machine to the sago farmer will transform agricultural system from subsistence to commercial. It means that increasing of economic income. In conclusion, technically and economically this prototype was feasible. ABSTRAK Provinsi Papua dan Papua Barat memiliki potensi sagu yang sangat besar. Sekitar 994.000 hektar yang sebagian besar merupakan hutan sagu alam terdapat di kedua provinsi ini. Pati sagu telah lama digunakan sebagai sumber nutrisi bagi penduduk asli papua. Pati sagu tidak hanya digunakan sebagai sumber karbohidrat, namun juga digunakan seba- gai bahan dasar industri kertas, plywood, hardbord, dan pangan. Pengolahan sagu secara tradisional yang dilakukan oleh masyarakat tidak efisien dan kapasitas produksinya sangat rendah. Peningkatan produksi dapat dilakukan dengan mengintroduksi peralatan pengolahan mekanis untuk merubah metode

  15. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  16. A Handheld LED Coloured-Light Mixer for Students to Learn Collaboratively the Primary Colours of Light

    Science.gov (United States)

    Nopparatjamjomras, Suchai; Chitaree, Ratchapak; Panijpan, Bhinyo

    2009-01-01

    To overcome students' inaccurate prior knowledge on primary additive colours, a coloured-light mixer has been constructed to enable students to observe directly the colours produced and reach the conclusion by themselves that the three primary colours of light are red, green, and blue (NOT red, yellow, and blue). Three closely packed tiny…

  17. An ultra-broadband distributed passive gate-pumped mixer in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Yu Zhenxing; Feng Jun

    2013-01-01

    A broadband distributed passive gate-pumped mixer (DPGM) using standard 0.18 μm CMOS technology is presented. By employing distributed topology, the mixer can operate at a wide frequency range. In addition, a fourth-order low pass filter is applied to improve the port-to-port isolation. This paper also analyzes the impedance match and conversion loss of the mixer, which consumes zero dc power and exhibits a measured conversion loss of 9.4–17 dB from 3 to 40 GHz with a compact size of 0.78 mm 2 . The input referred 1 dB compression point is higher than 4 dBm at a fixed IF frequency of 500 MHz and RF frequency of 23 GHz, and the measured RF-to-LO, RF-to-IF and LO-to-IF isolations are better than 21, 38 and 45 dB, respectively. The mixer is suitable for WLAN, UWB, Wi-Max, automotive radar systems and other millimeter-wave radio applications. (semiconductor integrated circuits)

  18. A 38 to 44GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type marchand balun

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    This work presents an active balanced sub-harmonic mixer (SHM) using InP double heterojunction bipolar transistor technology (DHBT) for Q-band applications. A miniature spiral type Marchand balun with five added capacitances for improved control of amplitude and phase balance is integrated with t...

  19. Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer.

    Science.gov (United States)

    Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry

    2015-11-01

    The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.

  20. Simplified unified analysis of switched-RC passive mixers, samplers, and N -Path filters using the adjoint network

    NARCIS (Netherlands)

    Pavan, Shanthi; Klumperink, Eric A.M.

    2017-01-01

    Recent innovations in software defined CMOS radio transceiver architectures heavily rely on high linearity switched-RC sampler and passive-mixer circuits, driven by digitally programmable multiphase clocks. Although seemingly simple, the frequency domain analysis of these linear periodically time

  1. Axial Dispersion Model for Solid Flow in Liquid Suspension in System of Two Mixers in Total Recycle

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Scargiali, F.; Siyakatshana, N.; Kudrna, V.; Brucato, A.; Machoň, V.

    2006-01-01

    Roč. 117, č. 2 (2006), s. 101-107 ISSN 1385-8947 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : residence time distribution * dispersion model * flow mixer Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.594, year: 2006

  2. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    Science.gov (United States)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  3. Modeling on the kinetics of an EPDM devulcanization in an internal batch mixer using an amine as the devulcanizing agent

    NARCIS (Netherlands)

    Sutanto, P.; Laksmana, F. L.; Picchioni, E.; Janssen, L. P. B. M.; Picchioni, F.

    2006-01-01

    The use of amines and the application of mechanical force (shear) in rubber devulcanization have been reported in the literatures. In this paper, the devulcanization of ethylene propylene diene rubber (EPDM) is conducted in a Brabender batch mixer using hexadecylarnine (HDA) as the devulcanizing

  4. Determination of the interfacial area of a continuous integrated mixer/separator (CINC) using a chemical reaction method

    NARCIS (Netherlands)

    Schuur, B.; Jansma, W. J.; Winkelman, J. G. M.; Heeres, H. J.

    The effect of the liquid flow rates (18-100 mL/min) and rotor frequency (30-60 Hz) on the interfacial area of a liquid-liquid system in a CINC-V02 continuous integrated mixer/separator have been studied using a chemical reaction method. Topical specific interfacial areas were in the range of 3.2 x

  5. Sodium confluent rates of flow values, on 0,5 mixer, of a sodium italian SS-050 circuit component

    International Nuclear Information System (INIS)

    Walsh, L.M.

    1987-01-01

    Sodium lines on different temperatures, during an emergency drainage on 0,5 mixer was found. To future valuation by DIMEC of tensions that occurs on that component of SS-050, the confluent rates of flow values were calculated. (L.M.J.) [pt

  6. Comparison of the performance of full scale pulsed columns vs. mixer-settlers for uranium solvent extraction

    International Nuclear Information System (INIS)

    Movsowitz, R.L.; Kleinberger, R.; Buchalter, E.M.; Grinbaum, B.

    2000-01-01

    A rare opportunity arose to compare the performance of Bateman Pulsed Columns (BPC) vs. Mixer-Settlers at an industrial site, over a long period, when the Uranium Solvent Extraction Plant of WMC at Olympic Dam, South Australia was upgraded. The original plant was operated for years with two trains of 2-stage mixer-settler batteries for the extraction of uranium. When the company decided to increase the yield of the plant, the existing two trains of mixer-settlers for uranium extraction were arranged in series, giving one 4-stage battery. In parallel, two Bateman Pulsed Columns, of the disc-and-doughnut type, were installed to compare the performance of both types of equipment over an extended period.The plant has been operating in parallel for three years and the results show that the performance of the columns is excellent: the extraction yield is similar to the 4 mixer-settlers in series - about 98%, the entrainment of solvent is lower, there are less mechanical failures, less problems with crud, smaller solvent losses and the operation is simpler. The results convinced WMC to install an additional 10 BPC's for the expansion of their uranium plant. These columns were successfully commissioned early 1999. This paper includes quantitative comparison of both types of equipment. (author)

  7. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  8. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Bao Kuan; Fan Xiangning; Li Wei; Wang Zhigong

    2013-01-01

    This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a −1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured IIP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm 2 and drains a current of 5.5 mA from a 1.8 V supply. (semiconductor integrated circuits)

  9. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  10. Galaxies with jet streams

    International Nuclear Information System (INIS)

    Breuer, R.

    1981-01-01

    Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

  11. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  12. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  13. Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies

    Science.gov (United States)

    Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank

    2005-01-01

    A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.

  14. Fabrication of sub-micron whole waffer SIS tunnel junctions for millimeter wave mixers

    International Nuclear Information System (INIS)

    Huq, S.E.; Blamire, M.G.; Evetts, J.E.; Hasko, D.G.; Ahmed, H.

    1991-01-01

    As a part of a programme for the development of a space-qualified sub-mm-wave mixer operating in the region of one terahertz we have been developing the processes required for the fabrication of submicron whole wafer tunnel junctions. Using the self-aligned whole-wafer process (SAWW) with electron beam lithography we have been able to reliably fabricate high quality (V m > 20 mV) submicron tunnel junctions from whole wafer Nb/AlO x /Nb structures. In particular we show that the junction quality is independent of size down to 0.3 μm 2 junction area. The problems of film stress, anodization, registration for electron beam lithography and lift-off, which limit the yield of good quality sub-micron scale junctions are addressed in this paper

  15. Simulation of time variation of Uranium, Plutonium and fission product hold up in mixer settler contactors

    International Nuclear Information System (INIS)

    Dionisi, M.; D'Agostino, F.; Remetti, R.

    1990-01-01

    A simulation model of PUREX process extraction phase for a contactors (mixer-settlers) battery has been developed. This model has been implemented in a FORTRAN code tailored both for mainframe and PC. The main goal of the code is to determine Uranium and Plutonium hold-ups vs.time within contactors in order to implement a NRTA project for a reprocessing plant. These results are extremely important for a complete analysis of NRTA system perfomance particularly to overcome the difficulty of executing physical inventory within liquid-liquid contactors of extraction lines. The chemical process simulation has been carried out conventional theoretical models with the exeption of hydrodynamic simulation which has been developed utilizing a model based on experimental results

  16. Design of 12-phase, 2-stage Harmonic Rejection Mixer for TV Tuners

    Directory of Open Access Journals (Sweden)

    D. Lee

    2016-06-01

    Full Text Available A two-stage 12-phase harmonic rejection mixer (HRM for TV tuners is proposed in order to reject the local oscillator (LO harmonics up to the ninth order. The proposed weighing scheme for 12-phase, 2-stage harmonic mixing can reduce the harmonic rejection (HR sensitivity to the amplitude error caused by irrational numbers such as . To verify this HR, the 2-stage HR circuit is designed with baseband gm weighting in order to save power and improve the HR ratios without calibration. The proposed HRM achieves the third to ninth worst HR ratios, more than 55 dB, according to Monte Carlo simulations. It consumes 6.5 mA under a 2.5 V supply voltage.

  17. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.

    Science.gov (United States)

    Le, Nguyen Hoai An; Van Phan, Hoang; Yu, Jiaqi; Chan, Hak-Kim; Neild, Adrian; Alan, Tuncay

    2018-01-01

    This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. The method employed a 3D microfluidic geometry whereby two different phases - solvent and antisolvent - were introduced at either side of a 1 μm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.

  18. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  19. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  20. Simplified theory of gas-jet pumps and experimental verification; Theorie simplifiee des trompes a gaz et verification experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Costes, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    With a view to using the gas-jet pump in the fuel-study loops of gas reactors, a theory is developed for an unidimensional mixer, applicable to the case of low compression ratios in the induced current. This theory makes it possible to optimize the diameter of the mixer if the pressure-drop coefficient {alpha} of the mixer is known with respect to the induced current. An experimental study has made it possible to define the geometry suitable for such pumps, and to provide a remarkably constant value of {alpha} for the economically advantageous designs; this makes it possible to define simply the geometry of the optimized pump as a function of the geometry of the circuit in use, and independently of the flow-rate conditions. (author) [French] Dans le but d'utiliser la pompe a jet (ou trompe) dans des boucles d'etude de combustible des piles a gaz, on etablit une theorie du melangeur unidimensionnel, applicable dans la cas des faibles rapports de compression dans le courant induit. Cette theorie permet l'optimisation du diametre de melangeur, moyennant la connaissance du coefficient {alpha} de pertes de charge de celui-ci, relativement au courant induit. Une recherche experimentale a permis de preciser la geometrie a adopter dans de telles pompes, et fourni pour {alpha} une valeur remarquablement constante dans les configurations economiquement interessantes, ce qui permet de definir simplement la geometrie de la pompe optimisee en fonction de la geometrie du circuit d'utilisation et independamment des conditions de debit. (auteur)

  1. Visualization of diffusion mixing in a micro-mixer with flow paths fabricated by photolithography

    Science.gov (United States)

    Horiuchi, Toshiyuki; Morizane, Yuta

    2017-09-01

    Mixing processes of two liquids were investigated by visualizing the mixing when they were simultaneously injected in a micro-mixer with lithographically fabricated Y-shape flow paths, and the mixing phenomena was analyzed in detail. To visualize the mixing, flows were observed by an optical microscope, and a clearly detectable chemical reaction was utilized. As the two liquids, a transparent aqueous solution of a strong alkali and a phenolphthalein ethanol solution were used. When they were simultaneously injected in Y-shape flow paths of a micro-mixer, they flowed at first in parallel along the joined path as laminar flows. This is because the Reynolds' number became very small caused by the narrow flow-path widths of 50-100 μm. However, because two liquids were always contacted at the boundary, they were gradually mixed by diffusion, and the color of the mixed parts changed to vivid red. For this reason, it was able to measure the diffusion distance from the flow path center. Because the flow speeds were much faster than the diffusion speeds, the area colored in red did not depend on the time but depended on the distance from the joint point. It was known that the distance from the joint point corresponded to the time for mixing the liquids by the diffusion. It was clarified that the diffusion distance x was proportional to the square root of the diffusion time t or the distance from the joint point. The calculated diffusion coefficient D was (0.87-1.00)×10-9 m2/s.

  2. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  3. Elucidating Jet Energy Loss Using Jets Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet $R_{AA}$, the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  4. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    International Nuclear Information System (INIS)

    Grau, N.

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet R AA , the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  5. JET joint undertaking

    International Nuclear Information System (INIS)

    1984-06-01

    JET began operations on 25 June 1983. This annual report contains administrative information and a general review of scientific and technical developments. Among them are vacuum systems, toroidal and poloidal field systems, power supplies, neutral beam heating, radiofrequency heating, remote handling, tritium handling, control and data acquisition systems and diagnostic systems

  6. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  7. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  8. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    which are rapidly rotating neutron stars emitting narrow beams of radiation. Images of ... rized into starburst galaxies and AGN powered by SMBHs. The ..... swer lies in the relativistic motion of the jets which boosts the flux density of .... radio cores, detection of ... to as synchrotron self-Compton or SSC, or those of the cosmic.

  9. LHCb jet reconstruction

    International Nuclear Information System (INIS)

    Francisco, Oscar; Rangel, Murilo; Barter, William; Bursche, Albert; Potterat, Cedric; Coco, Victor

    2012-01-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10 32 cm -2 s -1 and the integrated luminosity reached the value of 1,02fb -1 on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space ηX φ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its η region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  10. LHCb jet reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Oscar; Rangel, Murilo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Barter, William [University of Cambridge, Cambridge (United Kingdom); Bursche, Albert [Universitat Zurich, Zurich (Switzerland); Potterat, Cedric [Universitat de Barcelona, Barcelona (Spain); Coco, Victor [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands)

    2012-07-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10{sup 32} cm{sup -2}s{sup -1} and the integrated luminosity reached the value of 1,02fb{sup -1} on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space {eta}X {phi} and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its {eta} region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  11. Fastener investigation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, P., E-mail: patrick.bunting@ccfe.ac.uk; Thompson, V.; Riccardo, V.

    2016-11-15

    Highlights: • Experimental work to identify the cause of a bolt seizure inside the JET vessel. • Taguchi method used to reduce tests to 16 while covering 5 parameters. • Experimental work was unable to reproduce bolt seizure. • Thread contamination had little effect on the bolt performance. - Abstract: JET is an experimental fusion reactor consisting of magnetically confined, high temperature plasma inside a large ultra-high vacuum chamber. The inside of the chamber is protected from the hot plasma with tiles made from beryllium, tungsten, carbon composites and other materials bolted to the vessel wall. The study was carried out in response to a JET fastener seizing inside the vacuum vessel. The following study looks at characterising the magnitude of the individual factors affecting the fastener break away torque. This was carried out using a statistical approach, the Taguchi method: isolating the net effect of individual factors present in a series of tests [1](Grove and Davis, 1992). Given the severe environment within the JET vessel due to the combination of heat, ultra-high vacuum and the high contact pressure in bolt threads, the contributions of localised diffusion bonding is assessed in conjunction with various combinations of bolt and insert material.

  12. Jet Inlet Efficiency

    Science.gov (United States)

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes-Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes-Green Keith Williams John

  13. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  14. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  15. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  16. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  17. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  18. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  19. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  20. Scale-up of mixer-settler for uranium extraction; Determinacao das relacoes de `scale-up` em misturador-decantador tipo caixa utilizado na extracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.O. de

    1990-05-01

    The aim of this work was to obtain scale-up relations for a box type mixer-settler used in uranium extraction process for chloridric leaches. Three box type units with different sizes and with the same geometry were used for scale-up of the mixer. The correlation between extraction rate and specific power input, D/T ratio (stirrer diameter/mixer length) and residence time were experimentally obtained. The results showed that the extraction increases with power input for a constant value of D/T equal to 1/3, remaining however independent from mixer sizes for a specific value of power input. This behavior was observed for power input values ranging from 100 to 750 w/m{sup 9}. (author). 23 refs, 22 figs, 23 tabs.

  1. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Multimedia

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.

  2. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    Science.gov (United States)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  3. Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-07

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.

  4. Jet photoproduction at HERA

    International Nuclear Information System (INIS)

    Frixione, S.

    1997-01-01

    We compute various kinematical distributions for one-jet and two-jet inclusive photoproduction at HERA. Our results are accurate to next-to-leading order in QCD. We use the subtraction method for the cancellation of infrared singularities. We perform a thorough study of the reliability of QCD predictions; in particular, we consider the scale dependence of our results and discuss the cases when the perturbative expansion might break down. We also deal with the problem of the experimental definition of the pointlike and hadronic components of the incident photon, and briefly discuss the sensitivity of QCD predictions upon the input parameters of the calculation, like α S and the parton densities. (orig.)

  5. Process design of a new injection method of liquid CO2 at the intermediate depths in the ocean using a static mixer

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2005-01-01

    Process design for a new injection method of liquid CO 2 using a static mixer was conducted based on laboratory experimental results on the formation process of liquid CO 2 drops covered with hydrate film by a Kenics-type static mixer, and numerical simulation of the liquid CO 2 drops at 500 and 1500 m. The Sauter Mean Diameter (SMD) of the liquid CO 2 drops covered with hydrate film was dramatically decreased with the use of the static mixer; empirical equations were obtained for the SMD, and also the maximum and minimum diameters of the liquid CO 2 drops for a given flow velocity (Weber number, We). The ascending and dissolving behavior of a liquid CO 2 drop with hydrate released in the ocean at an intermediate depth was numerically simulated, and the maximum drop diameter to avoid evaporation of the drop before complete dissolution was estimated. Based on these results, scaling up of the static mixer was conducted by assuming a disposal process of CO 2 emitted from a 100-MW thermal power plant, and the mixer diameter was determined as a function of the given SMD. Moreover, the power consumption of the static mixer was evaluated and found to be almost negligible. (author)

  6. QCD and jets

    International Nuclear Information System (INIS)

    Munehisa, Tomo

    1990-01-01

    We present a review on the parton shower in e + e - annihilation. Also we discuss the next-to-leading-logarithmic parton shower. We emphasize that this new model provides a useful tool for the determinations of Λ MS from jet distributions. Analysis by the new model gives us Λ MS = 0.235±0.052 GeV from data of PETRA, PEP and TRISTAN. (author)

  7. Active control of continuous air jet with bifurcated synthetic jets

    Directory of Open Access Journals (Sweden)

    Dančová Petra

    2017-01-01

    Full Text Available The synthetic jets (SJs have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  8. Quarterly review of 241-SY-101 mixer pump data: January - March 1999; FINAL

    International Nuclear Information System (INIS)

    CONNER, J.M.

    1999-01-01

    This report presents data obtained on 241-SY-101 pump performance. The period covered is January 1 through March 31, 1999. During the quarter: There were changes in pumping parameters. Both the pump volute pressure and amperage decreased during the quarter. It is not clear whether this was due to changes in waste properties (due to less solids or more entrained gas) or due to degradation of the pump. There was an indication of a 7.5-inch increase in the waste level at riser 1 A, and an average growth rate of 0.082 inches per day. There was an indication of a 5.7-inch increase in the waste level at riser 1C. This riser was flushed with water several times, which would lower the level of the crust at this location. Gases continued to be released at less than the pre-pump installation baseline rate, indicating a decrease in the gas generation rate, or an increase in gas retention, or both. The release rate was about 78 percent of the rate in the previous few quarters, and only 34 percent of the generation rate calculated prior to mixer pump installation in 1993. Key controls exist for waste temperature, gas concentration, pump parameters, and long-term waste behavior associated with the safe operation of the mixer pump that mitigates the buoyant displacement gas release event behavior of 241-SY-101. Table 1-1 compares the key controls and the current state of the waste as of March 3 1. 1999. The pump was run 28 times between January 1 and March 31, 1999. All of the pump runs were intended to be normal 25-minute, 1000-rpm excavation runs performed to mix the waste and release gas. Because of the pump oil often reached the high temperature alarm setpoint of 190 F, many of the runs were shortened (by as many as 8 minutes). This phenomenon was identified in November 1998, but got progressively worse over the quarter. The pump schedule was nominally three runs per week. However, core sampling activities interrupted the usual pump schedule several times during the quarter

  9. 241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)

    International Nuclear Information System (INIS)

    WHITE, D.A.

    2000-01-01

    Shop test of the sludge mobilization cart system to be used in the AZ-101 Mixer Pump Demonstration Test Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software

  10. 241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)

    International Nuclear Information System (INIS)

    WHITE, D.A.

    2000-01-01

    Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software

  11. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

    Science.gov (United States)

    Burke, Kelly S; Parul, Dzmitry; Reddish, Michael J; Dyer, R Brian

    2013-08-07

    We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 μs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonaphthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 μs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics.

  12. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  13. Greenland plateau jets

    Directory of Open Access Journals (Sweden)

    George William Kent Moore

    2013-08-01

    Full Text Available The high ice-covered topography of Greenland represents a significant barrier to atmospheric flow and, as a direct and indirect result, it plays a crucial role in the coupled climate system. The wind field over Greenland is important in diagnosing regional weather and climate, thereby providing information on the mass balance of the ice sheet as well as assisting in the interpretation of ice core data. Here, we identify a number of hitherto unrecognised features of the three-dimensional wind field over Greenland; including a 2500-km-long jet along the central ice sheet's western margin that extends from the surface into the middle-troposphere, as well as a similar but smaller scale and less intense feature along its eastern margin. We refer to these features as Greenland Plateau Jets. The jets are coupled to the downslope katabatic flow and we argue that they are maintained by the zonal temperature gradients associated with the strong temperature inversion over the central ice sheet. Their importance for Greenland's regional climate is discussed.

  14. Improving the Efficiency of 3-D Hydrogeological Mixers: Dilution Enhancement Via Coupled Engineering-Induced Transient Flows and Spatial Heterogeneity

    Science.gov (United States)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2018-03-01

    Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.

  15. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    Science.gov (United States)

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  16. A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer

    Directory of Open Access Journals (Sweden)

    Jesús Cerezo

    2017-12-01

    Full Text Available The heat transfer in double pipe heat exchangers is very poor. This complicates its application in absorption cooling systems, however, the implementation of simple passive techniques should help to increase the heat and mass transfer mainly in the absorber. This paper carried out a simulation and its experimental comparison of a NH3-H2O bubble absorption process using a double tube heat exchanger with a helical screw static mixer in both central and annular sides. The experimental results showed that the absorption heat load per area is 31.61% higher with the helical screw mixer than the smooth tube. The theoretical and experimental comparison showed that the absorption heat load difference values were 28.0 and 21.9% for smooth tube and the helical mixer, respectively. These difference values were caused by the calculation of the log mean temperature difference in equilibrium conditions to avoid the overlap of solution temperatures. Therefore, the theoretical and experimental results should be improved when the absorption heat is included in the heat transfer equation or avoiding the operation condition when output is lower than input solution temperature.

  17. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    Science.gov (United States)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  18. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  19. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  20. Identifying jet quantum numbers event by event

    International Nuclear Information System (INIS)

    Teper, M.J.

    1979-12-01

    A method is proposed to identify the parton that gives rise to any particular jet. The method improves with the number of particles in the jet, and should indicate which of the jets in a three jet event at PETRA is the gluon jet. (author)

  1. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  2. A comparative study of ground tire rubber devulcanization using twin screw extruder and internal mixer

    Science.gov (United States)

    Ujianto, O.; Putri, D. B.; Jayatin; AWinarto, D.

    2017-07-01

    Devulcanization of ground tire rubber (GTR) was done using twin screw extruder (TSE) and internal mixer (IM). Processing parameters were varied to analyze its effect on gel content. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed as qualitative technique to confirm structural change. The devulcanized rubbers with the least gel content percentage produced in both TSE and IM were then used as filler in natural rubber (NR)/coconut coir (CC) composite preparation. Effects of gel content percentage on NR/CC composite tensile strength and elongation at break were analyzed. The results show that the gel content decreased by 41% for sample processed in TSE and 50% in IM compared to control sample. Overall, the devulcanization is influenced by high energy generated by thermal or thermo-mechanical process. FTIR spectra show chemically structural changes of GTR as C=C, CH2, CH3 with higher intensity for IM sample than its counterpart indicated devulcanization. The replacement of GTR to DGTR on NR/CC/GTR composites provided less network structures and resulted better tensile strength and elongation at break.

  3. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-05-15

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  4. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  5. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    International Nuclear Information System (INIS)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol

    2012-01-01

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  6. Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film

    Science.gov (United States)

    Ismail, Zulhelmi; Abdullah, Abu Hannifa; Zainal Abidin, Anis Sakinah; Yusoh, Kamal

    2017-08-01

    Mechanical properties of polyvinyl alcohol (PVA) can be reinforced from the addition of graphene into its matrix. However, pristine graphene lacks solubility in water and thus makes dispersion a challenging task. Notably, functionalisation of graphene is required to accommodate graphene presence in the water. In this work, we have used a kitchen mixer to produce gum Arabic-graphene (GGA) for the first time as filler for mechanical reinforcement of PVA. For the characterisation of exfoliated graphene, mean lateral size of GGA was measured from the imaging by transmission electron microscopy while the mean thickness of graphene was predicted from the obtained spectra by Raman spectroscopy. During the preparation of PVA/graphene film by solution casting, GGA was varied between 0, 0.05, 0.075, 0.10 and 0.15 wt% in concentration. We found that the presence of GGA in PVA improves the tensile stress and elastic modulus about 72-200 and 19-187% from the original values. The data from Halpin-Tsai meanwhile suggested that the mechanical reinforcement of PVA/graphene film is due to the random distribution network of GGA in PVA.

  7. XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints

    Science.gov (United States)

    Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.

    2018-01-01

    Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.

  8. Retrieval process development and enhancements FY96 pulsed-air mixer testing and deployment study

    International Nuclear Information System (INIS)

    Powell, M.R.; Hymas, C.R.

    1996-08-01

    Millions of gallons of radioactive wastes resides in underground tanks at US Department of Energy sites. The waste was generated primarily by the processing of nuclear fuel elements to remove fissile radionuclides for use in atomic weapons. Plans call for the waste to be removed from the tanks and processed to create immobile waste forms, which will be stored to prevent release to the environment. The consistency of the waste ranges from liquid, to slurry, to sticky sludge, to hard saltcake. a variety of waste- retrieval and processing methods are being evaluated and implemented. One such method is pulsed-air mixing, which is the subject of this report. Pulsed-air mixing equipment has been successfully applied to a number of difficult mixing applications in various chemical-process industries. Most previous applications involved the mixing of particle-free viscous fluids. The study described in this report was preformed to improve the understanding of how pulsed-air mixing applies to slurries. This document describes work conducted to evaluate the potential application of pulsed-air mixers to the slurry- mixing needs of the US Department of Energy's waste-retrieval programs

  9. Black tea assisted exfoliation using a kitchen mixer allowing one-step production of graphene

    Science.gov (United States)

    Ismail, Zulhelmi; Farhana Abu Kassim, Nurul; Hannifa Abdullah, Abu; Sakinah Zainal Abidin, Anis; Sameha Ismail, Fadwa; Yusoh, Kamal

    2017-07-01

    A kitchen mixer is one of the possible tools for the exfoliation of graphene. While organic solvents such as NMP or DMF are suitable for the exfoliation of graphite, the majority are toxic and dangerously harmful when exposed to humans and the environment. Therefore, an alternative solvent must be proposed for green and sustainable production of graphene. In this initial work, we have developed a new synthesis method for graphene through the direct exfoliation of graphite in commercial black tea. We found that our maximum yield concentration of graphene is Y  =  0.032 mg ml-l after 15 min of mixing. From the data of Raman, the level of defects in our produced graphene is suggested as being very minor (I D/I G  =  0.17), despite possible graphene functionalization by oxygen groups in tea. Incorporation of our graphene into PMMA results in shifting the onset temperature from 300 °C to 326 °C, which impressively validates the potential of the produced graphene as a thermal reinforcement material for polymer composites.

  10. Axial segregation of granular media rotated in a drum mixer: Pattern evolution

    International Nuclear Information System (INIS)

    Hill, K.M.; Kakalios, J.; Caprihan, A.

    1997-01-01

    In the traditional axial segregation effect, a homogeneous mixture of different types of granular material rotated in a drum mixer segregates into surface bands of relatively pure single concentrations along the axis of rotation. This effect primarily has been studied with respect to the initial segregation. However, the initial pattern is not stable, but evolves in time with continued rotation through metastable states of fewer and fewer bands. We describe two experimental studies of this evolution that provide a more complete picture of the dynamics involved in the pattern progression. The use of a charge coupled device camera in conjunction with digital analysis techniques provides a quantitative measure of the state of the surface as a function of time, while magnetic resonance imaging techniques provide a noninvasive method for studying the segregation beneath the surface. These methods indicate that the underlying mechanisms for the pattern evolution may originate in the bulk of the material, beneath the avalanching surface. copyright 1997 The American Physical Society

  11. An instrumented mixer setup for making tackifier dispersions used to make pressure-sensitive adhesives

    International Nuclear Information System (INIS)

    Song, Daoyun; Zhang, Wu; Gupta, Rakesh K; Melby, Earl G

    2008-01-01

    Water-based pressure-sensitive adhesives (PSAs) are made by combining a tackifier dispersion and a polymer latex. During the process of making the tackifier dispersion, the system initially forms a water-in-oil emulsion, and then inverts to an oil-in-water one as more water is continuously added with constant agitation. To better understand the process, an instrumented mixer setup was constructed to simulate the manufacturing process, and agitation was provided by an inner impeller and an outer impeller. Several variables were monitored in situ. They are the electrical resistance of the emulsion, torque exerted on the inner impeller, agitation speeds of both impellers, power consumption of both impellers and the flow rate of feeding water. Our measurements showed that torque reached a maximum at phase inversion, and this was verified by direct measurements of viscosity during the process. Simultaneously electrical resistance measurements monitored the chemical changes as well as phase inversion. Experiments showed that under a certain low water feeding flow rate, there appeared to be an intermediate agitation speed at which the phase inversion occurred the earliest. This, from the industrial standpoint, is really favorable due to both time and energy efficiency. Furthermore, this intermediate agitation speed also corresponded to a better quality product. All this information may be used for optimizing this process in the future

  12. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  13. Photon + jets at D0

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  14. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  15. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  16. Geometrical scaling of jet fragmentation photons

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Koichi, E-mail: koichi.hattori@riken.jp [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); McLerran, Larry, E-mail: mclerran@bnl.gov [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States)

    2016-12-15

    We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation.

  17. Transition in synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2012-01-01

    Roč. 187, NOV 2012 (2012), s. 105-117 ISSN 0924-4247 R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GPP101/12/P556; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence * synthetic jet * transition * velocity spectra Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www. science direct.com/ science /article/pii/S0924424712005031

  18. Hadron jets in perspective

    International Nuclear Information System (INIS)

    Quigg, C.

    1982-11-01

    The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple

  19. Jet physics at LEP

    International Nuclear Information System (INIS)

    Venus, W.

    1991-01-01

    The results of studies of the jet structure of hadronic Z 0 decays performed in the first year of Large Electron-Positron collider (LEP) operation are reviewed. The measurements of the quantum chromodynamics (QCD) coupling constant α s (M z )and the detection of the presence of the triple gluon vertex are summarized. After a brief review of the promising status of QCD in relation to even the very soft processes, the running of the coupling constants to high energy is considered in the context of grand unified theories. The necessity and importance of further theoretical work is stressed. (author)

  20. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  1. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    framework for presenting the results of the flowfield and jet penetration length. ... A turbulent jet is a basic free shear flow and has received research attention (see, .... MBE76 identify this to be a transitional zone and for. √ .... higher return flow and also higher velocity from counterflow due to a narrower gap thus leading.

  2. Associated jet production at HERA

    CERN Document Server

    Bartels, Julius; de Roeck, A; Graudenz, Dirk; Wüsthoff, M

    1996-01-01

    We compare the BFKL prediction for the associated production of forward jets at HERA with fixed-order matrix element calculations taking into account the kinematical cuts imposed by experimental conditions. Comparison with H1 data of the 1993 run favours the BFKL prediction. As a further signal of BFKL dynamics, we propose to look for the azimuthal dependence of the forward jets.

  3. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  4. LHCb; LHCb Jet Reconstruction

    CERN Multimedia

    Augusto, O

    2012-01-01

    The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than $4 \\times 10^{32} cm^{-2} s^{-1}$ and the integrated luminosity reached the value of 1.02 $fb^{-1}$ on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test pertubative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space $\\eta \\times \\phi$ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the calo...

  5. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  6. Nucleosynthesis in Jets from Collapsars

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-01-01

    We investigate nucleosynthesis inside magnetically driven jets ejected from collapsars, or rotating magnetized stars collapsing to a black hole, based on two-dimensional magnetohydrodynamic simulation of the collapsars during the core collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase using a large nuclear reaction network. We find that the r-process successfully operates only in the energetic jets (>10 51 erg), so that U and Th are synthesized abundantly, even when the collapsars have a relatively small magnetic field (10 10 G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system. The higher energy jets have larger amounts of 56 Ni. Less energetic jets, which have small amounts of 56 Ni, could induce GRB without supernova, such as GRB060505 and GRB060614

  7. Magnetically driven jets and winds

    Science.gov (United States)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  8. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    Science.gov (United States)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  9. Analytical methodology for the study of decontamination factors in mixer-settlers

    International Nuclear Information System (INIS)

    Alzabet, Horacio; Crubellati, Ricardo; Di Santo, Norberto; Eppis, Maria; Gonzalez, Guillermo; Bof, Elba; Devida, Claudio

    1987-01-01

    Due to the complexity of the samples, the choice of the analytical methodology to be applied at a radiochemical laboratory, for the evaluation of different separation steps if of a great importance. It is necessary to know the performance of mixer-settlers in two extreme situations: efficiency limit determined by fluid dynamic factors and separation factor determined by physicochemical variables. The element used to determine the efficiency limit was magnesium, due to its low distribution coefficient in tri-n-butyl phosphate (TBP). Zirconium, being one of the principal fission product, is partially extracted and was used to study the influence of chemical conditions. Atomic absorption spectrometry was selected for the determination of micro quantities of magnesium, and complexometry for macro quantities of this element. It was necessary to separate uranium using extraction chromatography with Kel F-TBP columns. Concentration range was 0.1 - 1 mg/L and 7 - 70 g/L respectively. Zirconium was determined by spectrophotometry with xylenol orange. For organic samples, it was necessary to reextract the analyte with fluoride, to evaporate with sulfuric acid and to complex the excess of fluoride with aluminum. Uranium determinations, required for mass balance, were carried out by spectrophotometry and potentiometry depending upon concentration. Because of the presence of zirconium, two methods were developed for uranium determination using liquid-liquid extraction in the presence of complexing agents. In one case, TBP was used as extractant, dibenzoylmethane as chromogenic reagent and EDTA as complexing agent. For very low quantities of uranium, tri-octyl phosphine oxide (TOPO) was the extractant, 2-(2-thiazolylazo)-5-diethylaminophenol (TAAP) the chromogenic reagent, and (1-2-cyclohexylenedinitrilo) tetraacetic acid (CDTA) the complexing agent. (Author)

  10. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective.

    Science.gov (United States)

    Martin, Charlie

    2016-02-01

    Developed approximately 100 years ago for natural rubber/plastics applications, processes via twin screw extrusion (TSE) now generate some of the most cutting-edge drug delivery systems available. After 25 or so years of usage in pharmaceutical environments, it has become evident why TSE processing offers significant advantages as compared to other manufacturing techniques. The well-characterized nature of the TSE process lends itself to ease of scale-up and process optimization while also affording the benefits of continuous manufacturing. Interestingly, the evolution of twin screw extrusion for pharmaceutical products has followed a similar path as previously trodden by plastics processing pioneers. Almost every plastic has been processed at some stage in the manufacturing train on a twin screw extruder, which is utilized to mix materials together to impart desired properties into a final part. The evolution of processing via TSEs since the early/mid 1900s is recounted for plastics and also for pharmaceuticals from the late 1980s until today. The similarities are apparent. The basic theory and development of continuous mixing via corotating and counterrotating TSEs for plastics and drug is also described. The similarities between plastics and pharmaceutical applications are striking. The superior mixing characteristics inherent with a TSE have allowed this device to dominate other continuous mixers and spurred intensive development efforts and experimentation that spawned highly engineered formulations for the commodity and high-tech plastic products we use every day. Today, twin screw extrusion is a battle hardened, well-proven, manufacturing process that has been validated in 24-h/day industrial settings. The same thing is happening today with new extrusion technologies being applied to advanced drug delivery systems to facilitate commodity, targeted, and alternative delivery systems. It seems that the "extrusion evolution" will continue for wide

  11. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation

    International Nuclear Information System (INIS)

    Amin, Najam Muhammad; Wang Zhigong; Li Zhiqun

    2015-01-01

    A down-conversion in-phase/quadrature (I/Q) mixer employing a folded-type topology, integrated with a passive differential quadrature all-pass filter (D-QAF), in order to realize the final down-conversion stage of a 60 GHz receiver architecture is presented in this work. Instead of employing conventional quadrature generation techniques such as a polyphase filter or a frequency divider for the local oscillator (LO) of the mixer, a passive D-QAF structure is employed. Fabricated in a 65 nm CMOS process, the mixer exhibits a voltage gain of 7–8 dB in an intermediate frequency (IF) band ranging from 10 MHz–1.75 GHz. A fixed LO frequency of 12 GHz is used to down-convert a radio frequency (RF) band of 10.25–13.75 GHz. The mixer displays a third order input referred intercept point (IIP 3 ) ranging from −8.75 to −7.37 dBm for a fixed IF frequency of 10 MHz and a minimum single-sideband noise figure (SSB-NF) of 11.3 dB. The mixer draws a current of 6 mA from a 1.2 V supply voltage dissipating a power of 7.2 mW. (paper)

  12. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19. Test Results from Phase B: Mid-Scale Testing at PNNL

    International Nuclear Information System (INIS)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-01-01

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4

  13. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

  14. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site's 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation

  15. Inclusive jet cross sections and jet shapes at CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-09-01

    The inclusive jet cross section and jet shapes at √s = 1.8 TeV have been measured by CDF at the Fermilab Tevatron Collider. results are compared to recent next-to-leading order QCD calculations, which predict variation of the cross section with cone size, as well as variation of the jet shape with energy. A lower limit on the parameter Λ c , which characterize a contact interaction associated with quark sub-structure is determined to be 1400 GeV at the 95% confidence level. 3 refs., 4 figs

  16. The probabilistic model of the process mixing of animal feed ingredients into a continuous mixer-reactor

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2016-01-01

    Full Text Available A mathematical model of the polydisperse medium mixing process reflects its stochastic features in the form of uneven distribution of phase elements on the time of their presence in apparatus, particle size, ripple retention of the apparatus, random distribution of the material and thermal phase flows of the working volume, heterogeneity of the medium physical- and chemical properties, complicated by chemical reaction. For the mathematical description of the mixing process of animal feed ingredients in the presence of chemical reaction the system of differential equations of Academician V.V. Kafarov was used. Proposed by him hypothesis based on the theory of Markov’s processes stating that "any multicomponent mixture can be considered as the result of an iterative process of mixing the two components to achieve the desired uniformity of all the ingredients in the mixture" allows us to consider a process of mixing binary composition in a paddle mixer in the form of differential equations of two ingredients concentration numerous changes until it becomes a homogenous mixture. It was found out that the mixing process of the two-component mixture is determined in a paddle mixer with a constant mixing speed and a limit (equilibrium dispersion of the ingredients in the mixture i.e. with its uniformity. Adjustment of the model parameters was carried out according to the results of experimental studies on mixing the crushed wheat with metallomagnetic impurity, which was a key (indicator component. According to the best values of the constant of the continuous mixing speed and the equilibrium disperse values of the ingredients contents, the mathematical model parameters identification was carried out. The results obtained are used to develop a new generation mixer design.

  17. Structural analysis and evaluation of a mixer pump in a double-shell tank at the Hanford Site

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Strehlow, J.P.; Baliga, R.

    1993-01-01

    The double-shell waste tank 241-SY-101 is a 1,000,000 gallon tank used to store radioactive waste at the Hanford Site near Richland, Washington. With time the waste has formed two layers of sludge, a convective and a nonconvective layer. In addition, a crust has formed over the surface of the waste, isolating the convective layer from the vapor space. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer and under the crust. Over time, this hydrogen buildup increases pressure on the crust from beneath. Every 100 to 140 days, the pressure is released when the crust lifts upward in what is called a waste rollover. To prevent the release of a large volume of hydrogen to the vapor space, a mixer pump has been designed to be installed in the tank to circulate the waste and reduce or prevent the hydrogen buildup. The structural analysis and evaluation designed as part of the hydrogen mitigation test process and presented herein addresses the response of the mixer pump and the tank dome resulting from expected operational and design loads. The loads include deadweight, waste rollover, asymmetric thrust, and pump vibration, as well as seismic loads. The seismically induced loads take into consideration both the convective and the impulsive effects of the waste-filled tank. The structural evaluations were performed in accordance with applicable national codes and standards. The qualification of the mixer pump required the design of a unique mounting assembly to transfer the loads from the pump to the surrounding soil without overstressing the structural components such as the dome penetration riser. Also, special consideration was given to minimize the additional stresses in the already stressed concrete tank dome

  18. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    Science.gov (United States)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  19. Effects of mixing technologies on continuous methyl ester production: Comparison of using plug flow, static mixer, and ultrasound clamp

    International Nuclear Information System (INIS)

    Somnuk, Krit; Prasit, Tanongsak; Prateepchaikul, Gumpon

    2017-01-01

    Highlights: • Four types of continuous reactors were compared with methyl ester conversion. • Plug flow, static mixer, ultrasound clamp, SM with ultrasound reactors were tested. • The 16 × 400 W ultrasound clamps were operated at 20 kHz frequency for US reactor. • The US reactor was clearly superior over the other types of continuous reactor. • The US reactor was the most effective alternative with short reactor length. - Abstract: Four types of continuous reactors, namely plug flow reactor (PF), static mixer reactor (SM), ultrasound clamp on tubular reactor (US), and static mixer combined with ultrasound (SM/US) were compared for their purities of methyl ester in biodiesel production from refined palm oil (RPO). The reactor conditions were: KOH 4, 6, 8, 10, and 12 g L −1 , methanol content 20 vol.%, and under 20 L h −1 RPO flow rate at 60 °C temperature. The highest purity of methyl esters: 81.99 wt.% for PF, 95.70 wt.% for SM, 98.98 wt.% for US, and 97.67 wt.% for SM/US, were achieved with 900 mm, 900 mm, 700 mm, and 900 mm reactor lengths respectively, and 12 g L −1 of KOH was used in all cases. The 16 × 400 W ultrasound clamp was operated at 20 kHz frequency, and among short length reactors the US case was more effective than PF, SM, or SM/US. Moreover, ester purity from the US reactor was slightly decreased by the lowest 4 g L −1 KOH. The US reactor was clearly superior over the other types of continuous reactor, and had the potential to reduce KOH consumption by sonochemical effects on the base-catalyzed transesterification reaction.

  20. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  1. First experiments in JET

    International Nuclear Information System (INIS)

    Rebut, P.H.; Bartlett, D.V.; Baeumel, G.

    1985-01-01

    Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching >4 keV for power dissipations =1.6), loss of vertical stability occurred, as expected from previous calculations. Forces of several hundred tonnes (at Isub(p)=2.7 MA) were transmitted to the vacuum vessel. Measured confinement times are larger than the corresponding INTOR values. The maximum achievable density is limited by disruptions. Impurity levels determine this limiting density, and the paper concludes with proposals to reduce these. In addition, progress in neutral injection and RF heating is described, as well as preparations for D-T operation. (author)

  2. JET flywheel generators

    International Nuclear Information System (INIS)

    Huart, M.; Sonnerup, L.

    1986-01-01

    Two large vertical shaft flywheel generators each provides the JET device with peak power up to 400 MW and energy up to 2600 MJ per pulse to induce and confine the multi-mega-ampere plasma current. The integrated rotor flywheel consists of a 650 tonne/10 m diameter rim carrying the poles of the machine. The energy is stored kinetically during a 9 min interval of acceleration from half-speed to full-speed and then released during a 20 s long deceleration. A design life of 100 000 cycles at full energy rating was specified. The mechanical design and construction of the generators is reviewed. Particular attention is paid to the assessment of the stresses and fatigue life of the rotor system, its dynamic behaviour (rim movement, critical speed and balancing) and on the performance in operation of the large thrust bearing. (author)

  3. JET pump limiter

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  4. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2014-01-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high

  5. Clues from Bent Jets

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group

  6. A multimaterial electrohydrodynamic jet (E-jet) printing system

    International Nuclear Information System (INIS)

    Sutanto, E; Shigeta, K; Kim, Y K; Graf, P G; Hoelzle, D J; Barton, K L; Alleyne, A G; Ferreira, P M; Rogers, J A

    2012-01-01

    Electrohydrodynamic jet (E-jet) printing has emerged as a high-resolution alternative to other forms of direct solution-based fabrication approaches, such as ink-jet printing. This paper discusses the design, integration and operation of a unique E-jet printing platform. The uniqueness lies in the ability to utilize multiple materials in the same overall print-head, thereby enabling increased degrees of heterogeneous integration of different functionalities on a single substrate. By utilizing multiple individual print-heads, with a carrousel indexing among them, increased material flexibility is achieved. The hardware design and system operation for a relatively inexpensive system are developed and presented. Crossover interconnects and multiple fluorescent tagged proteins, demonstrating printed electronics and biological sensing applications, respectively. (paper)

  7. Particle distributions in ordered jets

    International Nuclear Information System (INIS)

    Zarmi, Y.; Kogan, E.

    1978-01-01

    Assuming specific assumptions about the space-time evolution of hadronic jets, within the framework of a Monte-Carlo calculation, the transverse and longitudinal momentum distributins of particles within the jets are obtained. The transverse momentum distributions are sensitive to the space-time evolution picture. The observed energy dependence of the average transverse momentum and the well known seagull effect are qualitatively reproduced within a picture in which Slow particles in a jet are produced First, and Fast ones - Last (SFFL). (author)

  8. Jet substructure with analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [University of Manchester, Consortium for Fundamental Physics, School of Physics and Astronomy, Manchester (United Kingdom); Fregoso, Alessandro; Powling, Alexander [University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Marzani, Simone [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2013-11-15

    We consider the mass distribution of QCD jets after the application of jet-substructure methods, specifically the mass-drop tagger, pruning, trimming and their variants. In contrast to most current studies employing Monte Carlo methods, we carry out analytical calculations at the next-to-leading order level, which are sufficient to extract the dominant logarithmic behaviour for each technique, and compare our findings to exact fixed-order results. Our results should ultimately lead to a better understanding of these jet-substructure methods which in turn will influence the development of future substructure tools for LHC phenomenology. (orig.)

  9. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    1989-06-01

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  10. Jet Joint Undertaking. Progress report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This JET Progress Reports provides an overview summary and puts into context the scientific and technical advances made on JET during 1990. In addition, the Report is supplemented by appendices of contributions (in preprint form) of the more important JET articles published during the year, which set out the details of JET activities

  11. Jet reconstruction and heavy jet tagging at LHCb

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The jet reconstruction and the heavy jet flavour tagging at LHCb will be discussed with focus on the last published measurements such as the measurement of forward tt, W+bb and W+cc production in pp collisions at √s=8 TeV and the search for the SM Higgs boson decaying in bbbar or ccbar in association to W or Z boson.

  12. Annular Impinging Jet Controlled by Radial Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Tesař, Václav; Broučková, Zuzana; Peszyński, K.

    2014-01-01

    Roč. 35, 16-17 (2014), s. 1450-1461 ISSN 0145-7632 R&D Projects: GA ČR GA14-08888S; GA AV ČR(CZ) IAA200760801 Institutional support: RVO:61388998 Keywords : impinging jet * hybrid synthetic jet * flow control Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.814, year: 2014 http://dx.doi.org/10.1080/01457632.2014.889467

  13. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  14. Equatorial jet - a case study

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    analysis of hydrographic data of 1964 is also carried out to understand the response signature of water column to prevailing westerlies. A jet forms in the Central Indian Ocean which gathers momentum as it advances eastward. Sinking of the thermocline...

  15. Jets in heavy ion collisions

    International Nuclear Information System (INIS)

    Nattrass, Christine

    2017-01-01

    High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities so high that the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly interacting liquid with a low viscosity. High energy partons created early in the collision interact with the QGP and provide unique probes of its properties. Hard partons fragment into collimated sprays of particles called jets and have been studied through measurements of single particles, correlations between particles, and measurements of fully reconstructed jets. These measurements demonstrate partonic energy loss in the QGP and constrain the QGP’s properties. Measurements of the jet structure give insight into the mechanism of this energy loss. The information we have learned from studies of jets and challenges for the field will be reviewed. (paper)

  16. Jet-quenching and correlations

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... pseudorapidity (ridge) correlations in small systems. Section 7 ... words of 'jet' and 'parton' are often used interchangeably. ...... [118] STAR Collaboration: Joshua Konzer, Poster presentation at Quark Matter 2012 (2012).

  17. Jet calculus beyond leading logarithms

    International Nuclear Information System (INIS)

    Kalinowski, J.; Konishi, K.; Taylor, T.R.

    1981-01-01

    It is shown that the evolution of hadronic jets produced in hard processes can be studied in terms of a simple parton branching picture, beyond the leading log approximation of QCD. The jet calculus is generalized to any given order of logs (but always to all orders of αsub(s)). We discuss the general structure of the formalism. Universality of jet evolution is discussed. We consider also a jet calorimetry measure and the multiplicity distribution of final states in a form which allows a systematic improvement of approximation. To the next-to-leading order, we prove the finiteness and elucidate the scheme dependence of parton subprocess probabilities. The physical inclusive cross section is shown to be scheme independent: next-to-leading results for e + e - → q (nonsinglet) + X agree with those of Curci and others. (orig.)

  18. Jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Joensson, L.

    1995-01-01

    Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)

  19. Effect of static mixer on the performance of compact plate heat exchanger with zwitterionic type of drag-reducing additives

    Energy Technology Data Exchange (ETDEWEB)

    Blais, C.; Wollerstrand, J.

    1997-06-01

    The main task of the project was to investigate the influence of drag-reducing additives (DRA) dissolved in circulating hot water on heat transfer in compact plate heat exchangers (PHE). Furthermore the result of flow disturbance (static mixing) immediately before the PHE on pressure drop and heat transfer was clarified. The project used a new type of DRA (surfactants of zwitterionic type) for two different temperature ranges. A dedicated test rig, `Ansgar`, was built for the purpose. Good thermal and mechanical stability also outside the operating range was observed except some sensitivity for water hardness at high temperatures for DRA2. Similarly to known investigations, the heat transfer coefficient was significantly reduced by DRA in heat exchangers. In PHE used however, the heat transfer reduction was considerably lower in the high flow region. A static mixer placed in front of the PHE was found to significantly improve heat transfer, especially at high flow rates. On the other hand, an additional pressure drop was introduced. Therefore the optimal choice of static mixer needs further investigation. Specially designed PHE combining mixing and heat transfer functions could be beneficial to reducing the effects of additives in thermal systems. The relaxation time (RT) of drag-reducing additives in water solutions flowing through test pipes with known geometries was estimated by monitoring specific pressure drop variation along the pipe. These preliminary experiments in respect to relaxation time showed that RT depends on the flow rate and on the temperature 12 refs, 11 figs, 1 tab

  20. Design of a broadband passive X-band double-balanced mixer in SiGe HBT technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    ) and the radio frequency (RF) port. A break out of the Marchand balun is measured. This demonstrates good phase and magnitude match of 0.7° and 0.11 dB, respectively. The Marchand baluns are broadband with a measured 3 dB bandwidth of 6.4 GHz, while still having a magnitude imbalance better than 0.4 d...... frequency of 8.5 GHz is −9.8 dB at an LO drive level of 15 dBm. The whole mixer is very broadband with 3 dB bandwidth from 7 to 12 GHz covering the entire X-band. The LO–IF, RF–IF, and RF–LO isolation is better than 46, 36, and 36 dB, respectively, in the entire band of operation.......B and a phase imbalance better than 5°. Unfortunately with a rather high loss of 2.5 dB, mainly due to the low Q-factor of the inductors used. The mixer is optimized for use in doppler radars and is highly linear with a 1 dB compression point above 12 dBm IIP2 of 66 dBm. The conversion gain at the center...

  1. Development of an enzyme fluidized bed reactor equipped with static mixers: application to lactose hydrolysis in whey

    Energy Technology Data Exchange (ETDEWEB)

    Fauquex, P F; Flaschel, E; Renken, A

    1984-01-01

    Reactor operation with immobilized enzymes in fixed bed arrangement is often impaired due to the presence of finely divided solid matter, adsorbing substances or gas. The fluidized bed reactor would be applied in such cases owing to a limited pressure drop, a controlled voidage, and the avoidance of perforated plates for catalyst retention. Since enzymic reactions are often slow processes, catalysts of high external surface area should be provided together with sufficient time. However, classical fluidized beds suffer from hydrodynamic instability under these conditions. Therefore, a new reactor design was developed which used motionless mixers as internals. Fluidized bed reactors equipped with internals exhibit an outstanding hydrodynamic stability accompanied by an increase of the operating range in terms of flow rate by a factor of 4 compared to the classical fluidized bed. Results are presented, with emphasis on the backmixing and expansion characteristics. Various motionless mixers were investigated in columns of 39 and 150 mm in diameter. The fluidized bed equipped with internals was used for lactose hydrolysis in partially deproteinized whey. The lactase from Aspergillus niger immobilized on silica gel particles of 125-160 molm had a half-life of approximately 1 mo.

  2. Effect of operational parameters and internal recycle on rhenium solvent extraction from leach liquors using a mixer-settler

    Directory of Open Access Journals (Sweden)

    Mostafa Hosseinzadeh

    2014-06-01

    Full Text Available The extraction of rhenium from molybdenite roasting dust leach solution was performed using a mixer-settler extractor by tributyl phosphate (TBP diluted in kerosene as the extractant. In the single-stage extraction experiments, effect of the aqueous to organic phase ratios, Qa/Qo, and the number of extraction stages, N, on the rhenium extraction was studied. It was found that using the phase ratio of 1:1 in a two-stage extraction, 87.5% depletion of rhenium was obtained. The comparison of experimental results with the continuous co-current extraction showed a good agreement. The effect of internal recycle of organic phase was investigated in the phase ratio of 1:1 by changing the flow rate ratio of recycle-to-fresh organic phase, Qro/Qfo. The optimum performance was achieved in the phase ratio, Qro/Qfo, equal to 3:7. It was found that improvement in the performance of the mixer-settler for the rhenium-TBP system can be obtained in the phase ratio of 1:1when Qro/Qfo = 3:7.

  3. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of Flygt Propeller Mixers for Double-Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    PACQUET, E.A.

    2000-01-01

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt(trademark) submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt(trademark) mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described

  5. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  6. Temperature-controlled continuous production of all-trans retinoic acid-loaded solid lipid nanoparticles using static mixers

    Science.gov (United States)

    Shao, Wenyao; Yan, Mengwen; Chen, Tingting; Chen, Yuqing; Xiao, Zongyuan

    2017-04-01

    This work aims to develop a temperature-controlled continuous solvent emulsification-diffusion process to synthesize all-trans retinoic acid (ATRA)-loaded solid lipid nanoparticles (SLNs) using static mixers. ATRA-loaded SLNs of around 200 nm were obtained when the flow rates of the organic and aqueous phases were 50 ml min-1 and 500 ml min-1, respectively. It was found that the lipid concentration played a dominant role in the size of the obtained SLNs, and higher drug concentration resulted in relatively low entrapment efficiency. The encapsulation of ATRA in the SLNs was effective in improving its stability according to the photo-degradation test. The in vitro release of SLN was slow without an initial burst. This study demonstrates that the solvent emulsification-diffusion technique with static mixing is an effective method of producing SLNs, and could easily be scaled up for industrial applications. Highlights Higher lipid concentration leads to larger SLNs. SLN transformation occurs due to Ostwald ripening. The ATRA-loaded SLNs around 200 nm were successfully produced with static mixers. ATRA-loaded SLNs show better stability towards sunlight. ATRA in SLNs exhibited a relatively slow release rate without a significant initial burst.

  7. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    International Nuclear Information System (INIS)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-01-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO 2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO 2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before. (paper)

  8. Top Jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.G.; Lee, S.J.; Perez, G.; Sung, I.; Virzi, J.

    2008-10-06

    We investigatethe reconstruction of high pT hadronically-decaying top quarksat the Large Hadron Collider. One of the main challenges in identifying energetictop quarks is that the decay products become increasingly collimated. This reducesthe efficacy of conventional reconstruction methods that exploit the topology of thetop quark decay chain. We focus on the cases where the decay products of the topquark are reconstructed as a single jet, a"top-jet." The most basic"top-tag" methodbased on jet mass measurement is considered in detail. To analyze the feasibility ofthe top-tagging method, both theoretical and experimental aspects of the large QCDjet background contribution are examined. Based on a factorization approach, wederive a simple analytic approximation for the shape of the QCD jet mass spectrum.We observe very good agreement with the Monte Carlo simulation. We consider high pT tt bar production in the Standard Model as an example, and show that our theoretical QCD jet mass distributions can efficiently characterize the background via sideband analyses. We show that with 25 fb-1 of data, our approach allows us to resolve top-jets with pT _> 1 TeV, from the QCD background, and about 1.5 TeV top-jets with 100 fb-1, without relying on b-tagging. To further improve the significancewe consider jet shapes (recently analyzed in 0807.0234 [hep-ph]), which resolve thesubstructure of energy flow inside cone jets. A method of measuring the top quarkpolarization by using the transverse momentum of the bottom quark is also presented.The main advantages of our approach are: (i) the mass distributions are driven byfirst principle calculations, instead of relying solely on Monte Carlo simulation; (ii) for high pT jets (pT _> 1 TeV), IR-safe jet shape variables are robust against detectorresolution effects. Our analysis can be applied to other boosted massive particlessuch as the electroweak gauge bosons and the Higgs.

  9. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  10. 4-jet events at LEP

    CERN Document Server

    Bizouard, M A

    1997-01-01

    Results of a special study made by the four LEP experiments on 4-jet events recorded at Vs = 130 - 136 , 161 and 172 GeV are related. This study concerns the ALEPH analysis which has shown an excess of 4-jet events in data recorded at Vs = 130 - 136 GeV. No significant evidence has been found by the 3 other experiments. Results have been combined after several checks which did not show differences of performance between the four LEP experiments.

  11. Overview of JET results

    International Nuclear Information System (INIS)

    Pamela, J.

    2003-01-01

    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. The physics of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly: the extrapolation of ELM size to ITER has been re-evaluated; NTMs have been shown to be metastable in JET, and can be avoided via sawtooth destabilisation by ICRH; α-simulation experiments were carried out by accelerating 4 He beam ions by ICRH, providing a new tool for fast particle and MHD studies with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, quasi-steady sate high confinement (H 98 =1), high density (n e /n GR = 0.9-1) and high β (β N =2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ∼0.40-0.5) and safety factor (q 95 ∼3), at Z eff ∼1.5-2. In Advanced Tokamak scenarios, internal transport barriers are now characterised in real time with a new criterion ρ* T ; tailoring of the current profile with LHCD provides reliable access to a variety of q profiles, with significantly lowered access power for barrier formation; rational q surfaces appear to be associated with ITB formation; Alfven cascades are observed in RS plasmas, providing an identification of q profile evolution; plasmas with 'current holes' were observed and explained by modelling. Transient high confinement Advanced Tokamak regimes with H89=3.3, β N =2.4 and ITER relevant q<5 are achievable in reversed magnetic shear. Quasistationary internal transport barriers are developed with full non-inductive current drive, including ∼50% bootstrap current. Record duration of ITBs was achieved, up to 11 s, approaching the resistive time. Pressure and current profiles of Advanced Tokamak regimes are controlled by a real time feedback system, in separate experiments. The erosion and co-deposition data base progressed significantly, in particular with a new quartz microbalance diagnostic allowing shot by shot measurements of

  12. Transverse jets and their control

    Energy Technology Data Exchange (ETDEWEB)

    Karagozian, Ann R. [Department of Mechanical and Aerospace Engineering, University of California, 48-121 Engineering IV, Los Angeles, CA 90095 (United States)

    2010-10-15

    The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield, with and without a combustion reaction, and with single or multi-phase flow. The complexities in this flowfield, whether the jet is introduced flush with respect to the injection wall or from an elevated pipe or nozzle, present challenges in accurately interrogating, analyzing, and simulating important jet features. This review article provides a background on these studies and applications as well as detailed features of the transverse jet, and mechanisms for its control via active means. Promising future directions for the understanding, interrogation, simulation, and control of transverse jet flows are also identified and discussed. (author)

  13. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  14. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  15. Forward Jet Vertex Tagging: A new technique for the identification and rejection of forward pileup jets

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The suppression of pileup forward jets is crucial for a variety of physics analyses at the LHC, ranging from VBF Higgs production to SUSY searches. A novel forward pileup tagging technique that exploits the correlation between central and forward jets originating from pileup interactions is presented. Tracking and vertex information in the central $\\eta$ region is used to indirectly tag and reject forward pileup jets that are back-to-back to central pileup jets. The pileup suppression power observed in Pythia8 simulated events increases with jet \\pt and ranges between a 30\\% and 60\\% pileup jet removal for 90\\% jet selection efficiency for jets between 20 and 50 GeV.

  16. Using neural networks with jet shapes to identify b jets in e+e- interactions

    International Nuclear Information System (INIS)

    Bellantoni, L.; Conway, J.S.; Jacobsen, J.E.; Pan, Y.B.; Wu Saulan

    1991-01-01

    A feed-forward neural network trained using backpropagation was used to discriminate between b and light quark jets in e + e - → Z 0 → qanti q events. The information presented to the network consisted of 25 jet shape variables. The network successfully identified b jets in two- and three-jet events modeled using a detector simulation. The jet identification efficiency for two-jet events was 61% and the probability to call a light quark jet a b jet equal to 20%. (orig.)

  17. Forward Jets and Forward-Central Jets at CMS

    CERN Document Server

    INSPIRE-00176215

    2012-01-01

    We report on cross section measurements for inclusive forward jet production and for the simultaneous production of a forward and a central jet in sqrt{s} = 7 TeV pp-collisions. Data collected in 2010, corresponding to an integrated luminosity of 3.14 pb^{-1}, is used for the measurements. Jets in the transverse momentum range pT = 35 - 140 GeV/c are reconstructed with the anti-kT (R = 0.5) algorithm. The extended coverage of large pseudo-rapidities is provided by the Hadronic Forward calorimeter (3.2 < \\eta < 4.7), while central jets are limited to \\eta < 2.8, covered by the main detector components. The two differential cross sections are presented as a function of the jet transverse momentum. Comparisons to next-to-leading order perturbative calculations, and predictions from event generators based on different parton showering mechanisms (PYTHIA and HERWIG) and parton dynamics (CASCADE) are shown.

  18. Investigations of needle-free jet injections.

    Science.gov (United States)

    Schramm-Baxter, J R; Mitragotri, S

    2004-01-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.

  19. Holographic Jet Quenching

    Science.gov (United States)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  20. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wanotayaroj, Chaowaroj [Center for High Energy Physics, University of Oregon,1371 E. 13th Ave, Eugene, OR 97403 (United States)

    2015-02-12

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  1. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    International Nuclear Information System (INIS)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-01-01

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  2. Pesticide Safety for Non-Certified Mixers, Loaders and Applicators = Uso Seguro de Pesticidas para Mezcladores, Cargadores y Aplicadores no Certificados.

    Science.gov (United States)

    Poli, Bonnie; Fluker, Sam S.

    Written in English and Spanish and completely illustrated, this manual provides basic safety information for pesticide workers. Mixers, loaders, and applicators work with pesticides at their greatest strength and have the highest risk of poisoning. Understanding the pesticide label is the first step to pesticide safety. The words…

  3. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency

  4. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency

  5. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    International Nuclear Information System (INIS)

    Kohjiro, S; Shitov, S V; Wang, Z; Uzawa, Y; Miki, S; Kawakami, A; Shoji, A

    2004-01-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 μm and the other is an anti-phase feed of 30 μm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature T RX = 691 K at 0.91 THz and T RX = 844 K at 0.80 THz, while 17% and T RX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz

  6. A circuit-level analysis of third order intermodulation mechanisms in CMOS mixers using time-invariant power and Volterra series

    NARCIS (Netherlands)

    Sakian, P.; Mahmoudi, R.; Roermund, van A.H.M.

    2011-01-01

    An in-depth analysis is performed on the third-order intermodulation distortions (IMD3) in the switching pair of active CMOS mixers. The nonlinear time-varying switching pair is described by a hypothetical circuit composed of a nonlinear time-invariant circuit cascaded with a linear time-varying

  7. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  8. Inclusive jet spectrum for small-radius jets

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2016-01-01

    Following on our earlier work on leading-logarithmic (LLR) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their $p_t$-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LLR predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  9. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  10. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers 32.5 dB dynamic range with digitally configurable voltage gain of 40 dB down to 7.5 dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and +50 dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 mm 2 . The LNA, TA, and mixer consume less than 15.3 mA at a supply voltage of 1.4 V.

  11. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    Ho Yo-Chuol

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers dB dynamic range with digitally configurable voltage gain of 40 dB down to dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 . The LNA, TA, and mixer consume less than mA at a supply voltage of 1.4 V.

  12. Numerical simulation of Hanford Tank 241-SY-101 jet initiated fluid dynamics

    International Nuclear Information System (INIS)

    Trent, D.S.; Michener, T.E.

    1994-01-01

    The episodic Gas Release Events (GREs) that have characterized the behavior of Hanford tank 241-SY-101 for the past several years are thought to result from the entrapment of gases generated in the settled solids, i.e., sludge, layer of the tank. Gases consisting of about 36% hydrogen by volume, which are generated by complicated and poorly understood radiological and chemical processes, are apparently trapped in the settled solids layer until their accumulation initiates a buoyant upset of this layer, abruptly releasing large quantities of gas. Once concept for preventing the gas accumulation is to mobilize the settled materials with jet mixing. It is suggested that continual agitation of the settled solids using a mixer pump would free the gas bubbles so that they could continually escape, thus mitigating the potential for accumulation of flammable concentrations of hydrogen in the tank dome space following a GRE. A pump test is planned to evaluate the effectiveness of the jet mixing mitigation concept. The pump will circulate liquid from the upper layer of the tank, discharging it through two horizontal jets located approximately 2 1/2 ft above the tank floor. To prepare for start-up of this pump test, technical, operation, and safety questions concerning an anticipated gas release were addressed by numerical simulation using the TEMPEST computer code. Simulations of the pump initiated gas release revealed that the amount of gas that could potentially be released to the tank dome space is very sensitive to the initial conditions assumed for the amount and distribution of gas in the sludge layer. Calculations revealed that within the assumptions regarding gas distribution and content, the pump might initiate a rollover--followed by a significant gas release--if the sludge layer contains more than about 13 to 14% gas distributed with constant volume fraction

  13. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  14. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Science.gov (United States)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-02-01

    Jets with a large radius R ≳ 1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large- R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale r groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  15. Sub- and supercritical jet disintegration

    Science.gov (United States)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  16. How jets get the jitters

    International Nuclear Information System (INIS)

    Zarmi, Y.

    1977-01-01

    Models in which the temporal evolution of hadronic jets and the rapidity ordering of particles within jets are correlated are discussed. Observable effects on the particle average transverse momentum (energy- and longitudinal momentum-dependence) characteristic of such models are pointed out. In particular, models in which, within jets, slow particles are produced first and fast particles come out last should exhibit the well known seagull effect, with rising, for fixed x, proportionately to the square root of the mean particle multiplicity. If, by analogy, the transverse momentum distributions of partons also exhibit such features, then we have a source of scaling violation in deep inelastic reactions that shows up at high energies rather than at low energies, and a source for an energy and Q 2 dependent in lepton pair production. (author)

  17. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  18. Machine learning in jet physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    High energy collider experiments produce several petabytes of data every year. Given the magnitude and complexity of the raw data, machine learning algorithms provide the best available platform to transform and analyse these data to obtain valuable insights to understand Standard Model and Beyond Standard Model theories. These collider experiments produce both quark and gluon initiated hadronic jets as the core components. Deep learning techniques enable us to classify quark/gluon jets through image recognition and help us to differentiate signals and backgrounds in Beyond Standard Model searches at LHC. We are currently working on quark/gluon jet classification and progressing in our studies to find the bias between event generators using domain adversarial neural networks (DANN). We also plan to investigate top tagging, weak supervision on mixed samples in high energy physics, utilizing transfer learning from simulated data to real experimental data.

  19. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  20. QCD jets from coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1979-11-19

    A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.

  1. A methodology to predict the uniformity of double-shell waste slurries based on mixer pump operation

    International Nuclear Information System (INIS)

    Liljegren, L.M.; Bamberger, J.A.

    1992-08-01

    Dimensional analysis is used to determine the similarity parameters that describe the uniformity of radioactive slurry wastes to be suspended by mixer pumps. The results of this analysis are applied to the design of scaled experiments that will determine the operating parameters that will ensure an adequately uniform feed stream during waste retrieval from Hanford double-shell tanks. Ten dimensionless parameters describing the slurry mixing process were identified. Of these, three describe purely geometric features, three describe slurry properties only, one is a dimensionless time scale, and three describe important dynamic factors. The three parameters describing the dynamic features are the Reynolds number, which describes the degree of turbulence in the tank; the Froude number, which describes the effects of stratification on the circulation patterns; and the gravitational settling number, which describes the balance between the work done by gravity to cause settling and the work done by the pump to resuspend particles

  2. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  3. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  4. Are energy drinks unique mixers in terms of their effects on alcohol consumption and negative alcohol-related consequences?

    Science.gov (United States)

    Johnson, Sean J; Alford, Chris; Stewart, Karina; Verster, Joris C

    2018-01-01

    Previous research has suggested that consuming alcohol mixed with energy drinks (AMED) increases overall alcohol consumption. However, there is limited research examining whether energy drinks are unique in their effects when mixed with alcohol, when compared with alcohol mixed with other caffeinated mixers (AOCM). Therefore, the aim of this survey was to investigate alcohol consumption on AMED occasions, to that on other occasions when the same individuals consumed AOCM or alcohol only (AO). A UK-wide online student survey collected data on the frequency of alcohol consumption and quantity consumed, as well as the number of negative alcohol-related consequences reported on AO, AMED and AOCM occasions (N=250). Within-subjects analysis revealed that there were no significant differences in the number of alcoholic drinks consumed on a standard and a heavy drinking session between AMED and AOCM drinking occasions. However, the number of standard mixers typically consumed was significantly lower on AMED occasions compared with AOCM occasions. In addition, when consuming AMED, students reported significantly fewer days consuming 5 or more alcohol drinks, fewer days mixing drinks, and fewer days being drunk, compared with when consuming AOCM. There were no significant differences in the number of reported negative alcohol-related consequences on AMED occasions to AOCM occasions. Of importance, alcohol consumption and negative alcohol-related consequences were significantly less on both AMED and AOCM occasions compared with AO occasions. The findings that heavy alcohol consumption occurs significantly less often on AMED occasions compared with AOCM occasions is in opposition to some earlier claims implying that greatest alcohol consumption occurs with AMED. The overall greatest alcohol consumption and associated negative consequences were clearly associated with AO occasions. Negative consequences for AMED and AOCM drinking occasions were similar, suggesting that energy

  5. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.

    Science.gov (United States)

    Huang, Ying; Tanaka, Mikiya

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10(-3) to 6.7 x 10(-3)s(-1), which was close to the value of 3.4 x 10(-3)s(-1) obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  6. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam.

    Science.gov (United States)

    Graceffa, Rita; Nobrega, R Paul; Barrea, Raul A; Kathuria, Sagar V; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C

    2013-11-01

    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  7. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying, E-mail: huang-ying@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Tanaka, Mikiya, E-mail: mky-tanaka@aist.go.jp [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10{sup -3} to 6.7 x 10{sup -3} s{sup -1}, which was close to the value of 3.4 x 10{sup -3} s{sup -1} obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  8. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler

    International Nuclear Information System (INIS)

    Huang, Ying; Tanaka, Mikiya

    2009-01-01

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10 -3 to 6.7 x 10 -3 s -1 , which was close to the value of 3.4 x 10 -3 s -1 obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  9. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    International Nuclear Information System (INIS)

    Graceffa, Rita; Nobrega, R. Paul; Barrea, Raul A.; Kathuria, Sagar V.; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C.

    2013-01-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

  10. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, Rita, E-mail: rita.graceffa@gmail.com [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Nobrega, R. Paul [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Barrea, Raul A. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Kathuria, Sagar V. [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Chakravarthy, Srinivas [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Bilsel, Osman [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Irving, Thomas C. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States)

    2013-11-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  11. QCD and Jets at Hadron Colliders

    CERN Document Server

    Sapeta, Sebastian

    2016-01-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  12. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  13. The time development of QCD jets

    International Nuclear Information System (INIS)

    Caneschi, L.

    1979-01-01

    The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)

  14. Quark vs Gluon Jet Tagging at ATLAS

    CERN Document Server

    Rubbo, Francesco; The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.

  15. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  16. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  17. Unsteady jet-slug dynamics

    International Nuclear Information System (INIS)

    Kang, S.W.

    1977-01-01

    The present analysis treats the transient load characteristics at the wet-well bottom during the vent-clearing event under loss-of-coolant accident conditions. A conceptual model is introduced wherein the liquid-jet inertia and the net momentum-efflux are the two dominant physical factors. The derived load-history equations were found to be functions of the vent-clearing characteristics and of the jet-decay mode in the liquid pool. The theoretical results obtained by a physical modelling of these phenomena appear to agree reasonably well with the available data from UCLA and from LLL 1 / 5 -scale experiments

  18. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  19. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    Science.gov (United States)

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8AbstractThe genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  20. Rebounding of a shaped-charge jet

    Science.gov (United States)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2007-09-01

    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.