WorldWideScience

Sample records for iterative feedback tuning

  1. Comparison of Iterative Feedback Tuning Search Techniques

    Institute of Scientific and Technical Information of China (English)

    Graham E. A.; Xie S. Q.; Gamage P.

    2006-01-01

    Iterative feedback tuning is an attractive method for industry as it is a model free approach using experiments conducted on the plant to tune controller parameters. Classically Gauss-Newton iterative methods are used in IFT to update the controller parameters in the negative gradient direction of a specified design criterion function. Levenburg-Marquardt and Trust-Region strategies offer attractive advantages to Gauss-Newton in many applications, these alternative methods are given and results from simulation presented. A discussion on the differences between line search methods and Trust-Region methods is given showing the Trust-Region search direction is more flexible. Step size selection is often the limiting factor and it is found that with unknown step size values and initial controller parameters the Trust-Region is the best selection, where as if overshoot is a concern Levenburg-Marquardt is a good choice.Gauss-Newton method provides quick convergence and a fast response time however it shows more dependence on the step size.

  2. Iterative feedback tuning of uncertain state space systems

    Directory of Open Access Journals (Sweden)

    J. K. Huusom

    2010-09-01

    Full Text Available Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.

  3. Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad

    2008-01-01

    Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...... by introducing an optimal perturbation signal in the tuning algorithm. For minimum variance control design the optimal design of an external perturbation signal is derived in terms of the asymptotic accuracy of the iterative feedback tuning method....

  4. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  5. Iterative Feedback Tuning in Fuzzy Control Systems. Theory and Applications

    Directory of Open Access Journals (Sweden)

    Stefan Preitl

    2006-07-01

    Full Text Available The paper deals with both theoretical and application aspects concerningIterative Feedback Tuning (IFT algorithms in the design of a class of fuzzy controlsystems employing Mamdani-type PI-fuzzy controllers. The presentation is focused on twodegree-of-freedom fuzzy control system structures resulting in one design method. Thestability analysis approach based on Popov’s hyperstability theory solves the convergenceproblems associated to IFT algorithms. The suggested design method is validated by realtimeexperimental results for a fuzzy controlled nonlinear DC drive-type laboratoryequipment.

  6. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer.

  7. TUNE FEEDBACK AT RHIC

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; CERNIGLIA,P.; CONNOLLY,R.; CUPOLO,J.; DAWSON,W.C.; DEGEN,C.; DELLAPENNA,A.; DELONG,J.; DREES,A.; HUHN,A.; KESSELMAN,M.; MARUSIC,A.; OERTER,B.; MEAD,J.; SCHULTHEISS,C.; SIKORA,R.; VAN ZEIJTS,J.

    2001-06-18

    Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001.

  8. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  9. Self-tuning Integral Force Feedback

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Samali, Bijan

    2000-01-01

    A self-tuning procedure is proposed for an active structural element with collocated sensing and actuation (a so-called ‘Smart Disc’). The procedure aims at optimal active damping by means of Integral Force Feedback control. In case the behavior of the structure to be damped may be described by a

  10. Tuning of Feedback Decoupling Controller for Two-Dimensional Heat Plate by Using VRFT Method

    Science.gov (United States)

    Matsunaga, Nobutomo; Nakano, Masahiko; Okajima, Hiroshi; Kawaji, Shigeyasu

    In manufacturing processes, inappropriate thermal distribution, which is observed in both steady and transient states of the thermal plant, leads to inferior quality. For a plant with strong thermal interaction, decoupling control is effective in precisely tuning the control system. We proposed the decoupling controller based on the temperature-difference feedback model. However, no parameter-identification method of thermal interaction has been presented so far. Traditionally, iterative tuning by trial and error has been used to tune the controller parameters. In the case of an industrial plant, the tuning time would be long because of the large time constants of the plant. Recently, the virtual reference feedback tuning (VRFT) method, which can be used for off-line tuning of the controller parameters using a set of I/O data, has been studied to examine the possibility of shortening the tuning time. In this paper, a VRFT method for the feedback decoupling controller is proposed for a two-dimensional heat plate by taking consideration the thermal interaction property. The effectiveness of this VRFT method is evaluated by performing an experimental simulation.

  11. Real-time feedback from iterative electronic structure calculations

    CERN Document Server

    Vaucher, Alain C; Reiher, Markus

    2015-01-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm employed and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semi-empirical methods as the data source and a...

  12. CLIC BDS Tuning, Alignment and Feedbacks Integrated Simulations

    CERN Document Server

    Dalena, B; Schulte, D; Snuverink, J; Tomas, R; Jones, J; Latina, A; Resta, J

    2010-01-01

    The CLIC BDS tuning, alignment and feedbacks studies have been typically performed independently and only over particular sections of the BDS. An effort is being put to integrate all these procedures to realistically evaluate the luminosity performance.

  13. Iterative Design and Classroom Evaluation of Automated Formative Feedback for Improving Peer Feedback Localization

    Science.gov (United States)

    Nguyen, Huy; Xiong, Wenting; Litman, Diane

    2017-01-01

    A peer-review system that automatically evaluates and provides formative feedback on free-text feedback comments of students was iteratively designed and evaluated in college and high-school classrooms. Classroom assignments required students to write paper drafts and submit them to a peer-review system. When student peers later submitted feedback…

  14. Real-time feedback from iterative electronic structure calculations.

    Science.gov (United States)

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-05

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback.

  15. Towards a robust phase locked loop tune feedback system

    CERN Document Server

    Jones, R; Luo, Y

    2005-01-01

    Attempts to introduce a reliable tune feedback loop at RHIC (BNL) [1] have been thwarted by two main problems, namely transition crossing and betatron coupling. The problem of transition crossing is a dynamic range problem, resulting from the increase in the revolution content of the observed signal as the bunch length becomes short and from the fast orbit changes that occur during transition. The dynamic range issue is being addressed by the development of a baseband tune measurement system [2] as part of the US LHC Accelerator Research Program (US-LARP). This paper will focus on the second problem, showing how a phase locked loop (PLL) tune measurement system can be used to continuously measure global betatron coupling, and in so doing allow for robust tune measurement and feedback in the presence of coupling.

  16. Tuning positive feedback for signal detection in noisy dynamic environments.

    Science.gov (United States)

    Johansson, Anders; Ramsch, Kai; Middendorf, Martin; Sumpter, David J T

    2012-09-21

    Learning from previous actions is a key feature of decision-making. Diverse biological systems, from neuronal assemblies to insect societies, use a combination of positive feedback and forgetting of stored memories to process and respond to input signals. Here we look how these systems deal with a dynamic two-armed bandit problem of detecting a very weak signal in the presence of a high degree of noise. We show that by tuning the form of positive feedback and the decay rate to appropriate values, a single tracking variable can effectively detect dynamic inputs even in the presence of a large degree of noise. In particular, we show that when tuned appropriately a simple positive feedback algorithm is Fisher efficient, in that it can track changes in a signal on a time of order L(h)=(|h|/σ)(-2), where |h| is the magnitude of the signal and σ the magnitude of the noise.

  17. Relay feedback tuning of robust PID controllers with iso-damping property.

    Science.gov (United States)

    Chen, YangQuan; Moore, Kevin L

    2005-02-01

    A new tuning method for proportional-integral-derivative (PID) controller design is proposed for a class of unknown, stable, and minimum phase plants. We are able to design a PID controller to ensure that the phase Bode plot is flat, i.e., the phase derivative w.r.t. the frequency is zero, at a given frequency called the "tangent frequency" so that the closed-loop system is robust to gain variations and the step responses exhibit an iso-damping property. At the "tangent frequency," the Nyquist curve tangentially touches the sensitivity circle. Several relay feedback tests are used to identify the plant gain and phase at the tangent frequency in an iterative way. The identified plant gain and phase at the desired tangent frequency are used to estimate the derivatives of amplitude and phase of the plant with respect to frequency at the same frequency point by Bode's integral relationship. Then, these derivatives are used to design a PID controller for slope adjustment of the Nyquist plot to achieve the robustness of the system to gain variations. No plant model is assumed during the PID controller design. Only several relay tests are needed. Simulation examples illustrate the effectiveness and the simplicity of the proposed method for robust PID controller design with an iso-damping property.

  18. Iterative tuning of feedforward IPC for two-bladed wind turbines

    Science.gov (United States)

    Mulders, SP; van Solingen, E.; van Wingerden, JW; Beerens, J.

    2016-09-01

    At present, the cost of offshore wind energy does not meet the level of onshore wind and fossil-based energy sources. One way to extend the turbine lifetime, and thus reduce cost, is by reduction of the fatigue loads of blades and other turbine parts using Individual Pitch Control (IPC). This type of control, which is generally implemented by feedback control using the MultiBlade Coordinate transformation on blade load measurement signals, is capable of mitigating the most dominant periodic loads. The main goal of this article is to develop a self-optimizing feedforward IPC strategy for a two-bladed wind turbine to reduce actuator duty cycle and reduce the dependency on blade load measurement signals. The approach uses blade load measurement data only initially for tuning of the feedforward controller, which is scheduled on the rotor azimuth angle and wind speed. The feedforward strategy will be compared to the feedback implementation in terms of load alleviation capabilities and actuator duty cycle. Results show that the implementation is capable of learning the optimal feedforward IPC controller in constant and turbulent wind conditions, to alleviate the pitch actuator duty cycle, and to considerably reduce harmonic fatigue loads without the need for blade load measurement signals after tuning.

  19. Asteroids Outreach Toolkit Development: Using Iterative Feedback In Informal Education

    Science.gov (United States)

    White, Vivian; Berendsen, M.; Gurton, S.; Dusenbery, P. B.

    2011-01-01

    The Night Sky Network is a collaboration of close to 350 astronomy clubs across the US that actively engage in public outreach within their communities. Since 2004, the Astronomical Society of the Pacific has been creating outreach ToolKits filled with carefully crafted sets of physical materials designed to help these volunteer clubs explain the wonders of the night sky to the public. The effectiveness of the ToolKit activities and demonstrations is the direct result of a thorough testing and vetting process. Find out how this iterative assessment process can help other programs create useful tools for both formal and informal educators. The current Space Rocks Outreach ToolKit focuses on explaining asteroids, comets, and meteorites to the general public using quick, big-picture activities that get audiences involved. Eight previous ToolKits cover a wide range of topics from the Moon to black holes. In each case, amateur astronomers and the public helped direct the development the activities along the way through surveys, focus groups, and active field-testing. The resulting activities have been embraced by the larger informal learning community and are enthusiastically being delivered to millions of people across the US and around the world. Each ToolKit is delivered free of charge to active Night Sky Network astronomy clubs. All activity write-ups are available free to download at the website listed here. Amateur astronomers receive frequent questions from the public about Earth impacts, meteors, and comets so this set of activities will help them explain the dynamics of these phenomena to the public. The Space Rocks ToolKit resources complement the Great Balls of Fire museum exhibit produced by Space Science Institute's National Center for Interactive Learning and scheduled for release in 2011. NSF has funded this national traveling exhibition and outreach ToolKit under Grant DRL-0813528.

  20. A Real-Time Optimization Framework for the Iterative Controller Tuning Problem

    Directory of Open Access Journals (Sweden)

    Gene A. Bunin

    2013-09-01

    Full Text Available We investigate the general iterative controller tuning (ICT problem, where the task is to find a set of controller parameters that optimize some user-defined performance metric when the same control task is to be carried out repeatedly. Following a repeatability assumption on the system, we show that the ICT problem may be formulated as a real-time optimization (RTO problem, thus allowing for the ICT problem to be solved in the RTO framework, which is both very flexible and comes with strong theoretical guarantees. In particular, we propose the use of a recently released RTO solver and outline a simple procedure for how this solver may be configured to solve ICT problems. The effectiveness of the proposed method is illustrated by successfully applying it to four case studies—two experimental and two simulated—that cover the tuning of model-predictive, general fixed-order and PID controllers, as well as a system of controllers working in parallel.

  1. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    Science.gov (United States)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  2. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System.

    Science.gov (United States)

    Bugiel, Michael; Jannasch, Anita; Schäffer, Erik

    2017-01-01

    Feedback systems can be used to control the value of a system variable. In optical tweezers, active feedback is often implemented to either keep the position or tension applied to a single biomolecule constant. Here, we describe the implementation of the latter: an optical force-clamp setup that can be used to study the motion of processive molecular motors under a constant load. We describe the basics of a software-implemented proportional-integral-derivative (PID) controller, how to tune it, and how to determine its optimal feedback rate. Limitations, possible feed-forward applications, and extensions into two- and three-dimensional optical force clamps are discussed. The feedback is ultimately limited by thermal fluctuations and the compliance of the involved molecules. To investigate a particular mechanical process, understanding the basics and limitations of the feedback system will be helpful for choosing the proper feedback hardware, for optimizing the system parameters, and for the design of the experiment.

  3. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  4. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    Science.gov (United States)

    Zhabitsky, V. M.

    2012-07-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency.

  5. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    Science.gov (United States)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  6. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2005-01-01

    The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only (┴)-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 nm, and the sensor can discriminate the target's moving direction easily.

  7. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  8. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  9. A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back

    Directory of Open Access Journals (Sweden)

    Emre Sariyildiz

    2015-08-01

    Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.

  10. Minimum Mean-Squared Error Iterative Successive Parallel Arbitrated Decision Feedback Detectors for DS-CDMA Systems

    CERN Document Server

    de Lamare, Rodrigo C

    2012-01-01

    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new it...

  11. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    Science.gov (United States)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  12. Dynamic Output Feedback Power-Level Control for the MHTGR Based On Iterative Damping Assignment

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2012-06-01

    Full Text Available Because of its strong inherent safety features and high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is already seen as the central part of the next generation of nuclear plants. Such power plants are being considered for industrial applications with a wide range of power levels, and thus power-level control is an important technique for their efficient and stable operation. Stimulated by the high regulation performance provided by nonlinear controllers, a novel dynamic output-feedback nonlinear power-level regulator is developed in this paper based on the technique of iterative damping assignment (IDA. This control strategy can provide the L2 disturbance attenuation performance under modeling uncertainty or exterior disturbance, and can also guarantee the globally asymptotic closed-loop stability without uncertainty and disturbance. This newly built control strategy is then applied to the power-level regulation of the HTR-PM plant, and numerical simulation results show both the feasibility and high performance of this newly-built control strategy. Furthermore, the relationship between the values of the parameters and the performance of this controller is not only illustrated numerically but also analyzed theoretically.

  13. Attention to color sharpens neural population tuning via feedback processing in the human visual cortex hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-09-25

    Attention can facilitate the selection of elementary object features like color, orientation, or motion. This is referred to as feature-based attention and commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. While gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color-distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex (VO-1/hV4). We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target.SIGNIFICANCE STATEMENTWhether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse-to-fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time, by attenuating the

  14. A Data-Driven Control Design Approach for Freeway Traffic Ramp Metering with Virtual Reference Feedback Tuning

    Directory of Open Access Journals (Sweden)

    Shangtai Jin

    2014-01-01

    Full Text Available ALINEA is a simple, efficient, and easily implemented ramp metering strategy. Virtual reference feedback tuning (VRFT is most suitable for many practical systems since it is a “one-shot” data-driven control design methodology. This paper presents an application of VRFT to a ramp metering problem of freeway traffic system. When there is not enough prior knowledge of the controlled system to select a proper parameter of ALINEA, the VRFT approach is used to optimize the ALINEA's parameter by only using a batch of input and output data collected from the freeway traffic system. The extensive simulations are built on both the macroscopic MATLAB platform and the microscopic PARAMICS platform to show the effectiveness and applicability of the proposed data-driven controller tuning approach.

  15. Dynamics of Iterative Reader Feedback : An Analysis of Two Successive Plus-Minus Evaluation Studies

    NARCIS (Netherlands)

    Jong, de Menno; Rijnks, Dietha

    2006-01-01

    A brochure that had been revised on the basis of feedback from readers using the plus-minus evaluation method was evaluated again using the same method. This article compares the results of these two successive evaluation studies to examine the dynamics of evaluating and revising using a troubleshoo

  16. Feed-back control of 2/1 locked mode phase: experiment on DIII-D and modeling for ITER

    Science.gov (United States)

    Choi, W.; Olofsson, K. E. J.; Sweeney, R.; Volpe, F. A.

    2016-10-01

    A model has been developed for ITER to predict the dynamics of saturated m / n = 2/1 tearing modes subject to various torques. The modes, with finite moment of inertia, are modeled as surface currents interacting with error fields, applied magnetic perturbations generated by internal and external non-axisymmetric coils, the vacuum vessel, and the first wall. Using this model, a feed-back controller has been designed to control the phase of locked modes. As predicted by simulation, experimental results on DIII-D show a simple fixed-gain controller can impose a desired constant phase or entrain the mode at a desired constant frequency (e.g. 20 Hz). For a given current in the control coils, a maximum entrainment frequency exists and is dependent on island width. The performance of such a controller in ITER is hereby simulated. The controller is expected to be useful in assisting island suppression with electron cyclotron current drive, as well as to prevent large amplitude locked modes and possible disruption. This work was supported in part by the US Department of Energy under DE-SC0008520.

  17. Evolution of gene network activity by tuning the strength of negative-feedback regulation.

    Science.gov (United States)

    Peng, Weilin; Liu, Ping; Xue, Yuan; Acar, Murat

    2015-02-11

    Despite the examples of protein evolution via mutations in coding sequences, we have very limited understanding on gene network evolution via changes in cis-regulatory elements. Using the galactose network as a model, here we show how the regulatory promoters of the network contribute to the evolved network activity between two yeast species. In Saccharomyces cerevisiae, we combinatorially replace all regulatory network promoters by their counterparts from Saccharomyces paradoxus, measure the resulting network inducibility profiles, and model the results. Lowering relative strength of GAL80-mediated negative feedback by replacing GAL80 promoter is necessary and sufficient to have high network inducibility levels as in S. paradoxus. This is achieved by increasing OFF-to-ON phenotypic switching rates. Competitions performed among strains with or without the GAL80 promoter replacement show strong relationships between network inducibility and fitness. Our results support the hypothesis that gene network activity can evolve by optimizing the strength of negative-feedback regulation.

  18. Evaluation of physicians' professional performance: An iterative development and validation study of multisource feedback instruments

    Directory of Open Access Journals (Sweden)

    Overeem Karlijn

    2012-03-01

    Full Text Available Abstract Background There is a global need to assess physicians' professional performance in actual clinical practice. Valid and reliable instruments are necessary to support these efforts. This study focuses on the reliability and validity, the influences of some sociodemographic biasing factors, associations between self and other evaluations, and the number of evaluations needed for reliable assessment of a physician based on the three instruments used for the multisource assessment of physicians' professional performance in the Netherlands. Methods This observational validation study of three instruments underlying multisource feedback (MSF was set in 26 non-academic hospitals in the Netherlands. In total, 146 hospital-based physicians took part in the study. Each physician's professional performance was assessed by peers (physician colleagues, co-workers (including nurses, secretary assistants and other healthcare professionals and patients. Physicians also completed a self-evaluation. Ratings of 864 peers, 894 co-workers and 1960 patients on MSF were available. We used principal components analysis and methods of classical test theory to evaluate the factor structure, reliability and validity of instruments. We used Pearson's correlation coefficient and linear mixed models to address other objectives. Results The peer, co-worker and patient instruments respectively had six factors, three factors and one factor with high internal consistencies (Cronbach's alpha 0.95 - 0.96. It appeared that only 2 percent of variance in the mean ratings could be attributed to biasing factors. Self-ratings were not correlated with peer, co-worker or patient ratings. However, ratings of peers, co-workers and patients were correlated. Five peer evaluations, five co-worker evaluations and 11 patient evaluations are required to achieve reliable results (reliability coefficient ≥ 0.70. Conclusions The study demonstrated that the three MSF instruments produced

  19. Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning.

    Science.gov (United States)

    Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S

    2016-06-27

    In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers.

  20. PID Tuning Using Extremum Seeking

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Krstic, M

    2005-11-15

    Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to open the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9

  1. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall

    Science.gov (United States)

    Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET

    2017-04-01

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  2. Feedback.

    Science.gov (United States)

    Richardson, Barbara K

    2004-12-01

    The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.

  3. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    Science.gov (United States)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  4. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    Science.gov (United States)

    De Doncker, Rik W. A. A.

    1992-01-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  5. Closed Loop Identification Based on the Virtual Reference Feedback Tuning Applied to a Virtual Two-Degree-of-Freedom Control System

    Science.gov (United States)

    Kaneko, Osamu; Beak, Yong Kawn; Ohtsuka, Toshiyuki

    A new identification method with respect to the parameter tuning of a controller is presented. Here, we introduce a virtual two-degree-of-freedom control structure with a feedforward controller described by using a mathematical model of a plant with a tunable parameter. After performing a one-shot experiment, we apply the virtual reference feedback tuning (VRFT), which is a rational and effective tuning method for the parameter of a controller with only one-shot experiment data, to a virtual feedforward controller by using the experimental data obtained in the actual closed loop. We give a condition for a prefilter which is applied to the data to guarantee that the obtained parameter using the VRFT of a controller is close to the desired one. We also show that the prefilter for the identification in the proposed method has a simpler form than that obtained in the normal VRFT for two-degree-of-freedom control scheme. Finally, in order to show the validity of the proposed method, we give an experimental result on the identification of the dynamics of the opening-closing speed of an elevator door.

  6. Formal Verification of an Iterative Low-Power x86 Floating-Point Multiplier with Redundant Feedback

    Directory of Open Access Journals (Sweden)

    Peter-Michael Seidel

    2011-10-01

    Full Text Available We present the formal verification of a low-power x86 floating-point multiplier. The multiplier operates iteratively and feeds back intermediate results in redundant representation. It supports x87 and SSE instructions in various precisions and can block the issuing of new instructions. The design has been optimized for low-power operation and has not been constrained by the formal verification effort. Additional improvements for the implementation were identified through formal verification. The formal verification of the design also incorporates the implementation of clock-gating and control logic. The core of the verification effort was based on ACL2 theorem proving. Additionally, model checking has been used to verify some properties of the floating-point scheduler that are relevant for the correct operation of the unit.

  7. Formal Verification of an Iterative Low-Power x86 Floating-Point Multiplier with Redundant Feedback

    CERN Document Server

    Seidel, Peter-Michael

    2011-01-01

    We present the formal verification of a low-power x86 floating-point multiplier. The multiplier operates iteratively and feeds back intermediate results in redundant representation. It supports x87 and SSE instructions in various precisions and can block the issuing of new instructions. The design has been optimized for low-power operation and has not been constrained by the formal verification effort. Additional improvements for the implementation were identified through formal verification. The formal verification of the design also incorporates the implementation of clock-gating and control logic. The core of the verification effort was based on ACL2 theorem proving. Additionally, model checking has been used to verify some properties of the floating-point scheduler that are relevant for the correct operation of the unit.

  8. A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, A.C.; Dewald, J.P.A.; Van der Helm, F.C.T.

    2009-01-01

    This study aims to quantify the separate contributions of muscle force feedback, muscle spindle activity and co-contraction to the performance of voluntary tasks (‘‘reduce the influence of perturbations on maintained force or position’’). Most human motion control studies either isolate only one con

  9. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    Science.gov (United States)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  10. Fictitious Reference Iterative Tuning-Based Two-Degrees-of-Freedom Method for Permanent Magnet Synchronous Motor Speed Control Using FPGA for a High-Frequency SiC MOSFET InverterMOSFET Inverter

    Directory of Open Access Journals (Sweden)

    Charles Ronald Harahap

    2016-11-01

    Full Text Available This paper proposes proportional-integral/proportional gain controller parameter tuning in a two-degrees-of-freedom (2DOF control system using the fictitious reference iterative tuning (FRIT method for permanent magnet synchronous motor (PMSM speed control using a field-programmable gate array (FPGA for a high-frequency SiC MOSFET (metal oxide semiconductor field-effect transistor inverter. The PI-P (proportional-integral/proportional controller parameters can be tuned using the FRIT method from one-shot experimental data without using a mathematical model of the plant. Particle swarm optimization is used for FRIT optimization. An inverter that uses a SiC MOSFET is presented to achieve high-frequency operation at up to100 kHz using a switching pulse-width modulation (PWM technique. As a result, a high-responsivity and high-stability PMSM (permanent magnet synchronous motor control system is achieved, where the speed response follows the ideal response characteristic for both the step response and the disturbance response. High-responsivity and optimal disturbance rejection can be achieved using the 2DOF control system. FPGA-based digital hardware control is used to maximize the switching frequency of the SiC MOSFET inverter. Finally, an experimental system is set up, and experimental results are presented to prove the viability of the proposed method.

  11. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost;

    2012-01-01

    block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state...

  12. A New Feedback-feedforward Configuration for the Iterative Learning Control of a Class of Discrete-time Systems%一种新的非线性离散时间系统迭代学习控制的前馈-反馈机制

    Institute of Scientific and Technical Information of China (English)

    侯忠生; 许建新

    2007-01-01

    This paper presents a new feedback-feedforward configuration for the iterative learning control (ILC) design with feedback, which consists of a feedback and a feedforward component. The feedback integral controller stabilizes the system,and takes the dominant role during the operation, and the feedforward ILC compensates for the repeatable nonlinear/unknown time-varying dynamics and disturbances, thereby enhancing the performance achieved by feedback control alone. As the most favorable point of this control strategy, the feedforward ILC and the feedback control can work either independently or jointly without making efforts to reconfigurate or retune the feedforward/feedback gains. With rigorous analysis, the proposed learning control scheme guarantees the asymptotic convergences along the iteration axis.

  13. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost;

    2012-01-01

    Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......-based iteration control, where both skeletons offer supportive type safety by dedicated types geared towards stream communication for the iteration. The skeleton iteration framework is implemented in the parallel Haskell dialect Eden. We use example applications to assess performance and overhead....

  14. A method for closed loop automatic tuning of PID controllers

    Directory of Open Access Journals (Sweden)

    Tor S. Schei

    1992-07-01

    Full Text Available A simple method for the automatic tuning of PID controllers in closed loop is proposed. A limit cycle is generated through a nonlinear feedback path from the process output to the controller reference signal. The frequency of this oscillation is above the crossover frequency and below the critical frequency of the loop transfer function. The amplitude and frequency of the oscillation are estimated and the control parameters are adjusted iteratively such that the closed loop transfer function from the controller reference to the process output attains a specified amplitude at the oscillation frequency.

  15. 基于反馈迭代的双带功率放大器数字预失真%Digital predistortion based on feedback iteration for concurrent dual-band power amplifier

    Institute of Scientific and Technical Information of China (English)

    李永松; 陈客松; 胡哲彬; 王显飞; 朱盼

    2013-01-01

    为补偿双带功率放大器中的非线性,提出了二维多项式模型并结合反馈迭代法建立数字预失真系统.相比于传统的线性化技术,二维数字预失真方法降低了对数/模转换器和模/数转换器的要求.仿真结果表明,采用间隔频率为100 MHz的两路WCDMA信号同时驱动功率放大器,二维多项式模型能够更好地消除非线性失真,反馈迭代方法在求逆上更精确.%This paper presents a 2D digital predistortion(2D-DPD) technique combined with the feedback iteration method that is applied to linearization of concurrent dual-band power amplifier.Compared with conventional linearization techniques,this 2D-DPD method reduces the requirement for the digital-to-analog and analog-to-digital converter device.This simulation results show that using two modulated wideband code-division multiple-access signals (WCDMA)at the same time,separated the frequency by 100 MHz,two-dimensional polynomial model can better eliminate the nonlinear distortion and feedback iteration method used on the inverse is more accurate.

  16. 基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制%A bottom-following controller for underactuated AUV based on iterative sliding and increment feedback

    Institute of Scientific and Technical Information of China (English)

    边信黔; 程相勤; 贾鹤鸣; 严浙平; 张利军

    2011-01-01

    为实现欠驱动自治水下机器人(AUY)在未知海流干扰作用下的地形跟踪控制,提出一种基于非线性迭代滑模增量反馈的航迹跟踪控制器.基于虚拟向导的方法,建立AUV垂直面航迹跟踪误差方程.采用迭代方法,设计滑模增量反馈控制器,无需对AUV模型参数不确定部分和海流干扰进行估计,这样避免了AUV俯仰舵的抖振现象,并且减小了输出反馈控制的稳态误差与超调问题.仿真实验表明,所设计的控制器对AUV系统的模型参数摄动及海流干扰变化不敏感,所设计的参数易干调节.%In order to realize the bottom-following control for underactuated autonomous underwater vehicle(AUV) under the ocean current, an increment feedback control method based on nonlinear iterative sliding mode control is presented for path following.The path following error equation in vertical plane is established based on virtual guide method.Then an increment feedback control law is designed based on iterative sliding modes without the uncertainty of AUV model and ocean current disturbances' estimating.The problem of chattering by the hydroplane is circumvented, and the static error and overshoot by output feedback control are decreased.The results of simulation experiments show that the controller is robust against the systemic variations and disturbances, and the parameters are easy to be adjusted.

  17. Research and Teaching: Using Models from the Literature and Iterative Feedback to Teach Students to Construct Effective Data Figures for Poster Presentations

    Science.gov (United States)

    Gray, Christine E.; Contreras-Shannon, Veronica E.

    2017-01-01

    Analyzing, interpreting, and clearly presenting real data are skills we hope to develop in all students, majors and nonmajors alike. These process skills require lots of practice coupled with targeted feedback from instructors or mentors. Here we present a pedagogy implemented within a course-based research experience that is designed to help…

  18. Optimization of Feedback Control of Flow over a Circular Cylinder

    Science.gov (United States)

    Son, Donggun; Kim, Euiyoung; Choi, Haecheon

    2012-11-01

    We perform a feedback gain optimization of the proportional-integral-differential (PID) control for flow over a circular cylinder at Re = 60 and 100. We measure the transverse velocity at a centerline location in the wake as a sensing variable and provide blowing and suction at the upper and lower slots on the cylinder surface as an actuation. The cost function to minimize is defined as the mean square of the sensing variable, and the PID control gains are optimized by iterative feedback tuning method which is a typical model free gain optimization method. In this method, the control gains are iteratively updated by the gradient of cost function until the control system satisfies a certain stopping criteria. The PID control with optimal control gains successfully reduces the velocity fluctuations at the sensing location and attenuates (or annihilates) vortex shedding in the wake, resulting in the reduction in the mean drag and lift fluctuations. Supported by the NRF Program (2011-0028032).

  19. Implementation of a Newton-Krylov iterative method to address strong non-linear feedback effects in FORMOSA-B BWR core simulator

    Science.gov (United States)

    Kastanya, Doddy Febrian

    A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of the FORMOSA-B boiling water reactor (BWR) core simulator. The new solver treats the strong non-linearities in the problem explicitly using the Newton's method, replacing the traditionally used nested iterative approach. Taking advantage of the higher convergence rate provided by the Newton's method, assuming that a good initial estimate of the unknowns is provided, and utilizing an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion equations coupled with a two-phase flow model within a BWR core simulator. The robustness of the solver has been tested against numerous BWR core configurations and consistent results have been observed each time. The best exact Newton-BICGSTAB solver performance provides an overall speedup of 2.07 to the core simulator, with reference to the traditional approach, i.e. outer (fission-source)-inner (red/black line SOR). When solving the same problem using the traditional approach but with the BICGSTAB solver as the inner iteration solver [traditional (BICGSTAB)], we observed a speedup of 1.85. This means that the Newton-BICGSTAB solver provides an additional 12% increase in the overall speedup over the traditional (BICGSTAB) solver. However, one needs to note that, on average, the exact Newton-BICGSTAB solver provides an overall speedup of around 1.70; whereas, on average, the traditional (BICGSTAB) provides an overall speedup of around 1.60. An investigation on the feasibility of implementing an inexact Newton-BICGSTAB solver indicates that further reduction in the execution time can likely be obtained through this approach. This study shows that the inexact Newton-BICGSTAB solver can provide speedups of 1.73 to 2.10 with respect to the traditional solver.

  20. A State Feedback Controller Used to Solve an Ill-posed Linear System by a GL(n, R Iterative Algorithm

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2013-11-01

    Full Text Available Starting from a quadratic invariant manifold in terms of the residual vector ${extbf r}={extbf B}{extbf x}-{extbf b}$ for an $n$-dimensional ill-posed linear algebraic equations system ${extbf B}{extbf x}={extbf b}$, we derive an ODEs system for ${extbf x}$ which is equipped with a state feedback controller to enforce the orbit of the state vector ${extbf x}$ on a specified manifold, whose residual-norm is exponentially decayed. To realize the above idea we develop a very powerful implicit scheme based on the novel $GL(n,{mathbb R}$ Lie-group method to integrate the resultant differential algebraic equation (DAE. Through numerical tests of inverse problems we find that the present Lie-group DAE algorithm can significantly accelerate the convergence speed, and is robust enough against the random noise.

  1. 基于虚拟参考反馈整定的改进无模型自适应控制%Improved model free adaptive control approach with virtual reference feedback tuning

    Institute of Scientific and Technical Information of China (English)

    金尚泰; 赵汝莉; 侯忠生; 池荣虎

    2015-01-01

    An improved model-free adaptive control approach(iMFAC) with virtual reference feedback tuning(VRFT) is proposed for a class of discrete-time nonlinear systems. Firstly, the original nonlinear system is transformed into the compact form dynamic linearization(CFDL) data model by using dynamic linearization method. Then, the control algorithm and pseudo-partial-derivative(PPD) estimation algorithm are designed based on the optimization technique. Finally, estimation algorithms of the initial value and the reset value of PPD are designed based on virtual reference feedback tuning, respectively. The controller design depends merely on the measured input and output(I/O) data of the controlled plant and guarantees BIBO stability and tracking error convergence of the closed-loop system. Numerical simulation results show the effectiveness of the proposed approach.%针对一类离散时间非线性系统,提出一种基于虚拟参考反馈整定的改进无模型自适应控制方案.首先,利用动态线性化方法给出非线性系统的紧格式动态线性化模型;然后,基于优化技术设计控制算法和伪偏导数估计算法;最后,设计基于虚拟参考反馈整定的伪偏导数初值和重置值的估计算法.该控制方案设计仅依赖于被控系统的输入和输出数据,且能保证闭环系统的稳定性和收敛性.仿真比较结果验证了所提出方法的有效性.

  2. The development of a thermal hydraulic feedback mechanism with a quasi-fixed point iteration scheme for control rod position modeling for the TRIGSIMS-TH application

    Science.gov (United States)

    Karriem, Veronica V.

    Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the

  3. 主动调谐质量阻尼器最优反馈系数的再探究%Thorough inquiry into optimum feedback factors of active tuned mass damper

    Institute of Scientific and Technical Information of China (English)

    李春祥; 曹黎媛; 曹宝雅

    2016-01-01

    基于频域内遗传优化和时域分析,对主动调谐质量阻尼器(ATMD)的反馈系数进行了深入研究。通过考察最优化设计 ATMD 的结构层间位移控制有效性、楼层绝对加速度控制有效性及控制系统冲程和峰值控制力,发现在参数合理和控制力相近情况下,负标准化加速度反馈增益系数(NAFGF)ATMD 比正标准化加速度反馈增益系数(NAFGF) ATMD 具有更好的控制有效性。%Based on the genetic optimization in frequency domain and the analysis in time domain,a thorough inquiry into optimum feedback factors of active tuned mass damper (ATMD)was made.It is found out that the control effectiveness of the ATMD with negative normalized acceleration feedback gain factors (NAFGFs)is better than that with positive NAFGFs in the conditions of reasonable parameters and approximately equal control forces via evaluating the effectiveness of the storey drift control,effectiveness of the floor absolute acceleration control as well as the strokes control and peak forces control.

  4. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    Science.gov (United States)

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery.

  5. Digital Detection and feedback Fluxgate Magnetometer

    DEFF Research Database (Denmark)

    Piil-Henriksen, J.; Merayo, José M.G.; Nielsen, Otto V;

    1996-01-01

    A new full Earth's field dynamic feedback fluxgate magnetometer is described. It is based entirely on digital signal processing and digital feedback control, thereby replacing the classical second harmonic tuned analogue electronics by processor algorithms. Discrete mathematical cross...

  6. Iterative guided image fusion

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    2016-08-01

    Full Text Available We propose a multi-scale image fusion scheme based on guided filtering. Guided filtering can effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at the decomposition and at the recombination stage of the multi-scale fusion process. First, size-selective iterative guided filtering is applied to decompose the source images into approximation and residual layers at multiple spatial scales. Then, frequency-tuned filtering is used to compute saliency maps at successive spatial scales. Next, at each spatial scale binary weighting maps are obtained as the pixelwise maximum of corresponding source saliency maps. Guided filtering of the binary weighting maps with their corresponding source images as guidance images serves to reduce noise and to restore spatial consistency. The final fused image is obtained as the weighted recombination of the individual residual layers and the mean of the approximation layers at the coarsest spatial scale. Application to multiband visual (intensified and thermal infrared imagery demonstrates that the proposed method obtains state-of-the-art performance for the fusion of multispectral nightvision images. The method has a simple implementation and is computationally efficient.

  7. Embeddings of Iteration Trees

    OpenAIRE

    Mitchell, William

    1992-01-01

    This paper, dating from May 1991, contains preliminary (and unpublishable) notes on investigations about iteration trees. They will be of interest only to the specialist. In the first two sections I define notions of support and embeddings for tree iterations, proving for example that every tree iteration is a direct limit of finite tree iterations. This is a generalization to models with extenders of basic ideas of iterated ultrapowers using only ultrapowers. In the final section (which is m...

  8. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  9. Tune variations in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aquilina, N. [CERN, Geneva (Switzerland); University of Malta, Msida (Malta); Giovannozzi, M.; Lamont, M. [CERN, Geneva (Switzerland); Sammut, N. [University of Malta, Msida (Malta); Steinhagen, R. [CERN, Geneva (Switzerland); Todesco, E., E-mail: ezio.todesco@cern.ch [CERN, Geneva (Switzerland); Wenninger, J. [CERN, Geneva (Switzerland)

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  10. Iterative quantum algorithm for distributed clock synchronization

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Fu; Zhang Shou

    2012-01-01

    Clock synchronization is a well-studied problem with many practical and scientific applications.We propose an arbitrary accuracy iterative quantum algorithm for distributed clock synchronization using only three qubits.The n bits of the time difference △ between two spatially separated clocks can be deterministically extracted by communicating only O(n) messages and executing the quantum iteration process n times based on the classical feedback and measurement operations.Finally,we also give the algorithm using only two qubits and discuss the success probability of the algorithm.

  11. Study on the Tuning of PEFP DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyung Tae; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Yong Suk [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A conventional 20 MeV drift tube linac(DTL) for the Proton Engineering Frontier Project(PEFP) has been developed as a low energy section of 100 MeV accelerator. The DTL consists of four tanks with 152 cells supplied with 900 kW RF power from 350 MHz klystron through the ridge-loaded waveguide coupler. After the fabrication and assembling of the DTL, it should be tuned to meet the requirement of the resonant frequency and field profile. The tuning goal of the resonant frequency is 350 MHz at 40 .deg. C and that of the field flatness is {+-}1%. We performed the bead pull measurements under various combinations of slug tuners position and post couplers position. The final tuning can be obtained through several iterations of the tuner position adjustment and measurement. The methods and the results of the DTL tuning will be given in this presentation.

  12. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  13. Novel aspects of plasma control in ITER

    Science.gov (United States)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  14. Approximate Modified Policy Iteration

    CERN Document Server

    Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu

    2012-01-01

    Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...

  15. Applied iterative methods

    CERN Document Server

    Hageman, Louis A

    2004-01-01

    This graduate-level text examines the practical use of iterative methods in solving large, sparse systems of linear algebraic equations and in resolving multidimensional boundary-value problems. Assuming minimal mathematical background, it profiles the relative merits of several general iterative procedures. Topics include polynomial acceleration of basic iterative methods, Chebyshev and conjugate gradient acceleration procedures applicable to partitioning the linear system into a "red/black" block form, adaptive computational algorithms for the successive overrelaxation (SOR) method, and comp

  16. Supervisor Feedback.

    Science.gov (United States)

    Hayman, Marilyn J.

    1981-01-01

    Investigated the effectiveness of supervisor feedback in contributing to learning counseling skills. Counselor trainees (N=64) were assigned to supervisor feedback, no supervisor feedback, or control groups for three training sessions. Results indicated counseling skills were learned best by students with no supervisor feedback but self and peer…

  17. ITER test programme

    Science.gov (United States)

    Abdou, M.; Baker, C.; Casini, G.

    1991-07-01

    The International Thermonuclear Experimental Reactor (ITER) was designed to operate in two phases. The first phase, which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER.

  18. Stabilization of betatron tune in Indus-2

    CERN Document Server

    Jena, Saroj; Agrawal, R K; Ghodke, A D; Fatnani, Pravin; Puntambekar, T A

    2013-01-01

    Indus-2 is a synchrotron radiation source which is operational at RRCAT, Indore; India. It is essentially pertinent in any synchrotron radiation facility to store the electron beam without beam loss. During the day to day operation of Indus-2 storage ring difficulty was being faced in accumulating higher beam current. After examining, it was found that the working point was shifting from its desired value during accumulation. For smooth beam accumulation, a fixed desired tune in both horizontal and vertical plane plays a great role in avoiding the beam loss via resonance process. This demanded a betatron tune feedback system to be put in storage ring and after putting ON this feedback, the beam accumulation was smooth. The details of this feedback and its working principle are described in this paper.

  19. Iteration, Not Induction

    Science.gov (United States)

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  20. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  1. Auto-tuning for NMR probe using LabVIEW

    Science.gov (United States)

    Quen, Carmen; Pham, Stephanie; Bernal, Oscar

    2014-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.

  2. Musical experience sharpens human cochlear tuning.

    Science.gov (United States)

    Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P

    2016-05-01

    The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Advances Towards the Measurement and Control of LHC Tune and Chromaticity

    CERN Document Server

    Cameron, P; Degen, C; Della Penna, A; Hoff, L T; Mead, J; Sikora, R

    2005-01-01

    Requirements for tune and chromaticity control in most superconducting hadron machines, and in particular the LHC, are stringent. In order to reach nominal operation, the LHC will almost certainly require feedback on both tune and chromaticity. Experience at RHIC has also shown that coupling control is crucial to successful tune feedback. A prototype baseband PLL tune measurement system, intended for the LHC, has recently been brought into operation at RHIC. We report on the performance of that system and compare it with the extensive accumulation of data from the RHIC 245MHz PLL. In addition the implementation of coupling and chromaticity feedback using PLL systems will be discussed.

  4. Approximate iterative algorithms

    CERN Document Server

    Almudevar, Anthony Louis

    2014-01-01

    Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a

  5. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  6. Self-tuning tuned mass damper (TMD)

    Science.gov (United States)

    Griffin, Steven

    2017-04-01

    Tuned mass dampers (TMD) are heavily damped resonant devices which add damping to lightly damped, vibrational modes of a structure by dynamically coupling into the lightly damped modes. In practice, a TMD is a damped spring/mass resonator that is tuned so that its frequency is close to a lightly damped mode on the host structure. The TMD is attached to the host structure at a location of large amplitude motion for the mode to be dampened, and its motion is coupled into the host structure's motion. If the TMD is tuned correctly, two damped vibrational modes result, which take the place of the original lightly damped mode of the host structure and heavily damped mode of the TMD. Since aerospace structures tend to respond unfavorably at lightly damped modes in the presence of a dynamic disturbance environment, introduction of one or several TMDs can greatly reduce the dynamic response of a structure by damping problematic modes. A self-tuning TMD is described that can perform all the steps necessary to automatically tune itself and minimize the response of a structure with lightly damped modes and a dynamic excitation. The self-tuning TMD concept introduced here uses a voice coil / magnet combination as -an actuator which enables an innovative stiffness adjustment mechanism -a loss mechanism for the tuned mass damper -a means of excitation for identifying lightly damped modes of the host structure Along with an accelerometer and a tethered power supply/computer, the self-tuning TMD can automatically identify and damp lightly damped modes.

  7. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne, CH and P. BRUZZONE / CRPP-EPFL, Zürich, CH The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the...

  8. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne and P. BRUZZONE / CRPP-EPFL, Zürich The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the de...

  9. Quartz tuning fork based microwave impedance microscopy

    Science.gov (United States)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  10. Robust iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  11. ITER Shape Controller and Transport Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  12. Quantum Iterated Function Systems

    CERN Document Server

    Lozinski, A; Slomczynski, W; Lozinski, Artur; Zyczkowski, Karol; Slomczynski, Wojciech

    2003-01-01

    Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on the initial point. In an analogous way, we define quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant state.

  13. Verifying elementary ITER maintenance actions with the MS2 benchmark product

    NARCIS (Netherlands)

    Heemskerk, C. J. M.; Elzendoorn, B. S. Q.; Magielsen, A. J.; Schropp, G. Y. R.

    2011-01-01

    A new facility has been taken in operation to investigate the influence of visual and haptic feedback on the performance of remotely executed ITER RH maintenance tasks. A reference set of representative ITER remote handling maintenance tasks was included the master slave manipulator system (MS2) ben

  14. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  15. Tuning Higher Education

    Science.gov (United States)

    Carroll, Bradley

    2011-03-01

    In April 2009, the Lumina Foundation launched its Tuning USA project. Faculty teams in selected disciplines from Indiana, Minnesota, and Utah started pilot Tuning programs at their home institutions. Using Europe's Bologna Process as a guide, Utah physicists worked to reach a consensus about the knowledge and skills that should characterize the 2-year, batchelor's, and master's degree levels. I will share my experience as a member of Utah's physics Tuning team, and describe our progress, frustrations, and evolving understanding of the Tuning project's history, methods, and goals.

  16. Iterative List Decoding

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

    2005-01-01

    We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...... of codewords at minimal distance from the received vector, we also obtain new information about the code....

  17. Iterative software kernels

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  18. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  19. Iterative LQG Controller Design Through Closed-Loop Identification

    Science.gov (United States)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  20. Active tuned mass damper for damping of offshore wind turbine vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker

    2017-01-01

    An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent...... to the tuning procedure of the passive tuned mass damper combined with a simple procedure for minimizing the control force is employed for determination of optimum damper parameters and feedback gain values. By time domain simulations conducted in an aeroelastic code, it is demonstrated that the ATMD can...

  1. Iterative Algorithms for Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Yao Yonghong

    2008-01-01

    Full Text Available Abstract We suggest and analyze two new iterative algorithms for a nonexpansive mapping in Banach spaces. We prove that the proposed iterative algorithms converge strongly to some fixed point of .

  2. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  3. Iterative participatory design

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten

    2010-01-01

    iterative process of mutual learning by designers and domain experts (users), who aim to change the users’ work practices through the introduction of information systems. We provide an illustrative case example with an ethnographic study of clinicians experimenting with a new electronic patient record......The theoretical background in this chapter is information systems development in an organizational context. This includes theories from participatory design, human-computer interaction, and ethnographically inspired studies of work practices. The concept of design is defined as an experimental...... system, focussing on emergent and opportunity-based change enabled by appropriating the system into real work. The contribution to a general core of design research is a reconstruction of the iterative prototyping approach into a general model for sustained participatory design....

  4. Field Flatness Tuning for PEFP 100 MeV DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sung; Kwon, Hyeok-Jung; Seol, Kyung-Tae; Kim, Dae-Il; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    A conventional 100 MeV drift tube linac is under development for Proton Engineering Frontier Project. Currently the proton linac up to 20 MeV, which consists of injector, 3 MeV RFQ and 20 MeV DTL is completed. To accelerate the proton beam up to 100 MeV additional 7 DTL tanks are required. The DTL should be tuned after fabrication and alignment of the drift tube inside the tank to meet the requirements from the beam dynamics. Tuning process includes the resonant frequency tuning, field flatness tuning and tilt sensitivity tuning. The tuning goal for the field flatness tuning is less than {+-}2% in field uniformity throughout the DTL tank with less than {+-}% standard deviation. A non-uniform field profile caused by the machining errors and alignment errors can be made uniform through the slug tuner adjustment. This procedure requires the field profile measurements and several iterations between the field profile measurements and adjustment. The methods and the results of the DTL field flatness tuning will be reported in this presentation.

  5. Introducing artificial depth cues to improve task performance in ITER maintenance actions

    NARCIS (Netherlands)

    Heemskerk, C. J. M.; Eendebak, P. T.; Schropp, G. Y. R.; Hermes, H. V.; Elzendoorn, B. S. Q.; Magielsen, A. J.

    2013-01-01

    Maintenance operations on ITER tokamak components will be largely performed by remote handling. In previous work it was shown that representative maintenance tasks could be performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indica

  6. Introducing artificial depth cues to improve task performance in ITER maintenance actions

    NARCIS (Netherlands)

    Heemskerk, C.J.M.; Eendebak, P.T.; Schropp, G.Y.R.; Hermes, H.V.; Elzendoorn, B.S.Q.; Magielsen, A.J.

    2013-01-01

    Maintenance operations on ITER tokamak components will be largely performed by remote handling. In previous work it was shown that representative maintenance tasks could be performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indica

  7. The Iterate Manual

    Science.gov (United States)

    1990-10-01

    is probably a bad idea. A better versica would use a temporary: (defmacro sum-of-squares (expr) (let ((temp ( gensym ))) ’(lot (,temp ,expr)) (sum...val ( gensym )) (tempi ( gensym )) (temp2 ( gensym )) (winner (or var iterate::*result-var*))) ’(progn (with ,max-val - nil) (with ,winner = nil) (cond ((null...the elements of a vector (disregards fill-pointer)" (let ((vect ( gensym )) (end ( gensym )) (index ( gensym ))) ’(progn (with ,vect - v) (with ,end = (array

  8. Iterative initial condition reconstruction

    Science.gov (United States)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  9. Properties and Iterative Methods for the Q-Lasso

    Directory of Open Access Journals (Sweden)

    Maryam A. Alghamdi

    2013-01-01

    are taken to recover a signal/image via the lasso. Solutions of the Q-lasso depend on a tuning parameter γ. In this paper, we obtain basic properties of the solutions as a function of γ. Because of ill posedness, we also apply l1-l2 regularization to the Q-lasso. In addition, we discuss iterative methods for solving the Q-lasso which include the proximal-gradient algorithm and the projection-gradient algorithm.

  10. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  11. TUNE: Compiler-Directed Automatic Performance Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Mary [University of Utah

    2014-09-18

    This project has developed compiler-directed performance tuning technology targeting the Cray XT4 Jaguar system at Oak Ridge, which has multi-core Opteron nodes with SSE-3 SIMD extensions, and the Cray XE6 Hopper system at NERSC. To achieve this goal, we combined compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation, which have been developed by the PIs over the past several years. We examined DOE Office of Science applications to identify performance bottlenecks and apply our system to computational kernels that operate on dense arrays. Our goal for this performance-tuning technology has been to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, we aim to make our technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  12. Composite iterative learning controller design for gradually varying references with applications in an AFM system

    Institute of Scientific and Technical Information of China (English)

    方勇纯; 张玉东; 董晓坤

    2014-01-01

    Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback control was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance.

  13. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...

  14. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay....

  15. ERGODIC THEOREM FOR INFINITE ITERATED FUNCTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    O Hyong-chol; Ro Yong-hwa; Kil Won-gun

    2005-01-01

    A set of contraction maps of a metric space is called an iterated function systems.Iterated function systems with condensation can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.

  16. Requirements for ITER diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    The development and design of plasma diagnostics for the International Thermonuclear Experimental Reactor (ITER) present a formidable challenge for experimental plasma physicists. The large plasma size, the high central density and temperature and the very high thermal wall loadings provide new challenges for present measurement techniques and lead to a search for new methods. But the physics and control requirements for the long burn phase of the discharge, combined with very limited access to the plasma, constrained by the requirement for radiation shielding of the coils and sharing of access ports with heating and current drive power, remote manipulation, fueling and turn blanket modules, make for very difficult design choices. An initial attempt at these choices has been made by an international team of diagnostic physicists, gathering together in a series of three workshops during the ITER Conceptual Design Activity. This paper is based on that report and provides a summary of its most important points. To provide a background against which to place the diagnostic requirements and design concepts, the ITER device, its most important plasma properties and the proposed experimental program will be described. The specifications for the measurement of the plasma parameters and the proposed diagnostics for these measurements will then be addressed, followed by some examples of the design concepts that have been proposed. As a result of these design studies, it was clear that there were many uncertainties associated with these concepts, particularly because of the nuclear radiation environment, so that a Research and Development Program for diagnostic hardware was established. It will also be briefly summarized.

  17. Runaway electrons and ITER

    Science.gov (United States)

    Boozer, Allen H.

    2017-05-01

    The potential for damage, the magnitude of the extrapolation, and the importance of the atypical—incidents that occur once in a thousand shots—make theory and simulation essential for ensuring that relativistic runaway electrons will not prevent ITER from achieving its mission. Most of the theoretical literature on electron runaway assumes magnetic surfaces exist. ITER planning for the avoidance of halo and runaway currents is focused on massive-gas or shattered-pellet injection of impurities. In simulations of experiments, such injections lead to a rapid large-scale magnetic-surface breakup. Surface breakup, which is a magnetic reconnection, can occur on a quasi-ideal Alfvénic time scale when the resistance is sufficiently small. Nevertheless, the removal of the bulk of the poloidal flux, as in halo-current mitigation, is on a resistive time scale. The acceleration of electrons to relativistic energies requires the confinement of some tubes of magnetic flux within the plasma and a resistive time scale. The interpretation of experiments on existing tokamaks and their extrapolation to ITER should carefully distinguish confined versus unconfined magnetic field lines and quasi-ideal versus resistive evolution. The separation of quasi-ideal from resistive evolution is extremely challenging numerically, but is greatly simplified by constraints of Maxwell’s equations, and in particular those associated with magnetic helicity. The physics of electron runaway along confined magnetic field lines is clarified by relations among the poloidal flux change required for an e-fold in the number of electrons, the energy distribution of the relativistic electrons, and the number of relativistic electron strikes that can be expected in a single disruption event.

  18. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  19. Iterative participatory design

    DEFF Research Database (Denmark)

    2010-01-01

    The theoretical background in this chapter is information systems development in an organizational context. This includes theories from participatory design, human-computer interaction, and ethnographically inspired studies of work practices. The concept of design is defined as an experimental...... iterative process of mutual learning by designers and domain experts (users), who aim to change the users’ work practices through the introduction of information systems. We provide an illustrative case example with an ethnographic study of clinicians experimenting with a new electronic patient record...

  20. Quantum iterated function systems.

    Science.gov (United States)

    Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech

    2003-10-01

    An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.

  1. Iterative Magnetometer Calibration

    Science.gov (United States)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  2. ITER LIDAR performance analysis.

    Science.gov (United States)

    Beurskens, M N A; Giudicotti, L; Kempenaars, M; Scannell, R; Walsh, M J

    2008-10-01

    The core LIDAR Thomson scattering for ITER is specified for core profile measurements with a spatial resolution of 7 cm (a/30) for the range of 500 eV3x10(19) m(-3) at an accuracy of system can meet its spatial and accuracy specifications for higher temperatures of T(e)>5 keV with a combination of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (lambda(0)=1064 nm, Delta lambdanear infrared detectors.

  3. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    Science.gov (United States)

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  4. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    Science.gov (United States)

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  5. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae).

    Science.gov (United States)

    Lapshin, D N; Vorontsov, D D

    2013-08-01

    The acoustic sensory organs in mosquitoes (Johnston organs) have been thoroughly studied; yet, to date, no data are available on the individual tuning properties of the numerous receptors that convert sound-induced vibrations into electrical signals. All previous measurements of frequency tuning in mosquitoes have been based on the acoustically evoked field potentials recorded from the entire Johnston organ. Here, we present evidence that individual receptors have various frequency tunings and that differently tuned receptors are unequally represented within the Johnston organ. We devised a positive feedback stimulation paradigm as a new and effective approach to test individual receptor properties. Alongside the glass microelectrode technique, the positive feedback stimulation paradigm has allowed us to obtain data on receptor tuning in females from three mosquito species: Anopheles messeae, Aedes excrucians and Culex pipiens pipiens. The existence of individually tuned auditory receptors implies that frequency analysis in mosquitoes may be possible.

  6. Runaway electrons and ITER

    Science.gov (United States)

    Boozer, Allen

    2016-10-01

    ITER planning for avoiding runaway damage depends on magnetic surface breakup in fast relaxations. These arise in thermal quenches and in the spreading of impurities from massive gas injection or shattered pellets. Surface breakup would prevent a runaway to relativistic energies were it not for non-intercepting flux tubes, which contain magnetic field lines that do not intercept the walls. Such tubes persist near the magnetic axis and in the cores of islands but must dissipate before any confining surfaces re-form. Otherwise, a highly dangerous situation arises. Electrons that were trapped and accelerated in these flux tubes can fill a large volume of stochastic field lines and serve as a seed for the transfer of the full plasma current to runaways. If the outer confining surfaces are punctured, as by a drift into the wall, then the full runaway inventory will be lost in a short pulse along a narrow flux tube. Although not part of ITER planning, currents induced in the walls by the fast magnetic relaxation could be used to passively prevent outer surfaces re-forming. If magnetic surface breakup can be avoided during impurity injection, the plasma current could be terminated in tens of milliseconds by plasma cooling with no danger of runaway. Support by DoE Office of Fusion Energy Science Grant De-FG02-03ER54696.

  7. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  8. The Doctoral Comprehensive Examination: Fine-Tuning the Process.

    Science.gov (United States)

    Loughead, Teri Olisky

    1997-01-01

    Uses Bloom's Taxonomy of Educational Objectives to fine-tune the process of designing, preparing for, evaluating, and providing feedback about the doctoral comprehensive examination. Examines the purpose and objectives of comprehensive examinations, curriculum design, preparation for the exam, test item development, evaluation criteria, and…

  9. Efficient receiver tuning using differential evolution strategies

    Science.gov (United States)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  10. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using contempora

  11. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  12. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  13. A self-tuning phase-shifting algorithm for interferometry.

    Science.gov (United States)

    Estrada, Julio C; Servin, Manuel; Quiroga, Juan A

    2010-02-01

    In Phase Stepping Interferometry (PSI) an interferogram sequence having a known, and constant phase shift between the interferograms is required. Here we take the case where this constant phase shift is unknown and the only assumption is that the interferograms do have a temporal carrier. To recover the modulating phase from the interferograms, we propose a self-tuning phase-shifting algorithm. Our algorithm estimates the temporal frequency first, and then this knowledge is used to estimate the interesting modulating phase. There are several well known iterative schemes published before, but our approach has the unique advantage of being very fast. Our new temporal carrier, and phase estimator is capable of obtaining a very good approximation of their temporal carrier in a single iteration. Numerical experiments are given to show the performance of this simple yet powerful self-tuning phase shifting algorithm.

  14. Evaluation of Continuation Desire as an Iterative Game Development Method

    DEFF Research Database (Denmark)

    Schoenau-Fog, Henrik; Birke, Alexander; Reng, Lars

    2012-01-01

    When developing a game it is always valuable to use feedback from players in each iteration, in order to plan the design of the next iteration. However, it can be challenging to devise a simple approach to acquiring information about a player's engagement while playing. In this paper we will thus...... concerning a crowd game which is controlled by smartphones and is intended to be played by audiences in cinemas and at venues with large screens. The case study demonstrates how the approach can be used to help improve the desire to continue when developing a game....... use an evaluation method which focuses on assessing the desire to continue playing as an indicator of player engagement. This feedback can then be applied to detect and prevent any design decisions that would jeopardise a game's level of player engagement. The process is exemplified by a case study...

  15. Iterated crowdsourcing dilemma game

    Science.gov (United States)

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-02-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.

  16. Stabilization of betatron tune in Indus-2 storage ring

    Science.gov (United States)

    Saroj, Jena; Yadav, S.; K. Agrawal, R.; D. Ghodke, A.; Pravin, Fatnani; A. Puntambekar, T.

    2014-06-01

    Indus-2 is a synchrotron radiation source that is operational at RRCAT, Indore, India. It is essentially pertinent in any synchrotron radiation facility to store the electron beam without beam loss. During the day to day operation of Indus-2 storage ring, difficulty was being faced in accumulating higher beam current. After examination, it was found that the working point was shifting from its desired value during accumulation. For smooth beam accumulation, a fixed desired tune in both horizontal and vertical plane plays a significant role in avoiding beam loss via the resonance process. This required a betatron tune feedback system to be put in the storage ring. After putting ON this feedback, the beam accumulation was smooth. The details of this feedback and its working principle are described in this paper.

  17. Complier-Directed Automatic Performance Tuning (TUNE) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chame, Jacqueline [USC-ISI

    2013-06-07

    TUNE was created to develop compiler-directed performance tuning technology targeting the Cray XT4 system at Oak Ridge. TUNE combines compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation. The goal of this performance-tuning technology is to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, TUNE aims to make compiler technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  18. Complier-Directed Automatic Performance Tuning (TUNE) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chame, Jacqueline [USC-ISI

    2013-06-07

    TUNE was created to develop compiler-directed performance tuning technology targeting the Cray XT4 system at Oak Ridge. TUNE combines compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation. The goal of this performance-tuning technology is to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, TUNE aims to make compiler technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  19. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  20. Sparsity Enhanced Decision Feedback Equalization

    CERN Document Server

    Ilic, Jovana

    2011-01-01

    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution.

  1. SC tuning fork

    CERN Multimedia

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  2. Planck-LFI radiometers tuning

    Energy Technology Data Exchange (ETDEWEB)

    Cuttaia, F; Stringhetti, L; Terenzi, L; Villa, F; Butler, R C; Franceschi, E [Istituto di Astrofisica Spaziale e Fisica Cosmica, INAF, via P. Gobetti 101, 40129 Bologna (Italy); Mennella, A; Tomasi, M; Bersanelli, M; Cappellini, B; Franceschet, C; Hoyland, R [Universita degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Maris, M; Frailis, M [INAF / OATS, via Tiepolo 11, 34143 Trieste (Italy); Cuevas, L P [Research and Scientific Support Department of ESA, ESTEC, Noordwijk (Netherlands); D' Arcangelo, O [IFP-CNR, via Cozzi 53, 20013 Milano (Italy); Davis, R; Lowe, S [Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester, M13 9PL (United Kingdom); Gregorio, A [University of Trieste, Department of Physics, via Valerio 2, 34127 Trieste (Italy); Leonardi, R, E-mail: cuttaia@iasfbo.inaf.i [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2009-12-15

    This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  3. Optimal tuning for a classical wind turbine controller

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2012-01-01

    Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical opti...... tuning that improves the wind turbine performances. For the case study selected in this work, a 2% cost of energy reduction is achieved with seven iterations.......Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical...... optimization is developed and tested. To have a better understanding of the problem a parametric analysis of the wind turbine performances due to changes in the controller parameters is rst performed. Thereafter results obtained with the automatic tuning show that is possible to identify a ner controller...

  4. Optimal tuning for a classical wind turbine controller

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical opti...... tuning that improves the wind turbine performances. For the case study selected in this work, a 2% cost function reduction is achieved with seven iterations.......Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical...... optimization is developed and tested. To have a better understanding of the problem a parametric analysis of the wind turbine performances due to changes in the controller parameters is first performed. Thereafter results obtained with the automatic tuning show that is possible to identify a finer controller...

  5. Design of PID controllers in double feedback loops for SISO systems with set-point filters.

    Science.gov (United States)

    Vijayan, V; Panda, Rames C

    2012-07-01

    A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (λ) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes.

  6. Differential Resonant Ring YIG Tuned Oscillator

    Science.gov (United States)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  7. Some geometrical iteration methods for nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LU Xing-jiang; QIAN Chun

    2008-01-01

    This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.

  8. Feedback control design for discrete-time piecewise affine systems

    Institute of Scientific and Technical Information of China (English)

    XU Jun; XIE Li-hua

    2007-01-01

    This paper investigates the design of state feedback and dynamic output feedback stabilizing controllers for discrete-time piecewise affine (PWA) systems. The main objective is to derive design methods that will incorporate the partition information of the PWA systems so as to reduce the design conservatism embedded in existing design methods. We first introduce a transformation that converts the feedback control design problem into a bilinear matrix inequality (BMI) problem. Then, two iterative algorithms are proposed to compute the feedback controllers characterized by the BMI. Several simulation examples are given to demonstrate the advantages of the proposed design.

  9. Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.

  10. PICARD ITERATION FOR NONSMOOTH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Song-bai Sheng; Hui-fu Xu

    2001-01-01

    This paper presents an analysis of the generalized Newton method, approximate Newton methods, and splitting methods for solving nonsmooth equations from Picard iteration viewpoint. It is proved that the radius of the weak Jacobian (RGJ) of Picard iteration function is equal to its least Lipschitz constant. Linear convergence or superlinear convergence results can be obtained provided that RGJ of the Picard iteration function at a solution point is less than one or equal to zero. As for applications, it is pointed out that the approximate Newton methods, the generalized Newton method for piecewise C1problems and splitting methods can be explained uniformly with the same viewpoint.

  11. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  12. The first fusion reactor: ITER

    Science.gov (United States)

    Campbell, D. J.

    2016-11-01

    Established by the signature of the ITER Agreement in November 2006 and currently under construction at St Paul-lez-Durance in southern France, the ITER project [1,2] involves the European Union (including Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States. ITER (`the way' in Latin) is a critical step in the development of fusion energy. Its role is to provide an integrated demonstration of the physics and technology required for a fusion power plant based on magnetic confinement.

  13. Iterative optimization in inverse problems

    CERN Document Server

    Byrne, Charles L

    2014-01-01

    Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more

  14. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J.

    1997-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  15. Adaptive Tuning Algorithm for Performance tuning of Database Management System

    CERN Document Server

    Rodd, S F

    2010-01-01

    Performance tuning of Database Management Systems(DBMS) is both complex and challenging as it involves identifying and altering several key performance tuning parameters. The quality of tuning and the extent of performance enhancement achieved greatly depends on the skill and experience of the Database Administrator (DBA). As neural networks have the ability to adapt to dynamically changing inputs and also their ability to learn makes them ideal candidates for employing them for tuning purpose. In this paper, a novel tuning algorithm based on neural network estimated tuning parameters is presented. The key performance indicators are proactively monitored and fed as input to the Neural Network and the trained network estimates the suitable size of the buffer cache, shared pool and redo log buffer size. The tuner alters these tuning parameters using the estimated values using a rate change computing algorithm. The preliminary results show that the proposed method is effective in improving the query response tim...

  16. Fourier analysis of iteration schemes for k-eigenvalue transport problems with flux-dependent cross sections

    Science.gov (United States)

    Kochunas, Brendan; Fitzgerald, Andrew; Larsen, Edward

    2017-09-01

    A central problem in nuclear reactor analysis is calculating solutions of steady-state k-eigenvalue problems with thermal hydraulic feedback. In this paper we propose and utilize a model problem that permits the theoretical analysis of iterative schemes for solving such problems. To begin, we discuss a model problem (with nonlinear cross section feedback) and its justification. We proceed with a Fourier analysis for source iteration schemes applied to the model problem. Then we analyze commonly-used iteration schemes involving non-linear diffusion acceleration and feedback. For each scheme we show (1) that they are conditionally stable, (2) the conditions that lead to instability, and (3) that traditional relaxation approaches can improve stability. Lastly, we propose a new iteration scheme that theory predicts is an improvement upon the existing methods.

  17. Adaptive noncolocated velocity feedback for vibration damping

    Science.gov (United States)

    Bayard, David S.; Spanos, John T.

    1990-01-01

    A method is proposed for adaptive noncolocated velocity feedback control of flexible structure vibrations. The approach, denoted as auto-tuning, is to drive the system into a sequence of controlled oscillations to provide accurate knowledge of the plant characteristics in the vicinity of the phase cross-over frequencies. An allpass phase notch filter cascade is used as the control architecture to phase stabilize each destabilizing mode in the plant transfer function. The allpass phase notch filter cascade is tuned precisely by the information extracted from the controlled oscillations.

  18. Rollout sampling approximate policy iteration

    NARCIS (Netherlands)

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  19. Iterative solution of linear systems

    Science.gov (United States)

    Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.

    1992-01-01

    Recent advances in the field of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for nonHermitian matrices.

  20. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  1. Cooperation between CERN and ITER

    CERN Multimedia

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. Kaname Ikeda, the Director-General of the International Fusion Energy Organisation (ITER) (on the right) and Robert Aymar, Director-General of CERN, signing the agreement.The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March. One of the main purposes of this agreement is for CERN to give ITER the benefit of its experience in the field of technology as well as in administrative domains such as finance, procurement, human resources and informatics through the provision of consultancy services. Currently in its start-up phase at its Cadarache site, 70 km from Marseilles (France), ITER will focus its research on the scientific and technical feasibility of using fusion energy as a fu...

  2. On pre-image iterations for speech enhancement.

    Science.gov (United States)

    Leitner, Christina; Pernkopf, Franz

    2015-01-01

    In this paper, we apply kernel PCA for speech enhancement and derive pre-image iterations for speech enhancement. Both methods make use of a Gaussian kernel. The kernel variance serves as tuning parameter that has to be adapted according to the SNR and the desired degree of de-noising. We develop a method to derive a suitable value for the kernel variance from a noise estimate to adapt pre-image iterations to arbitrary SNRs. In experiments, we compare the performance of kernel PCA and pre-image iterations in terms of objective speech quality measures and automatic speech recognition. The speech data is corrupted by white and colored noise at 0, 5, 10, and 15 dB SNR. As a benchmark, we provide results of the generalized subspace method, of spectral subtraction, and of the minimum mean-square error log-spectral amplitude estimator. In terms of the scores of the PEASS (Perceptual Evaluation Methods for Audio Source Separation) toolbox, the proposed methods achieve a similar performance as the reference methods. The speech recognition experiments show that the utterances processed by pre-image iterations achieve a consistently better word recognition accuracy than the unprocessed noisy utterances and than the utterances processed by the generalized subspace method.

  3. ITER leader to head CERN

    CERN Multimedia

    Feder, Toni

    2003-01-01

    After successfully chairing an external review committee for CERN last year, Robert Aymar will leave ITER to become director general of the European particle physics laboratory rom 2004. Before ITER he also successfully managed the startup or Tore Supra. He will attempt to ensure that the LHC begins operating in 2007 - two years late - and is paid for by 2010 and will also start the planning for life after the LHC (1 page)

  4. The ITER project construction status

    Science.gov (United States)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  5. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  6. Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System

    Science.gov (United States)

    Bendjeghaba, Omar

    2014-01-01

    This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.

  7. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  8. An adaptive phase alignment algorithm for cartesian feedback loops

    Science.gov (United States)

    Gimeno-Martin, A.; Pardo-Martin, J.; Ortega-Gonzalez, F.

    2010-01-01

    An adaptive algorithm to correct phase misalignments in Cartesian feedback linearization loops for power amplifiers has been presented. It yields an error smaller than 0.035 rad between forward and feedback loop signals once convergence is reached. Because this algorithm enables a feedback system to process forward and feedback samples belonging to almost the same algorithm iteration, it is suitable to improve the performance not only of power amplifiers but also any other digital feedback system for communications systems and circuits such as all digital phase locked loops. Synchronizing forward and feedback paths of Cartesian feedback loops takes a small period of time after the system starts up. The phase alignment algorithm needs to converge before the feedback Cartesian loop can start its ideal behavior. However, once the steady state is reached, both paths can be considered synchronized, and the Cartesian feedback loop will only depend on the loop parameters (open-loop gain, loop bandwidth, etc.). It means that the linearization process will also depend only on these parameters since the misalignment effect disappears. Therefore, this algorithm relieves the power amplifier linearizer circuit design of any task required for solving phase misalignment effects inherent to Cartesian feedback systems. Furthermore, when a feedback Cartesian loop has to be designed, the designer can consider that forward and feedback paths are synchronized, since the phase alignment algorithm will do this task. This will reduce the simulation complexity. Then, all efforts are applied to determining the suitable loop parameters that will make the linearization process more efficient.

  9. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  10. %191200 TUNE DEAFNESS [OMIM

    Lifescience Database Archive (English)

    Full Text Available TONE DEAFNESS FIELD TX DESCRIPTION Tune deafness, or congenital amusia, is a lifelong deficient in music per...retz et al., 2009). See 159300 for an opposite situation, that of musical perfect pitch. CLINICAL FEATURES P...icits, brain lesions, hearing loss, or socioaffective disturbances, and was exposed to music as a child. She... did not like to listen to music because it sounded to her like noise and induced stress. Detailed tests sho...hat fine-grained pitch perception is an essential component around which the musical system develops in a no

  11. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop

  12. A recursion identity for formal iterated logarithms and iterated exponentials

    CERN Document Server

    Robinson, Thomas J

    2010-01-01

    We prove a recursive identity involving formal iterated logarithms and formal iterated exponentials. These iterated logarithms and exponentials appear in a natural extension of the logarithmic formal calculus used in the study of logarithmic intertwining operators and logarithmic tensor category theory for modules for a vertex operator algebra. This extension has a variety of interesting arithmetic properties. We develop one such result here, the aforementioned recursive identity. We have applied this identity elsewhere to certain formal series expansions related to a general formal Taylor theorem and these series expansions in turn yield a sequence of combinatorial identities which have as special cases certain classical combinatorial identities involving (separately) the Stirling numbers of the first and second kinds.

  13. Reversible hysteresis loop tuning

    Science.gov (United States)

    Berger, A.; Binek, Ch.; Margulies, D. T.; Moser, A.; Fullerton, E. E.

    2006-02-01

    We utilize antiferromagnetically coupled bilayer structures to magnetically tune hysteresis loop properties. Key element of this approach is the non-overlapping switching field distribution of the two magnetic layers that make up the system: a hard magnetic CoPtCrB layer (HL) and a soft magnetic CoCr layer (SL). Both layers are coupled antiferromagnetically through an only 0.6-nm-thick Ru interlayer. The non-overlapping switching field distribution allows the measurement of magnetization reversal in the SL at low fields while keeping the magnetization state of the HL unperturbed. Applying an appropriate high field or high field sequence changes the magnetic state of the HL, which then influences the SL magnetization reversal due to the interlayer coupling. In this way, the position and shape of the SL hysteresis loop can be changed or tuned in a fully reversible and highly effective manner. Here, we study specifically how the SL hysteresis loop characteristics change as we move the HL through an entire high field hysteresis loop sequence.

  14. Relaxation Criteria for Iterated Traffic Simulations

    Science.gov (United States)

    Kelly, Terence; Nagel, Kai

    Iterative transportation microsimulations adjust traveler route plans by iterating between a microsimulation and a route planner. At each iteration, the route planner adjusts individuals' route choices based on the preceding microsimulations. Empirically, this process yields good results, but it is usually unclear when to stop the iterative process when modeling real-world traffic. This paper investigates several criteria to judge relaxation of the iterative process, emphasizing criteria related to traveler decision-making.

  15. A novel tuning approach for offset-free MPC

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2015-01-01

    is proposed. The idea is to separate the nominal tuning process and extend the control by an outer loop, which ensures offset-free control. The inner, nominal loop decouples the system and essentially leads to a first order response. This inner loop addresses the performance targets in the nominal case......, and the outer loop provides offset-free control in case of unknown disturbances. The outer loop consists of feedback controllers adapting the reference, which due to the decoupling can be tuned by known guidelines. The proposed strategy is presented and evaluated using a simulated case study.......Since the beginnings in the chemical and process industry, model based predictive control strategies have become widely accepted. Often mentioned success factors for MPC are the use of optimization based on a plant model, the consideration of constraints, and an intuitive tuning. Indeed...

  16. A Linear Iterative Unfolding Method

    CERN Document Server

    Laszlo, Andras

    2011-01-01

    A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing. Due to the numerical ill-posedness of this task, various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the problem. Most of these methods definitely introduce bias on the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration. Convergence is proved under certain quite general conditions, which hold for p...

  17. Construction Safety Forecast for ITER

    Energy Technology Data Exchange (ETDEWEB)

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  18. Tuning of Fuzzy PID Controllers

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single......-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented....

  19. Rollout Sampling Approximate Policy Iteration

    CERN Document Server

    Dimitrakakis, Christos

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.

  20. Paleohydrology Workshops for Water Resource Managers Using an Iterative Evaluation Process

    Science.gov (United States)

    Woodhouse, C.; Lukas, J.

    2008-12-01

    Workshops can be an effective avenue for the exchange of information and ideas between scientists and decision-makers. The interactive aspects of workshops promote more active participation and interactions between the two groups. In 2006, at the suggestion of water resource managers, we began presenting a series of small workshops (10-25 participants) on the use and application of tree-ring data in water resource management. The one-day workshops cover the basic science behind tree-ring reconstructions of hydrology, resources available, and applications of the data to resource management, with presentations by both tree-ring scientists and water resource professionals. They also include plenty of time for informal discussion. We have now held ten workshops across the western U.S., and several more are planned. We use pre-workshop surveys to tailor the workshop to the needs of the participants, and we assess the workshop's effectiveness through participant evaluations completed at the end of the workshop. We also receive post-workshop feedback in the form of follow-up emails or via word of mouth. This iterative process of evaluation, with each workshop, has enabled us to fine-tune the format and content of the workshops and respond to additional needs such as data, web resources, online tools for using paleodata, as well as follow-up workshops. This approach has resulted in an improvement in the credibility, acceptance, and use of tree-ring data in water resource applications, as evidenced by an independent survey of workshop participants. Although the focus of these workshops has been on paleohydrologic data, this approach would be applicable to other climate-stakeholder issues as well.

  1. Identification of new IκBα complexes by an iterative experimental and mathematical modeling approach.

    Science.gov (United States)

    Konrath, Fabian; Witt, Johannes; Sauter, Thomas; Kulms, Dagmar

    2014-03-01

    The transcription factor nuclear factor kappa-B (NFκB) is a key regulator of pro-inflammatory and pro-proliferative processes. Accordingly, uncontrolled NFκB activity may contribute to the development of severe diseases when the regulatory system is impaired. Since NFκB can be triggered by a huge variety of inflammatory, pro-and anti-apoptotic stimuli, its activation underlies a complex and tightly regulated signaling network that also includes multi-layered negative feedback mechanisms. Detailed understanding of this complex signaling network is mandatory to identify sensitive parameters that may serve as targets for therapeutic interventions. While many details about canonical and non-canonical NFκB activation have been investigated, less is known about cellular IκBα pools that may tune the cellular NFκB levels. IκBα has so far exclusively been described to exist in two different forms within the cell: stably bound to NFκB or, very transiently, as unbound protein. We created a detailed mathematical model to quantitatively capture and analyze the time-resolved network behavior. By iterative refinement with numerous biological experiments, we yielded a highly identifiable model with superior predictive power which led to the hypothesis of an NFκB-lacking IκBα complex that contains stabilizing IKK subunits. We provide evidence that other but canonical pathways exist that may affect the cellular IκBα status. This additional IκBα:IKKγ complex revealed may serve as storage for the inhibitor to antagonize undesired NFκB activation under physiological and pathophysiological conditions.

  2. Nanoplasmonics tuned ``click chemistry''

    Science.gov (United States)

    Tijunelyte, I.; Guenin, E.; Lidgi-Guigui, N.; Colas, F.; Ibrahim, J.; Toury, T.; Lamy de La Chapelle, M.

    2016-03-01

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry.Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry. Electronic supplementary information (ESI) available: NMR study on reaction initiation, SERS spectra and temperature calculations. See DOI: 10.1039/c5nr09018k

  3. Adaptive Digital Predistortion with Iterative Noise Cancelation for Power Amplifier Linearization

    Science.gov (United States)

    Jeon, Sungho; Kim, Junghyun; Lee, Jaekwon; Suh, Young-Woo; Seo, Jong-Soo

    In this paper, we propose a power amplifier linearization technique combined with iterative noise cancelation. This method alleviates the effect of added noises which prevents the predistorter (PD) from estimating the exact characteristics of the power amplifier (PA). To iteratively cancel the noise added in the feedback signal, the output signal of the power amplifier without noise is reconstructed by applying the inverse characteristics of the PD to the predistorted signals. The noise can be revealed by subtracting the reconstructed signals from the feedback signals. Simulation results based on the mean-square error (MSE) and power spectral density (PSD) criteria are presented to evaluate PD performance. The results show that the iterative noise cancelation significantly enhances the MSE performance, which leads to an improvement of the out-of-band power suppression. The performance of the proposed technique is verified by computer simulation and hardware test results.

  4. Control of integrating process with dead time using auto-tuning approach

    Directory of Open Access Journals (Sweden)

    G. Saravanakumar

    2009-03-01

    Full Text Available A modification of Smith predictor for controlling higher order processes with integral action and long dead-time is proposed in this paper. The controller used in this Smith predictor is an Integral-Proportional Derivative controller, where the Integrator is in the forward path and the Proportional and Derivative control are in the feedback, acting on the feedback signal. The main objective of this paper is to design a dead time compensator, which has minimum tuning parameters, simple controller tuning, and robust performance of tuning formulae, and to obtain a critically damped system that is as fast as possible in its set point and load disturbance rejection performance. The controller in this paper is tuned by an adaptive method. This paper also presents a survey of various dead time compensators and their performance analysis.

  5. Bounded Fixed-Point Iteration

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    1992-01-01

    they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...

  6. Iterative method for interferogram processing

    Science.gov (United States)

    Kotlyar, Victor V.; Seraphimovich, P. G.; Zalyalov, Oleg K.

    1994-12-01

    We have developed and numerically evaluated an iterative algorithm for interferogram processing including the Fourier-transform method, the Gerchberg-Papoulis algorithm and Wiener's filter-based regularization used in combination. Using a signal-to-noise ratio not less than 1, it has been possible to reconstruct the phase of an object field with accuracy better than 5%.

  7. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  8. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  9. Iterative Specialisation of Horn Clauses

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    We present a generic algorithm for solving Horn clauses through iterative specialisation. The algorithm is generic in the sense that it can be instantiated with any decidable fragment of Horn clauses, resulting in a solution scheme for general Horn clauses that guarantees soundness and terminatio...

  10. Cooperation between CERN and ITER

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March.

  11. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  12. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  13. Tuning the Learning Rate for Stochastic Variational Inference

    Institute of Scientific and Technical Information of China (English)

    Xi-Ming Li; Ji-Hong Ouyang∗

    2016-01-01

    Stochastic variational inference (SVI) can learn topic models with very big corpora. It optimizes the variational objective by using the stochastic natural gradient algorithm with a decreasing learning rate. This rate is crucial for SVI;however, it is often tuned by hand in real applications. To address this, we develop a novel algorithm, which tunes the learning rate of each iteration adaptively. The proposed algorithm uses the Kullback-Leibler (KL) divergence to measure the similarity between the variational distribution with noisy update and that with batch update, and then optimizes the learning rates by minimizing the KL divergence. We apply our algorithm to two representative topic models: latent Dirichlet allocation and hierarchical Dirichlet process. Experimental results indicate that our algorithm performs better and converges faster than commonly used learning rates.

  14. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0ITER environment. Additionally, an essential change of the orientation of the DNB injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  15. Crack identification through scan-tuning of vibration characteristics using piezoelectric materials

    Science.gov (United States)

    Zhao, Shengjie; Wu, Nan; Wang, Quan

    2017-02-01

    This research develops a frequency-based methodology with a scan vibration tuning process for crack identification in beam-type structures coupled with piezoelectric materials. Piezoelectric sensor and actuator patches are mounted on the surface of the host beam synchronously to generate feedback excitations for a tuning process by applying a feedback voltage output from the piezoelectric sensors. The feedback excitations can adjust the stiffness at local section of the beam covered by piezoelectric patches so as to tune its natural vibration mode shapes to amplify the natural frequency change due to the existence of the crack. Piezoelectric patches located at different positions of the beam are activated one by one to realize the scan-tuning process. The crack is identified since the natural frequency change is magnified by the piezoelectric sensor and actuator located at the crack position. Theoretical and finite element models of the scan-tuned beam structures coupled with piezoelectric materials are established. From simulation results, the crack existence and location can be effectively detected through the scan-tuning process with 25% natural frequency change due to a crack located at the middle of the beam. Further parameter studies are conducted to study the effects of the crack location and size on the detection sensitivity.

  16. Plasmonic color tuning

    Science.gov (United States)

    Lee, Byoungho; Yun, Hansik; Lee, Seung-Yeol; Kim, Hwi

    2016-03-01

    In general, color filter is an optical component to permit the transmission of a specific color in cameras, displays, and microscopes. Each filter has its own unchangeable color because it is made by chemical materials such as dyes and pigments. Therefore, in order to express various colorful images in a display, one pixel should have three sub-pixels of red, green, and blue colors. Here, we suggest new plasmonic structure and method to change the color in a single pixel. It is comprised of a cavity and a metal nanoaperture. The optical cavity generally supports standing waves inside it, and various standing waves having different wavelength can be confined together in one cavity. On the other hand, although light cannot transmit sub-wavelength sized aperture, surface plasmons can propagate through the metal nanoaperture with high intensity due to the extraordinary transmission. If we combine the two structures, we can organize the spatial distribution of amplitudes according to wavelength of various standing waves using the cavity, and we can extract a light with specific wavelength and amplitude using the nanoaperture. Therefore, this cavity-aperture structure can simultaneously tune the color and intensity of the transmitted light through the single nanoaperture. We expect that the cavity-apertures have a potential for dynamic color pixels, micro-imaging system, and multiplexed sensors.

  17. ITERATIVE ALGORITHMS FOR DATA ASSIMILATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Iterative algorithms for solving the data assimilation problems are considered, based on the main and adjoint equations. Spectral properties of the control operators of the problem are studied, the iterative algorithms are justified.

  18. Existence test for asynchronous interval iterations

    DEFF Research Database (Denmark)

    Madsen, Kaj; Caprani, O.; Stauning, Ole

    1997-01-01

    In the search for regions that contain fixed points ofa real function of several variables, tests based on interval calculationscan be used to establish existence ornon-existence of fixed points in regions that are examined in the course ofthe search. The search can e.g. be performed...... as a synchronous (sequential) interval iteration:In each iteration step all components of the iterate are calculatedbased on the previous iterate. In this case it is straight forward to base simple interval existence and non-existencetests on the calculations done in each step of the iteration. The search can also...... be performed as an asynchronous (parallel) iteration: Only a few components are changed in each stepand this calculation is in general based on components from differentprevious iterates. For the asynchronous iteration it turns out thatsimple tests of existence and non-existence can be based...

  19. Stability and optimal parameters for continuous feedback chaos control.

    Science.gov (United States)

    Kouomou, Y Chembo; Woafo, P

    2002-09-01

    We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control. Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is discussed. The analytic approach is confirmed by numerical simulations.

  20. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  1. REMARK ON STABILITY OF ISHIKAWA ITERATIVE PROCEDURES

    Institute of Scientific and Technical Information of China (English)

    薛志群; 田虹

    2002-01-01

    The stability of the Ishikawa iteration procedures was studied for one class ofcontinuity strong pseudocontraction and continuity strongly accretive operators with boundedrange in real uniformly smooth Banach space. Under parameters satisfying certainconditions, the convergence of iterative sequences was proved. The results improve andextend the recent corresponding results, and supply the basis of theory for further discussingconvergence of iteration procedures with errors.

  2. On One-Point Iterations and DIIS

    DEFF Research Database (Denmark)

    Østerby, Ole; Sørensen, Hans Henrik Brandenborg

    2009-01-01

    We analyze various iteration procedures in many dimensions inspired by the SCF iteration used in first principles electronic structure calculations. We show that the simple mixing of densities can turn a divergent (or slowly convergent) iteration into a (faster) convergent process provided all th...

  3. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  4. An Iterative Rejection Sampling Method

    CERN Document Server

    Sherstnev, A

    2008-01-01

    In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics, this sampling is frequently used for event generation, i.e. preparation of phase space points distributed according to a matrix element squared $|M|^2$ for a scattering process. In many realistic cases $|M|^2$ is a complicated multi-dimensional function, so, the standard von Neumann procedure has quite low efficiency, even if an error reducing technique, like VEGAS, is applied. As a result of that, many of the $|M|^2$ calculations go to ``waste''. The considered iterative modification of the procedure can extract more ``unweighted'' events, i.e. distributed according to $|M|^2$. In several simple examples we show practical benefits of the technique and obtain more events than the standard von Neumann method, without any extra calculations of $|M|^2$.

  5. ITER LHCD plans and design

    Energy Technology Data Exchange (ETDEWEB)

    Bibet, Ph.; Beaumont, B.; Delpech, L.; Ekedahl, A.; Kazarian, F.; Litaudon, X.; Prou, M. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Belo, J.H.; Bizarro, J.P.S. [Centro de Fusao Nuclear, Associacao Euratom-IST, Instituto Superior Tecnico, Lisboa (Portugal); Granucci, G. [Associazione EURATOM-ENEA sulla Fusione, Milano (Italy); Kuzikov, S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation); Mailloux, J. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Mirizzi, F.; Pericoli, V.; Tuccillo, A.A. [Association Euratom-ENEA sulla Fusione, Centro Ricerche Energia Frascati (Italy); Rantamaki, K. [Association Euratom-Tekes, VTT (Finland)

    2005-07-01

    LH waves experimentally exhibit the highest Current Drive efficiency at low plasma temperature, therefore they are the most suitable candidates for controlling the current profile in the off axis part of ITER Steady State plasmas. For this purpose, a 5 GHz, 20 MW CW LH system has been designed, that relies on a generator made of 24 klystrons, 1 MW each, 60 metres long circular oversized transmission lines, one antenna, based on the Passive Active Multi-function (PAM) concept. High reliability of the launcher is achieved, by limiting the power density to 33 MW/m{sup 2}. Together with the overall system description, the present results achieved toward ITER are presented. The different ongoing project are listed. The remaining outstanding problems are depicted. (authors)

  6. Matlab modeling of ITER CODAC

    Energy Technology Data Exchange (ETDEWEB)

    Pangione, L. [Associazione Euratom/ENEA Ssulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy)], E-mail: pangione@frascati.enea.it; Lister, J.B. [CRPP-EPFL, Association EURATOM-Suisse, Station 13, 1015 Lausanne (Switzerland)

    2008-04-15

    The ITER CODAC (COntrol, Data Access and Communication) conceptual design resulted from 2 years of activity. One result was a proposed functional partitioning of CODAC into different CODAC Systems, each of them partitioned into other CODAC Systems. Considering the large size of this project, simple use of human language assisted by figures would certainly be ineffective in creating an unambiguous description of all interactions and all relations between these Systems. Moreover, the underlying design is resident in the mind of the designers, who must consider all possible situations that could happen to each system. There is therefore a need to model the whole of CODAC with a clear and preferably graphical method, which allows the designers to verify the correctness and the consistency of their project. The aim of this paper is to describe the work started on ITER CODAC modeling using Matlab/Simulink. The main feature of this tool is the possibility of having a simple, graphical, intuitive representation of a complex system and ultimately to run a numerical simulation of it. Using Matlab/Simulink, each CODAC System was represented in a graphical and intuitive form with its relations and interactions through the definition of a small number of simple rules. In a Simulink diagram, each system was represented as a 'black box', both containing, and connected to, a number of other systems. In this way it is possible to move vertically between systems on different levels, to show the relation of membership, or horizontally to analyse the information exchange between systems at the same level. This process can be iterated, starting from a global diagram, in which only CODAC appears with the Plant Systems and the external sites, and going deeper down to the mathematical model of each CODAC system. The Matlab/Simulink features for simulating the whole top diagram encourage us to develop the idea of completing the functionalities of all systems in order to finally

  7. Iterative Goal Refinement for Robotics

    Science.gov (United States)

    2014-06-01

    Iterative Goal Refinement for Robotics Mark Roberts1, Swaroop Vattam1, Ronald Alford2, Bryan Auslander3, Justin Karneeb3, Matthew Molineaux3... robotics researchers and practitioners. We present a goal lifecycle and define a formal model for GR that (1) relates distinct disciplines concerning...researchers to collaborate in exploring this exciting frontier. 1. Introduction Robotic systems often act using incomplete models in environments

  8. Truncated States Obtained by Iteration

    Institute of Scientific and Technical Information of China (English)

    W.B.Cardoso; N.G.de Almeida

    2008-01-01

    We introduce the concept of truncated states obtained via iterative processes(TSI)and study its statistical features,making an analogy with dynamical systems theory(DST).As a specific example,we have studied TSI for the doubring and the logistic functions,which are standard functions in studying chaos.TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  9. Tuning fork tests: forgotten art.

    Science.gov (United States)

    Girgis, T F; Shambaugh, G E

    1988-01-01

    Four examples are cited in which tuning fork tests helped in proper selection of patients for surgery, after audiometric air and bone tests were equivocal or gave the wrong diagnostic and prognostic indication.

  10. EC power management and NTM control in ITER

    Science.gov (United States)

    Poli, Francesca; Fredrickson, E.; Henderson, M.; Bertelli, N.; Farina, D.; Figini, L.; Nowak, S.; Poli, E.; Sauter, O.

    2016-10-01

    The suppression of Neoclassical Tearing Modes (NTMs) is an essential requirement for the achievement of the demonstration baseline in ITER. The Electron Cyclotron upper launcher is specifically designed to provide highly localized heating and current drive for NTM stabilization. In order to assess the power management for shared applications, we have performed time-dependent simulations for ITER scenarios covering operation from half to full field. The free-boundary TRANSP simulations evolve the magnetic equilibrium and the pressure profiles in response to the heating and current drive sources and are interfaced with a GRE for the evolution of size and frequency of the magnetic islands. Combined with a feedback control of the EC power and the steering angle, these simulations are used to model the plasma response to NTM control, accounting for the misalignment of the EC deposition with the resonant surfaces, uncertainties in the magnetic equilibrium reconstruction and in the magnetic island detection threshold. Simulations indicate that the threshold for detection of the island should not exceed 2-3cm, that pre-emptive control is a preferable option, and that for safe operation the power needed for NTM control should be reserved, rather than shared with other applications. Work supported by ITER under IO/RFQ/13/9550/JTR and by DOE under DE-AC02-09CH11466.

  11. Oracle SQL Tuning pocket Reference

    CERN Document Server

    Gurry, Mark

    2002-01-01

    One of the most important challenges faced by Oracle database administrators and Oracle developers is the need to tune SQL statements so that they execute efficiently. Poorly tuned SQL statements are one of the leading causes of substandard database performance and poor response time. SQL statements that perform poorly result in frustration for users, and can even prevent a company from serving its customers in a timely manner

  12. Disformally self-tuning gravity

    CERN Document Server

    Emond, William T

    2015-01-01

    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

  13. Disformally self-tuning gravity

    Science.gov (United States)

    Emond, William T.; Saffin, Paul M.

    2016-03-01

    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

  14. Iterative methods for mixed finite element equations

    Science.gov (United States)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  15. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  16. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  17. Kernel-based least squares policy iteration for reinforcement learning.

    Science.gov (United States)

    Xu, Xin; Hu, Dewen; Lu, Xicheng

    2007-07-01

    In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating

  18. Commissioning and Initial Performance of the LHC Beam-Based Feedback Systems

    CERN Document Server

    Boccardi, A; Calvo Giraldo, E; Denz, R; Gasior, M; Gonzalez, JL; Jackson, S; Jensen, LK; Jones, OR; King, Q; Kruk, G; Lamont, M; Page, S; Steinhagen, RJ; Wenninger, J

    2010-01-01

    The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the initial feedback design assumptions

  19. Beyond individualism: professional culture and its influence on feedback.

    Science.gov (United States)

    Watling, Christopher; Driessen, Erik; van der Vleuten, Cees P M; Vanstone, Meredith; Lingard, Lorelei

    2013-06-01

    Although feedback is widely considered essential to learning, its actual influence on learners is variable. Research on responsivity to feedback has tended to focus on individual rather than social or cultural influences on learning. In this study, we explored how feedback is handled within different professional cultures, and how the characteristics and values of a profession shape learners' responses to feedback. Using a constructivist grounded theory approach, we conducted 12 focus groups and nine individual interviews (with a total of 50 participants) across three cultures of professional training in, respectively, music, teacher training and medicine. Constant comparative analysis for recurring themes was conducted iteratively. Each of the three professional cultures created a distinct context for learning that influenced how feedback was handled. Despite these contextual differences, credibility and constructiveness emerged as critical constants, identified by learners across cultures as essential for feedback to be perceived as meaningful. However, the definitions of credibility and constructiveness were distinct to each professional culture and the cultures varied considerably in how effectively they supported the occurrence of feedback with these critical characteristics. Professions define credibility and constructiveness in culturally specific ways and create contexts for learning that may either facilitate or constrain the provision of meaningful feedback. Comparison with other professional cultures may offer strategies for creating a productive feedback culture within medical education. © 2013 John Wiley & Sons Ltd.

  20. Meromorphic iterative roots of linear fractional functions

    Institute of Scientific and Technical Information of China (English)

    SHI YongGuo; CHEN Li

    2009-01-01

    Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more difficult in non-monotone cases. Therefore, it is interesting to find iterative roots of linear fractional functions (abbreviated as LFFs), a class of non-monotone functions on R. In this paper, iterative roots of LFFs are studied on C. An equivalence between the iterative functional equation for non-constant LFFs and the matrix equation is given. By means of a method of finding matrix roots, general formulae of all meromorphic iterative roots of LFFs are obtained and the precise number of roots is also determined in various cases. As applications, we present all meromorphic iterative roots for functions z and 1/z.

  1. Performance bounds for Lambda Policy Iteration

    CERN Document Server

    Scherrer, Bruno

    2007-01-01

    We consider the discrete-time infinite-horizon discounted stationary optimal control problem formalized by Markov Decision Processes. We study Lambda Policy Iteration, a family of algorithms parameterized by lambda, originally introduced by Ioffe and Bertsekas. Lambda Policy Iteration generalizes the standard algorithms Value Iteration and Policy Iteration, and has some connections with TD(Lambda) introduced by Sutton & Barto. We deepen the original theory developped by Ioffe and Bertsekas by providing convergence rate bounds which generalize standard bounds for Value Iteration described for instance by Puterman. We also develop the theory of this algorithm when it is used in an approximate form. Doing so, we extend and unify the separate analyses developped by Munos for Approximate Value Iteration and Approximate Policy Iteration.

  2. A uniform phase noise QVCO with a feedback current source

    Institute of Scientific and Technical Information of China (English)

    Zhou Chunyuan; Zhang Lei; Qian He

    2012-01-01

    A novel integrated quadrature voltage controlled oscillator (QVCO) with a feedback current source is presented in this paper.Benefiting from the current adjusting function of the feedback current source,the proposed QVCO exhibits a uniform phase noise over the entire tuning range.This QVCO is implemented in 65-nm CMOS technology.The measurement results show that it draws less than 3-mA average current from a 1.2-V supply and the phase noise is less than -110 dBc/Hz @1MHz offset over the entire tuning range.The fluctuation of phase noise @l MHz offset from the center frequency of 2 84-GHz to 3.27-GHz is less than 1 dBc/Hz,which validates the correctness of the proposed current source feedback technique.

  3. Preventing Feedback Fizzle

    Science.gov (United States)

    Brookhart, Susan M.

    2012-01-01

    Feedback is certainly about saying or writing helpful, learning-focused comments. But that is only part of it. What happens beforehand? What happens afterward? Feedback that is helpful and learning-focused fits into a context. Before a teacher gives feedback, students need to know the learning target so they have a purpose for using the feedback…

  4. Developing Sustainable Feedback Practices

    Science.gov (United States)

    Carless, David; Salter, Diane; Yang, Min; Lam, Joy

    2011-01-01

    Feedback is central to the development of student learning, but within the constraints of modularized learning in higher education it is increasingly difficult to handle effectively. This article makes a case for sustainable feedback as a contribution to the reconceptualization of feedback processes. The data derive from the Student Assessment and…

  5. An Iterative Technique for the Synthesis of Active Antenna Oscillator Arrays

    Directory of Open Access Journals (Sweden)

    Theodoros N. Kaifas

    2009-01-01

    Full Text Available A design procedure for the synthesis of a coupled active antenna oscillator array is presented. Such an array is synthesized by deriving two sets of parameters: the radiators' positions and the oscillators' outputs. The outputs are used to excite the radiators. Minimization of the mean square error between the desired pattern and the resulting one is made. Synthesis starts from an initial array, which is perturbed iteratively by varying simultaneously the element excitations and positions. In the iteration, the first variation of the cost function is set equal to zero. The final array results from the last iteration, where the stopping criteria are met. The procedure designs simultaneously both the antenna and the attached coupled oscillator array providing viable solutions. The second by properly configuring the tuning parameters through the use of closed-form formulas. The resulting arrays are shown to comply with the desired pattern and the nonlinear dynamics thus proving the validity of our method.

  6. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  7. Cryogenic instrumentation for ITER magnets

    Science.gov (United States)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  8. Quantum feedback channels

    CERN Document Server

    Bowen, G

    2002-01-01

    In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.

  9. Delayed excitatory and inhibitory feedback shape neural information transmission

    Science.gov (United States)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2017-01-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges. PMID:16383655

  10. Performance and Complexity of Tunable Sparse Network Coding with Gradual Growing Tuning Functions over Wireless Networks

    DEFF Research Database (Denmark)

    Garrido, Pablo; Sørensen, Chres Wiant; Roetter, Daniel Enrique Lucani;

    2016-01-01

    a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and computational cost. In addition, it would be difficult to implement, due to the feedback delay. In this work...

  11. Beryllium in the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.

    1995-01-01

    This paper consists of viewgraphs used in a presentation on the application of beryllium in breeding blankets for ITER and JET. The paper brings together data on the physical, thermal, mechanical, and chemical properties of beryllium and beryllium oxide for this type of application, as well as issues of compatibility with construction materials, and irradiation experience. It includes the results from testing programs carried out to arrive at some of the information, including fabrication work, irradiation experiments, and sample tests performed both in and out of the irradiation piles.

  12. Situated Formative Feedback

    DEFF Research Database (Denmark)

    Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard

    2016-01-01

    This study addresses the conceptual challenge of providing students with good quality feedback to enhance student learning in an online community of practice (COP). The aim of the study is to identify feedback mechanisms in a virtual learning environment (VLE) and to create a full formative...... feedback episode (FFE) through an online dialogue. The paper argues that dialogue is crucial for student learning and that feedback is not only something the teacher gives to the student. Viewing good quality feedback as social, situated, formative, emphasis is put on the establishment of dialogue. We...... refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...

  13. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. We...... use two pay schemes, a piece rate and a tournament. We find that overall feedback does not improve performance. In contrast to the piece-rate pay scheme there is some evidence of positive peer effects in tournaments since the underdogs almost never quit the competition even when lagging significantly...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  14. Automated Tuning of the Advanced Photon Source Booster Synchrotron

    Science.gov (United States)

    Biedron, S. G.; Carwardine, J. A.; Milton, S. V.

    1997-05-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 250 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. Ramped-magnet tracking errors can also lead to losses during the acceleration cycle. In order to simplify daily operation, automated tuning methods have been developed. Through the use of empirically determined response functions, transfer line corrector magnets, and beam position monitor readings, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. An automated version of this correction technique has been implemented using the feedback-based program sddscontrollaw. Further automation is used to adjust and minimize tracking errors between the five main ramped power supplies. These tuning algorithms and their implementation are described here along with an evaluation of their! performance.

  15. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim

    2011-11-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  16. Tuning a Tetrahertz Wire Laser

    Science.gov (United States)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-01-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.

  17. The Fine-Tuning Argument

    CERN Document Server

    Landsman, Klaas

    2015-01-01

    Our laws of nature and our cosmos appear to be delicately fine-tuned for life to emerge, in way that seems hard to attribute to chance. In view of this, some have taken the opportunity to revive the scholastic Argument from Design, whereas others have felt the need to explain this apparent fine-tuning of the clockwork of the Universe by proposing the existence of a `Multiverse'. We analyze this issue from a sober perspective. Having reviewed the literature and having added several observations of our own, we conclude that cosmic fine-tuning supports neither Design nor a Multiverse, since both of these fail at an explanatory level as well as in a more quantitative context of Bayesian confirmation theory (although there might be other reasons to believe in these ideas, to be found in religion and in inflation and/or string theory, respectively). In fact, fine-tuning and Design even seem to be at odds with each other, whereas the inference from fine-tuning to a Multiverse only works if the latter is underwritten...

  18. Status of US ITER Diagnostics

    Science.gov (United States)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  19. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  20. ITER Port Interspace Pressure Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan J [ORNL; Van Hove, Walter A [ORNL

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  1. Iterated Stretching of Viscoelastic Jets

    Science.gov (United States)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  2. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  3. Automatic tuning of myoelectric prostheses.

    Science.gov (United States)

    Bonivento, C; Davalli, A; Fantuzzi, C; Sacchetti, R; Terenzi, S

    1998-07-01

    This paper is concerned with the development of a software package for the automatic tuning of myoelectric prostheses. The package core consists of Fuzzy Logic Expert Systems (FLES) that embody skilled operator heuristics in the tuning of prosthesis control parameters. The prosthesis system is an artificial arm-hand system developed at the National Institute of Accidents at Work (INAIL) laboratories. The prosthesis is powered by an electric motor that is controlled by a microprocessor using myoelectric signals acquired from skin-surface electrodes placed on a muscle in the residual limb of the subject. The software package, Microprocessor Controlled Arm (MCA) Auto Tuning, is a tool for aiding both INAIL expert operators and unskilled persons in the controller parameter tuning procedure. Prosthesis control parameter setup and subsequent recurrent adjustments are fundamental for the correct working of the prosthesis, especially when we consider that myoelectric parameters may vary greatly with environmental modifications. The parameter adjustment requires the end-user to go to the manufacturer's laboratory for the control parameters setup because, generally, he/she does not have the necessary knowledge and instruments to do this at home. However, this procedure is not very practical and involves a waste of time for the technicians and uneasiness for the clients. The idea behind the MCA Auto Tuning package consists in translating technician expertise into an FLES knowledge database. The software interacts through a user-friendly graphic interface with an unskilled user, who is guided through a step-by-step procedure in the prosthesis parameter tuning that emulates the traditional expert-aided procedure. The adoption of this program on a large scale may yield considerable economic benefits and improve the service quality supplied to the users of prostheses. In fact, the time required to set the prosthesis parameters are remarkably reduced, as is the technician

  4. What Are Our International Students Telling Us? Further Explorations of a Formative Feedback Intervention, to Support Academic Literacy

    Science.gov (United States)

    Burns, Caroline; Foo, Martin

    2014-01-01

    This study reports on a further iteration of an action research cycle, discussed in Burns and Foo (2012, 2013). It explores how formative feedback on academic literacy was used and acted upon, and if a Formative Feedback Intervention (FFI) increased the students' confidence in future assignments. It also considers whether the assignment of a grade…

  5. A FAST CONVERGENT METHOD OF ITERATED REGULARIZATION

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaowei; Wu Chuansheng; Wu Di

    2009-01-01

    This article presents a fast convergent method of iterated regularization based on the idea of Landweber iterated regularization, and a method for a-posteriori choice by the Morozov discrepancy principle and the optimum asymptotic convergence order of the regularized solution is obtained. Numerical test shows that the method of iterated regu-larization can quicken the convergence speed and reduce the calculation burden efficiently.

  6. Preconditioned iterations to calculate extreme eigenvalues

    Energy Technology Data Exchange (ETDEWEB)

    Brand, C.W.; Petrova, S. [Institut fuer Angewandte Mathematik, Leoben (Austria)

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  7. Laser Feedback Technique for Precise Retardation Measurements

    Institute of Scientific and Technical Information of China (English)

    FEI Li-Gang; ZHANG Shu-Lian

    2006-01-01

    @@ A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity.The measured wave plate is located in the external cavity. When the length of the external cavity is tuned,the polarization states of laser will flip between two eigenstates, and the position of polarization flipping in one period of intensity modulation will vary with retardation of the wave plate. The duty ratio of two eigenstates is used to determine the retardation. Main advantages of the technique are that it is compact, low cost, fast and flexible. Especially, it is insensitive to a fluctuation of laser intensity and is suitable for on-line measurement. The experimental results have shown that the measurement uncertainty is better than 0.03° in the range 30°-150°.

  8. Iterative solution of the reduced eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, G. (Technischer Ueberwachungs-Verein Bayern e.V., Muenchen (Germany, F.R.))

    1991-04-01

    The Guyan method of reducing the stiffness and mass matrices of large linear structures introduces errors in the reduced mass matrix. These errors cannot be completely avoided even if the analysis coordinates are chosen optimally. However, they can be elimiated by iterating on the eigenvectors found from the Guyan reduced matrices. The necessary iteration steps follow directly from the eigenvalue problem. The resulting iteration procedures are presented and applied to two test problems showing that the iterations enable the exact eigensolutions to be extracted. All errors from the Guyan reduced matrices are removed or substantially decreased. (orig.).

  9. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  10. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Science.gov (United States)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  11. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  12. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  13. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  14. LMI-based robust iterative learning controller design for discrete linear uncertain systems

    Institute of Scientific and Technical Information of China (English)

    Jianming XU; Mingxuan SUN; Li YU

    2005-01-01

    This paper addresses the design problem of robust iterative learning controllers for a class of linear discrete-time systems with norm-bounded parameter uncertainties.An iterative learning algorithm with current cycle feedback is proposed to achieve both robust convergence and robust stability.The synthesis problem of the proposed iterative learning control (ILC) system is reformulated as a γ-suboptimal H-infinity control problem via the linear fractional transformation (LFT).A sufficient condition for the convergence of the ILC algorithm is presented in terms of linear matrix inequalities (LMIs).Furthermore,the linear transfer operators of the ILC algorithm with high convergence speed are obtained by using existing convex optimization techniques.The simulation results demonstrate the effectiveness of the proposed method.

  15. Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    CERN Document Server

    Torrieri, Don; Kwon, Hyuck

    2010-01-01

    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral eff...

  16. Iterative Learning Control with Desired Gravity Compensation under Saturation for a Robotic Machining Manipulator

    Directory of Open Access Journals (Sweden)

    Horacio Ernesto

    2015-01-01

    Full Text Available This paper proposes the design of a hybrid iterative learning controller for a four-degree-of-freedom (DOF robotic machining manipulator (RMM. It combines a nonlinear saturated (sat proportional + integral + derivative (PID control with desired gravity compensation (dgc and proportional + derivative- (PD- based iterative learning control (ILC. The sat(PID control is the primary component that maintains the local stability of the entire RMM system and the PDILC component provides robustness to parameter variations and uncertainties in the robot dynamics. Global asymptotic stability of the proposed control algorithm is conducted using Lyapunov direct method and LaSalles invariance principle. Simulation results show the effectiveness and robustness of the proposed hybrid iterative learning controller. It is also shown that the proposed controller achieved better tracking performances compared to conventional sat(PDdgc feedback controller.

  17. Benchmarking ICRF simulations for ITER

    Energy Technology Data Exchange (ETDEWEB)

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  18. Truncated states obtained by iteration

    CERN Document Server

    Cardoso, W B

    2007-01-01

    Quantum states of the electromagnetic field are of considerable importance, finding potential application in various areas of physics, as diverse as solid state physics, quantum communication and cosmology. In this paper we introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST. A general method to engineer TSI in the running-wave domain is employed, which includes the errors due to the nonidealities of detectors and photocounts.

  19. Planning as an Iterative Process

    Science.gov (United States)

    Smith, David E.

    2012-01-01

    Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.

  20. ITER Safety Analyses with ISAS

    Science.gov (United States)

    Gulden, W.; Nisan, S.; Porfiri, M.-T.; Toumi, I.; de Gramont, T. Boubée

    1997-06-01

    Detailed analyses of accident sequences for the International Thermonuclear Experimental Reactor (ITER), from an initiating event to the environmental release of activity, have involved in the past the use of different types of computer codes in a sequential manner. Since these codes were developed at different time scales in different countries, there is no common computing structure to enable automatic data transfer from one code to the other, and no possibility exists to model or to quantify the effect of coupled physical phenomena. To solve this problem, the Integrated Safety Analysis System of codes (ISAS) is being developed, which allows users to integrate existing computer codes in a coherent manner. This approach is based on the utilization of a command language (GIBIANE) acting as a “glue” to integrate the various codes as modules of a common environment. The present version of ISAS allows comprehensive (coupled) calculations of a chain of codes such as ATHENA (thermal-hydraulic analysis of transients and accidents), INTRA (analysis of in-vessel chemical reactions, pressure built-up, and distribution of reaction products inside the vacuum vessel and adjacent rooms), and NAUA (transport of radiological species within buildings and to the environment). In the near future, the integration of S AFALY (simultaneous analysis of plasma dynamics and thermal behavior of in-vessel components) is also foreseen. The paper briefly describes the essential features of ISAS development and the associated software architecture. It gives first results of a typical ITER accident sequence, a loss of coolant accident (LOCA) in the divertor cooling loop inside the vacuum vessel, amply demonstrating ISAS capabilities.

  1. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  2. Tuning a microcavity-coupled terahertz laser

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Fabrizio; Bianchi, Vezio; Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it [NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Li, Lianhe; Zhu, Jingxuan; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Tredicucci, Alessandro [Dipartimento di Fisica, Università degli Studi di Pisa, Largo Pontecorvo 6, 56127 Pisa (Italy)

    2015-12-28

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  3. Output feedback controller design for uncertain piecewise linear systems

    Institute of Scientific and Technical Information of China (English)

    Jianxiong ZHANG; Wansheng TANG

    2007-01-01

    This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.

  4. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    unexplored. Accordingly, we present information for practitioners on the behaviour of Brown clustering in order to assist hyper-parametre tuning, in the form of a theoretical model of Brown clustering utility. This model is then evaluated empirically in two sequence labelling tasks over two text types. We...

  5. Political Tunings of the Piano

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    and appearance, we develop Morton’s understanding of the ambient to include an ambiguous play between content and frame. Reflected through the presented theoretical framework, the paper seeks to initiate a discussion of varied piano pieces by La Monte Young, Peter Ablinger and Richard James (Aphex Twin......) as unfolding the ambiguity of various political tunings of the piano....

  6. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  7. Aggregation-iterative analogues and generalizations of projection-iterative methods

    Directory of Open Access Journals (Sweden)

    Shuvar B.F.

    2013-06-01

    Full Text Available Aggregation-iterative algorithms for linear operator equations are constructed and investigated. These algorithms cover methods of iterative aggregation and projection-iterative methods. In convergence conditions there is neither requirement for the corresponding operator of fixed sign no restriction to the spectral radius to be less than one.

  8. Installation of the ITER committee industry. Participants guide; Installation du Comite industrie ITER. Dossier des participants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    ITER is an international project to design and build an experimental fusion reactor based on the tokamak concept. This guide presents the ITER project and objectives and the associated organizations in France, the recommendations and actions for ITER, the industrial mobilization, the industrial committee and its members, technological sheets for the enterprises and the statistical document of the SESSI. (A.L.B.)

  9. Rater Variables Associated with ITER Ratings

    Science.gov (United States)

    Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of…

  10. Dense Iterative Contextual Pixel Classification using Kriging

    DEFF Research Database (Denmark)

    Ganz, Melanie; Loog, Marco; Brandt, Sami

    2009-01-01

    have been proposed to this end, e.g., iterative contextual pixel classification, iterated conditional modes, and other approaches related to Markov random fields. A problem of these methods, however, is their computational complexity, especially when dealing with high-resolution images in which...

  11. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony;

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time s...

  12. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...

  13. An iterative method for spherical bounces

    CERN Document Server

    Buniy, Roman V

    2016-01-01

    We develop a new iterative method for finding approximate solutions for spherical bounces associated with the decay of the false vacuum in scalar field theories. The method works for any generic potential in any number of dimensions, contains Coleman's thin-wall approximation as its first iteration, and greatly improves its accuracy by including higher order terms.

  14. Iterative methods for weighted least-squares

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovnikova, E.Y.; Vavasis, S.A. [Cornell Univ., Ithaca, NY (United States)

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  15. New concurrent iterative methods with monotonic convergence

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Qingchuan [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  16. Experimental studies of ITER demonstration discharges

    NARCIS (Netherlands)

    Sips, A.C.C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.

    2009-01-01

    Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has

  17. Discrete-Time Controllability for Feedback Quantum Dynamics

    CERN Document Server

    Albertini, Francesca

    2010-01-01

    Controllability properties for discrete-time, Markovian quantum dynamics are investigated. We find that, while in general the controlled system is not finite-time controllable, feedback control allows for arbitrary asymptotic state-to-state transitions. Under further assumption on the form of the measurement, we show that finite-time controllability can be achieved in a time that scales linearly with the dimension of the system, and we provide an iterative procedure to design the unitary control actions.

  18. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  19. Sampled-data Iterative Learning Control for Singular Systems

    Institute of Scientific and Technical Information of China (English)

    Sun Peng(孙鹏); Fang Zhong; Han Zhengzhi

    2004-01-01

    Sampled-data iterative learning control (SILC) for singular systems is addressed for the first time. With the introduction of the constrained relative degree, an SILC algorithm combined with a feedback control law is proposed for singular systems. Convergence of the algorithm is proved in sup-norm, while the conventional convergence analysis is in λ-norm. The final tracking error uniformly converges to a small residual set whose level of magnitude depends on the system dynamics and the sampling-period. Due to inequalities to estimate the level of the existing results of SILC, convergence is guaranteed not only at the sampling instants but on the entire operation interval, so that the inter-sample behavior is guaranteed, which is more practical for real implementation.

  20. NEW METHODS FOR TUNING OF MECHANICAL SYSTEMS DURING OPERATION IN STEADY STATE

    Directory of Open Access Journals (Sweden)

    Jaroslav HOMIŠIN

    2014-12-01

    Full Text Available The main purpose of this paper is to inform the technical community about new tuning methods of torsional oscillating mechanical systems (TOMS during operation in a steady state by means of application of pneumatic flexible shaft couplings. It is possible to change the torsional stiffness of pneumatic couplings by means of a change of gaseous medium pressure either out of operation or during operation. There are two possibilities how to tune the torsional oscillating mechanical systems: - tuning of torsion oscillating mechanical systems out of operation, what fulfils condition of given system tuning, - tuning of torsion oscillating mechanical systems during operation in a steady state, what fulfils condition of given system continual tuning. The basic principle of TOMS tuning during operation in the steady state consists in an adjustment of basic dynamical properties of pneumatic coupling according to the system dynamics. This adjustment can be made by means of a regulation system working in regulation circuit arrangement with a feedback. In this way it is possible to change dynamical properties of pneumatic coupling continuously with regard to dynamic of mechanical system, so that it can be eliminated dangerous torsional oscillation of given system in the working mode.

  1. Amplified feedback DFB laser for 40 Gb/s all-optical clock recovery

    Science.gov (United States)

    Chen, Cheng; Sun, Yu; Zhao, Lingjuan; Pan, Jiaoqing; Qiu, Jifang; Liang, Song; Wang, Wei; Lou, Caiyun

    2011-12-01

    A monolithic integrated amplified feedback semiconductor laser (AFL) was fabricated based on quantum well intermixing (QWI) technique. The AFL works as a self-pulsation laser. It consists of a gain-coupled multiple quantum well distribute feedback (DFB) laser diode (LD) section, a passive phase section and an amplified feedback section. The free-running repetition frequency of the AFL can be tuned from 32 GHz to 51 GHz via controlling the feedback strength. All-optical 40 Gb/s clock recovery was experimentally demonstrated using the AFL with a low timing jitter.

  2. Robust on-line relay automatic tuning of PID control systems

    Science.gov (United States)

    Tan; Lee; Jiang

    2000-01-01

    In this paper, a robust on-line relay automatic tuning method for PID control systems is developed which expand on the application domain of Astrom's renowned relay autotuning method. In the proposed configuration, a relay is applied to an inner loop of a controller-stabilised process in the usual manner. Using the induced limit cycle oscillations from the closed-loop system, the controller settings may be re-tuned non-iteratively to achieve enhanced performance without disrupting closed-loop control. Two control tuning methodologies are developed -- a direct and an indirect method based on an explicit process model. Simulation examples and a real-time experiment are provided to illustrate the practical appeal and potential advantages of the proposed method over the basic one.

  3. Landweber iterative regularization for nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI Chuanxing; CHEN Xinzhao; ZHOU Rong; CHEN Jian

    2006-01-01

    On the basis of the distributed source boundary point method (DSBPM)-based nearfield acoustic holography (NAH), Landweber iterative regularization method is proposed to stabilize the NAH reconstruction process, control the influence of measurement errors on the reconstructed results and ensure the validity of the reconstructed results. And a new method, the auxiliary surface method, is proposed to determine the optimal iterative number for optimizing the regularization effect. Here, the optimal number is determined by minimizing the relative error between the calculated pressure on the auxiliary surface corresponding to each iterative number and the measured pressure. An experiment on a speaker is investigated to demonstrate the high sensitivity of the reconstructed results to measurement errors and to validate the chosen method of the optimal iterative number and the Landweber iterative regularization method for controlling the influence of measurement errors on the reconstructed results.

  4. Turbo iterative equalization for HSDPA systems

    Institute of Scientific and Technical Information of China (English)

    WU QiHui; ZHAO ChunMing; WANG JinLong

    2007-01-01

    In this paper, a turbo iterative receiver structure with chip equalization is proposed for the 3G high-speed downlink packet access (HSDPA) systems. The receiver equalizes the channel prior to the dispreading and then performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multi-code detector and a SISO turbo decoder through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Computer simulations show that the turbo iterative receiver structure with chip equalization offers significant performance gain over the traditional receiver structure.

  5. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  6. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  7. "Feedback" For Instructioal Television.

    Science.gov (United States)

    Schramm, Wilbur

    A number of different methods have been used by instructional television (ITV) projects to obtain audience feedback, and some of these are now being used in the ITV system in El Salvador. We know that pretesting programs on a representative sample can bring considerable gains in learning. Another feedback source can be a classroom of pupils in the…

  8. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  9. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedback....... The pay schemes are a piece rate payment scheme and a winner-takes-all tournament. We find that, regardless of the pay scheme used, feedback does not improve performance. There are no significant peer effects in the piece-rate pay scheme. In contrast, in the tournament scheme we find some evidence...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  10. Situated Formative Feedback

    DEFF Research Database (Denmark)

    Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard

    2016-01-01

    feedback episode (FFE) through an online dialogue. The paper argues that dialogue is crucial for student learning and that feedback is not only something the teacher gives to the student. Viewing good quality feedback as social, situated, formative, emphasis is put on the establishment of dialogue. We...... refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...... theoretical textual analysis method. Asynchronous written dialogue from an online master’s course at Aalborg University forms the empirical basis of the study. The findings suggests in general that students play an essential role in SFF and that students and educators are equal in the COP, but holds different...

  11. Summary of ATLAS Pythia 8 tunes

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    We summarize the latest ATLAS Pythia 8 minimum bias and underlying event tunes. The Pythia 8 MPI tunes in this note have been constructed for nine different PDFs, making use of a new x-dependent hadronic matter distribution model.

  12. Self-tuning regulators. [adaptive control research

    Science.gov (United States)

    Astrom, K. J.

    1975-01-01

    The results of a research project are discussed for self-tuning regulators for active control. An algorithm for the self-tuning regulator is described as being stochastic, nonlinear, time variable, and not trivial.

  13. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  14. ITER Fast Plant System Controller prototype based on PXIe platform

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M., E-mail: mariano.ruiz@upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J.; Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D.; Lopez, J.M.; Arcas, G. de; Barrera, E.; Nieto, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Goncalves, B.; Sousa, J.; Carvalho, B. [Associacao EURATOM/IST, Lisbon (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Efficient data acquisition and data movement using EPICS. Black-Right-Pointing-Pointer Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  15. Feedback valence affects auditory perceptual learning independently of feedback probability

    OpenAIRE

    Amitay, S.; Moore, D. R.; Molloy, K.; Halliday, L. F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they wer...

  16. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  17. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  18. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Von Hellermann, M.; Giroud, C.; Jaspers, R. [Association Euratom-Fom, FOM Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster (Netherlands); Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Krasilnikov, A.; Tugarinov, S. [SRC RF TRINITI, Troitsk, Moscow region (Russian Federation); Lotte, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; McKee, G. [Wisconsin Univ., Madison, WI (United States); Malaquias, A. [Associacao EURATOM/IST, Instituto Superior Tecnico, Lisboa (Portugal); Rachlew, E. [Kungliga Tekniska Hoegskolan (KTH), Stockholm(Sweden)

    2003-07-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV.

  19. Iterants, Fermions and Majorana Operators

    Science.gov (United States)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  20. On the interplay between inner and outer iterations for a class of iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Giladi, E. [Stanford Univ., CA (United States)

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  1. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    Science.gov (United States)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  2. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...

  3. Feedback som tredjeordensiagttagelse

    Directory of Open Access Journals (Sweden)

    Ane Qvortrup

    2013-09-01

    Full Text Available Feedback tilskrives stor betydning for læring, men trods intensiv forskning på området synes det svært at fange, hvori feedbacks særlige potentiale består. I forsøgene på at gøre dette knyttes an til en række faktorer eller parametre, der fremhæves som centrale. En af disse faktorer er tid, hvor der kredses om forskellen mellem umiddelbar og forsinket feedback samt om fordele og ulemper ved hver af de to. I denne artikel knyttes der an til en forståelse af feedback som tredjeordensiagttagelse, og der sættes herfra fokus på, hvordan man i en praktisk undervisningssituation kan imødekomme tidsfaktoren knyttet til feedback. Med udgangspunkt i et undervisningsforløb på bachelorniveau, hvor der er arbejdet systematisk med feedback understøttet af Wikis, belyses det, hvordan et sådant arbejde synes at have potentiale for understøttelse af såvel læring som undervisning. En sådan teoretisk reflekteret belysning kan udgøre et refleksionsprogram for fremtidig planlægning af og løbende refleksion over undervisning.     The article investigates the effect of feedback on learning. Feedback has been shown to be one of the most powerful influences on achievement in education. But, in spite of much research on the matter, there is no agreement on how the special potential of feedback can be described, and consequently no agreement on what is good and bad feedback. This article sets out to rectify this omission by seeking a new theoretical framework that is sensitive to the complexity of the impact of feedback. The author propose a system theoretical frame and through its use identifies significant didactical issues. Although feedback is described as an internal, system-relative construction, when seen through a system theoretical lens different teaching environments create diverse conditions for feedback constructions. The final section of the paper explores this idea in relation to wikis.

  4. Feedback som tredjeordensiagttagelse

    Directory of Open Access Journals (Sweden)

    Ane Qvortrup

    2013-09-01

    Full Text Available Feedback tilskrives stor betydning for læring, men trods intensiv forskning på området synes det svært at fange, hvori feedbacks særlige potentiale består. I forsøgene på at gøre dette knyttes an til en række faktorer eller parametre, der fremhæves som centrale. En af disse faktorer er tid, hvor der kredses om forskellen mellem umiddelbar og forsinket feedback samt om fordele og ulemper ved hver af de to. I denne artikel knyttes der an til en forståelse af feedback som tredjeordensiagttagelse, og der sættes herfra fokus på, hvordan man i en praktisk undervisningssituation kan imødekomme tidsfaktoren knyttet til feedback. Med udgangspunkt i et undervisningsforløb på bachelorniveau, hvor der er arbejdet systematisk med feedback understøttet af Wikis, belyses det, hvordan et sådant arbejde synes at have potentiale for understøttelse af såvel læring som undervisning. En sådan teoretisk reflekteret belysning kan udgøre et refleksionsprogram for fremtidig planlægning af og løbende refleksion over undervisning.  The article investigates the effect of feedback on learning. Feedback has been shown to be one of the most powerful influences on achievement in education. But, in spite of much research on the matter, there is no agreement on how the special potential of feedback can be described, and consequently no agreement on what is good and bad feedback. This article sets out to rectify this omission by seeking a new theoretical framework that is sensitive to the complexity of the impact of feedback. The author propose a system theoretical frame and through its use identifies significant didactical issues. Although feedback is described as an internal, system-relative construction, when seen through a system theoretical lens different teaching environments create diverse conditions for feedback constructions. The final section of the paper explores this idea in relation to wikis.

  5. Predictive Terminal Guidance With Tuning of Prediction Horizon & Constrained Control .

    Directory of Open Access Journals (Sweden)

    S. E. Talole

    2000-07-01

    Full Text Available Continvojs time-predictive control approach is employed to formulate an output tracking nonlinear, optimal, terminal guidance ,law for re-entry vehicles. The notable features of this formulation are that the system equations are not linearised and the evaluation of the guidanceequations does not need the information of vehicle parameters, such as drag and mass. The formulation allows to impose the physical constrains on the control inputs, i..e. on the demanded lateral acceleliations through a saturation mapping and the controls are obtained using a fixed pointiteration algorithm which converges typically in a few iterations. Further, a simple method of tuning the prediction horizon needed in the guidance equations is presented. Numerical simulations show that the guidance law achieves almost zero terminal errors in all states despite large errors in initial Conditions.

  6. Cosine tuning minimizes motor errors.

    Science.gov (United States)

    Todorov, Emanuel

    2002-06-01

    Cosine tuning is ubiquitous in the motor system, yet a satisfying explanation of its origin is lacking. Here we argue that cosine tuning minimizes expected errors in force production, which makes it a natural choice for activating muscles and neurons in the final stages of motor processing. Our results are based on the empirically observed scaling of neuromotor noise, whose standard deviation is a linear function of the mean. Such scaling predicts a reduction of net force errors when redundant actuators pull in the same direction. We confirm this prediction by comparing forces produced with one versus two hands and generalize it across directions. Under the resulting neuromotor noise model, we prove that the optimal activation profile is a (possibly truncated) cosine--for arbitrary dimensionality of the workspace, distribution of force directions, correlated or uncorrelated noise, with or without a separate cocontraction command. The model predicts a negative force bias, truncated cosine tuning at low muscle cocontraction levels, and misalignment of preferred directions and lines of action for nonuniform muscle distributions. All predictions are supported by experimental data.

  7. A computational method for simultaneous LQ optimal control design via piecewise constant output feedback

    OpenAIRE

    Cao, YY; Lam, J.

    2001-01-01

    This paper is concerned with simultaneous linear-quadratic (LQ) optimal control design for a set of LTI systems via piecewise constant output feedback. First, the discrete-time simultaneous LQ optimal control design problem is reduced to solving a set of coupled matrix inequalities and an iterative LMI algorithm is presented to compute the feedback gain. Then, simultaneous stabilization and simultaneous LQ optimal control design of a set of LTI continuous-time systems are considered via perio...

  8. Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems

    OpenAIRE

    Ronald J. Balvers; Douglas W. Mitchell

    2005-01-01

    Conditions are derived for linear-quadratic control (LQC) problems to exhibit linear evolution of the Riccati matrix and constancy of the control feedback matrix. One of these conditions involves a matrix upon whose rank a necessary condition and a sufficient condition for controllability are based. Linearity of Riccati evolution allows for rapid iterative calculation, and constancy of the control feedback matrix allows for time-invariant comparative static analysis of policy reactions.

  9. Eighth-Grade Violinists' Instrument Tuning Ability: A Comparison of Pitch Perception and Tuning Accuracy

    Science.gov (United States)

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to explore the relationship between eighth-grade violinists' pitch perception and instrument tuning skill. The perceptual task was a researcher-developed computer-based Violin Tuning Perception Test. The instrument tuning task involved tuning two violins, one mistuned flat and the other mistuned sharp. Participants (N…

  10. Strategies for effective feedback.

    Science.gov (United States)

    Kritek, Patricia A

    2015-04-01

    Provision of regular feedback to trainees on clinical performance by supervising providers is increasingly recognized as an essential component of undergraduate and graduate health sciences education; however, many individuals have not been formally trained in this pedagogical skill. At the bedside or in the clinic, effective performance feedback can be accomplished by following four key steps. Begin by setting expectations that incorporate the trainee's personal goals and external objectives. Delineate how and when you will provide feedback to the learner. Next, directly observe the trainee's performance. This can be challenging while engaged on a busy clinical service, but a focus on discrete activities or interactions (e.g., family meeting, intravascular volume assessment using bedside ultrasound, or obtaining informed consent) is helpful. The third step is to plan and prioritize the feedback session. Feedback is most effective when given in a timely fashion and delivered in a safe environment. Limit the issues addressed because learners often disengage if confronted with too many deficiencies. Finally, when delivering feedback, begin by listening to the trainee's self-evaluation and then take a balanced approach. Describe in detail what the trainee does well and discuss opportunities for improvement with emphasis on specific, modifiable behaviors. The feedback loop is completed with a plan for follow-up reassessment. Through the use of these relatively simple practices, both the trainee and teacher can have a more productive learning experience.

  11. Newton—Like Iteration Method for Solving Algebraic Equations

    Institute of Scientific and Technical Information of China (English)

    JihuanHE

    1998-01-01

    In this paper,a Newton-like iteration method is proposed to solve an approximate solution of an algebraic equation.The iteration formula obtained by homotopy perturbation method contains the well-known Newton iteration formulain logic.

  12. Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Turčinková, Dana; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme [ETH Zurich, Institute for Quantum Electronics, Auguste-Piccard-Hof 1, 8093 Zurich (Switzerland); Amanti, Maria Ines [ETH Zurich, Institute for Quantum Electronics, Auguste-Piccard-Hof 1, 8093 Zurich (Switzerland); Univ. Paris Diderot, Lab. Matererk iaux et Phenomenes Quantiques, F-75205 Paris (France)

    2015-03-30

    The continuous electrical tuning of a single-mode terahertz quantum cascade laser operating at a frequency of 3 THz is demonstrated. The devices are based on a two-section interdigitated third-order distributed feedback cavity. The lasers can be tuned of about 4 GHz at a constant optical output power of 0.7 mW with a good far-field pattern.

  13. PI tuning for large dead-time processes with a new robustness specification

    Institute of Scientific and Technical Information of China (English)

    徐江华; 邵惠鹤

    2004-01-01

    A simple PI controller tuning method for large dead-time processes is presented. First, a first-order plus dead-time model is identified on the basis of relay feedback experiments, which Nyquist curve is very close to that of large dead-time processes over a wide frequency range. With the model available, PI controller is designed with a new robust specification. Simulation examples show the effectiveness and feasibility of the presented PI tuning method for large dead-time processes.

  14. Recent ASDEX Upgrade research in support of ITER and DEMO

    Science.gov (United States)

    H. Zohmthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2015-10-01

    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality (νped\\ast PLH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/LTe introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected mass as needed for runaway electron suppression. Large locked modes can significantly decrease the fuelling efficiency and increase the asymmetry of radiated power during MGI mitigation. Concerning power exhaust, the partially detached ITER divertor scenario has been demonstrated at Psep/R = 10 MW m-1 in ASDEX Upgrade, with a peak time averaged target load around 5 MW m-2, well consistent with the component limits

  15. Adaptive Multi-Objective Optimization Based on Feedback Design

    Institute of Scientific and Technical Information of China (English)

    窦立谦; 宗群; 吉月辉; 曾凡琳

    2010-01-01

    The problem of adaptive multi-objective optimization(AMOO) has received extensive attention due to its practical significance.An important issue in optimizing a multi-objective system is adjusting the weighting coefficients of multiple objectives so as to keep track of various conditions.In this paper,a feedback structure for AMOO is designed.Moreover,the reinforcement learning combined with hidden biasing information is applied to online tuning weighting coefficients of objective functions.Finally,the prop...

  16. Feedback og motivation

    DEFF Research Database (Denmark)

    Bjerresgaard, Helle

    2016-01-01

    Feedback til elever, som enten er gået midlertidigt i stå eller i værste tilfælde oplever sig selv magtesløse, skal hjælpe dem til at etablere en tro på, at de kan øve indflydelse på og være betydningsfulde for deres omgivelser. Feedback sættes ofte i forbindelse med ’læring’. I denne artikel...... påvirket af en målrettet, individuel feedback – eller manglen på samme....

  17. Halpern Iteration in CAT(κ) Spaces

    Institute of Scientific and Technical Information of China (English)

    Bo(z)ena PI(A)TEK

    2011-01-01

    In this paper we show that an iterative sequence generated by the Halpern algorithm converges to a fixed point in the case of complete CAT(κ) spaces. Similar results for Hadamard manifolds were obtained in[Li,C.,López, G., Martín-Márquez, V.:Iterative algorithms for nonexpansive mappings on Hadamard manifolds. Taiwanese J. Math., 14, 541-559 (2010)], but we study a much more general case. Moreover, we discuss the Halpern iteration procedure for set-valued mappings.

  18. Iterative restoration algorithms for nonlinear constraint computing

    Science.gov (United States)

    Szu, Harold

    A general iterative-restoration principle is introduced to facilitate the implementation of nonlinear optical processors. The von Neumann convergence theorem is generalized to include nonorthogonal subspaces which can be reduced to a special orthogonal projection operator by applying an orthogonality condition. This principle is shown to permit derivation of the Jacobi algorithm, the recursive principle, the van Cittert (1931) deconvolution method, the iteration schemes of Gerchberg (1974) and Papoulis (1975), and iteration schemes using two Fourier conjugate domains (e.g., Fienup, 1981). Applications to restoring the image of a double star and division by hard and soft zeros are discussed, and sample results are presented graphically.

  19. Frozen Landweber Iteration for Nonlinear Ill-Posed Problems

    Institute of Scientific and Technical Information of China (English)

    J.Xu; B.Han; L.Li

    2007-01-01

    In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems.A convergence analysis for this iteration is presented.The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration.We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.

  20. Integrated Analogic Filter Tuning System Design

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2016-06-01

    Full Text Available Parameters of integrated analog filters can vary due to temperatu-re change, IC process variation and therefore they should have dedicated tuning circuits that compensate these imperfections. A method is proposed that speeds up switched resistor bank design while taking into account the required tuning range and step size. A novel counter structure is used in the tuning circuit that is ba-sed on successive approximation approach. The proposed swit-ched resistor design method and tuning circuit are designed in 0.18 μm CMOS technology and verified. Results are compared to existing tuning circuit designs.

  1. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  2. Structural analysis of the ITER Vacuum Vessel regarding 2012 ITER Project-Level Loads

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.-M., E-mail: jean-marc.martinez@live.fr [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Jun, C.H.; Portafaix, C.; Choi, C.-H.; Ioki, K.; Sannazzaro, G.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Cambazar, M.; Corti, Ph.; Pinori, K.; Sfarni, S.; Tailhardat, O. [Assystem EOS, 117 rue Jacquard, L' Atrium, 84120 Pertuis (France); Borrelly, S. [Sogeti High Tech, RE2, 180 rue René Descartes, Le Millenium – Bat C, 13857 Aix en Provence (France); Albin, V.; Pelletier, N. [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France)

    2014-10-15

    Highlights: • ITER Vacuum Vessel is a part of the first barrier to confine the plasma. • ITER Vacuum Vessel as Nuclear Pressure Equipment (NPE) necessitates a third party organization authorized by the French nuclear regulator to assure design, fabrication, conformance testing and quality assurance, i.e. Agreed Notified Body (ANB). • A revision of the ITER Project-Level Load Specification was implemented in April 2012. • ITER Vacuum Vessel Loads (seismic, pressure, thermal and electromagnetic loads) were summarized. • ITER Vacuum Vessel Structural Margins with regards to RCC-MR code were summarized. - Abstract: A revision of the ITER Project-Level Load Specification (to be used for all systems of the ITER machine) was implemented in April 2012. This revision supports ITER's licensing by accommodating requests from the French regulator to maintain consistency with the plasma physics database and our present understanding of plasma transients and electro-magnetic (EM) loads, to investigate the possibility of removing unnecessary conservatism in the load requirements and to review the list and definition of incidental cases. The purpose of this paper is to present the impact of this 2012 revision of the ITER Project-Level Load Specification (LS) on the ITER Vacuum Vessel (VV) loads and the main structural margins required by the applicable French code, RCC-MR.

  3. Clinical applications of iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eberl, S. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia). Department of PET and Nuclear Medicine

    1998-03-01

    Expectation maximisation (EM) reconstruction largely eliminates the hot and cold streaking artifacts characteristic of filtered-back projection (FBP) reconstruction around localised hot areas, such as the bladder. It also substantially reduces the problem of decreased inferior wall counts in MIBI myocardial perfusion studies due to ``streaking`` from high liver uptake. Non-uniform attenuation and scatter correction, resolution recovery, anatomical information, e.g. from MRI or CT tracer kinetic modelling, can all be built into the EM reconstruction imaging model. The properties of ordered subset EM (OSEM) have also been used to correct for known patient motion as part of the reconstruction process. These uses of EM are elaborated more fully in some of the other abstracts of this meeting. Currently we use OSEM routinely for: (i) studies where streaking is a problem, including all MIBI myocardial perfusion studies, to avoid hot liver inferior wall artifact, (ii) all whole body FDG PET, all lung V/Q SPECT (which have a short acquisition time) and all gated {sup 201}TI myocardial perfusion studies due to improved noise characteristics of OSEM in these studies; (iii) studies with measured, non-uniform attenuation correction. With the accelerated OSEM algorithm, iterative reconstruction is practical for routine clinical applications and we have found OSEM to provide clearly superior reconstructions for the areas listed above and are investigating its application to other studies. In clinical use, we have not found OSEM to introduce artifacts which would not also occur with FBP, e.g. uncorrected patient motion will cause artifacts with both OSEM and FBP.

  4. New tuning method for PID controller.

    Science.gov (United States)

    Shen, Jing-Chung

    2002-10-01

    In this paper, a tuning method for proportional-integral-derivative (PID) controller and the performance assessment formulas for this method are proposed. This tuning method is based on a genetic algorithm based PID controller design method. For deriving the tuning formula, the genetic algorithm based design method is applied to design PID controllers for a variety of processes. The relationship between the controller parameters and the parameters that characterize the process dynamics are determined and the tuning formula is then derived. Using simulation studies, the rules for assessing the performance of a PID controller tuned by the proposed method are also given. This makes it possible to incorporate the capability to determine if the PID controller is well tuned or not into an autotuner. An autotuner based on this new tuning method and the corresponding performance assessment rules is also established. Simulations and real-time experimental results are given to demonstrate the effectiveness and usefulness of these formulas.

  5. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  6. NAIP 2014 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2014 Imagery Feedback map allows users to make comments and observations about the quality of the 2014 National Agriculture Imagery Program (NAIP)...

  7. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  8. Synchronous Databus Network in ITER: Open source real-time network for the next nuclear fusion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L.; Centioli, C. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Iannone, F. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy)], E-mail: francesco.iannone@frascati.enea.it; Neri, C.; Panella, M.; Pangione, L.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Scappaticci, M. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Tor Vergata, Rome (Italy); Vitale, V. [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, Rome (Italy); Zaccarian, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Tor Vergata, Rome (Italy)

    2008-04-15

    The next nuclear fusion experiment, ITER, is providing the infrastructure for the optimal operation of a burning plasma, requiring feedback control of discharge parameters and on-line evaluation of computationally intensive models running in a cluster of controller nodes. Thus, the synchronization of the available information on the plasma and plant state variables among the controller nodes is a key issue for ITER. The ITER conceptual design aims to perform feedback control on a cluster of distributed controllers connected by a Synchronous Databus Network (SDN). Therefore it is mandatory to achieve a deterministic data exchange among the controller nodes with a refresh rate of at least 1 kHz and a jitter of at least 50 {mu}s. Thus, a conservative estimate of the data flow within the controller network can be 3 kSample/ms. In this paper the open source RTnet project is evaluated to meet the requirements of the SDN of ITER. A testbed involving a cluster of eight nodes connected over a standard ethernet network has been set up to simulate a distributed real-time control system. The main goal of the test is to verify the compliance of the performance with the ITER SDN requirements.

  9. On the safety of ITER accelerators.

    Science.gov (United States)

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.

  10. Applications of the ergodic iteration theorem

    OpenAIRE

    Zapletal, J.

    2010-01-01

    I prove several natural preservation theorems for the countable support iteration. This solves a question of Roslanowski regarding the preservation of localization properties and greatly simplifies the proofs in the area.

  11. Archimedes' Pi--An Introduction to Iteration.

    Science.gov (United States)

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  12. Stability of Jungck-type iterative procedures

    Directory of Open Access Journals (Sweden)

    S. L. Singh

    2005-01-01

    Full Text Available We introduce and discuss the stability of Jungck and Jungck-Mann iterative procedures for a pair of Jungck-Osilike-type maps on an arbitrary set with values in a metric or linear metric space.

  13. Anderson Acceleration for Fixed-Point Iterations

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Homer F. [Worcester Polytechnic Institute, MA (United States)

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  14. Status and verification strategy for ITER neutronics

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, Michael, E-mail: michael.loughlin@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Angelone, Maurizio [Associazione EURATOM-ENEA Sulla Fusione, Via E. Fermi 45, I-00044 Frascati, Roma (Italy); Batistoni, Paola [Associazione EURATOM-ENEA Sulla Fusione, Via E. Fermi 45, I-00044 Frascati, Roma (Italy); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Eskhult, Jonas [Studsvik Nuclear AB, SE-611 Nyköping (Sweden); Konno, Chikara [Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Pampin, Raul [F4E Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona 08019 (Spain); Polevoi, Alexei; Polunovskiy, Eduard [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    The paper summarizes the current status of neutronics at ITER and a first set of proposals for experimental programmes to be conducted in the early operational life-time of ITER are described for the more crucial areas. These include a TF coils heating benchmark, a streaming benchmark and streaming measurements by activation on ITER itself. Also on ITER the measurement of activated water from triton burn-up should be planned and performed. This will require the measurement of triton burn-up in DD phase. Measurements of neutron flux in the tokamak building during DD operations should also be carried out. The use of JET for verification of shut down dose rate estimates is desirable. Other facilities to examine the production and behaviour of activated corrosion products and the shielding properties of concretes to high energy (6 MeV) gamma-rays are recommended.

  15. Accelerating Iterative Big Data Computing Through MPI

    Institute of Scientific and Technical Information of China (English)

    梁帆; 鲁小亿

    2015-01-01

    Current popular systems, Hadoop and Spark, cannot achieve satisfied performance because of the inefficient overlapping of computation and communication when running iterative big data applications. The pipeline of computing, data movement, and data management plays a key role for current distributed data computing systems. In this paper, we first analyze the overhead of shuffle operation in Hadoop and Spark when running PageRank workload, and then propose an event-driven pipeline and in-memory shuffle design with better overlapping of computation and communication as DataMPI-Iteration, an MPI-based library, for iterative big data computing. Our performance evaluation shows DataMPI-Iteration can achieve 9X∼21X speedup over Apache Hadoop, and 2X∼3X speedup over Apache Spark for PageRank and K-means.

  16. Overview and status of ITER internal components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-10-15

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine.

  17. Path-based Iterative Reconstruction (PBIR) for X-ray Computed Tomography

    CERN Document Server

    Wu, Meng; Yang, Qiao; Fahrig, Rebecca

    2015-01-01

    Model-based iterative reconstruction (MBIR) techniques have demonstrated many advantages in X-ray CT image reconstruction. The MBIR approach is often modeled as a convex optimization problem including a data fitting function and a penalty function. The tuning parameter value that regulates the strength of the penalty function is critical for achieving good reconstruction results but difficult to choose. In this work, we describe two path seeking algorithms that are capable of efficiently generating a series of MBIR images with different strengths of the penalty function. The root-mean-squared-differences of the proposed path seeking algorithms are below 4 HU throughout the entire reconstruction path. With the efficient path seeking algorithm, we suggest a path-based iterative reconstruction (PBIR) to obtain complete information from the scanned data and reconstruction model.

  18. An Iterative Learning Control Technique for Point-to-Point Maneuvers Applied on an Overhead Crane

    Directory of Open Access Journals (Sweden)

    Khaled A. Alhazza

    2014-01-01

    Full Text Available An iterative learning control (ILC strategy is proposed, and implemented on simple pendulum and double pendulum models of an overhead crane undergoing simultaneous traveling and hoisting maneuvers. The approach is based on generating shaped commands using the full nonlinear equations of motion combined with the iterative learning control, to use as acceleration commands to the jib of the crane. These acceleration commands are tuned to eliminate residual oscillations in rest-to-rest maneuvers. The performance of the proposed strategy is tested using an experimental scaled model of an overhead crane with hoisting. The shaped command is derived analytically and validated experimentally. Results obtained showed that the proposed ILC control strategy is capable of eliminating travel and residual oscillations in simple and double pendulum models with hoisting. It is also shown, in all cases, that the proposed approach has a low sensitivity to the initial cable lengths.

  19. Iterative Development of an Online Dietary Recall Tool: INTAKE24

    Science.gov (United States)

    Simpson, Emma; Bradley, Jennifer; Poliakov, Ivan; Jackson, Dan; Olivier, Patrick; Adamson, Ashley J.; Foster, Emma

    2017-01-01

    Collecting large-scale population data on dietary intake is challenging, particularly when resources and funding are constrained. Technology offers the potential to develop novel ways of collecting large amounts of dietary information while making it easier, more convenient, intuitive, and engaging for users. INTAKE24 is an online multiple pass 24 h dietary recall tool developed for use in national food and nutrition surveys. The development of INTAKE24 was a four-stage iterative process of user interaction and evaluation with the intended end users, 11–24 years old. A total of 80 11–24 years old took part in the evaluation, 20 at each stage. Several methods were used to elicit feedback from the users including, ‘think aloud’, ‘eye tracking’, semi-structured interviews, and a system usability scale. Each participant completed an interviewer led recall post system completion. Key system developments generated from the user feedback included a ‘flat’ interface, which uses only a single interface screen shared between all of the various activities (e.g., free text entry, looking up foods in the database, portion size estimation). Improvements to the text entry, search functionality, and navigation around the system were also influenced through feedback from users at each stage. The time to complete a recall using INTAKE24 almost halved from the initial prototype to the end system, while the agreement with an interviewer led recall improved. Further developments include testing the use of INTAKE24 with older adults and translation into other languages for international use. Our future aim is to validate the system with recovery biomarkers. PMID:28208763

  20. Iterative Development of an Online Dietary Recall Tool: INTAKE24

    Directory of Open Access Journals (Sweden)

    Emma Simpson

    2017-02-01

    Full Text Available Collecting large-scale population data on dietary intake is challenging, particularly when resources and funding are constrained. Technology offers the potential to develop novel ways of collecting large amounts of dietary information while making it easier, more convenient, intuitive, and engaging for users. INTAKE24 is an online multiple pass 24 h dietary recall tool developed for use in national food and nutrition surveys. The development of INTAKE24 was a four-stage iterative process of user interaction and evaluation with the intended end users, 11–24 years old. A total of 80 11–24 years old took part in the evaluation, 20 at each stage. Several methods were used to elicit feedback from the users including, ‘think aloud’, ‘eye tracking’, semi-structured interviews, and a system usability scale. Each participant completed an interviewer led recall post system completion. Key system developments generated from the user feedback included a ‘flat’ interface, which uses only a single interface screen shared between all of the various activities (e.g., free text entry, looking up foods in the database, portion size estimation. Improvements to the text entry, search functionality, and navigation around the system were also influenced through feedback from users at each stage. The time to complete a recall using INTAKE24 almost halved from the initial prototype to the end system, while the agreement with an interviewer led recall improved. Further developments include testing the use of INTAKE24 with older adults and translation into other languages for international use. Our future aim is to validate the system with recovery biomarkers.

  1. Feedback and rewards, part II: formal and informal feedback reviews.

    Science.gov (United States)

    Harolds, Jay

    2013-02-01

    There are 2 major classes of feedback. One class of feedback consists of the informal, numerous conversations between various people in the organization regarding the performance, behavior, and goals of an individual. Another class of feedback consists of formal reviews held once or twice a year between a supervisor and an individual. This article discusses both types of feedback.

  2. Experiences with iterated traffic microsimulations in Dallas

    CERN Document Server

    Nagel, K

    1997-01-01

    This paper reports experiences with iterated traffic microsimulations in the context of a Dallas study. ``Iterated microsimulations'' here means that the information generated by a microsimulation is fed back into the route planner so that the simulated individuals can adjust their routes to circumvent congestion. This paper gives an overview over what has been done in the Dallas context to better understand the relaxation process, and how to judge the robustness of the results.

  3. A steerable ECRF launcher for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grunloh, H.; Prater, R.; Doane, J.L.; Moeller, C.P. [General Atomics, San Diego (United States); Makowski, M. [ITER Joint Work Site, Garching (Germany)

    1998-07-01

    A design is proposed to steer the electron cyclotron heating and current drive power for ITER using rotatable, water-cooled mirrors and long-pressure hydraulic actuators, and to accommodate changes in length of the waveguide when the temperatures of the vacuum vessel and the cryostat change using waveguide bellows. An alternative concept is also introduced that requires no moving parts within the ITER cryostat and that utilizes wave reconstruction within the waveguide to effect the steering. (author)

  4. Threshold power and energy confinement for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.

    1996-12-31

    In order to predict the threshold power for L-H transition and the energy confinement performance in ITER, assembling of database and analyses of them have been progressed. The ITER Threshold Database includes data from 10 divertor tokamaks. Investigation of the database gives a scaling of the threshold power of the form P{sub thr} {proportional_to} B{sub t} n{sub e}{sup 0.75} R{sup 2} {times} (n{sub e} R{sup 2}){sup +-0.25}, which predicts P{sub thr} = 100 {times} 2{sup 0{+-}1} MW for ITER at n{sub e} = 5 {times} 10{sup 19} m{sup {minus}3}. The ITER L-mode Confinement Database has also been expanded by data from 14 tokamaks. A scaling of the thermal energy confinement time in L-mode and ohmic phases is obtained; {tau}{sub th} {approximately} I{sub p} R{sup 1.8} n{sub e}{sup 0.4{sub P{sup {minus}0.73}}}. At the ITER parameter, it becomes about 2.2 sec. For the ignition in ITER, more than 2.5 times of improvement will be required from the L-mode. The ITER H-mode Confinement Database is expanded from data of 6 tokamaks to data of 11 tokamaks. A {tau}{sub th} scaling for ELMy H-mode obtained by a standard regression analysis predicts the ITER confinement time of {tau}{sub th} = 6 {times} (1 {+-} 0.3) sec. The degradation of {tau}{sub th} with increasing n{sub e} R{sup 2} (or decreasing {rho}{sub *}) is not found for ELMy H-mode. An offset linear law scaling with a dimensionally correct form also predicts nearly the same {tau}{sub th} value.

  5. Overview and status of ITER Cryostat manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil K., E-mail: anil.bhardwaj@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Gupta, Girish; Prajapati, Rajnikant; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gourav; Palaliya, Amit; Jha, Saroj; Pandey, Manish; Shukla, Dileep [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Iyer, Ganesh; Jadhav, Pandurang; Goyal, Dipesh; Desai, Anish [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India); Sekachev, I.; Vitupier, Guillaume [ITER Organization, Route de Vinon sur Verdon – CS 90046, 13067 Saint Paul Lez Durance Cedex (France); and others

    2016-11-01

    Highlights: • Manufacturing status of one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world (ITER Cryostat). • Overview of manufacturing stages and its segmentation. • Overview of manufacturing procedures and assembly and installation. - Abstract: One of ITER-India's commitments to the ITER Organization is procurement of the ITER Cryostat. It is a large vacuum vessel (∼29 m dia. and ∼29 m height), which is made up of 304/304 L dual marked stainless steel and has a total mass over 3500 t. The thickness of the vessel wall varies from 50 mm to 190 mm. It is one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world which provides vacuum thermal insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also mechanically supports the magnet system along with the vacuum vessel (VV). The cryostat is designed and constructed according to ASME Section-VIII Division-2 with additional ITER Vacuum Handbook requirements and it is classified as protection important component (PIC-2). Manufacturing of cryostat segments is ongoing in India; sub-assembly of four major sections of the cryostat from the segments will be done at the ITER site in a temporary workshop building and the final assembly will be done in the pit of the tokamak building, the final location. The cryostat manufacturing contract has been awarded to Larsen and Toubro Limited in August 2012 after completion of design [4] and signing of Procurement Arrangement [1] with ITER Organization. Manufacturing of the cryostat was started in January 2014 after approval of the manufacturing drawings and procedures. The temporary workshop of 44 m × 110 m × 26 m in height has been completed in November 2014 at the ITER site with a 200 t crane installed. This paper gives an overview and the status of the cryostat manufacturing.

  6. Efficient iterative adaptive pole placement algorithm

    Institute of Scientific and Technical Information of China (English)

    李俊民; 李靖; 杨磊

    2004-01-01

    An iterative adaptive pole placement algorithm is presented. The stability and the convergence of the algorithm are respectively established. Since one-step iterative formulation in computing controller's parameters is used, the on-line computation cost is greatly reduced with respected to the traditional algorithm. The algorithm with the feed-forward can follow arbitrarily bounded output. The algorithm is also extended to multivariate case. Simulation examples show the efficiency and robustness of the algorithm.

  7. Iterative consolidation of unorganized point clouds.

    Science.gov (United States)

    Liu, Shengjun; Chan, Kwan-Chung; Wang, Charlie C L

    2012-01-01

    Unorganized point clouds obtained from 3D shape acquisition devices usually present noise, outliers, and nonuniformities. The proposed framework consolidates unorganized points through an iterative procedure of interlaced downsampling and upsampling. Selection operations remove outliers while preserving geometric details. The framework improves the uniformity of points by moving the downsampled particles and refining point samples. Surface extrapolation fills missed regions. Moreover, an adaptive sampling strategy speeds up the iterations. Experimental results demonstrate the framework's effectiveness.

  8. Accelerated Schwarz iterations for Helmholtz equation

    Science.gov (United States)

    Nagid, Nabila; Belhadj, Hassan; Amattouch, Mohamed Ridouan

    2017-01-01

    In this paper, the Restricted additive Schwarz (RAS) method is applied to solve Helmholtz equation. To accelerate the RAS iterations, we propose to apply the vector ɛ-algorithm. Some convergence analysis of the proposed method is presented, and applied succeffully to Helmholtz problem. The obtained results show the efficiency of the proposed approach. Moreover, the algorithm yields much faster convergence than the classical Schwarz iterations.

  9. IMM Iterated Extended Particle Filter Algorithm

    OpenAIRE

    Yang Wan; Shouyong Wang; Xing Qin

    2013-01-01

    In order to solve the tracking problem of radar maneuvering target in nonlinear system model and non-Gaussian noise background, this paper puts forward one interacting multiple model (IMM) iterated extended particle filter algorithm (IMM-IEHPF). The algorithm makes use of multiple modes to model the target motion form to track any maneuvering target and each mode uses iterated extended particle filter (IEHPF) to deal with the state estimation problem of nonlinear non-Gaussian system. IEH...

  10. Algorithmic Optimisations for Iterative Deconvolution Methods

    OpenAIRE

    Welk, Martin; Erler, Martin

    2013-01-01

    We investigate possibilities to speed up iterative algorithms for non-blind image deconvolution. We focus on algorithms in which convolution with the point-spread function to be deconvolved is used in each iteration, and aim at accelerating these convolution operations as they are typically the most expensive part of the computation. We follow two approaches: First, for some practically important specific point-spread functions, algorithmically efficient sliding window or list processing tech...

  11. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  12. ITER Remote Maintenance System (IRMS) lifecycle management

    Energy Technology Data Exchange (ETDEWEB)

    Tesini, Alessandro, E-mail: alessandro.tesini@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Otto' , Bede [Oxford Technologies Ltd, 7, Nuffield Way, Abingdon, Oxon OX14 1RJ (United Kingdom); Blight, John [FAAST 31c Allee de la Granette, 13600 Ceyreste (France); Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heckendorn, Frank [FD Technologies, PO Box 6686, Aiken, SC (United States); Martins, Jean-Pierre [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Marty, Thomas [Westinghouse, 122, avenue de Hambourg, 13008 Marseille (France); Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2011-10-15

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  13. A Tuning Computation Technique for a Multiple-Antenna-Port and Multiple-User-Port Antenna Tuner

    Directory of Open Access Journals (Sweden)

    Frédéric Broydé

    2016-01-01

    Full Text Available A multiple-user-port antenna tuner having the structure of a multidimensional π-network has recently been disclosed, together with design equations which assume lossless circuit elements. This paper is about the design of this type of antenna tuner, when losses are taken into account in each circuit element of the antenna tuner. The problem to be solved is the tuning computation, the intended results of which are the reactance values of the adjustable impedance devices of the antenna tuner, which provide an ideal match, if such reactance values exist. An efficient iterative tuning computation technique is presented and demonstrated.

  14. Feedback and rewards, Part I: Introduction to effective feedback.

    Science.gov (United States)

    Harolds, Jay A

    2013-01-01

    This series of articles discusses conversations regarding feedback. Feedback can include input from numerous sources, including one's supervisor, peers, subordinates, suppliers, customers, patients, and/or society members. Effective feedback is very important to the operation of any organization and to the growth of the individual. However, feedback done poorly does not appear to be rare and can be highly destructive to all. A variety of tips on how to do feedback well are included in this article.

  15. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback in the...

  16. Guidelines : the do's, don'ts and don't knows of feedback for clinical education

    NARCIS (Netherlands)

    Lefroy, Janet; Watling, Chris; Teunissen, Pim W; Brand, Paul

    2015-01-01

    INTRODUCTION: The guidelines offered in this paper aim to amalgamate the literature on formative feedback into practical Do's, Don'ts and Don't Knows for individual clinical supervisors and for the institutions that support clinical learning. METHODS: The authors built consensus by an iterative proc

  17. Feedback: Now with Physics

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguere, Claude-Andre; Keres, Dusan; Wetzel, Andrew R.; Murray, Norman W.

    2017-01-01

    The most fundamental unsolved problems in galaxy formation revolve around "feedback" from massive stars and black holes. In the last few years, a new generation of theoretical models have emerged which combine new numerical methods and physics in an attempt to realistically model the diverse physics of the interstellar medium, star formation, and feedback from super-massive black holes and massive stars (winds, jets, SNe, and radiation). These mechanisms lead to 'self-regulated' galaxy and star formation, in which global correlations such as the Schmidt-Kennicutt law, the inefficiency of star formation, and the stellar mass function -- emerge naturally. Within galaxies, feedback regulates the structure of the interstellar medium, and many observed properties of the ISM, star formation, and galaxies can be understood as a fundamental consequence of super-sonic turbulence in a rapidly cooling, self-gravitating medium. But feedback also produces galactic super-winds that can dramatically alter the cosmological evolution of galaxies, change the nature of dark matter cores and ‘cusps’, and re-structure the circum-galactic and inter-galactic medium. These winds depend non-linearly on multiple feedback mechanisms in a way that explains why they have been so difficult to model in previous "sub-grid" approaches. This resolves long-standing problems in understanding even apparently "simple" galaxy properties like the mass-metallicity relation. Finally, I'll discuss where feedback fails, and where either additional, exotic physics, or new, previously-dismissed feedback mechanisms, may be needed to explain observations.

  18. Dynamics of semiconductor microring lasers subject to on-chip filtered optical feedback

    Science.gov (United States)

    Khoder, Mulham; Friart, Gaetan; Danckaert, Jan; Erneux, Thomas; Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Tunable laser diodes are needed in a range of applications including wavelength division multiplexing, optical instrument testing, optical sensing and tera hertz generation. In this work, we investigate the stability of lasers which use filtered optical feedback for wavelength tuning. We investigate experimentally the dynamics induced by this on-chip filtered optical feedback. In this study, we choose to use a compact device which combines a semiconductor ring laser with on-chip filtered optical feedback to achieve wavelength tunability. The filtered optical feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback of each wavelength channel independently. Experimental observations show that the stability of the clockwise and counterclockwise propagation modes depends on the feedback strength. Experiments also show that for a specific range of the feedback strength, anti-phase oscillations in the intensity of the clockwise and counterclockwise propagating modes can be induced. These oscillations could not be seen in the same semiconductor ring laser without filtered optical feedback. We investigate how the frequency and the amplitude of these oscillations change under the effect of filtered optical feedback. We also discuss how these anti-phase oscillations can be suppressed by properly choosing the feedback strength.

  19. Learning culture and feedback: an international study of medical athletes and musicians.

    Science.gov (United States)

    Watling, Christopher; Driessen, Erik; van der Vleuten, Cees P M; Lingard, Lorelei

    2014-07-01

    Feedback should facilitate learning, but within medical education it often fails to deliver on its promise. To better understand why feedback is challenging, we explored the unique perspectives of doctors who had also trained extensively in sport or music, aiming to: (i) distinguish the elements of the response to feedback that are determined by the individual learner from those determined by the learning culture, and (ii) understand how these elements interact in order to make recommendations for improving feedback in medical education. Using a constructivist grounded theory approach, we conducted semi-structured interviews with 27 doctors or medical students who had high-level training and competitive or performance experience in sport (n = 15) or music (n = 12). Data were analysed iteratively using constant comparison. Key themes were identified and their relationships critically examined to derive a conceptual understanding of feedback and its impact. We identified three essential sources of influence on the meaning that feedback assumed: the individual learner; the characteristics of the feedback, and the learning culture. Individual learner traits, such as motivation and orientation toward feedback, appeared stable across learning contexts. Similarly, certain feedback characteristics, including specificity, credibility and actionability, were valued in sport, music and medicine alike. Learning culture influenced feedback in three ways: (i) by defining expectations for teachers and teacher-learner relationships; (ii) by establishing norms for and expectations of feedback, and (iii) by directing teachers' and learners' attention toward certain dimensions of performance. Learning culture therefore neither creates motivated learners nor defines 'good feedback'; rather, it creates the conditions and opportunities that allow good feedback to occur and learners to respond. An adequate understanding of feedback requires an integrated approach incorporating both

  20. Feedback control of quantum system

    Institute of Scientific and Technical Information of China (English)

    DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin

    2006-01-01

    Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.

  1. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  2. A modular positive feedback-based gene amplifier

    Directory of Open Access Journals (Sweden)

    Bhalerao Kaustubh D

    2010-02-01

    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  3. CORSICA modelling of ITER hybrid operation scenarios

    Science.gov (United States)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  4. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  5. POET: Parameterized Optimization for Empirical Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Q; Seymour, K; You, H; Vuduc, R; Quinlan, D

    2007-01-29

    The excessive complexity of both machine architectures and applications have made it difficult for compilers to statically model and predict application behavior. This observation motivates the recent interest in performance tuning using empirical techniques. We present a new embedded scripting language, POET (Parameterized Optimization for Empirical Tuning), for parameterizing complex code transformations so that they can be empirically tuned. The POET language aims to significantly improve the generality, flexibility, and efficiency of existing empirical tuning systems. We have used the language to parameterize and to empirically tune three loop optimizations-interchange, blocking, and unrolling-for two linear algebra kernels. We show experimentally that the time required to tune these optimizations using POET, which does not require any program analysis, is significantly shorter than that when using a full compiler-based source-code optimizer which performs sophisticated program analysis and optimizations.

  6. An optical device for laser tuning

    Energy Technology Data Exchange (ETDEWEB)

    Sinyitiro, A.

    1984-01-31

    This invention is intended to improve on the design of an optical device which is used to execute high precision tuning of the optical elements in laser systems. A laser tuning scheme is given and the tuning method is described in detail. The tuning system includes a laser emission source in the visible spectral range and a semitransparent plate at an angle of 45 degrees with respect to the optical axis of the laser. When a test beam passes through the plate, a portion of the emission is reflected to a screen containing a reference mark. The remaining portion of the emission passes through the plate and is reflected from the rear dark mirror in the laser under tuning. The second beam is reflected from the plate to the other screen. The reference marks on the screens represent the optimum position of the optical elements of the laser system, which provides good laser tuning accuracy.

  7. MEASURING CHROMATICITY ALONG THE RAMP USING THE PLL TUNE METER IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TEPIKIAN,S.; AHRENS,L.; CAMERON,P.; SCHULTHEISS,C.

    2002-06-02

    Beam stability up the ramp requires the appropriate sign and magnitude of the chromaticity. We developed a way to measure the chromaticity using the PLL (Phase Locked Loop) tune-meter. Since, the accuracy of the PLL tune-meter with properly adjusted loop gain is better than {approx} 0.0001 in tune units, the radial loop needs only be changed by a small amount of 0.2mm at a 1Hz rate. Thus, we can achieve fast chromaticity measurements in 1 sec. Except during the very beginning of the ramp where there are snapback effects and the gamma changes very rapidly, we can have good chromaticcity measurements along the ramp. This leads to the possibility of correcting the chromaticity during the ramp using a feedback system.

  8. Model-Based Self-Tuning Multiscale Method for Combustion Control

    Science.gov (United States)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  9. A Wide Tuning-Range CMOS VCO with a Tunable Active Inductor

    Directory of Open Access Journals (Sweden)

    Hsuan-Ling Kao

    2015-01-01

    Full Text Available This study describes a wide tuning-range VCO using tunable active inductor (TAI topology and cross-coupled pair configuration for radio frequency operation. The TAI used two feedback loops to form a cascode circuit to obtain more degrees of freedom for inductance value. The TAI-VCO was fabricated using a 0.18 μm CMOS technology. The coarse frequency tuning is achieved by TAIs while the fine tuning is controlled by varactors. The fabricated circuit provides an output frequency range from 0.6 to 7.2 GHz (169%. The measured phase noise is from −110.38 to −86.01 dBc/Hz at a 1 MHz offset and output power is from −11.11 to −3.89 dBm within the entire frequency range under a 1.8 V power supply.

  10. A tuning approach for offset-free MPC with conditional reference adaptation

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted;

    2014-01-01

    Model predictive control has become a widely accepted strategy in industrial applications in the recent years. Often mentioned reasons for the success are the optimization based on a system model, consideration of constraints and an intuitive tuning process. However, as soon as unknown disturbances...... loop addresses the performance targets in the nominal case, decouples the system and essentially leads to a first order response. The second outer loop enables offset-free tracking in case of unknown disturbances and consists of feedback controllers adapting the reference. Due to the mentioned...... properties these controllers can be tuned separate and by known guidelines. To address conditions with active input constraints, additionally a conditional reference adaptation scheme is introduced. The tuning strategy is evaluated on a simulated linear Wood-Berry binary distillation column example....

  11. A Tuning Approach for Oset-free MPC with Conditional Reference Adaptation

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted;

    2014-01-01

    Model predictive control has become a widely accepted strategy in industrial applications in the recent years. Often mentioned reasons for the success are the optimization based on a system model, consideration of constraints and an intuitive tuning process. However, as soon as unknown disturbances...... addresses the performance targets in the nominal case, decouples the system and essentially leads to a rst order response. The second outer loop enables oset-free tracking in case of unknown disturbances and consists of feedback controllers adapting the reference. Due to the mentioned properties...... these controllers can be tuned separate and by known guidelines. To address conditions with active input constraints, additionally a conditional reference adaptation scheme is introduced. The tuning strategy is evaluated on a simulated linear Wood-Berry binary distillation column example....

  12. Iterative smoothing and deconvolution of one- and two-dimensional elemental distribution data

    Science.gov (United States)

    Coote, G. E.

    1997-07-01

    The resolution of the data from many instruments can be improved, or the rate of data collection can be increased for the same final resolution, by applying to the data reliable algorithms for smoothing and deconvolution. Iterative methods which were formerly impractical can easily be applied on a small computer. An ingenious linear algorithm for deconvolution of one-dimensional data (van Cittert, 1931) gave much better results when Jansson (1963) introduced a relaxation function which ensured the results remained positive. Gold (1964) derived by a matrix approach a nonlinear algorithm which used a different method of comparison, but Xu et al. showed 30 years later that it is a special van Cittert algorithm with a variable relaxation function. Tests of Gold's method show that it is reliable and much faster than Jansson's algorithm, converging in 20 iterations or fewer. If a microprobe beam spot is to a good approximation square or rectangular a 2-D image can be smoothed or deconvolved in the X and Y directions independently, and the Gold algorithm has proved suitable for the deconvolution stage. Almost all smoothing methods will broaden narrow peaks, but an exception is the linear iterative method of Morrison (1962), which reduces any structure narrower than the resolution function. The negative feedback step used in the deconvolution algorithms is not possible in a smoothing algorithm. The method suffers from a halting problem, since it smoothes during early iterations but eventually reproduces the original data. This can be prevented by introducing a relaxation function which is unity for the first iteration but decreases rapidly with succeeding iterations.

  13. Resonance tuning in a neuro-musculo-skeletal model of the forearm.

    Science.gov (United States)

    Verdaasdonk, B W; Koopman, H F J M; Van der Helm, F C T

    2007-02-01

    In rhythmic movements, humans activate their muscles in a robust and energy efficient way. These activation patterns are oscillatory and seem to originate from neural networks in the spinal cord, called central pattern generators (CPGs). Evidence for the existence of CPGs was found for instance in lampreys, cats and rats. There are indications that CPGs exist in humans as well, but this is not proven yet. Energy efficiency is achieved by resonance tuning: the central nervous system is able to tune into the resonance frequency of the limb, which is determined by the local reflex gains. The goal of this study is to investigate if the existence of a CPG in the human spine can explain the resonance tuning behavior, observed in human rhythmic limb movement. A neuro-musculo-skeletal model of the forearm is proposed, in which a CPG is organized in parallel to the local reflexloop. The afferent and efferent connections to the CPG are based on clues about the organization of the CPG, found in literature. The model is kept as simple as possible (i.e., lumped muscle models, groups of neurons are lumped into half-centers, simple reflex model), but incorporates enough of the essential dynamics to explain behavior-such as resonance tuning-in a qualitative way. Resonance tuning is achieved above, at and below the endogenous frequency of the CPG in a highly non-linear neuro- musculo-skeletal model. Afferent feedback of muscle lengthening to the CPG is necessary to accomplish resonance tuning above the endogenous frequency of the CPG, while feedback of muscle velocity is necessary to compensate for the phase lag, caused by the time delay in the loop coupling the limb to the CPG. This afferent feedback of muscle lengthening and velocity represents the Ia and II fibers, which-according to literature-is the input to the CPG. An internal process of the CPG, which integrates the delayed muscle lengthening and feeds it to the half-center model, provides resonance tuning below the

  14. PREFACE: Progress in the ITER Physics Basis

    Science.gov (United States)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  15. Feedback-Driven Dynamic Invariant Discovery

    Science.gov (United States)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  16. A New Iterative Scheme of Modified Mann Iteration in Banach Space

    Directory of Open Access Journals (Sweden)

    Jinzuo Chen

    2014-01-01

    Full Text Available We introduce the modified iterations of Mann's type for nonexpansive mappings and asymptotically nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of asymptotically nonexpansive mappings in Banach space by using a new iterative scheme. Applications to the accretive operators are also included.

  17. Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators

    Directory of Open Access Journals (Sweden)

    Vasile Berinde

    2004-06-01

    Full Text Available In the class of quasi-contractive operators satisfying Zamfirescu's conditions, the most used fixed point iterative methods, that is, the Picard, Mann, and Ishikawa iterations, are all known to be convergent to the unique fixed point. In this paper, the comparison of the first two methods with respect to their convergence rate is obtained.

  18. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Science.gov (United States)

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; Kumar, Sushil

    2017-02-01

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser's surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ˜57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K . The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL's characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° ) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  19. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  20. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  1. Climate forcings and feedbacks

    Science.gov (United States)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  2. Pinhole Luminosity Monitor with Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J

    2004-05-17

    Previously, the generalized luminosity L was defined and calculated for all incident channels based on an NLC e{sup +}e{sup -} design. Alternatives were then considered to improve the differing beam-beam e{sup -}e{sup -} e{gamma} and {gamma}{gamma} channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamsstrahlung that needs to be disposed of and whose flux depended on L. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important--especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our ''pin-hole'' camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  3. Progress with the ITER project activity in Russia

    Science.gov (United States)

    Krasilnikov, A. V.; Abdyuhanov, I. M.; Aleksandrov, E. V.; Alekseev, A. G.; Amosov, V. N.; Antonov, N. V.; Arkhipov, N. I.; Burdakov, A. V.; Chugunov, I. N.; Denisov, G. G.; Gervash, A. A.; Ivantsivskiy, M. V.; Kaschuk, Yu. A.; Khomyakov, S. E.; Krasilnikov, V. A.; Kupriyanov, I. B.; Kuzmin, E. G.; Kuznetsov, V. E.; Lelekhov, S. A.; Leshukov, A. Yu.; Litvak, A. G.; Makhankov, A. N.; Mazul, I. V.; Mokeev, A. N.; Mukhin, E. E.; Petrov, A. A.; Petrov, M. P.; Petrov, S. Ya.; Petrov, V. G.; Rodin, I. Yu.; Romannikov, A. N.; Rumyantsev, Yu. N.; Safronov, V. M.; Savrukhin, P. V.; Tronza, V. I.; Tugarinov, S. N.; Ustinov, A. L.; Vershkov, V. A.; Vdovin, V. L.; Vysotsky, V. S.; Zernov, S. N.; Zhitlukhin, A. M.; Zvonkov, A. V.

    2015-10-01

    Due to the development of the ITER project, the requirements of the technical parameters of the ITER systems were more precisely and practically determined to be at higher levels. The essential increase of the ITER system characteristics happened recently. A number of prototypes were manufactured and tests were carried out. The results of the development and manufacture of 25 ITER systems, subject to the Russian Federation's obligations in the ITER project, are described.

  4. Tuning innate immunity by translation.

    Science.gov (United States)

    Rauscher, Robert; Ignatova, Zoya

    2015-12-01

    In multicellular organisms, the epithelia is a contact surface with the surrounding environment and is exposed to a variety of adverse biotic (pathogenic) and abiotic (chemical) factors. Multi-layered pathways that operate on different time scales have evolved to preserve cellular integrity and elicit stress-specific response. Several stress-response programs are activated until a complete elimination of the stress is achieved. The innate immune response, which is triggered by pathogenic invasion, is rather harmful when active over a prolonged time, thus the response follows characteristic oscillatory trajectories. Here, we review different translation programs that function to precisely fine-tune the time at which various components of the innate immune response dwell between active and inactive. We discuss how different pro-inflammatory pathways are co-ordinated to temporally offset single reactions and to achieve an optimal balance between fighting pathogens and being less harmful for healthy cells.

  5. Cyclic game dynamics driven by iterated reasoning

    CERN Document Server

    Frey, Seth

    2012-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, game theorists have argued that iterated reasoning-our ability to think through what you think I think you think-will prevent complex dynamics and facilitate convergence to classic equilibria. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point equilibrium concept. These cycles are driven by a "hopping" behavior that can only be explained by iterated reasoning. If iterated reasoning can be complicit in complex dynamics, then game cycles and chaos may realistically be driving fluctuations in real-world social and...

  6. A Logical Characterization of Iterated Admissibility

    CERN Document Server

    Halpern, Joseph Y

    2009-01-01

    Brandenburger, Friedenberg, and Keisler provide an epistemic characterization of iterated admissibility (i.e., iterated deletion of weakly dominated strategies) where uncertainty is represented using LPSs (lexicographic probability sequences). Their characterization holds in a rich structure called a complete structure, where all types are possible. Here, a logical charaacterization of iterated admisibility is given that involves only standard probability and holds in all structures, not just complete structures. A stronger notion of strong admissibility is then defined. Roughly speaking, strong admissibility is meant to capture the intuition that "all the agent knows" is that the other agents satisfy the appropriate rationality assumptions. Strong admissibility makes it possible to relate admissibility, canonical structures (as typically considered in completeness proofs in modal logic), complete structures, and the notion of ``all I know''.

  7. Iterative Reconstruction of Coded Source Neutron Radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK)

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  8. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  9. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  10. Iterative Contracts as Proactive Law Instruments

    DEFF Research Database (Denmark)

    Henschel, René Franz

    2012-01-01

    The purpose of this article is to analyse the use of proactive law in contracts illustrated by the use of a particular type of contract within the IT industry, the so-called iterative contract. This type of contract has its root in a special software development process called iterative....... This software development process has driven the need for a new contract design that supports the product life cycle better than the traditional contracts. As will be shown in the analysis, the iterative contracts represent important legal innovation and can be categorized as a proactive law instrument that has...... the potential to create more business success. However, empirical research still needs to be done in order to confirm that these types of contracts are better at securing business success than traditional contract forms....

  11. The ITER in-vessel system

    Energy Technology Data Exchange (ETDEWEB)

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  12. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  13. Re-starting an Arnoldi iteration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, R.B. [Argonne National Lab., IL (United States)

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  14. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory.

  15. Fusion neutron diagnostics on ITER tokamak

    Science.gov (United States)

    Bertalot, L.; Barnsley, R.; Direz, M. F.; Drevon, J. M.; Encheva, A.; Jakhar, S.; Kashchuk, Y.; Patel, K. M.; Arumugam, A. P.; Udintsev, V.; Walker, C.; Walsh, M.

    2012-04-01

    ITER is an experimental nuclear reactor, aiming to demonstrate the feasibility of nuclear fusion realization in order to use it as a new source of energy. ITER is a plasma device (tokamak type) which will be equipped with a set of plasma diagnostic tools to satisfy three key requirements: machine protection, plasma control and physics studies by measuring about 100 different parameters. ITER diagnostic equipment is integrated in several ports at upper, equatorial and divertor levels as well internally in many vacuum vessel locations. The Diagnostic Systems will be procured from ITER Members (Japan, Russia, India, United States, Japan, Korea and European Union) mainly with the supporting structures in the ports. The various diagnostics will be challenged by high nuclear radiation and electromagnetic fields as well by severe environmental conditions (ultra high vacuum, high thermal loads). Several neutron systems with different sensitivities are foreseen to measure ITER expected neutron emission from 1014 up to almost 1021 n/s. The measurement of total neutron emissivity is performed by means of Neutron Flux Monitors (NFM) installed in diagnostic ports and by Divertor Neutron Flux Monitors (DNFM) plus MicroFission Chambers (MFC) located inside the vacuum vessel. The neutron emission profile is measured with radial and vertical neutron cameras. Spectroscopy is accomplished with spectrometers looking particularly at 2.5 and 14 MeV neutron energy. Neutron Activation System (NAS), with irradiation ends inside the vacuum vessel, provide neutron yield data. A calibration strategy of the neutron diagnostics has been developed foreseeing in situ and cross calibration campaigns. An overview of ITER neutron diagnostic systems and of the associated challenging engineering and integration issues will be reported.

  16. Closed-loop torque feedback for a universal field-oriented controller

    Science.gov (United States)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.; Haefner, Kenneth B.

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  17. Rational Verification in Iterated Electric Boolean Games

    Directory of Open Access Journals (Sweden)

    Youssouf Oualhadj

    2016-07-01

    Full Text Available Electric boolean games are compact representations of games where the players have qualitative objectives described by LTL formulae and have limited resources. We study the complexity of several decision problems related to the analysis of rationality in electric boolean games with LTL objectives. In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in an iterated electric boolean game is no harder than in iterated boolean games without resource bounds. We show that it is a PSPACE-complete problem. As a corollary, we obtain that both rational elimination and rational construction of Nash equilibria by a supervising authority are PSPACE-complete problems.

  18. Iterated learning and the evolution of language.

    Science.gov (United States)

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Accelerated iterative beam angle selection in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, Mark, E-mail: m.bangert@dkfz.de [Department of Medical Physics in Radiation Oncology, German Cancer Research Center—DKFZ, Im Neuenheimer Feld 280, Heidelberg D-69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could

  20. Iterative solution of large linear systems

    CERN Document Server

    Young, David M

    2003-01-01

    This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth

  1. Precise fixpoint computation through strategy iteration

    DEFF Research Database (Denmark)

    Gawlitza, Thomas; Seidl, Helmut

    2007-01-01

    We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent of the s......We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent...

  2. Beyond ITER: Neutral beams for DEMO

    CERN Document Server

    McAdams, R

    2013-01-01

    In the development of magnetically confined fusion as an economically sustainable power source, ITER is currently under construction. Beyond ITER is the DEMO programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  3. Iterative Contracts as Proactive Law Instruments

    DEFF Research Database (Denmark)

    Henschel, René Franz

    2012-01-01

    and incremental software development. In contrast to traditional IT project methodologies, where the product development takes place in a sequential design process, the iterative process is characterized by the so_ ware being developed through a series of repeated cycles in smaller portions at a time....... This software development process has driven the need for a new contract design that supports the product life cycle better than the traditional contracts. As will be shown in the analysis, the iterative contracts represent important legal innovation and can be categorized as a proactive law instrument that has...

  4. Efficient iterative technique for designing bragg gratings

    DEFF Research Database (Denmark)

    Plougmann, Nikolai; Kristensen, Martin

    2004-01-01

    We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings.......We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....

  5. Fatigue tests on the ITER PF jacket

    Science.gov (United States)

    Qin, Jinggang; Weiss, Klaus-Peter; Wu, Yu; Wu, Zhixiong; Li, Laifeng; Liu, Sheng

    2012-10-01

    This paper focuses on fatigue tests on the ITER Poloidal Field (PF) jacket made of 316L stainless steel material. During manufacture, the conductor will be compacted and spooled after cable insertion. Therefore, sample jackets were prepared under compaction, bending and straightening in order to simulate the status of PF conductor during manufacturing and winding. The fatigue properties of materials were measured at T fatigue crack growth rate (FCGR). The testing results show that the present Chinese PF jacket has good fatigue properties, which conclude that the results are accordant with the requirements of ITER.

  6. Feedback i undervisningen

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    2015-01-01

    undervisningsdifferentiering, feedback på læreprocesser, formativ og summativ evaluering, observationer og analyse af undervisning samt lærernes teamsamarbejde herom. Praktikken udgør et særligt læringsrum i læreruddannelsen. Samspillet mellem studerende, praktiklærere og undervisere giver den studerende en unik mulighed...

  7. Plant–soil feedbacks

    NARCIS (Netherlands)

    Cortois, Roeland; Schröder-Georgi, Thomas; Weigelt, Alexandra; Putten, van der Wim H.; Deyn, De Gerlinde B.

    2016-01-01

    1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known.
    2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF,

  8. Signatures of AGN feedback

    Science.gov (United States)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  9. Feedback and Prior Achievement.

    Science.gov (United States)

    Hyman, Cynthia; Tobias, Sigmund

    The hypothesis that feedback in programmed instruction is an important variable in the learning of novel, but not familiar, content was investigated. A linear, constructed response program dealing with the Sabbath rituals in the synagogue was chosen due to wide variability in student familiarity with this topic. Subjects were randomly assigned to…

  10. Review of Assessment Feedback

    Science.gov (United States)

    Li, Jinrui; De Luca, Rosemary

    2014-01-01

    This article reviews 37 empirical studies, selected from 363 articles and 20 journals, on assessment feedback published between 2000 and 2011. The reviewed articles, many of which came out of studies in the UK and Australia, reflect the most current issues and developments in the area of assessing disciplinary writing. The article aims to outline…

  11. Two-level tuning of fuzzy PID controllers.

    Science.gov (United States)

    Mann, G I; Hu, B G; Gosine, R G

    2001-01-01

    Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.

  12. Precision Corrections to Fine Tuning in SUSY

    CERN Document Server

    Buckley, Matthew R; Shih, David

    2016-01-01

    Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners -- in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and threshold corrections. This improved calculation more accurately connects the tuning measure with the physical masses of the superpartners at LHC-accessible energies. After these refinements, the tuning bound on the stop is now also sensitive to the masses of the 1st and 2nd generation squarks, which limits how far these can be decoupled in Effective SUSY scenarios. We find that, for a fixed level of tuning, our bounds can allow for heavier gluinos and stops than previously considered. Despite this, the natural region of supersymmetry is under pressure from the LHC constraints, with high messenger scales particularly disfavored.

  13. Novel tune diagnostics for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cheng-Yang; /Fermilab

    2005-04-01

    In the Tevatron collider, protons and antiprotons share the same beam pipe. This poses a challenge in the measurement of tunes for both species simultaneously because of the possibility of signal contamination from the other species. The tune of each bunch is also very different because of beam-beam effects from parasitic crossing points. This means that the tune diagnostics must be able to differentiate between protons and anti-protons, it also has to measure tunes from each bunch. There are three different tune pickups used in the Tevatron: 1.7 GHz Schottky pickups, 21.4 MHz Schottky pickups and baseband pickups. These devices will be discussed in detail in this paper.

  14. Online feedback op schriftelijk werk: betere feedback in minder tijd.

    NARCIS (Netherlands)

    van den Berg, B.A.M.|info:eu-repo/dai/nl/288125797; van der Hulst, M.E.

    2015-01-01

    Feedback is a powerful teaching technic to raise students’ performance, provided that the feedback is informative on how to improve, is given in a timely manner and students have the opportunity to act upon it. Therefore, many institutions want their students to receive feedback on their performance

  15. Online feedback op schriftelijk werk: betere feedback in minder tijd.

    NARCIS (Netherlands)

    van den Berg, B.A.M.; van der Hulst, M.E.

    2015-01-01

    Feedback is a powerful teaching technic to raise students’ performance, provided that the feedback is informative on how to improve, is given in a timely manner and students have the opportunity to act upon it. Therefore, many institutions want their students to receive feedback on their performance

  16. Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Manuel; Adamsmaier, Stefan [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Zanten, Thomas S. van [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); Chtcheglova, Lilia A. [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Manzo, Carlo [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); Duman, Memed [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Mayer, Barbara [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Ebner, Andreas [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Moertelmaier, Manuel; Kada, Gerald [Agilent Technologies Austria GmbH, Aubrunnerweg 11, 4040 Linz (Austria); Garcia-Parajo, Maria F. [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain); Hinterdorfer, Peter, E-mail: peter.hinterdorfer@jku.at [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Kienberger, Ferry [Agilent Technologies Austria GmbH, Aubrunnerweg 11, 4040 Linz (Austria)

    2010-05-15

    We demonstrate simultaneous transverse dynamic force microscopy and molecular recognition imaging using tuning forks as piezoelectric sensors. Tapered aluminum-coated glass fibers were chemically functionalized with biotin and anti-lysozyme molecules and attached to one of the prongs of a 32 kHz tuning fork. The lateral oscillation amplitude of the tuning fork was used as feedback signal for topographical imaging of avidin aggregates and lysozyme molecules on mica substrate. The phase difference between the excitation and detection signals of the tuning fork provided molecular recognition between avidin/biotin or lysozyme/anti-lysozyme. Aggregates of avidin and lysozyme molecules appeared as features with heights of 1-4 nm in the topographic images, consistent with single molecule atomic force microscopy imaging. Recognition events between avidin/biotin or lysozyme/anti-lysozyme were detected in the phase image at high signal-to-noise ratio with phase shifts of 1-2{sup o}. Because tapered glass fibers and shear-force microscopy based on tuning forks are commonly used for near-field scanning optical microscopy (NSOM), these results open the door to the exciting possibility of combining optical, topographic and biochemical recognition at the nanometer scale in a single measurement and in liquid conditions.

  17. Iterative optical vector-matrix processors (survey of selected achievable operations)

    Science.gov (United States)

    Casasent, D.; Neuman, C.

    1981-01-01

    An iterative optical vector-matrix multiplier with a microprocessor-controlled feedback loop capable of performing a wealth of diverse operations was described. A survey and description of many of its operations demonstrates the versatility and flexibility of this class of optical processor and its use in diverse applications. General operations described include: linear difference and differential equations, linear algebraic equations, matrix equations, matrix inversion, nonlinear matrix equations, deconvolution and eigenvalue and eigenvector computations. Engineering applications being addressed for these different operations and for the IOP are: adaptive phased-array radar, time-dependent system modeling, deconvolution and optimal control.

  18. AN ITERATIVE EQUATION ON THE UNIT CIRCLE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A functional equation of nonlinear iterates is discussed on the circle S1 for its continuous solutions and differentiable solutions. By lifting to R, the existence, uniqueness and stability of those solutions are obtained. Techniques of continuation are used to guarantee the preservation of continuity and differentiability in lifting.

  19. Precise fixpoint computation through strategy iteration

    DEFF Research Database (Denmark)

    Gawlitza, Thomas; Seidl, Helmut

    2007-01-01

    We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent...

  20. ITER Cryoplant Final Design and Construction

    Science.gov (United States)

    Monneret, E.; Benkheira, L.; Fauve, E.; Henry, D.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.; Forgeas, A.; Navion-Maillot, N.

    2017-02-01

    The ITER Tokamak supraconducting magnets, thermal shields and cryopumps will require tremendous amount of cooling power. With an average need of 75 kW at 4.5 K and of 600 kW at 80 K, ITER requires a world class cryogenic complex. ITER then relies on a Cryoplant which consists in a cluster of systems dedicated to the management of all fluids required for the Tokamak operation. From storage and purification to liquefaction and refrigeration, the Cryoplant will supply to the distribution system, all fluids to be circulated in the Tokamak. It includes Liquid Helium Plants and Liquid Nitrogen Plants, which generate all of the refrigeration power, an 80 K helium loop capable to circulate large quantities of helium through thermal shields, and all the auxiliaries required for gas storage, purification, and onsite nitrogen production. From the conceptual phase, the design of the Cryoplant has evolved and is now nearing completion. This proceeding will present the final design of the Cryoplant and the organization for the construction phase. Also the latest status of the ITER Cryogenic System will be introduced.

  1. Asymptotic iteration approach to supersymmetric bistable potentials

    Institute of Scientific and Technical Information of China (English)

    H. Ciftci; O. ozer; P. Roy

    2012-01-01

    We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.

  2. Neutronic analysis for bolometers in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, A., E-mail: alejandro.suarez@iter.org [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Reichle, R.; Loughlin, M.; Polunovskiy, E.; Walsh, M. [ITER Organization, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France)

    2013-10-15

    Highlights: ► Radiation damage calculations for the bolometers in ITER. ► Redesign of the bolometric diagnostic in EPP01. ► New bolometer radiation damage values in EPP01 in the safe zone. -- Abstract: Neutronic considerations in ITER have such importance that they drive the design of many diagnostics and components of the machine, and bolometers are not an exception. Bolometer cameras will be installed on the vacuum vessel, viewing the plasma through the gaps between blanket modules, divertor, equatorial and upper port plugs. The ITER reference bolometer sensors are of a resistive type. For this study it is assumed that they are composed of a thin silicon nitride carrier film and platinum resistors disposed in a Wheatstone bridge configuration. Their assumed radiation hardness is 0.1 dpa. Neutronic calculations were performed with the Monte Carlo program MCNP5, the FENDL 2.1 nuclear data library and the latest B-lite ITER neutronic model with the appropriate modifications using the CAD to MCNP converter MCAM. A complete characterization of the neutron fluxes in all the bolometer locations and the calculation of neutron damage were performed. Values above the failure threshold damage were obtained for some of the bolometers, leading to a complete redesign of some parts of the bolometric system in order to extend its lifetime.

  3. Interpolation and Iteration for Nonlinear Filters

    CERN Document Server

    Chorin, Alexandre J

    2009-01-01

    We present a general form of the iteration and interpolation process used in implicit particle filters. Implicit filters are based on a pseudo-Gaussian representation of posterior densities, and are designed to focus the particle paths so as to reduce the number of particles needed in nonlinear data assimilation. Examples are given.

  4. Matched filter based iterative adaptive approach

    Science.gov (United States)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  5. Development of advanced inductive scenarios for ITER

    NARCIS (Netherlands)

    Luce, T. C.; Challis, C. D.; Ide, S.; Joffrin, E.; Kamada, Y.; Polizer, P. A.; Schweinzer, J.; Sips, A.C.C.; Stober, J.; Giruzzi, G.; Kessel, C. E.; Murakami, M.; Na, Y.-S.; Park, J. M.; Polevoi, A. R.; Budny, R. V.; Citrin, J.; Garcia, J.; Hayashi, N.; Hobirk, J.; Hudson, B. F.; Imbeaux, F.; Isayama, A.; McDonald, D. C.; Nakano, T.; Oyama, N.; Parail, V.V.; Petrie, T. W.; Petty, C. C.; Suzuki, T.; Wade, M. R.

    2014-01-01

    Since its inception in 2002, the International Tokamak Physics Activity topical group on Integrated Operational Scenarios (IOS) has coordinated experimental and modelling activity on the development of advanced inductive scenarios for applications in the ITER tokamak. The physics basis and the prosp

  6. On iterative procedures of asymptotic inference

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha)

    1983-01-01

    textabstractAbstract  An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then f

  7. Iterative Reconstruction for Differential Phase Contrast Imaging

    NARCIS (Netherlands)

    Koehler, T.; Brendel, B.; Roessl, E.

    2011-01-01

    Purpose: The purpose of this work is to combine two areas of active research in tomographic x-ray imaging. The first one is the use of iterative reconstruction techniques. The second one is differential phase contrast imaging (DPCI). Method: We derive an SPS type maximum likelihood (ML) reconstructi

  8. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  9. Evaluating ITER remote handling middleware concepts

    NARCIS (Netherlands)

    Koning, J. F.; Heemskerk, C. J. M.; Schoen, P.; Smedinga, D.; Boode, A. H.; Hamilton, D. T.

    2013-01-01

    Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and

  10. ITER faces further five-year delay

    Science.gov (United States)

    Clery, Daniel

    2016-06-01

    The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 - a target date that is already five years later than currently scheduled.

  11. Iterative solution of the Helmholtz equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E.; Otto, K. [Uppsala Univ. (Sweden)

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  12. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  13. Wood anatomical classification using iterative character weighing

    NARCIS (Netherlands)

    Hogeweg, P.; Koek-Noorman, J.

    1975-01-01

    In this paper we investigate the pattern of wood anatomical variation in some groups of Rubiaceae (i.e. Cinchoneae, Rondeletieae and Condamineae) by using a numerical pattern detection method which involves character weighing (Hogeweg 1975). In this method character weights are obtained iteratively

  14. Halpern's Iteration in CAT(0 Spaces

    Directory of Open Access Journals (Sweden)

    Satit Saejung

    2010-01-01

    Full Text Available Motivated by Halpern's result, we prove strong convergence theorem of an iterative sequence in CAT(0 spaces. We apply our result to find a common fixed point of a family of nonexpansive mappings. A convergence theorem for nonself mappings is also discussed.

  15. An iterative approach of protein function prediction

    Directory of Open Access Journals (Sweden)

    Chi Xiaoxiao

    2011-11-01

    Full Text Available Abstract Background Current approaches of predicting protein functions from a protein-protein interaction (PPI dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins. Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. Results In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. Conclusions The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting

  16. A Learning Framework for Self-Tuning Histograms

    CERN Document Server

    Viswanathan, Raajay; Laxman, Srivatsan; Arasu, Arvind

    2011-01-01

    We propose a general learning theoretic formulation for estimating self-tuning histograms. Our formulation uses query feedback from a workload as training data to estimate a histogram that minimizes the expected error on future queries. Our formulation is flexible in the sense that it allows the design and comparison of different methods (possibly specialized for different settings). We first study the simple class of equi-width histograms in our learning framework and present a learning algorithm (EquiHist) that is competitive in many settings and that has formal error guarantees. We then go beyond equi-width histograms and present a novel learning algorithm (SpHist) for estimating general histograms. Here we use Haar wavelets to reduce the problem of learning histograms to a sparse vectory recovery problem. Both algorithms have multiple advantages over existing methods: 1) simple and scalable extensions to multi-dimensional data, 2) scale with number of histogram buckets and size of query feedback, 3) natur...

  17. Engaging Students with Audio Feedback

    Science.gov (United States)

    Cann, Alan

    2014-01-01

    Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…

  18. ITER diagnostics ex-vessel engineering services

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, A.P., E-mail: arun.prakash@iter.org; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.; and others

    2013-10-15

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  19. Training Final Year Students in Data Presentation Skills with an Iterative Report-Feedback Cycle

    Science.gov (United States)

    Verkade, Heather

    2015-01-01

    Although practical laboratory activities are often considered the linchpin of science education, asking students to produce many large practical reports can be problematic. Practical reports require diverse skills, and therefore do not focus the students' attention on any one skill where specific skills need to be enhanced. They are also…

  20. Designing an Iterative Learning Control Algorithm Based on Process History using limited post process geometrical information

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Volk, Wolfram

    2013-01-01

    Feedback control of sheet metal forming operations has been an active research field the last two decades and highly advanced control algorithms have been proposed - controlling both the total blank-holder force and in some cases also the distribution of the blank-holder force. However, there is ......Feedback control of sheet metal forming operations has been an active research field the last two decades and highly advanced control algorithms have been proposed - controlling both the total blank-holder force and in some cases also the distribution of the blank-holder force. However......, the reaction speed may be insufficient compared to the production rate in an industrial application. We propose to design an iterative learning control (ILC) algorithm which can control and update the blank-holder force as well as the distribution of the blank-holder force based on limited geometric data from...

  1. The Impact of Galactic Feedback on the Circumgalactic Medium

    CERN Document Server

    Suresh, Joshua; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2015-01-01

    Galactic feedback strongly affects the way galactic environments are enriched. We examine this connection by performing a suite of cosmological hydrodynamic simulations, exploring a range of parameters based on the galaxy formation model developed in Vogelsberger et al. 2013 (henceforth V13). We examine the effects of AGN feedback, wind mass loading, wind specific energy, and wind metal-loading on the properties of the circumgalactic medium (CGM) of galaxies with $M_\\text{halo} > 10^{11} M_\\odot$. Note that while the V13 model was tuned to match observations including the stellar mass function, no explicit tuning was done for the CGM. The wind energy per unit outflow mass has the most significant effect on the CGM enrichment. High energy winds launch metals far beyond the virial radius. AGN feedback also has a significant effect, but only at $z < 3$. We compare to high redshift HI and CIV observations. All our simulations produce the observed number of Damped Lyman-$\\alpha$ Absorbers. At lower column densi...

  2. Improving the quality of written feedback using written feedback.

    Science.gov (United States)

    Bartlett, Maggie; Crossley, James; McKinley, Robert

    2017-01-01

    Educational feedback is amongst the most powerful of all learning interventions. (1) Can we measure the quality of written educational feedback with acceptable metrics? (2) Based on such a measure, does a quality improvement (QI) intervention improve the quality of feedback? We developed a QI instrument to measure the quality of written feedback and applied it to written feedback provided to medical students following workplace assessments. We evaluated the measurement characteristics of the QI score using generalisability theory. In an uncontrolled intervention, QI profiles were fed back to GP tutors and pre and post intervention scores compared. A single assessor scoring 6 feedback summaries can discriminate between practices with a reliability of 0.82.The quality of feedback rose for two years after the introduction of the QI instrument and stabilised in the third year. The estimated annual cost to provide this feedback is £12 per practice. Interpretation and recommendations: It is relatively straightforward and inexpensive to measure the quality of written feedback with good reliability. The QI process appears to improve the quality of written feedback. We recommend routine use of a QI process to improve the quality of educational feedback.

  3. Positive feedback promotes oscillations in negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Bharath Ananthasubramaniam

    Full Text Available A simple three-component negative feedback loop is a recurring motif in biochemical oscillators. This motif oscillates as it has the three necessary ingredients for oscillations: a three-step delay, negative feedback, and nonlinearity in the loop. However, to oscillate, this motif under the common Goodwin formulation requires a high degree of cooperativity (a measure of nonlinearity in the feedback that is biologically "unlikely." Moreover, this recurring negative feedback motif is commonly observed augmented by positive feedback interactions. Here we show that these positive feedback interactions promote oscillation at lower degrees of cooperativity, and we can thus unify several common kinetic mechanisms that facilitate oscillations, such as self-activation and Michaelis-Menten degradation. The positive feedback loops are most beneficial when acting on the shortest lived component, where they function by balancing the lifetimes of the different components. The benefits of multiple positive feedback interactions are cumulative for a majority of situations considered, when benefits are measured by the reduction in the cooperativity required to oscillate. These positive feedback motifs also allow oscillations with longer periods than that determined by the lifetimes of the components alone. We can therefore conjecture that these positive feedback loops have evolved to facilitate oscillations at lower, kinetically achievable, degrees of cooperativity. Finally, we discuss the implications of our conclusions on the mammalian molecular clock, a system modeled extensively based on the three-component negative feedback loop.

  4. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  5. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  6. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  7. Iterative evaluation of a web-based health information resource.

    Science.gov (United States)

    Rosenfeld, Lindsay; Shepherd, Amy; Agunwamba, Amenah A; McCray, Alexa T

    2013-08-01

    This article presents the research process and methods used to evaluate and improve a web-based health information resource, called "Community Connect to Research," intended for the public. The research process was iterative and involved collaboration with many partners. Two formal evaluations were conducted in 2009 and 2010 using key informant interviews, usability interviews, focus groups, an online survey, and readability and suitability assessment tools. These methods provided users' perspectives on the overall design, content, and literacy demands of the website as well as valuable feedback on their interaction with the website. The authors subsequently redesigned Community Connect to Research, making significant improvements on the basis of what they learned from the evaluation. The second evaluation revealed that the redesign addressed many issues found in the first evaluation and identified additional areas of possible improvement. Overall, both evaluations suggested that participants believed that the website was useful and valuable, indicating that Community Connect to Research is a health information resource that provides patients and families with accessible, relevant, and high-quality information. Regular formal evaluation is an essential tool for effective ongoing enhancement of health information resources meant for the public.

  8. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  9. A STUDY OF RAPID CAVITY TUNING.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2001-07-12

    An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.

  10. Frequency Tuning for a DQW Crab Cavity

    CERN Document Server

    Verdú-Andrés, Silvia; Ben-Zvi, Ilan; Calaga, Rama; Capatina, Ofelia; Leuxe, Raphael; Skaritka, John; Wu, Qiong; Xiao, Binping; Zanoni, Carlo

    2016-01-01

    The nominal operating frequency for the HL-LHC crab cavities is 400.79 MHz within a bandwidth of ±60kHz. Attaining the required cavity tune implies a good understanding of all the processes that influence the cavity frequency from the moment when the cavity parts are being fabricated until the cavity is installed and under operation. Different tuning options will be available for the DQW crab cavity of LHC. This paper details the different steps in the cavity fabrication and preparation that may introduce a shift in the cavity frequency and introduces the different tuning methods foreseen to bring the cavity frequency to meet the specifications.

  11. Entropy-based Tuning of Musical Instruments

    CERN Document Server

    Hinrichsen, Haye

    2012-01-01

    The human sense of hearing perceives a combination of sounds 'in tune' if the corresponding harmonic spectra are correlated, meaning that the neuronal excitation pattern in the inner ear exhibits some kind of order. Based on this observation it is suggested that musical instruments such as pianos can be tuned by minimizing the Shannon entropy of suitably preprocessed Fourier spectra. This method reproduces not only the correct stretch curve but also similar pitch fluctuations as in the case of high-quality aural tuning.

  12. ARTUS: The tune measurement system at RHIC

    Science.gov (United States)

    Drees, A.; Brennan, M.; Connolly, R.; Michnoff, R.; DeLong, J.

    2000-11-01

    The super-conducting Relativistic Heavy Ion Collider (RHIC) with two separate rings and six combined interaction regions will provide collisions between equal and unequal heavy ion species up to Au ions in typically 60 bunches. The betatron tunes of the two beams are among the most important parameters to be measured. The tunes have to be acquired at any moment during accelerator operation and in particular during the acceleration process. At RHIC the tune measurement device (ARTUS) consists of a fast horizontal and vertical kicker magnet and a dedicated beam position monitor in each ring. The system layout is described and first experiences from operation is reported.

  13. Decomposition and tunability of expression noise in the presence of coupled feedbacks

    Science.gov (United States)

    Liu, Peijiang; Yuan, Zhanjiang; Wang, Haohua; Zhou, Tianshou

    2016-04-01

    Expression noise results in cell-to-cell variability in expression levels, and feedback regulation may complicate the tracing of sources of this noise. Using a representative model of gene expression with feedbacks, we analytically show that the expression noise (or the total noise) is decomposed into three parts: feedback-dependent promoter noise determined by a continuous approximation, birth-death noise determined by a simple Poisson process, and correlation noise induced by feedbacks. We clarify confused relationships between feedback and noise in previous studies, by showing that feedback-regulated noisy sources have different contributions to the total noise in different cases of promoter switching (it is an essential reason resulting in confusions). More importantly, we find that there is a tradeoff between response time and expression noise. In addition, we show that in contrast to single feedbacks, coupled positive and negative feedbacks can perform better in tuning expression noise, controlling expression levels, and maintaining response time. The overall analysis implies that living organisms would utilize coupled positive and negative feedbacks for better survival in complex and fluctuating environments.

  14. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  15. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  16. Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations

    Science.gov (United States)

    Hoogenboom, J. Eduard; Dufek, Jan

    2014-06-01

    This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.

  17. Methods used for research regarding iteration in instructional design

    NARCIS (Netherlands)

    Verstegen, D.M.L.

    2004-01-01

    This paper focuses on the search for suitable research methods for research regarding iteration in instructional design. More specifically my research concerned the question how instructional designers can be supported during an iterative design process. Although instructional design and development

  18. Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)

    Science.gov (United States)

    2013-02-01

    Reconstruction Technique ( SIRT ) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic...the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique ( SIRT ) are

  19. Feedback på arbejdspladser

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Feedback på arbejdspladser er vigtig. Men feedback er også et populært begreb mange taler med om uden dog at vide sig helt sikker på hvad det er. Formålet med denne bog er at bidrage til en bedre forståelse af hvad feedback er, hvordan det fungerer og dermed hvordan arbejdspladser bedst muligt bør...... understøtte feedback. Med udgangspunkt i forskningen identificeres centrale udfordringer ved feedback, bl.a. hvorfor det kan være svært at give præcis feedback, hvordan forholdet mellem lederen og den ansatte påvirker den feedback der gives, og hvad der kendetegner en feedback kultur. Bogen er skrevet til...... undervisere og studerende på videregående uddannelser samt praktikere der ønsker en systematisk og forskningsbaseret forståelse af feedback på arbejdspladser. Bogen er således ikke en kogebog til bedre feedback, men en analyse og diskussion af hvad forskningen ved om feedback, og bidrager med inspiration og...

  20. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method.

    Science.gov (United States)

    Yang, Tong; Zhu, Jun; Wu, Xiaofei; Jin, Guofan

    2015-04-20

    In this paper, we proposed a general direct design method for three-dimensional freeform surfaces and freeform imaging systems based on a construction-iteration process. In the preliminary surfaces-construction process, the coordinates as well as the surface normals of the data points on the multiple freeform surfaces can be calculated directly considering the rays of multiple fields and different pupil coordinates. Then, an iterative process is employed to significantly improve the image quality or achieve a better mapping relationship of the light rays. Three iteration types which are normal iteration, negative feedback and successive approximation are given. The proposed construction-iteration method is applied in the design of an easy aligned, low F-number off-axis three-mirror system. The primary and tertiary mirrors can be fabricated on a single substrate and form a single element in the final system. The secondary mirror is simply a plane mirror. With this configuration, the alignment difficulty of a freeform system can be greatly reduced. After the preliminary surfaces-construction stage, the freeform surfaces in the optical system can be generated directly from an initial planar system. Then, with the iterative process, the average RMS spot diameter decreased by 75.4% compared with the system before iterations, and the maximum absolute distortion decreased by 94.2%. After further optimization with optical design software, good image quality which is closed to diffraction-limited is achieved.

  1. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  2. A short remark on fractional variational iteration method

    Energy Technology Data Exchange (ETDEWEB)

    He, Ji-Huan, E-mail: hejihuan@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China)

    2011-09-05

    This Letter compares the classical variational iteration method with the fractional variational iteration method. The fractional complex transform is introduced to convert a fractional differential equation to its differential partner, so that its variational iteration algorithm can be simply constructed. -- Highlights: → The variational iteration method and its fractional modification are compared. → The demerits arising are overcome by the fractional complex transform. → The Letter provides a powerful tool to solving fractional differential equations.

  3. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions.

    Science.gov (United States)

    Lee, Seung Yup; Skolnick, Jeffrey

    2007-07-01

    To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions.

  4. Accurate guitar tuning by cochlear implant musicians.

    Directory of Open Access Journals (Sweden)

    Thomas Lu

    Full Text Available Modern cochlear implant (CI users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  5. Event generator tuning using Bayesian optimization

    CERN Document Server

    Ilten, Philip; Yang, Yunjie

    2016-01-01

    Monte Carlo event generators contain a large number of parameters that must be determined by comparing the output of the generator with experimental data. Generating enough events with a fixed set of parameter values to enable making such a comparison is extremely CPU intensive, which prohibits performing a simple brute-force grid-based tuning of the parameters. Bayesian optimization is a powerful method designed for such black-box tuning applications. In this article, we show that Monte Carlo event generator parameters can be accurately obtained using Bayesian optimization and minimal expert-level physics knowledge. A tune of the PYTHIA 8 event generator using $e^+e^-$ events, where 20 parameters are optimized, can be run on a modern laptop in just two days. Combining the Bayesian optimization approach with expert knowledge should enable producing better tunes in the future, by making it faster and easier to study discrepancies between Monte Carlo and experimental data.

  6. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  7. An iterative algorithm for solving a class of matrix equations

    Institute of Scientific and Technical Information of China (English)

    Minghui WANG; Yan FENG

    2009-01-01

    In this paper,an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations.By this iterative algorithm,for any initial matrix X1,a solution X* can be obtained within finite iteration steps in the absence of roundoff errors.Some examples illustrate that this algorithm is very efficient and better than that of [1] and [2].

  8. Iterative algorithms to approximate canonical Gabor windows: Computational aspects

    DEFF Research Database (Denmark)

    Janssen, A.J.E.M; Søndergaard, Peter Lempel

    In this paper we investigate the computational aspects of some recently proposed iterative methods for approximating the canonical tight and canonical dual window of a Gabor frame (g,a,b). The iterations start with the window g while the iteration steps comprise the window g, the k^th iterand...

  9. Iterative algorithms to approximate canonieal Gabor windows: Computational aspects

    DEFF Research Database (Denmark)

    Janssen, A. J. E. M.; Søndergaard, Peter Lempel

    2007-01-01

    In this article we investigate the computational aspects of some recently proposed iterative methods for approximating the canonical tight and canonical dual window of a Gabor frame (g, a, b). The iterations start with the window g while the iteration steps comprise the window g, the k(th) iterand...

  10. Efficient use of iterative solvers in nested topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Stolpe, Mathias; Sigmund, Ole

    2009-01-01

    by a Krylov subspace iterative solver. By choosing convergence criteria for the iterative solver that are strongly related to the optimization objective and to the design sensitivities, it is possible to terminate the iterative solution of the nested equations earlier compared to traditional convergence...

  11. General Object-oriented Framework for Iterative Optimization Algorithms

    OpenAIRE

    Mornar, Vedran; Vanjak, Zvonimir

    2001-01-01

    It is usually impossible to exactly solve the hard optimization problems. One is thus directed to iterative algorithms. In implementation of these iterative algorithms, some common characteristics can be observed, which can be generalized in an object-oriented framework. This can significantly reduce the time needed for implementation of an iterative algorithm.

  12. Extortion outperforms generosity in iterated Prisoners' Dilemma

    CERN Document Server

    Xu, Bin; Lien, Jaimie W; Zheng, Jie; Wang, Zhijian

    2015-01-01

    Promoting cooperation is an intellectual challenge in the social sciences, for which the iterated Prisoners' Dilemma (IPD) is a fundamental framework. The traditional view that there exists no simple ultimatum strategy whereby one player can unilaterally control the share of the surplus has been challenged by a new class of "zero-determinant" (ZD) strategies raised by Press and Dyson. In particular, the extortionate strategies can subdue the opponent and obtain higher scores. However, no empirical evidence has yet been found to support this theoretical finding. In a long-run laboratory experiment of the iterated Prisoners' Dilemma pairing each human subject with a computer co-player, we demonstrate that the extortionate strategy indeed outperforms the generous strategy against human subjects. Our results show that the extortionate strategy achieves higher scores than the generous strategy, the extortionate strategy promotes the cooperation rate to a similar level as the generous strategy does, and the human s...

  13. Development of structural design criteria for ITER.

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.

    1998-06-22

    The irradiation environment experienced by the in-vessel components of fusion reactors such as HER presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. Recently, Draft 7 of the interim ITER structural design criteria (ISDC), which provide new rules for guarding against such problems, was released for trial use by the ITER designers. The new rules, which were derived from a simple model based on the concept of elastic follow up factor, provide primary and secondary stress limits as functions of uniform elongation and ductility. The implication of these rules on the allowable surface heat flux on typical first walls made of type 316 stainless steel and vanadium alloys are discussed.

  14. Iterative learning control an optimization paradigm

    CERN Document Server

    Owens, David H

    2016-01-01

    This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...

  15. Iterative Brinkman penalization for remeshed vortex methods

    Science.gov (United States)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony; Walther, Jens Honoré

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time steps, than what is customary in the Brinkman penalization, thus reducing its computational cost while maintaining the capability of the method to handle complex geometries. We demonstrate the accuracy of our method by considering challenging benchmark problems such as flow past an impulsively started cylinder and normal to an impulsively started and accelerated flat plate. We find that the present method enhances significantly the accuracy of the Brinkman penalization technique for the simulations of highly unsteady flows past complex geometries.

  16. Mahalanobis Distance Based Iterative Closest Point

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Blas, Morten Rufus; Larsen, Rasmus

    2007-01-01

    the notion of a mahalanobis distance map upon a point set with associated covariance matrices which in addition to providing correlation weighted distance implicitly provides a method for assigning correspondence during alignment. This distance map provides an easy formulation of the ICP problem that permits......This paper proposes an extension to the standard iterative closest point method (ICP). In contrast to ICP, our approach (ICP-M) uses the Mahalanobis distance to align a set of shapes thus assigning an anisotropic independent Gaussian noise to each point in the reference shape. The paper introduces...... a fast optimization. Initially, the covariance matrices are set to the identity matrix, and all shapes are aligned to a randomly selected shape (equivalent to standard ICP). From this point the algorithm iterates between the steps: (a) obtain mean shape and new estimates of the covariance matrices from...

  17. Iterative Estimation in Turbo Equalization Process

    Directory of Open Access Journals (Sweden)

    MORGOS Lucian

    2014-05-01

    Full Text Available This paper presents the iterative estimation in turbo equalization process. Turbo equalization is the process of reception in which equalization and decoding are done together, not as separate processes. For the equalizer to work properly, it must receive before equalization accurate information about the value of the channel impulse response. This estimation of channel impulse response is done by transmission of a training sequence known at reception. Knowing both the transmitted and received sequence, it can be calculated estimated value of the estimated the channel impulse response using one of the well-known estimation algorithms. The estimated value can be also iterative recalculated based on the sequence data available at the output of the channel and estimated sequence data coming from turbo equalizer output, thereby refining the obtained results.

  18. Automatic Control of ITER-like Structures

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G.; Bremond, S

    2005-07-01

    In ITER Ion Cyclotron System requires a power transfer efficiency in excess of 90% from power source to plasma in quasi continuous operation. This implies the availability of a control system capable of optimizing the array radiation spectrum, automatically acquiring impedance match between the power source and the plasma loaded array at the beginning of the power pulse and maintaining it against load variations due to plasma position and plasma edge parameters fluctuations, rapidly detecting voltage breakdowns in the array and/or in the transmission system and reliably discriminating them from fast load variations. In this paper a proposal for a practical ITER control system, including power, phase, frequency and impedance matching is described. (authors)

  19. An Adaptive Iterated Nonlocal Interferometry Filtering Method

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2014-04-01

    Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.

  20. The Cryostat and Subsystems Development at ITER

    Science.gov (United States)

    Sekachev, Igor; Meekins, Michael; Sborchia, Carlo; Vitupier, Guillaume; Xie, Han; Zhou, Caipin

    ITER is a large experimental tokamak being built to research fusion power. The ITER cryostat is a multifunctional system which provides vacuum insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also serves as a structural support for the tokamak and provides access ways and corridors to the vacuum vessel for diagnostic lines of sight, additional heating beams and the deployment of remote handling equipment. The cryostat has feed-through penetrations for all the equipment connecting elements of systems outside the cryostat to the corresponding elements inside the cryostat. The cryostat is a vacuum containment vessel having a very large volume of ∼16000 m3 designed to be evacuated to a base pressure of 10-4 Pa. Design details of the cryostat and associated systems, including Torus Cryopump Housing (TCPH), are discussed. Status report of the cryostat developments is presented.

  1. ITER Materials R & D Data Bank

    Science.gov (United States)

    Tanaka, Shigeru; Matera, R.; Kalinin, G.; Barabash, V.; Mohri, K.

    To keep traceability of many valuable raw data that were experimentally obtained in the ITER Technology R&D Tasks related to materials for In-Vessel Components, and to easily make the best use of these data in design activities, the `ITER Materials R&D Data Bank' has been built up, with the use of Excel TM spread sheets. Compared with existing material data banks, this data bank is unique in the following respects: (1) In addition to thermo-mechanical properties of single materials (beryllium, tungsten, carbon-based materials, copper alloys and stainless steels), thermo-mechanical properties (including neutron irradiation effects) for various kinds of joints between these materials, and the results of thermal fatigue tests of mock-ups are collected. (2) As for plasma facing materials (beryllium, tungsten and carbon), experimental data on plasma-material interactions such as sputtering, disruption erosion, and hydrogen-isotope trapping and release are collected.

  2. New iterative solvers for the NAG Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Salvini, S.; Shaw, G. [Numerical Algorithms Group Ltd., Oxford (United Kingdom)

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  3. Tuning Leaky Nanocavity Resonances - Perturbation Treatment

    CERN Document Server

    Shlafman, Michael; Salzman, Joseph

    2010-01-01

    Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are in good agreement with numerical calculations.

  4. Varactor-tuned Substrate Integrated Evanescent Filter

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Acar, Öncel; Dong, Yunfeng

    is considered. In contrast to other methods described in the literature, it avoids etching split ring resonators in the metal layer of the SIW. The filters presented here use varactors as tuning elements. The varactors (as well as DC decoupling circuits) are mounted on the surface of PCB bringing the lower......, fabricated and tested in order to validate the developed filter models as well as the implemented realization method. The filter structure as well as its tuning are shown in Figure 1....

  5. Gravity orientation tuning in macaque anterior thalamus.

    Science.gov (United States)

    Laurens, Jean; Kim, Byounghoon; Dickman, J David; Angelaki, Dora E

    2016-12-01

    Gravity may provide a ubiquitous allocentric reference to the brain's spatial orientation circuits. Here we describe neurons in the macaque anterior thalamus tuned to pitch and roll orientation relative to gravity, independently of visual landmarks. We show that individual cells exhibit two-dimensional tuning curves, with peak firing rates at a preferred vertical orientation. These results identify a thalamic pathway for gravity cues to influence perception, action and spatial cognition.

  6. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  7. Tuning Metamaterials by using Amorphous Magnetic Microwires

    OpenAIRE

    Lopez-Dominguez, V.; Garcia, M.A.; Marin, P.; Hernando, A.

    2017-01-01

    In this work, we demonstrate theoretically and experimentally the possibility of tuning the electromagnetic properties of metamaterials with magnetic fields by incorporating amorphous magnetic microwires. The large permeability of these wires at microwave frequencies allows tuning the resonance of the metamaterial by using magnetic fields of the order of tens of Oe. We describe here the physical basis of the interaction between a prototypical magnetic metamaterial with magnetic microwires and...

  8. Accurate guitar tuning by cochlear implant musicians.

    Science.gov (United States)

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  9. Dynamics of the tuning process between singers

    CERN Document Server

    Urteaga, R

    2004-01-01

    We present a dynamical model describing a predictable human behavior like the tuning process between singers. The purpose, inspired in physiological and behavioral grounds of human beings, is sensitive to all Fourier spectrum of each sound emitted and it contemplates an asymmetric coupling between individuals. We have recorded several tuning exercises and we have confronted the experimental evidence with the results of the model finding a very well agreement between calculated and experimental sonograms.

  10. Anisotropy tuning with the Wilson flow

    CERN Document Server

    Borsanyi, S; Fodor, Z; Katz, S D; Krieg, S; Kurth, T; Mages, S; Schafer, A; Szabo, K K

    2012-01-01

    We use the Wilson flow to define the gauge anisotropy at a given physical scale. We demonstrate the use of the anisotropic flow by performing the tuning of the bare gauge anisotropy in the tree-level Symanzik action for several lattice spacings and target anisotropies. We use this method to tune the anisotropy parameters in full QCD, where we also exploit the diminishing effect of a well chosen smearing on the renormalization of the fermion anisotropy.

  11. Intelligent algorithm tuning PID method of function electrical stimulation using knee joint angle.

    Science.gov (United States)

    Qiu, Shuang; He, Feng; Tang, Jiabei; Xu, Jiapeng; Zhang, Lixin; Zhao, Xin; Qi, Hongzhi; Zhou, Peng; Cheng, Xiaoman; Wan, Baikun; Ming, Dong

    2014-01-01

    Functional electrical stimulation (FES) could restore motor functions for individuals with spinal cord injury (SCI). By applying electric current pulses, FES system could produce muscle contractions, generate joint torques, and thus, achieve joint movements automatically. Since the muscle system is highly nonlinear and time-varying, feedback control is quite necessary for precision control of the preset action. In the present study, we applied two methods (Proportional Integral Derivative (PID) controller based on Back Propagation (BP) neural network and that based on Genetic Algorithm (GA)), to control the knee joint angle for the FES system, while the traditional Ziegler-Nichols method was used in the control group for comparison. They were tested using a muscle model of the quadriceps. The results showed that intelligent algorithm tuning PID controller displayed superior performance than classic Ziegler-Nichols method with constant parameters. More particularly, PID controller tuned by BP neural network was superior on controlling precision to make the feedback signal track the desired trajectory whose error was less than 1.2°±0.16°, while GA-PID controller, seeking the optimal parameters from multipoint simultaneity, resulted in shortened delay in the response. Both strategies showed promise in application of intelligent algorithm tuning PID methods in FES system.

  12. Europe wrestles with ITER site bid

    CERN Multimedia

    Feder, T

    2003-01-01

    "The European Union is in a quandary over whether to put forward the French or Spanish site to host ITER, a $5 billion magnetic fusion experiment intended to prove the feasability of fusion energy. The decision is set for 27 November, with the final site selection, between the victorious European bid and bids from Canada and Japan, to follow within a couple of months" (1 page)

  13. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  14. Iterative Reconstruction of Coded Source Neutron Radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  15. The Iterative Method of Generalized -Concave Operators

    Directory of Open Access Journals (Sweden)

    Zhou Yanqiu

    2011-01-01

    Full Text Available We define the concept of the generalized -concave operators, which generalize the definition of the -concave operators. By using the iterative method and the partial ordering method, we prove the existence and uniqueness of fixed points of this class of the operators. As an example of the application of our results, we show the existence and uniqueness of solutions to a class of the Hammerstein integral equations.

  16. ITER plasma safety interface models and assessments

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A. [Oak Ridge National Lab., TN (United States); Bartels, H-W. [ITER San Diego Joint Work Site, La Jolla, CA (United States); Honda, T. [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Putvinski, S. [ITER San Diego Joint Work Site, La Jolla, CA (United States); Amano, T. [National Inst. for Fusion Science, Nagoya (Japan); Boucher, D.; Post, D.; Wesley, J. [ITER San Diego Joint Work Site, La Jolla, CA (United States)

    1996-12-31

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered.

  17. Iterative solution of high order compact systems

    Energy Technology Data Exchange (ETDEWEB)

    Spotz, W.F.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  18. AFFINE TRANSFORMATION IN RANDOM ITERATED FUNCTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    熊勇; 史定华

    2001-01-01

    Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.

  19. Revisiting fine-tuning in the MSSM

    Science.gov (United States)

    Ross, Graham G.; Schmidt-Hoberg, Kai; Staub, Florian

    2017-03-01

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ˜ 20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  20. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.