WorldWideScience

Sample records for iterative feedback tuning

  1. Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad

    2008-01-01

    Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...

  2. A Design Algorithm using External Perturbation to Improve Iterative Feedback Tuning Convergence

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkan; Poulsen, Niels Kjølstad

    2011-01-01

    Iterative Feedback Tuning constitutes an attractive control loop tuning method for processes in the absence of process insight. It is a purely data driven approach for optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost function...... gradient, which is used in a search algorithm for minimizing the performance cost. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the data...

  3. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  4. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  6. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.

    Science.gov (United States)

    Fravolini, M L; Fabietti, P G

    2014-01-01

    This paper proposes a scheme for the control of the blood glucose in subjects with type-1 diabetes mellitus based on the subcutaneous (s.c.) glucose measurement and s.c. insulin administration. The tuning of the controller is based on an iterative learning strategy that exploits the repetitiveness of the daily feeding habit of a patient. The control consists of a mixed feedback and feedforward contribution whose parameters are tuned through an iterative learning process that is based on the day-by-day automated analysis of the glucose response to the infusion of exogenous insulin. The scheme does not require any a priori information on the patient insulin/glucose response, on the meal times and on the amount of ingested carbohydrates (CHOs). Thanks to the learning mechanism the scheme is able to improve its performance over time. A specific logic is also introduced for the detection and prevention of possible hypoglycaemia events. The effectiveness of the methodology has been validated using long-term simulation studies applied to a set of nine in silico patients considering realistic uncertainties on the meal times and on the quantities of ingested CHOs.

  7. A practical iterative PID tuning method for mechanical systems using parameter chart

    Science.gov (United States)

    Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.

    2017-10-01

    In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

  8. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.

    2017-01-01

    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  9. Feedback reliability calculation for an iterative block decision feedback equalizer

    OpenAIRE

    Huang, G; Nix, AR; Armour, SMD

    2009-01-01

    A new class of iterative block decision feedback equalizer (IB-DFE) was pioneered by Chan and Benvenuto. Unlike the conventional DFE, the IB-DFE is optimized according to the reliability of the feedback (FB) symbols. Since the use of the training sequence (TS) for feedback reliability (FBR) estimation lowers the bandwidth efficiency, FBR estimation without the need for additional TS is of considerable interest. However, prior FBR estimation is limited in the literature to uncoded M-ary phases...

  10. Wind tunnel tests with combined pitch and free-floating flap control: data-driven iterative feedforward controller tuning

    Directory of Open Access Journals (Sweden)

    S. T. Navalkar

    2016-10-01

    Full Text Available Wind turbine load alleviation has traditionally been addressed in the literature using either full-span pitch control, which has limited bandwidth, or trailing-edge flap control, which typically shows low control authority due to actuation constraints. This paper combines both methods and demonstrates the feasibility and advantages of such a combined control strategy on a scaled prototype in a series of wind tunnel tests. The pitchable blades of the test turbine are instrumented with free-floating flaps close to the tip, designed such that they aerodynamically magnify the low stroke of high-bandwidth actuators. The additional degree of freedom leads to aeroelastic coupling with the blade flexible modes. The inertia of the flaps was tuned such that instability occurs just beyond the operational envelope of the wind turbine; the system can however be stabilised using collocated closed-loop control. A feedforward controller is shown to be capable of significant reduction of the deterministic loads of the turbine. Iterative feedforward tuning, in combination with a stabilising feedback controller, is used to optimise the controller online in an automated manner, to maximise load reduction. Since the system is non-linear, the controller gains vary with wind speed; this paper also shows that iterative feedforward tuning is capable of generating the optimal gain schedule online.

  11. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  12. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    Science.gov (United States)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  13. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen

    2014-09-01

    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  14. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  15. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  16. Tune and Orbit feedbacks performance: a user perspective

    CERN Document Server

    Ponce, L

    2012-01-01

    The presentation will present the performance and issues of tune and orbit feedbacks seen from the user (operation) perspective. Some statistics on the beam dumps causes will be presented to emphasize the two main limitations of the system : the issue on the tune measurement and the triggering of the QPS system of RQTs circuits. The possible improvements for 2012 will then be discussed together with the foreseen software changes for the orbit reference management.

  17. Iterative Authoring Using Story Generation Feedback: Debugging or Co-creation?

    Science.gov (United States)

    Swartjes, Ivo; Theune, Mariët

    We explore the role that story generation feedback may play within the creative process of interactive story authoring. While such feedback is often used as 'debugging' information, we explore here a 'co-creation' view, in which the outcome of the story generator influences authorial intent. We illustrate an iterative authoring approach in which each iteration consists of idea generation, implementation and simulation. We find that the tension between authorial intent and the partially uncontrollable story generation outcome may be relieved by taking such a co-creation approach.

  18. Influence of visual feedback on human task performance in ITER remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, Gwendolijn Y.R., E-mail: g.schropp@heemskerk-innovative.nl [Utrecht University, Utrecht (Netherlands); Heemskerk Innovative Technology, Noordwijk (Netherlands); Heemskerk, Cock J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann [Helmholtz Institute-Utrecht University, Utrecht (Netherlands); Elzendoorn, Ben S.Q. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands); Bult, David [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performance of human operators in an ITER-like test facility for remote handling. Black-Right-Pointing-Pointer Different sources of visual feedback influence how fast one can complete a maintenance task. Black-Right-Pointing-Pointer Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  19. Influence of visual feedback on human task performance in ITER remote handling

    International Nuclear Information System (INIS)

    Schropp, Gwendolijn Y.R.; Heemskerk, Cock J.M.; Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann; Elzendoorn, Ben S.Q.; Bult, David

    2012-01-01

    Highlights: ► The performance of human operators in an ITER-like test facility for remote handling. ► Different sources of visual feedback influence how fast one can complete a maintenance task. ► Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  20. Modelling Feedback in Virtual Patients: An Iterative Approach.

    Science.gov (United States)

    Stathakarou, Natalia; Kononowicz, Andrzej A; Henningsohn, Lars; McGrath, Cormac

    2018-01-01

    Virtual Patients (VPs) offer learners the opportunity to practice clinical reasoning skills and have recently been integrated in Massive Open Online Courses (MOOCs). Feedback is a central part of a branched VP, allowing the learner to reflect on the consequences of their decisions and actions. However, there is insufficient guidance on how to design feedback models within VPs and especially in the context of their application in MOOCs. In this paper, we share our experiences from building a feedback model for a bladder cancer VP in a Urology MOOC, following an iterative process in three steps. Our results demonstrate how we can systematize the process of improving the quality of VP components by the application of known literature frameworks and extend them with a feedback module. We illustrate the design and re-design process and exemplify with content from our VP. Our results can act as starting point for discussions on modelling feedback in VPs and invite future research on the topic.

  1. Density control in ITER: an iterative learning control and robust control approach

    Science.gov (United States)

    Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.

    2018-01-01

    Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.

  2. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  3. Feedback and rotational stabilization of resistive wall modes in ITER

    International Nuclear Information System (INIS)

    Liu Yueqiang; Bondeson, A.; Chu, M.S.; La Haye, R.J.; Favez, J.-Y.; Lister, J.B.; Gribov, Y.; Gryaznevich, M.; Hender, T.C.; Howell, D.F.

    2005-01-01

    Different models have been introduced in the stability code MARS-F in order to study the damping effect of resistive wall modes (RWM) in rotating plasmas. Benchmark of MARS-F calculations with RWM experiments on JET and D3D indicates that the semi-kinetic damping model is a good candidate for explaining the damping mechanisms. Based on these results, the critical rotation speeds required for RWM stabilization in an advanced ITER scenario are predicted. Active feedback control of the n = 1 RWM in ITER is also studied using the MARS-F code. (author)

  4. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang

    2017-01-01

    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  5. A novel chaotic block cryptosystem based on iterating map with output-feedback

    International Nuclear Information System (INIS)

    Yang Degang; Liao Xiaofeng; Wang Yong; Yang Huaqian; Wei Pengcheng

    2009-01-01

    A novel method for encryption based on iterating map with output-feedback is presented in this paper. The output-feedback, instead of simply mixing the chaotic signal of the proposed chaotic cryptosystem with the cipher-text, is relating to previous cipher-text that is obtained through the plaintext and key. Some simulated experiments are performed to substantiate that our method can make cipher-text more confusion and diffusion and that the proposed method is practical whenever efficiency, cipher-text length or security is concerned.

  6. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  7. Neural network based approach for tuning of SNS feedback and feedforward controllers

    International Nuclear Information System (INIS)

    Kwon, Sung-Il; Prokop, Mark S.; Regan, Amy H.

    2002-01-01

    The primary controllers in the SNS low level RF system are proportional-integral (PI) feedback controllers. To obtain the best performance of the linac control systems, approximately 91 individual PI controller gains should be optimally tuned. Tuning is time consuming and requires automation. In this paper, a neural network is used for the controller gain tuning. A neural network can approximate any continuous mapping through learning. In a sense, the cavity loop PI controller is a continuous mapping of the tracking error and its one-sample-delay inputs to the controller output. Also, monotonic cavity output with respect to its input makes knowing the detailed parameters of the cavity unnecessary. Hence the PI controller is a prime candidate for approximation through a neural network. Using mean square error minimization to train the neural network along with a continuous mapping of appropriate weights, optimally tuned PI controller gains can be determined. The same neural network approximation property is also applied to enhance the adaptive feedforward controller performance. This is done by adjusting the feedforward controller gains, forgetting factor, and learning ratio. Lastly, the automation of the tuning procedure data measurement, neural network training, tuning and loading the controller gain to the DSP is addressed.

  8. The Potential of User Feedback Through the Iterative Refining of Queries in an Image Retrieval System

    NARCIS (Netherlands)

    Ben Moussa, Maher; Pasch, Marco; Hiemstra, Djoerd; van der Vet, P.E.; Huibers, Theo W.C.; Marchand-Maillet, Stephane; Bruno, Eric; Nürnberger, Andreas; Detyniecki, Marcin

    2007-01-01

    Inaccurate or ambiguous expressions in queries lead to poor results in information retrieval. We assume that iterative user feedback can improve the quality of queries. To this end we developed a system for image retrieval that utilizes user feedback to refine the user’s search query. This is done

  9. Design of fast tuning elements for the ITER ICH system

    International Nuclear Information System (INIS)

    Swain, D.W.; Goulding, R.H.

    1996-05-01

    The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T ampersand M) system and to recommend some research and development (R ampersand D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T ampersand M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [''edge localized mode (ELM)-dump''] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise

  10. Software feedback for monochromator tuning at UNICAT (abstract)

    Science.gov (United States)

    Jemian, Pete R.

    2002-03-01

    Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as

  11. A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back

    Directory of Open Access Journals (Sweden)

    Emre Sariyildiz

    2015-08-01

    Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.

  12. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    Science.gov (United States)

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    Science.gov (United States)

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  14. Iterative algorithms for computing the feedback Nash equilibrium point for positive systems

    Science.gov (United States)

    Ivanov, I.; Imsland, Lars; Bogdanova, B.

    2017-03-01

    The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.

  15. The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis

    Science.gov (United States)

    Xu, X.; Tong, S.; Wang, L.

    2017-12-01

    How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.

  16. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  17. A Data-Driven Control Design Approach for Freeway Traffic Ramp Metering with Virtual Reference Feedback Tuning

    Directory of Open Access Journals (Sweden)

    Shangtai Jin

    2014-01-01

    Full Text Available ALINEA is a simple, efficient, and easily implemented ramp metering strategy. Virtual reference feedback tuning (VRFT is most suitable for many practical systems since it is a “one-shot” data-driven control design methodology. This paper presents an application of VRFT to a ramp metering problem of freeway traffic system. When there is not enough prior knowledge of the controlled system to select a proper parameter of ALINEA, the VRFT approach is used to optimize the ALINEA's parameter by only using a batch of input and output data collected from the freeway traffic system. The extensive simulations are built on both the macroscopic MATLAB platform and the microscopic PARAMICS platform to show the effectiveness and applicability of the proposed data-driven controller tuning approach.

  18. Model-independent particle accelerator tuning

    Directory of Open Access Journals (Sweden)

    Alexander Scheinker

    2013-10-01

    Full Text Available We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: (1 it has the ability to handle unknown, time-varying systems, (2 it gives known bounds on parameter update rates, (3 we give an analytic proof of its convergence and its stability, and (4 it has a simple digital implementation through a control system such as the experimental physics and industrial control system (EPICS. Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE Linear Accelerator’s transport region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  19. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  20. Tests on a mock-up of the feedback controlled matching options of the ITER ICRH system

    International Nuclear Information System (INIS)

    Grine, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2009-01-01

    Automatic control of the matching of the ITER ICRH antenna array on a reference load is presently developed and tested for optimization on a low-powered scaled (1:5) mock-up. Resilience to fast load variations is obtained either by 4 Conjugate-T (CT) or 4 quadrature hybrid circuits, the latter being the reference option. The main results are (i) for the CT option: successful implementation of the simultaneous feedback control of 11 actuators for the matching of the 4 CT and for the control of the array toroidal phasing; (ii) for the hybrid option: the matching and the array current control via feedback control of the decouplers and double stub tuners. This system is being progressively implemented and the simultaneous control of matching and antenna current has already been successfully tested on half of the array for heating and current drive phasings.

  1. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  2. Adaptive Iterative Soft-Input Soft-Output Parallel Decision-Feedback Detectors for Asynchronous Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2005-01-01

    Full Text Available The optimum and many suboptimum iterative soft-input soft-output (SISO multiuser detectors require a priori information about the multiuser system, such as the users' transmitted signature waveforms, relative delays, as well as the channel impulse response. In this paper, we employ adaptive algorithms in the SISO multiuser detector in order to avoid the need for this a priori information. First, we derive the optimum SISO parallel decision-feedback detector for asynchronous coded DS-CDMA systems. Then, we propose two adaptive versions of this SISO detector, which are based on the normalized least mean square (NLMS and recursive least squares (RLS algorithms. Our SISO adaptive detectors effectively exploit the a priori information of coded symbols, whose soft inputs are obtained from a bank of single-user decoders. Furthermore, we consider how to select practical finite feedforward and feedback filter lengths to obtain a good tradeoff between the performance and computational complexity of the receiver.

  3. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  4. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems

    Science.gov (United States)

    Wu, Lifu; Qiu, Xiaojun; Guo, Yecai

    2018-06-01

    To tune the noise amplification in the feedback system caused by the waterbed effect effectively, an adaptive algorithm is proposed in this paper by replacing the scalar leaky factor of the leaky FxLMS algorithm with a real symmetric Toeplitz matrix. The elements in the matrix are calculated explicitly according to the noise amplification constraints, which are defined based on a simple but efficient method. Simulations in an ANC headphone application demonstrate that the proposed algorithm can adjust the frequency band of noise amplification more effectively than the FxLMS algorithm and the leaky FxLMS algorithm.

  5. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2014-01-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold

  6. On equivalence classes in iterative learning control

    NARCIS (Netherlands)

    Verwoerd, M.H.A.; Meinsma, Gjerrit; de Vries, Theodorus J.A.

    2003-01-01

    This paper advocates a new approach to study the relation between causal iterative learning control (ILC) and conventional feedback control. Central to this approach is the introduction of the set of admissible pairs (of operators) defined with respect to a family of iterations. Considered are two

  7. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  8. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  9. Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.

  10. Buckling feedback of the spectral calculations

    International Nuclear Information System (INIS)

    Jing Xingqing; Shan Wenzhi; Luo Jingyu

    1992-01-01

    This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module

  11. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  12. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the

  13. Multibunch resistive wall instability damping with feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1992-01-01

    The theory of multibunch transverse resistive wall instability damping with feedback is development. The system of coupling equations is obtained for description of bunched beam motion. The general solution and eigen frequencies are found. But for two bunches or multi bunches the tune splitting is found. The band of the tune splitting is calculated. The influence of the tune splitting on the damper system stability is discussed. 14 refs

  14. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    Science.gov (United States)

    Beddow, Helen M.; Liebrand, Diederik; Wilson, Douglas S.; Hilgen, Frits J.; Sluijs, Appy; Wade, Bridget S.; Lourens, Lucas J.

    2018-03-01

    Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the Oligocene-Miocene transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning has on astronomically calibrated ages and the geologic timescale. These alternative age models (roughly from ˜ 22 to ˜ 24 Ma) are based on different tunings between proxy records and eccentricity: the first age model is based on an aligning CaCO3 weight (wt%) to Earth's orbital eccentricity, and the second age model is based on a direct age calibration of benthic foraminiferal stable carbon isotope ratios (δ13C) to eccentricity. To independently test which tuned age model and associated tuning assumptions are in best agreement with independent ages based on tectonic plate-pair spreading rates, we assign the tuned ages to magnetostratigraphic reversals identified in deep-marine magnetic anomaly profiles. Subsequently, we compute tectonic plate-pair spreading rates based on the tuned ages. The resultant alternative spreading-rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant, or linearly changing, spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n-C7n.1r, which are not based on astronomical tuning in the latest iteration of the geologic timescale. Furthermore, it provides independent evidence that the relatively large (several 10 000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity constitute a real feature of the Oligocene-Miocene climate system and carbon cycle. The age constraints from Site U1334 thus indicate that the delayed responses of the

  15. Active tuned mass damper for damping of offshore wind turbine vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker

    2017-01-01

    An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent to the ...

  16. On the automatic control of the ITER ion cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G. [Department of General Physics, University of Turin, Via P. Giuria 1, 10 125 Turin (Italy)], E-mail: giuseppe.bosia@to.infn.it

    2007-10-15

    The ITER ion cyclotron heating system requires an efficient control system capable of: (i) providing the desired array radiation spectrum, to optimize plasma coupling and absorption and to minimize parasitic power losses in the plasma edge; (ii) maintaining the RF power flow to the plasma against significant load variations, including fast fluctuations induced by ELMs; (iii) reliably detecting and suppressing RF voltage breakdowns in the array and/or in the transmission system, to avoid local equipment damage and (iv) implementing an accurate real time record of performance. In this paper specific aspects of the tuning control system, related to recent conceptual and engineering effort [K. Vulliez, et al., Design of the ITER ion cyclotron heating launcher based on in-vessel tuning system, Article ID106C, this conference] are addressed.

  17. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    Science.gov (United States)

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability.

    Science.gov (United States)

    Wang, Ling; Xu, Ming-En; Luo, Li; Zhou, Yongyong; Si, Peijian

    2018-02-12

    For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.

  19. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  20. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 1 go-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  1. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel l0-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  2. Upgrades to PEP-II tune measurements

    International Nuclear Information System (INIS)

    Fisher, Alan S.; Petree, Mark; Wienands, Uli; Allison, Stephanie; Laznovsky, Michael; Seeman, Michael; Robin, Jolene

    2002-01-01

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement

  3. Influence of visual feedback on human task performance in ITER remote handling

    NARCIS (Netherlands)

    Schropp, Gwendolijn Y R; Heemskerk, Cock J M; Kappers, Astrid M L; Bergmann Tiest, Wouter M; Elzendoorn, Ben S Q; Bult, David

    In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures.

  4. Verifying elementary ITER maintenance actions with the MS2 benchmark product

    NARCIS (Netherlands)

    Heemskerk, C. J. M.; Elzendoorn, B. S. Q.; Magielsen, A. J.; Schropp, G. Y. R.

    2011-01-01

    A new facility has been taken in operation to investigate the influence of visual and haptic feedback on the performance of remotely executed ITER RH maintenance tasks. A reference set of representative ITER remote handling maintenance tasks was included the master slave manipulator system (MS2)

  5. Verifying elementary ITER maintenance actions with the MS2 benchmark product

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Elzendoorn, B.S.Q.; Magielsen, A.J.; Schropp, G.Y.R.

    2011-01-01

    A new facility has been taken in operation to investigate the influence of visual and haptic feedback on the performance of remotely executed ITER RH maintenance tasks. A reference set of representative ITER remote handling maintenance tasks was included the master slave manipulator system (MS2) benchmark product. The benchmark product was used in task performance tests in a representative two-handed dexterous manipulation test bed at NRG. In the setup, the quality of visual feedback was varied by exchanging direct view with indirect view setups in which visual feedback is provided via video cameras. Interaction forces were measured via an integrated force sensor. The impact of feedback quality on the performance of maintenance tasks at the level of handling individual parts was measured and analysed. Remote execution of the maintenance actions took roughly 3-5 times more time than hands-on. Visual feedback was identified as the dominant factor, including aspects like (lack of) operator control over camera placement, pan, tilt and zoom, lack of 3D perception, image quality, and latency. Haptic feedback was found to be important, but only in specific contact transition and constrained motion tasks.

  6. Introducing artificial depth cues to improve task performance in ITER maintenance actions

    NARCIS (Netherlands)

    Heemskerk, C.J.M.; Eendebak, P.T.; Schropp, G.Y.R.; Hermes, H.V.; Elzendoorn, B.S.Q.; Magielsen, A.J.

    2013-01-01

    Maintenance operations on ITER tokamak components will be largely performed by remote handling. In previous work it was shown that representative maintenance tasks could be performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators

  7. Beam tuning and stabilization using beam phase measurements at GANIL

    International Nuclear Information System (INIS)

    Chabert, A.; Loyer, F.; Sauret, J.

    1984-06-01

    Owing to the great sensitivity of the beam phase to the various parameters, on line beam phase measurements proved to be a very efficient way of tuning and stabilizing the beam of the multi-accelerator complex. We recall the system which allows to obtain the different kinds of accurate measurements we need and describe the main applications: - tuning process (buncher and SSC's RF phase determination, setting of the required radial beam phase law in the SSC's); - stabilization of the beam by loops, the basic principle of which being to keep constant the beam central phase all along the machine by adjusting RF voltages or magnetic fields. Feedback loops are described and comparative results with and without feedback are given

  8. Simple force balance accelerometer/seismometer based on a tuning fork displacement sensor

    International Nuclear Information System (INIS)

    Stuart-Watson, D.; Tapson, J.

    2004-01-01

    Seismometers and microelectromechanical system accelerometers use the force-balance principle to obtain measurements. In these instruments the displacement of a mass object by an unknown force is sensed using a very high-resolution displacement sensor. The position of the object is then stabilized by applying an equal and opposite force to it. The magnitude of the stabilizing force is easily measured, and is assumed to be equivalent to the unknown force. These systems are critically dependent on the displacement sensor. In this article we use a resonant quartz tuning fork as the sensor. The tuning fork is operated so that its oscillation is lightly damped by the proximity of the movable mass object. Changes in the position of the mass object cause changes in the phase of the fork's resonance; this is used as the feedback variable in controlling the mass position. We have developed an acceleration sensor using this principle. The mass object is a piezoelectric bimorph diaphragm which is anchored around its perimeter, allowing direct electronic control of the displacement of its center. The tuning fork is brought very close to the diaphragm center, and is connected into a self-oscillating feedback circuit which has phase and amplitude as outputs. The diaphragm position is adjusted by a feedback loop, using phase as the feedback variable, to keep it in a constant position with respect to the tuning fork. The measured noise for this sensor is approximately 10.0 mg in a bandwidth of 100 Hz, which is substantially better than commercial systems of equivalent cost and size

  9. Mechanical design of the ITER ion cyclotron heating launcher based on in-vessel tuning system

    Energy Technology Data Exchange (ETDEWEB)

    Vulliez, K. [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 St Paul Lez Durance (France)], E-mail: karl.vulliez@cea.fr; Bosia, G. [Dipartimento di Fisica Generale, Universita di Torino (Italy); Agarici, G.; Beaumont, B.; Argouarch, A.; Mollard, P. [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 St Paul Lez Durance (France); Testoni, P. [Electrical and Electronics Engineering Department, University of Cagliari (Italy); Maggiora, R.; Milanesio, D. [Dipartimento di Elettronica Politecnico di Torino (Italy)

    2007-10-15

    Since the release of the ITER ICRH system reference design report [ITER Final Design Report: DDD 5.1 -Ion Cyclotron and Current Drive System, July 2001], further design studies have been conducted. If the base of the reference design [Final Report on EFDA contract 04/1129, ITER ICRF antenna and Matching system design (Internalmatching), April 2005] is kept unchanged, several significant modifications have been proposed for a better efficiency and reliability. The increase of the poloidal order of the array and strong modifications of the matching system concept are the main changes. Technical aspects insufficiently covered in previous studies are also now worked out in detail, like the integration on a mid-plane port satisfying the constraints of the ITER environment.

  10. How does culture affect experiential training feedback in exported Canadian health professional curricula?

    Science.gov (United States)

    Wilbur, Kerry; Mousa Bacha, Rasha; Abdelaziz, Somaia

    2017-03-17

    To explore feedback processes of Western-based health professional student training curricula conducted in an Arab clinical teaching setting. This qualitative study employed document analysis of in-training evaluation reports (ITERs) used by Canadian nursing, pharmacy, respiratory therapy, paramedic, dental hygiene, and pharmacy technician programs established in Qatar. Six experiential training program coordinators were interviewed between February and May 2016 to explore how national cultural differences are perceived to affect feedback processes between students and clinical supervisors. Interviews were recorded, transcribed, and coded according to a priori cultural themes. Document analysis found all programs' ITERs outlined competency items for students to achieve. Clinical supervisors choose a response option corresponding to their judgment of student performance and may provide additional written feedback in spaces provided. Only one program required formal face-to-face feedback exchange between students and clinical supervisors. Experiential training program coordinators identified that no ITER was expressly culturally adapted, although in some instances, modifications were made for differences in scopes of practice between Canada and Qatar.  Power distance was recognized by all coordinators who also identified both student and supervisor reluctance to document potentially negative feedback in ITERs. Instances of collectivism were described as more lenient student assessment by clinical supervisors of the same cultural background. Uncertainty avoidance did not appear to impact feedback processes. Our findings suggest that differences in specific cultural dimensions between Qatar and Canada have implications on the feedback process in experiential training which may be addressed through simple measures to accommodate communication preferences.

  11. Digital Detection and feedback Fluxgate Magnetometer

    DEFF Research Database (Denmark)

    Piil-Henriksen, J.; Merayo, José M.G.; Nielsen, Otto V

    1996-01-01

    A new full Earth's field dynamic feedback fluxgate magnetometer is described. It is based entirely on digital signal processing and digital feedback control, thereby replacing the classical second harmonic tuned analogue electronics by processor algorithms. Discrete mathematical cross......-correlation routines and substantial oversampling reduce the noise to 71 pT root-mean-square in a 0.25-10 Hz bandwidth for a full Earth's field range instrument....

  12. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J.

    1997-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  13. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J

    1998-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  14. Applying principles of Design For Assembly to ITER maintenance operations

    International Nuclear Information System (INIS)

    Heemskerk, Cock; de Baar, Marco; Elzendoorn, Ben; Koning, Jarich; Verhoeven, Toon; Vreede, Fred de

    2009-01-01

    In ITER, maintenance operations in the vessel and in the Hot Cell will be largely done by Remote Handling (RH). Remotely performed maintenance actions tend to be more time-costly than actions performed by direct human access. With a human operator in the control loop and adequate situational feedback, a two-armed master slave manipulator system can mimic direct access with dexterous manipulation, tactile feedback and vision. But even then, turnaround times are still very high. Adapting the design for simplified maintenance operations can yield significant time savings. One of the methods known to produce a simpler, more robust design, which is also better suited for handling with robots, is Design For Assembly (DFA). This paper discusses whether and how the principles of DFA can be applied to simplify maintenance operations for ITER. While DFA is normally used with series-production and ITER is a unique product, it is possible to apply the principles of DFA to ITER maintenance operations. Furthermore, DFA's principles can be applied at different abstraction levels. Combining principles of DFA with Virtual Reality leads to new insights and provides additional value.

  15. MARTe at FTU: The new feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM - ENEA Fusion Association, Frascati Research Centre, Division of Fusion Physics, Rome, Frascati (Italy); Sadeghi, Yahya; Carnevale, Daniele; Di Geronimo, Andrea; Varano, Gianluca; Vitelli, Riccardo [Department of Computer Science, Systems and Production, University of Rome Tor Vergata, Rome (Italy); Galperti, Critsian [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milan (Italy); Zarfati, Emanuele; Pucci, Daniele [Department Antonio Ruberti, University of Rome La Sapienza, Rome (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We show that the MARTe is a candidate for ITER PSH. Black-Right-Pointing-Pointer We replace the old real-time feedback software using the MARTe framework. Black-Right-Pointing-Pointer We describe all the work done for the integration. - Abstract: Keeping in mind the necessities of a modern control system for fusion devices, such as modularity and a distributed architecture, an upgrade of the present FTU feedback control system was planned, envisaging also a possible reutilization in the proposed FAST experiment [1]. For standardization and efficiency purposes we decided to adopt a pre-existent ITER-relevant framework called MARTe [2], already used with success in other European Tokamak devices [3]. Following the developments shown in [4], in this paper we report on the structure of the new feedback system, and how it was integrated in the current control structure and pulse programming interface, and in the other MARTe systems already in FTU: RT-ODIN [5] and the ECRH and LH [6] satellite stations. The new feedback system has been installed in the FTU backup station (known as 'Feedback B'), which shares the input signals with the actual feedback system, in order to simplify the validation and debug of the new controller by testing it in parallel with the current one. Experimental results are then presented.

  16. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.

    Science.gov (United States)

    Selk Ghafari, A; Meghdari, A; Vossoughi, G

    2009-08-01

    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of pressure during locomotion. The parameters of the proposed controller were determined by employing the iterative feedback tuning approach to minimize tracking errors during forward dynamics simulation. Simultaneously, an inverse-dynamics-based optimization was employed to compute a set of desired musculotendon forces in the closed-loop simulation to resolve muscle redundancy. Quantitative comparisons of the simulation results with the experimental measurements and the reference muscles' activities illustrate the accuracy and efficiency of the proposed method during the stable ascending simulation.

  17. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    Science.gov (United States)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  18. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  19. INTELLIGENT FRACTIONAL ORDER ITERATIVE LEARNING CONTROL USING FEEDBACK LINEARIZATION FOR A SINGLE-LINK ROBOT

    Directory of Open Access Journals (Sweden)

    Iman Ghasemi

    2017-05-01

    Full Text Available In this paper, iterative learning control (ILC is combined with an optimal fractional order derivative (BBO-Da-type ILC and optimal fractional and proportional-derivative (BBO-PDa-type ILC. In the update law of Arimoto's derivative iterative learning control, a first order derivative of tracking error signal is used. In the proposed method, fractional order derivative of the error signal is stated in term of 'sa' where  to update iterative learning control law. Two types of fractional order iterative learning control namely PDa-type ILC and Da-type ILC are gained for different value of a. In order to improve the performance of closed-loop control system, coefficients of both  and  learning law i.e. proportional , derivative  and  are optimized using Biogeography-Based optimization algorithm (BBO. Outcome of the simulation results are compared with those of the conventional fractional order iterative learning control to verify effectiveness of BBO-Da-type ILC and BBO-PDa-type ILC

  20. The ITER project technological challenges

    CERN Multimedia

    CERN. Geneva; Lister, Joseph; Marquina, Miguel A; Todesco, Ezio

    2005-01-01

    The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the designer approach and the available technologies are critically discussed. The fourth lecture is devoted to the issue of performance prediction, from a superconducting wire to a large size conductor. The role of scaling laws, self-field, current distribution, voltage-current characteristic and transposition are...

  1. Block-Iterative Frequency-Domain Equalizations for SC-IDMA Systems

    Directory of Open Access Journals (Sweden)

    Salah Awad Salman

    2015-07-01

    Full Text Available In wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA systems, efficient multiuser detection (MUD classes that make use of joint hybrid decision feedback equalization (HDFE/ frequency decision-feedback equalization (FDFE and interference cancellation (IC techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF and feedback (FB filtering operations of FDFE, which use to remove intersymbol interference (ISI, are implemented by Fast Fourier Transforms (FFTs, while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/HDFE filtering are derived according to the minimum mean square error (MMSE criteria, and the feedback symbol decisions are directly designed from soft detection of the decoded signals at the previous iteration. The simulation results including comparisons with those of frequency domain equalization (FDE, SC-FDE-IDMA and multi-carrier OFDM-IDMA schemes, with cyclic prefixing (CP and zero padding (ZP techniques, show that the combination of FDFE-IC/HDFE-IC provides an efficient solution with good performance for IDMA systems in ISI channels. Moreover, these iterative structures with block equalization yield a much lower complexity than equivalent existing structures, making them attractive for a wealth of applications.

  2. SNS Superconducting RF cavity modeling-iterative learning control

    CERN Document Server

    Kwon, S I; Wang, Y M

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller.

  3. SNS Superconducting RF cavity modeling-iterative learning control

    International Nuclear Information System (INIS)

    Kwon, S.-I.; Regan, Amy; Wang, Y.-M.

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller

  4. Overview of physics basis for ITER

    International Nuclear Information System (INIS)

    Mukhovatov, V; Shimada, M; Chudnovskiy, A N; Costley, A E; Gribov, Y; Federici, G; Kardaun, O; Kukushkin, A S; Polevoi, A; Pustovitov, V D; Shimomura, Y; Sugie, T; Sugihara, M; Vayakis, G

    2003-01-01

    ITER will be the first magnetic confinement device with burning DT plasma and fusion power of about 0.5 GW. Parameters of ITER plasma have been predicted using methodologies summarized in the ITER Physics Basis (1999 Nucl. Fusion 39 2175). During the past few years, new results have been obtained that substantiate confidence in achieving Q>=10 in ITER with inductive H-mode operation. These include achievement of a good H-mode confinement near the Greenwald density at high triangularity of the plasma cross section; improvements in theory-based confinement projections for the core plasma, even though further studies are needed for understanding the transport near the plasma edge; improvement in helium ash removal due to the elastic collisions of He atoms with D/T ions in the divertor predicted by modelling; demonstration of feedback control of neoclassical tearing modes and resultant improvement in the achievable beta values; better understanding of edge localized mode (ELM) physics and development of ELM mitigation techniques; and demonstration of mitigation of plasma disruptions. ITER will have a flexibility to operate also in steady-state and intermediate (hybrid) regimes. The 'advanced tokamak' regimes with weak or negative central magnetic shear and internal transport barriers are considered as potential scenarios for steady-state operation. The paper concentrates on inductively driven plasma performance and discusses requirements for steady-state operation in ITER

  5. MOS voltage automatic tuning circuit

    OpenAIRE

    李, 田茂; 中田, 辰則; 松本, 寛樹

    2004-01-01

    Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...

  6. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  7. Effect of reactive feedback on the transverse mode coupling instability

    International Nuclear Information System (INIS)

    Myers, S.

    1984-08-01

    An important and realistic test to examine the effect of reactive feedback on the transverse mode coupling instability could be performed at PEP using the existing feedback system with some minor modifications. This test would of necessity take place at low energy and low synchrotron tune. Such an experiment is of great importance for the design of the LEP reactive feedback system and for the ultimate evaluation of LEP performance

  8. Ideal and conventional feedback systems for RWM suppression

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2002-01-01

    Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Two feedback systems are compared: 'ideal', creating only the field necessary for RMW suppression, and 'conventional', like that used in the DIII-D tokamak and considered as a candidate for ITER. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that the 'conventional' feedback with radial sensors can be effective only in a limited range, while using the input signal from internal poloidal sensors allows easy fulfilment of the stability criterion. This is a property of the 'conventional' feedback, but the 'ideal' feedback would stabilise RWM in both cases. (author)

  9. Realtime tune measurements in slow-cycling accelerators

    International Nuclear Information System (INIS)

    Herrup, D.

    1997-01-01

    Measurement and control of the tunes, coupling, and chromaticities in storage rings is essential to efficient operation of these accelerators. Yet it has been very difficult to make reliable realtime measurements of these quantities. We have built and commissioned the microprocessor-based Generic Finite State Data Acquisition (GFSDA) system. GFSDA provides turn-by-turn data acquisition and analysis of accelerator signals in a way that can be easily related to accelerator operations. The microprocessor is capable of calculating FFTs and correlations in real time. Both the Fermilab Main Ring and Tevatron use open loop tune, chromaticity, and coupling control, and the GFSDA measurements can easily be used to improve the open loop tables. We can add realtime feedback control with simple extensions of the system. We have used this system to make tune measurements closely spaced in time over an entire Tevatron ramp cycle

  10. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  11. Feedback of slow extraction in CSRm

    International Nuclear Information System (INIS)

    Shi, Jian; Yang, Jian-Cheng; Xia, Jia-Wen; Yuan, You-Jin; Mao, Rui-Shi; Chai, Wei-Ping; Li, Jie; Yin, Da-Yu

    2013-01-01

    The transverse tune of the beam in a synchrotron will fluctuate due to the main quadrupole power supply ripple, which leads the spill ripple through the variation of the separatrices area. To reduce the spill ripple, an additional pair of fast-response quadrupoles (FQ) is adopted to compensate for the tune ripple caused by the main quadrupoles. After using the FQ feedback, the amplitude of the spill ripple with a frequency of less than 800 Hz has been reduced to a tenth of that in the normal mode

  12. Combining experimental observations and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  13. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  14. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne, CH and P. BRUZZONE / CRPP-EPFL, Zürich, CH The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the...

  15. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne and P. BRUZZONE / CRPP-EPFL, Zürich The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the de...

  16. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  17. Evaluating performance of MARTe as a real-time framework for feed-back control system at tokamak device

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon; Lee, Woongryol; Lee, Taegu; Park, Mikyung; Lee, Sangil [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Wallander, Anders [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Kim, Young-Kuk, E-mail: ykim@cnu.ac.kr [Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-10-15

    Highlights: •We measured the performance of MARTe by measuring response time and jitter. •We compared the performance of application with and without MARTe. •We compared the performance of MARTe application on different O/Ss. -- Abstract: The Korea Super conducting Tokamak Advanced Research (KSTAR) is performing the task of “Demonstration and Evaluation of ITER CODAC Technologies at KSTAR” whose objective is the evaluation of real-time technologies for decision making on real-time operating systems (RTOS), real-time frameworks and 10 GbE networks. In this task, the Multi-threaded Application Real-Time executor (MARTe) has been evaluated as a real-time framework for real-time feedback control system. The performance of MARTe has been verified by measuring response time and jitter in a path of feedback control from an analog input of a monitoring system to an analog output of an actuator system. In addition, the evaluation has been performed in terms of applicability of MARTe and its performance depending on types of operating system and tuning of CPU affinity and priority. This paper describes the overview of MARTe as a real-time framework, the results of evaluation performance and its implementation.

  18. Evaluating performance of MARTe as a real-time framework for feed-back control system at tokamak device

    International Nuclear Information System (INIS)

    Yun, Sangwon; Lee, Woongryol; Lee, Taegu; Park, Mikyung; Lee, Sangil; Neto, André C.; Wallander, Anders; Kim, Young-Kuk

    2013-01-01

    Highlights: •We measured the performance of MARTe by measuring response time and jitter. •We compared the performance of application with and without MARTe. •We compared the performance of MARTe application on different O/Ss. -- Abstract: The Korea Super conducting Tokamak Advanced Research (KSTAR) is performing the task of “Demonstration and Evaluation of ITER CODAC Technologies at KSTAR” whose objective is the evaluation of real-time technologies for decision making on real-time operating systems (RTOS), real-time frameworks and 10 GbE networks. In this task, the Multi-threaded Application Real-Time executor (MARTe) has been evaluated as a real-time framework for real-time feedback control system. The performance of MARTe has been verified by measuring response time and jitter in a path of feedback control from an analog input of a monitoring system to an analog output of an actuator system. In addition, the evaluation has been performed in terms of applicability of MARTe and its performance depending on types of operating system and tuning of CPU affinity and priority. This paper describes the overview of MARTe as a real-time framework, the results of evaluation performance and its implementation

  19. Analytic modeling of the feedback stabilization of resistive wall modes

    International Nuclear Information System (INIS)

    Pustovitov, Vladimir D.

    2003-01-01

    Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Optimal choice of the input signal for the feedback, effects related to the geometry of the feedback active coils, RWM suppression in a configuration with ITER-like double wall, are considered here. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that for an ideal feedback system the best input signal would be a combination of radial and poloidal perturbations measured inside the vessel. (author)

  20. Ideal and conventional feedback systems for RWM suppression

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2002-01-01

    Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Two feedback systems are compared: 'ideal', creating only the field necessary for RMW suppression, and 'conventional', like that used in the DIII-D tokamak and considered as a candidate for ITER. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that the 'conventional' feedback with radial sensors can be effective only in a limited range, while using the input signal from internal poloidal sensors allows easy fulfilment of the stability criterion. This is a property of the 'conventional' feedback, but the 'ideal' feedback would stabilise RWM in both cases. (author)

  1. The application of system identification techniques to an R.F. Cavity tuning loop

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1989-09-01

    System identification is the terminology used for the process of characterising a given control system. A mathematical representation of the frequency response characteristic is obtained to utilise all the known design techniques to arrange the feed-back loop to meet required control performance criterion. This is known as parametric system identification. The intention of this paper is to speed up the process of identifying the R.F. Cavity tuning system of the 800 MeV accelerator, ISIS. While achieving this goal the computer must not disturb noticeably the normal function set out by the system. This task of automatic characterisation is necessary so that a self-adapting feed-back loop can be arranged to adjust itself without human interference and meet severe R.F. tuning requirements on ISIS. In any case the results of parametric identifications are useful in designing a robust feed-back loop with appropriate gain and phase margins. The approach using a Pseudo Random Signal is currently practised in Process Industries. (author)

  2. Designing a prototype of the ITER pulse scheduling system

    International Nuclear Information System (INIS)

    Yamamoto, T.; Yonekawa, I.; Ohta, K.; Hosoyama, H.; Hashimoto, Y.; Wallander, A.; Winter, A.; Sugie, T.; Kusama, Y.; Kawano, Y.; Yoshino, R.

    2012-01-01

    Highlights: ► We designed a prototype of the ITER pulse scheduling system. ► Structure of ITER pulse schedules was designed. ► Validation and automatic value assignment functions were adopted. ► A prototype will be implemented in 2011. - Abstract: A prototype of the ITER pulse scheduling system that prepares and manages parameters for ITER plasma operations has been designed. Based on the analyzed requirements on the system, structure of the parameters and necessary functions were determined. Segment and module structures were tuned to the ITER requirements. Three types of validations assure sanity of the parameters. The design limits check and the operation window check verify whether the values of the parameters do not exceed the limits. The consistency check calculates dependency among parameters in accordance with logics described in a scripting language. The ITER pulse scheduling system provides interface with a physics model and simulator. Some abstract physics parameters are converted to engineering parameters with the physics simulation. The results of simulation such as plasma characteristics of specified parameters are also shown to the researchers. The tool to specify the parameters is data-driven. Therefore, it is flexible for changes of number of the parameters. A prototype is being implemented in 2011. Using the prototype, this design will be verified and refined. The evaluation of the prototype will be a basis of the final production of the ITER pulse scheduling system.

  3. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  4. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho, E-mail: whjhe@snu.ac.kr [Department of Physics and Astronomy, Institute of Applied Physics and Centre for THz-Bio Application Systems, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-08-21

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  5. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    International Nuclear Information System (INIS)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho

    2016-01-01

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  6. Performance of the AC perpendicular biased ferrite tuned cavity for the TRIUMF KAON factory booster synchrotron

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enchevich, I.B.; Mitra, A.K.; Fong, K.; Blaker, G.C.; Fang, S.

    1992-11-01

    The rf cavity for the Booster Synchrotron requires a frequency swing from 46 Mhz to 61 Mhz at a repetition rate of 50 Hz and a maximum accelerating voltage of 62.5 kV. These requirements were achieved on the prototype ferrite tuned cavity[1] for a short period of time and without any fast rf feedback or cavity tuning loops. Initially fast rf feedback and cavity tuning loops were closed at fixed frequencies (ferrite tuner dc biased ) to measure some of the response characteristics of the amplifier-cavity chain. Then a major effort was put into measuring the bandwidth response of the tuner in order to design the rf control loops for ac bias operation at 50 Hz. The performance of these control loops and results from long term running of the rf system are reported. (author) 3 refs., 5 figs

  7. Operational status of the transverse multibunch feedback system at Diamond

    International Nuclear Information System (INIS)

    Uzun, I.; Abbott, M.; Heron, M.T.; Morgan, A.F.D.; Rehm, G.

    2012-01-01

    A transverse multibunch feedback (TMBF) system is in operation at Diamond Light Source to damp coupled-bunch instabilities up to 250 MHz in both the vertical and horizontal planes. It comprises an in-house designed and built analogue front end combined with a Libera Bunch-by-Bunch feedback processor and output stripline kickers. FPGA-based feedback electronics is used to implement several diagnostic features in addition to the basic feedback functionality. This paper reports on the current operational status of the TMBF system along with its characteristics. Also discussed are operational diagnostic functionalities including continuous measurement of the betatron tune and chromaticity. (authors)

  8. Stochastic Optimized Relevance Feedback Particle Swarm Optimization for Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2014-01-01

    Full Text Available One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF coupled with support vector machine (SVM has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO. The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.

  9. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings

    Energy Technology Data Exchange (ETDEWEB)

    Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-02

    In this report, the sampled grating distributed feedback laser architecture is modified with digital concatenated gratings to partially compensate for the wavelength dependence of optical gain in a standard high efficiency quantum cascade laser core. This allows equalization of laser threshold over a wide wavelength range and demonstration of wide electrical tuning. With only two control currents, a full tuning range of 500 nm (236 cm{sup −1}) has been demonstrated. Emission is single mode, with a side mode suppression of >20 dB.

  10. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  11. Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction

    Directory of Open Access Journals (Sweden)

    AHMED, K.

    2015-02-01

    Full Text Available V-BLAST detection method suffers large computational complexity due to its successive detection of symbols. In this paper, we propose a modified V-BLAST algorithm to decrease the computational complexity by reducing the number of detection iterations required in MIMO communication systems. We begin by showing the existence of a maximum number of iterations, beyond which, no significant improvement is obtained. We establish a criterion for the number of maximum effective iterations. We propose a modified algorithm that uses the measured SNR to dynamically set the number of iterations to achieve an acceptable bit-error rate. Then, we replace the feedback algorithm with an approximate linear function to reduce the complexity. Simulations show that significant reduction in computational complexity is achieved compared to the ordinary V-BLAST, while maintaining a good BER performance.

  12. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Wu, Huapeng; Wang, Yongbo; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-01-01

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance

  13. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huapeng; Wang, Yongbo, E-mail: yongbo.wang@lut.fi; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-10-15

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

  14. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  15. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  16. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu Yueqiang; Bondeson, A.; Gregoratto, D.; Fransson, C.M.; Gribov, Y.; Paccagnella, R.

    2003-01-01

    Feedback of nonaxisymmetric resistive wall modes (RWM) is studied analytically for cylindrical plasmas and computationally for high beta tokamaks. Internal poloidal sensors give superior performance to radial sensors, and this is explained by the distribution of poles and residues for the transfer functions. A single poloidal array of feedback coils allows robust control with respect to variations in plasma pressure, current and rotation velocity. The control analysis is applied to advanced scenarios for ITER. Studies are also shown of configurations with multiple poloidal coils and of feedback systems for nonresonant MHD instabilities in reversed field pinches. (author)

  17. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  18. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  19. Evaluation of Continuation Desire as an Iterative Game Development Method

    DEFF Research Database (Denmark)

    Schoenau-Fog, Henrik; Birke, Alexander; Reng, Lars

    2012-01-01

    When developing a game it is always valuable to use feedback from players in each iteration, in order to plan the design of the next iteration. However, it can be challenging to devise a simple approach to acquiring information about a player's engagement while playing. In this paper we will thus...... concerning a crowd game which is controlled by smartphones and is intended to be played by audiences in cinemas and at venues with large screens. The case study demonstrates how the approach can be used to help improve the desire to continue when developing a game....

  20. Synchronous Databus Network in ITER: Open source real-time network for the next nuclear fusion experiment

    International Nuclear Information System (INIS)

    Boncagni, L.; Centioli, C.; Iannone, F.; Neri, C.; Panella, M.; Pangione, L.; Riva, M.; Scappaticci, M.; Vitale, V.; Zaccarian, L.

    2008-01-01

    The next nuclear fusion experiment, ITER, is providing the infrastructure for the optimal operation of a burning plasma, requiring feedback control of discharge parameters and on-line evaluation of computationally intensive models running in a cluster of controller nodes. Thus, the synchronization of the available information on the plasma and plant state variables among the controller nodes is a key issue for ITER. The ITER conceptual design aims to perform feedback control on a cluster of distributed controllers connected by a Synchronous Databus Network (SDN). Therefore it is mandatory to achieve a deterministic data exchange among the controller nodes with a refresh rate of at least 1 kHz and a jitter of at least 50 μs. Thus, a conservative estimate of the data flow within the controller network can be 3 kSample/ms. In this paper the open source RTnet project is evaluated to meet the requirements of the SDN of ITER. A testbed involving a cluster of eight nodes connected over a standard ethernet network has been set up to simulate a distributed real-time control system. The main goal of the test is to verify the compliance of the performance with the ITER SDN requirements

  1. Simulating the JET ITER-like Antenna circuit

    International Nuclear Information System (INIS)

    Van Eester, D.; Lerche, E.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Vrancken, M.; Argouarch, A.; Blackman, T.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M.; Wooldridge, E.; Whitehurst, A.; Goulding, R. H.

    2009-01-01

    A set of simulation/interpretation tools based on transmission line theory and on the RF model developed by M. Vrancken has been developed to study the ITER-like Antenna (ILA) at JET. For given tuning element settings, the unique solution of the equations governing the ILA circuit requires solving a system of coupled linear equations relating the voltages and currents at the antenna straps and other key locations. This computation allows cross-checking predicted values against measured experimental ones. Further more, a minimization procedure allows improving the correspondence with the quantities measured in the circuit during shots, thus coping with unavoidable errors arising from uncertainties in the measurements or from inaccuracies in the adopted RF model. Typical applications are e.g. fine-tuning of the second-stage of the ILA circuit for increased ELM-resilience, cross-checking the calibration of the measurements throughout the circuit and predicting the antenna performance and matching conditions in new plasma scenarios.

  2. Comparative Performance of Complex-Valued B-Spline and Polynomial Models Applied to Iterative Frequency-Domain Decision Feedback Equalization of Hammerstein Channels.

    Science.gov (United States)

    Chen, Sheng; Hong, Xia; Khalaf, Emad F; Alsaadi, Fuad E; Harris, Chris J

    2017-12-01

    Complex-valued (CV) B-spline neural network approach offers a highly effective means for identifying and inverting practical Hammerstein systems. Compared with its conventional CV polynomial-based counterpart, a CV B-spline neural network has superior performance in identifying and inverting CV Hammerstein systems, while imposing a similar complexity. This paper reviews the optimality of the CV B-spline neural network approach. Advantages of B-spline neural network approach as compared with the polynomial based modeling approach are extensively discussed, and the effectiveness of the CV neural network-based approach is demonstrated in a real-world application. More specifically, we evaluate the comparative performance of the CV B-spline and polynomial-based approaches for the nonlinear iterative frequency-domain decision feedback equalization (NIFDDFE) of single-carrier Hammerstein channels. Our results confirm the superior performance of the CV B-spline-based NIFDDFE over its CV polynomial-based counterpart.

  3. Joint input shaping and feedforward for point-to-point motion : automated tuning for an industrial nanopositioning system

    NARCIS (Netherlands)

    Boeren, F.A.J.; Bruijnen, D.J.H.; Dijk, van N.J.M.; Oomen, T.A.E.

    2014-01-01

    Feedforward control can effectively compensate for the servo error induced by the reference signal if it is tuned appropriately. This paper aims to introduce a new joint input shaping and feedforward parametrization in iterative feedforward control. Such a parametrization has the potential to

  4. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  5. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on H-mode characteristics and helium retention have also been assembled. (2) Divertors, heat removal and fuelling. A novel concept for heat removal - the radiative, baffled, partially detached divertor - has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except for internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should

  6. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    Science.gov (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in

  7. Efficient receiver tuning using differential evolution strategies

    Science.gov (United States)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  8. Simulation of neoclassical tearing mode stabilization via minimum seeking method on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. H.; Kim, K.; Na, D. H.; Byun, C. S.; Na, Y. S. [Seoul National Univ., Seoul (Korea, Republic of); Kim, M. [FNC Technology Co. Ltd, Yongin (Korea, Republic of)

    2016-10-15

    Neoclassical tearing modes (NTMs) are well known resistive magnetohydrodynamic (MHD) instabilities. These instabilities are sustained by a helically perturbed bootstrap current. NTMs produce magnetic islands in tokamak plasmas that can degrade confinement and lead to plasma disruption. Because of this, the stabilization of NTMs is one of the key issues for tokamaks that achieve high fusion performance such as ITER. Compensating for the lack of bootstrap current by an Electron Cyclotron Current Drive (ECCD) has been proved experimentally as an effective method to stabilize NTMs. In order to stabilize NTMs, it is important to reduce misalignment. So that even ECCD can destabilize the NTMs when misalignment is large. Feedback control method that does not fully require delicate and accurate real-time measurements and calculations, such as equilibrium reconstruction and EC ray-tracing, has also been proposed. One of the feedback control methods is minimum seeking method. This control method minimizes the island width by tuning the misalignment, assuming that the magnetic island width is a function of the misalignment. As a robust and simple method of controlling NTM, minimum 'island width growth rate' seeking control is purposed and compared with performance of minimum ' island width' seeking control. At the integrated numerical system, simulations of the NTM suppression are performed with two types of minimum seeking controllers; one is a FDM based minimum seeking controller and the other is a sinusoidal perturbation based minimum seeking method. The full suppression is achieved both types of controller. The controllers adjust poloidal angle of EC beam and reduce misalignment to zero. The sinusoidal perturbation based minimum seeking control need to modify the adaptive gain.

  9. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    Science.gov (United States)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  10. On optimal feedforward and ILC : the role of feedback for optimal performance and inferential control

    NARCIS (Netherlands)

    van Zundert, J.C.D.; Oomen, T.A.E

    2017-01-01

    The combination of feedback control with inverse model feedforward control or iterative learning control is known to yield high performance. The aim of this paper is to clarify the role of feedback in the design of feedforward controllers, with specific attention to the inferential situation. Recent

  11. Dynamic Performance of the ITER Reactive Power Compensation System

    International Nuclear Information System (INIS)

    Sheng Zhicai; Fu Peng; Xu Liuwei

    2011-01-01

    Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.

  12. Robot trajectory tracking with self-tuning predicted control

    Science.gov (United States)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  13. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    Science.gov (United States)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  14. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  15. Complete the Picture: Evaluation Fills In the Missing Pieces That Feedback Can't Provide

    Science.gov (United States)

    Dumas, Chad; Jenkins, Lee

    2013-01-01

    The workshop is done--How does anyone know that staff learned what they needed to learn? How does anyone know that the content of the workshop day is now common knowledge among the attendees? Two key indicators are feedback and evaluation. Feedback from participants is what the presenter uses to fine-tune his or her professional learning delivery.…

  16. Convergence of SART + OS + TV iterative reconstruction algorithm for optical CT imaging of gel dosimeters

    International Nuclear Information System (INIS)

    Du, Yi; Yu, Gongyi; Xiang, Xincheng; Wang, Xiangang; De Deene, Yves

    2017-01-01

    Computational simulations are used to investigate the convergence of a hybrid iterative algorithm for optical CT reconstruction, i.e. the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization, or SART+OS+TV for short. The influence of parameter selection to reach convergence, spatial dose gradient integrity, MTF and convergent speed are discussed. It’s shown that the results of SART+OS+TV algorithm converge to the true values without significant bias, and MTF and convergent speed are affected by different parameter sets used for iterative calculation. In conclusion, the performance of the SART+OS+TV depends on parameter selection, which also implies that careful parameter tuning work is required and necessary for proper spatial performance and fast convergence. (paper)

  17. Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation against External Postural Perturbations

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control system to restore standing function to a subject with complete, thoracic-level spinal cord injury (SCI). The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (> 89% variance explained) using three-dimensional (3-D) outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living. PMID:22987499

  18. A convergent iterative solution of the quantum double-well potential

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.; Zhao, W.Q.; Cimenser, A.

    2001-01-01

    We present a new convergent iterative solution for the two lowest quantum wave functions ψ ev and ψ od of the Hamiltonian with a quartic double-well potential V in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential V+δV, we construct the Green's function for the modified potential. The true wave functions, ψ ev or ψ od , then satisfy a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of δV, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges for both the energy and the wave function at all x. The effectiveness of this iterative process clearly depends on how good the trial function is, or equivalently, how small the potential difference δV is. Although each iteration brings a correction smaller than the previous one by a factor proportional to the parameter that characterizes the smallness of δV, it is not a power series expansion in the parameter. The exact tunneling information of the modified potential is, of course, contained in the Green's function; by adjusting the kernel of the integral equation via the energy shift at each iteration, we bring enough of this information into the calculation so that each approximate wave function is exponentially tuned. This is the underlying reason why the present method converges, while the usual power series expansion does not

  19. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  20. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  1. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    Science.gov (United States)

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  2. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  3. Extracting the invariant model from the feedback paths of digital hearing aids

    DEFF Research Database (Denmark)

    Ma, Guilin; Gran, Fredrik; Jacobsen, Finn

    2011-01-01

    environments given a specific type of hearing aids. Based on this observation, a feedback path model that consists of an invariant model and a variant model is proposed. A common-acoustical-pole and zero model-based approach and an iterative least-square search-based approach are used to extract the invariant...... model from a set of impulse responses of the feedback paths. A hybrid approach combining the two methods is also proposed. The general properties of the three methods are studied using artificial datasets, and the methods are cross-validated using the measured feedback paths. The results show...

  4. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  5. Automatically tuned adaptive differencing algorithm for 3-D SN implemented in PENTRAN

    International Nuclear Information System (INIS)

    Sjoden, G.; Courau, T.; Manalo, K.; Yi, C.

    2009-01-01

    We present an adaptive algorithm with an automated tuning feature to augment optimum differencing scheme selection for 3-D S N computations in Cartesian geometry. This adaptive differencing scheme has been implemented in the PENTRAN parallel S N code. Individual fixed zeroth spatial transport moment based schemes, including Diamond Zero (DZ), Directional Theta Weighted (DTW), and Exponential Directional Iterative (EDI) 3-D S N methods were evaluated and compared with solutions generated using a code-tuned adaptive algorithm. Model problems considered include a fixed source slab problem (using reflected y- and z-axes) which contained mixed shielding and diffusive regions, and a 17 x 17 PWR assembly eigenvalue test problem; these problems were benchmarked against multigroup MCNP5 Monte Carlo computations. Both problems were effective in highlighting the performance of the adaptive scheme compared to single schemes, and demonstrated that the adaptive tuning handles exceptions to the standard DZ-DTW-EDI adaptive strategy. The tuning feature includes special scheme selection provisions for optically thin cells, and incorporates the ratio of the angular source density relative to the total angular collision density to best select the differencing method. Overall, the adaptive scheme demonstrated the best overall solution accuracy in the test problems. (authors)

  6. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    International Nuclear Information System (INIS)

    C. E. Kessel, D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, T. Casper, M. Cavinato, H. Fujieda, R. Hawryluk, L. D. Horton, A. Kavin, R. Kharyrutdinov, F. Koechl, J. Leuer, A. Loarte, P. J. Lomas, T. Luce, V. Lukash, M. Mattei, I.Nunes, V. Parail, A. Polevoi, A. Portone, R. Sartori, A.C.C. Sips, P. R. Thomas, A. Welander and J. Wesley

    2008-01-01

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation

  7. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning

    Science.gov (United States)

    Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.

    2009-02-01

    Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.

  8. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu, Y.Q.

    2002-01-01

    Active feedback of resistive wall modes is investigated using cylindrical theory and toroidal calculations. For tokamaks, good performance is obtained by using active coils with one set of coils in the poloidal direction and sensors detecting the poloidal field inside the first wall, located at the outboard mid-plane. With suitable width of the feedback coil such a system can give robust control with respect to variations in plasma current, pressure and rotation. Calculations are shown for ITER-like geometry with a double wall. The voltages and currents in the active coils are well within the design limits for ITER. Calculations for RFP's are presented for a finite number of coils both in the poloidal and toroidal directions. With 4 coils in the poloidal and 24 coils in the toroidal direction, all non-resonant modes can be stabilized both at high and low theta. Several types of sensors, including radial and internal poloidal or toroidal sensors, can stabilize the RWM, but poloidal sensors give the most robust performance. (author)

  9. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  10. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  11. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Baar, M.R. de; Boessenkool, H.; Graafland, B.; Haye, M.J.; Koning, J.F.; Vahedi, M.; Visser, M.

    2011-01-01

    Virtual Reality (VR) simulation can be used to study, improve and verify ITER maintenance operations during preparation. VR can also improve the situational awareness of human operators during actual Remote Handling (RH) operations. Until now, VR systems use geometric models of the environment and the objects being handled and kinematic models of the manipulation systems. The addition of dynamic effects into the VR simulation was investigated. Important dynamic effects are forces due to contact transitions and the bending of beams under heavy loads. A novel dynamics simulation module was developed and introduced as an add-on to the VR4Robots VR software. Tests were performed under simplified test conditions and in the context of realistic ITER maintenance tasks on a benchmark product and on the ECRH Upper Port Launcher Plug (UPL). The introduction of dynamic effects into VR simulations was found to add realism and provide new insights in procedure development. The quality of the haptic feedback depends strongly on the haptic device used to 'display' haptic feedback to the operator. Dynamic effect simulation can also form the basis for real-time guidance support to operators during the execution of maintenance tasks (augmented reality).

  12. Beyond individualism: professional culture and its influence on feedback.

    Science.gov (United States)

    Watling, Christopher; Driessen, Erik; van der Vleuten, Cees P M; Vanstone, Meredith; Lingard, Lorelei

    2013-06-01

    Although feedback is widely considered essential to learning, its actual influence on learners is variable. Research on responsivity to feedback has tended to focus on individual rather than social or cultural influences on learning. In this study, we explored how feedback is handled within different professional cultures, and how the characteristics and values of a profession shape learners' responses to feedback. Using a constructivist grounded theory approach, we conducted 12 focus groups and nine individual interviews (with a total of 50 participants) across three cultures of professional training in, respectively, music, teacher training and medicine. Constant comparative analysis for recurring themes was conducted iteratively. Each of the three professional cultures created a distinct context for learning that influenced how feedback was handled. Despite these contextual differences, credibility and constructiveness emerged as critical constants, identified by learners across cultures as essential for feedback to be perceived as meaningful. However, the definitions of credibility and constructiveness were distinct to each professional culture and the cultures varied considerably in how effectively they supported the occurrence of feedback with these critical characteristics. Professions define credibility and constructiveness in culturally specific ways and create contexts for learning that may either facilitate or constrain the provision of meaningful feedback. Comparison with other professional cultures may offer strategies for creating a productive feedback culture within medical education. © 2013 John Wiley & Sons Ltd.

  13. Magnetic Configuration Control of ITER Plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Artaserse, G.; Mattei, M.; Ambrosino, G.; Crisanti, F.; Tommasi, G. de; Fresa, R.; Portone, A.; Sartori, F.; Villone, F.

    2006-01-01

    The aim of this paper is to review the capability of the ITER Poloidal Field (PF) system of controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. The paper is broadly divided in two main sections devoted, respectively, to open loop (feed-forward) and closed loop (feedback) control. In the first part of the study the PF system is assessed with respect to the initiation, ramp-up, sustained burn, ramp-down phases of the main plasma inductive scenario. The limiter-to-divertor configuration transition phase is considered in detail with the aim of assessing the PF capability to form an X-point at the lowest possible current and, therefore, to relax the thermal load on the limiter surfaces. Moreover, during the sustained burn it is important to control plasmas with a broad range of current density profiles. In the second part of the study the plasma vertical feedback control requirements are assessed in details, in particular for the high elongation configurations achievable during the early limiter-to-X point transition phase. Non-rigid plasma displacement models are used to assess the control system voltage and current requirements of different radial field control circuits obtained, for example, by connecting the outermost PF coils, some CS coils, coils sub-sections etc. At last, the main 3D effects of the vessel ports are modeled and their impact of vertical stabilization evaluated. (author)

  14. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    International Nuclear Information System (INIS)

    Farias, G.; Dormido-Canto, S.; Vega, J.; Santos, M.; Pastor, I.; Fingerhuth, S.; Ascencio, J.

    2014-01-01

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process

  15. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  16. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  17. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  18. Vertical displacement events: a serious concern in future ITER operation

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.; Ulrickson, M.

    2007-01-01

    The strongly elongated plasma configuration in ITER-like devices is vertically unstable unless an active control feedback at the vertical position is applied. A malfunction of this feedback system for variety of reasons can lead to a rapid plasma vertical displacement at full plasma current. As the plasma contacts the top or bottom of the vacuum vessel, the current is rapidly forced to zero, similar to the behavior of the plasma after the thermal quench of a disruption. This phenomenon constitutes the vertical displacement events (VDE). This can result in melting and vaporization of the plasma-facing component (PFC) as well as melting of the copper substrate and burnout of the coolant channels. The upgraded HEIGHTS simulation package is used to simulate in full 3D the response of an entire ITER module response to a VDE. The initial temperature distribution of the PFC and the bulk substrate prior to the VDE is calculated according to steady state heat flux, module design, and initial coolant temperature. The models used in the upgraded HEIGHTS were recently benchmarked against VDE simulation experiments using powerful electron beam and show an excellent agreement with the data.The surface temperature can then be very high and could result in significant melting of substrate copper and damage the coolant channels. In the case of Be surface, surface vaporization is quite high and will remove most incoming plasma power at typical ITER VDE condition. Therefore, the transmitted heat flux to the substrate and the coolant channels are low enough to cause any significant damage. However, if tungsten is exposed to the VDE the situation is quite different. No significant surface vaporization will occur at the tungsten surface thus, leaving the majority of the incident plasma power to be conducted to the copper substrate causing melting at the interface and burnout of coolant channel with serious implications on the integrity and subsequent performance of this module. The

  19. Learning receptive fields using predictive feedback.

    Science.gov (United States)

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  20. Disk Density Tuning of a Maximal Random Packing.

    Science.gov (United States)

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  1. Hearing aid fine-tuning based on Dutch descriptions.

    Science.gov (United States)

    Thielemans, Thijs; Pans, Donné; Chenault, Michelene; Anteunis, Lucien

    2017-07-01

    The aim of this study was to derive an independent fitting assistant based on expert consensus. Two questions were asked: (1) what (Dutch) terms do hearing impaired listeners use nowadays to describe their specific hearing aid fitting problems? (2) What is the expert consensus on how to resolve these complaints by adjusting hearing aid parameters? Hearing aid dispensers provided descriptors that impaired listeners use to describe their reactions to specific hearing aid fitting problems. Hearing aid fitting experts were asked "How would you adjust the hearing aid if its user reports that the aid sounds…?" with the blank filled with each of the 40 most frequently mentioned descriptors. 112 hearing aid dispensers and 15 hearing aid experts. The expert solution with the highest weight value was considered the best solution for that descriptor. Principal component analysis (PCA) was performed to identify a factor structure in fitting problems. Nine fitting problems could be identified resulting in an expert-based, hearing aid manufacturer independent, fine-tuning fitting assistant for clinical use. The construction of an expert-based, hearing aid manufacturer independent, fine-tuning fitting assistant to be used as an additional tool in the iterative fitting process is feasible.

  2. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.

    Science.gov (United States)

    Kim, Kwangyoon; Park, Jun-Young; Kim, K B; Lee, Naesung; Seo, Yongho

    2014-01-01

    A quartz tuning fork was used instead of cantilever as a force sensor for the atomic force microscope. A tungsten tip was made by electrochemical etching from a wire of 50 µm diameter. In order to have mechanical stability of the tuning fork, it was attached on an alumina plate. The tungsten tip was attached on the inside end of a prong of a tuning fork. The phase shift was used as a feedback signal to control the distance between the tip and sample, and the amplitude was kept constant using a lock-in amplifier and a homemade automatic gain controller. Due to the mechanical stability, the sensor shows a high quality factor (∼10(3)), and the image quality obtained with this sensor was equivalent to that of the cantilever-based AFM. © 2014 Wiley Periodicals, Inc.

  3. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback...

  4. Tuning of the PYTHIA 6.4 Multiple Parton Interaction model to Minimum Bias and Underlying Event data

    CERN Document Server

    Firdoua, Nameequa

    QCD has been quite successful in describing hadronic interactions at large transfer momenta, also known as hard interactions. However high energy pp and p p collisions are dominated by soft partonic collisions. Di erent phenomenological models are implemented in several Monte Carlo (MC) event generators such as PYTHIA, PHOJET and HERWIG etc., which attempt to simulate these interactions. These MC event generators have free parameters which need to be tuned to improve the agreement with the data. In this thesis the MC event generator PYTHIA6.424 is considered and the optimization of its model parameters have been presented. This work mainly focuses on tuning of multiple parton interaction parameters to Minimum Bias and Underlying event published data from ATLAS at 0.9 and 7TeV and from CDF II at 1.96 TeV. The method employed to tune the parameters is based on a linear and iterative approach and allows the simultaneous variation of many parameters. Six parameters are tuned, which are found to be...

  5. Fusion strategies for selecting multiple tuning parameters for multivariate calibration and other penalty based processes: A model updating application for pharmaceutical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tencate, Alister J. [Department of Chemistry, Idaho State University, Pocatello, ID 83209 (United States); Kalivas, John H., E-mail: kalijohn@isu.edu [Department of Chemistry, Idaho State University, Pocatello, ID 83209 (United States); White, Alexander J. [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, Terre Huate, IN 47803 (United States)

    2016-05-19

    New multivariate calibration methods and other processes are being developed that require selection of multiple tuning parameter (penalty) values to form the final model. With one or more tuning parameters, using only one measure of model quality to select final tuning parameter values is not sufficient. Optimization of several model quality measures is challenging. Thus, three fusion ranking methods are investigated for simultaneous assessment of multiple measures of model quality for selecting tuning parameter values. One is a supervised learning fusion rule named sum of ranking differences (SRD). The other two are non-supervised learning processes based on the sum and median operations. The effect of the number of models evaluated on the three fusion rules are also evaluated using three procedures. One procedure uses all models from all possible combinations of the tuning parameters. To reduce the number of models evaluated, an iterative process (only applicable to SRD) is applied and thresholding a model quality measure before applying the fusion rules is also used. A near infrared pharmaceutical data set requiring model updating is used to evaluate the three fusion rules. In this case, calibration of the primary conditions is for the active pharmaceutical ingredient (API) of tablets produced in a laboratory. The secondary conditions for calibration updating is for tablets produced in the full batch setting. Two model updating processes requiring selection of two unique tuning parameter values are studied. One is based on Tikhonov regularization (TR) and the other is a variation of partial least squares (PLS). The three fusion methods are shown to provide equivalent and acceptable results allowing automatic selection of the tuning parameter values. Best tuning parameter values are selected when model quality measures used with the fusion rules are for the small secondary sample set used to form the updated models. In this model updating situation, evaluation of

  6. Fusion strategies for selecting multiple tuning parameters for multivariate calibration and other penalty based processes: A model updating application for pharmaceutical analysis

    International Nuclear Information System (INIS)

    Tencate, Alister J.; Kalivas, John H.; White, Alexander J.

    2016-01-01

    New multivariate calibration methods and other processes are being developed that require selection of multiple tuning parameter (penalty) values to form the final model. With one or more tuning parameters, using only one measure of model quality to select final tuning parameter values is not sufficient. Optimization of several model quality measures is challenging. Thus, three fusion ranking methods are investigated for simultaneous assessment of multiple measures of model quality for selecting tuning parameter values. One is a supervised learning fusion rule named sum of ranking differences (SRD). The other two are non-supervised learning processes based on the sum and median operations. The effect of the number of models evaluated on the three fusion rules are also evaluated using three procedures. One procedure uses all models from all possible combinations of the tuning parameters. To reduce the number of models evaluated, an iterative process (only applicable to SRD) is applied and thresholding a model quality measure before applying the fusion rules is also used. A near infrared pharmaceutical data set requiring model updating is used to evaluate the three fusion rules. In this case, calibration of the primary conditions is for the active pharmaceutical ingredient (API) of tablets produced in a laboratory. The secondary conditions for calibration updating is for tablets produced in the full batch setting. Two model updating processes requiring selection of two unique tuning parameter values are studied. One is based on Tikhonov regularization (TR) and the other is a variation of partial least squares (PLS). The three fusion methods are shown to provide equivalent and acceptable results allowing automatic selection of the tuning parameter values. Best tuning parameter values are selected when model quality measures used with the fusion rules are for the small secondary sample set used to form the updated models. In this model updating situation, evaluation of

  7. A modular positive feedback-based gene amplifier

    Directory of Open Access Journals (Sweden)

    Bhalerao Kaustubh D

    2010-02-01

    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  8. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  9. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  10. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  11. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost

    2012-01-01

    a particular skeleton ad-hoc for repeated execution turns out to be considerably complicated, and raises general questions about introducing state into a stateless parallel computation. In addition, one would strongly prefer an approach which leaves the original skeleton intact, and only uses it as a building...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...

  12. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    Science.gov (United States)

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  13. An active feedback system to control synchrotron oscillations in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Corredoura, P.L.; Pellegrin, J.L.; Schwarz, H.D.; Sheppard, J.C.

    1989-03-01

    Initially the SLC Damping Rings accomplished Robinson instability damping by operating the RF accelerating cavities slightly detuned. In order to be able to run the cavities tuned and achieve damping for Robinson instability and synchrotron oscillations at injection an active feedback system has been developed. This paper describes the theoretical basis for the feedback system and the development of the hardware. Extensive measurements of the loop response including stored beam were performed. Overall performance of the system is also reported. 3 refs., 6 figs

  14. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  15. Feedback-Driven Dynamic Invariant Discovery

    Science.gov (United States)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  16. Halo current and resistive wall simulations of ITER

    International Nuclear Information System (INIS)

    Strauss, H.R.; Zheng Linjin; Kotschenreuther, M.; Park, W.; Jardin, S.; Breslau, J.; Pletzer, A.; Paccagnella, R.; Sugiyama, L.; Chu, M.; Chance, M.; Turnbull, A.

    2005-01-01

    A number of ITER relevant problems in resistive MHD concern the effects of a resistive wall: vertical displacement events (VDE), halo currents caused by disruptions, and resistive wall modes. Simulations of these events have been carried out using the M3D code. We have verified the growth rate scaling of VDEs, which is proportional to the wall resistivity. Simulations have been done of disruptions caused by large inversion radius internal kink modes, as well as by nonlinear growth of resistive wall modes. Halo current flowing during the disruption has asymmetries with toroidal peaking factor up to about 3. VDEs have larger growth rates during disruption simulations, which may account for the loss of vertical feedback control during disruptions in experiments. Further simulations have been made of disruptions caused by resistive wall modes in ITER equilibria. For these modes the toroidal peaking factor is close to 1. Resistive wall modes in ITER and reactors have also been investigated utilizing the newly developed AEGIS (Adaptive EiGenfunction Independent Solution) linear full MHD code, for realistically shaped, fully toroidal equilibria. The AEGIS code uses an adaptive mesh in the radial direction which allows thin inertial layers to be accurately resolved, such as those responsible for the stabilization of resistive wall modes (RWM) by plasma rotation. Stabilization of resistive wall modes by rotation and wall thickness effects are examined. (author)

  17. Guidelines : the do's, don'ts and don't knows of feedback for clinical education

    NARCIS (Netherlands)

    Lefroy, Janet; Watling, Chris; Teunissen, Pim W; Brand, Paul

    2015-01-01

    INTRODUCTION: The guidelines offered in this paper aim to amalgamate the literature on formative feedback into practical Do's, Don'ts and Don't Knows for individual clinical supervisors and for the institutions that support clinical learning. METHODS: The authors built consensus by an iterative

  18. ITER-FEAT - outline design report. Report by the ITER Director. ITER meeting, Tokyo, January 2000

    International Nuclear Information System (INIS)

    2001-01-01

    It is now possible to define the key elements of ITER-FEAT. This report provides the results, to date, of the joint work of the Special Working Group in the form of an Outline Design Report on the ITER-FEAT design which, subject to the views of ITER Council and of the Parties, will be the focus of further detailed design work and analysis in order to provide to the Parties a complete and fully integrated engineering design within the framework of the ITER EDA extension

  19. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  20. Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback

    Directory of Open Access Journals (Sweden)

    Arkadiy Lyakh

    2016-04-01

    Full Text Available The recent demonstration of external cavity quantum cascade lasers with optical feedback, controlled by an acousto-optic modulator, paves the way to ruggedized infrared laser systems with the capability of tuning the emission wavelength on a microsecond scale. Such systems are of great importance for various critical applications requiring ultra-rapid wavelength tuning, including combustion and explosion diagnostics and standoff detection. In this paper, recent research results on these devices are summarized and the advantages of the new configuration are analyzed in the context of practical applications.

  1. Task-dependent vestibular feedback responses in reaching.

    Science.gov (United States)

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  2. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in

  3. Application of IFT and SPSA to servo system control.

    Science.gov (United States)

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  4. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    Science.gov (United States)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  5. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    Science.gov (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  6. Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork

    International Nuclear Information System (INIS)

    Kim, Song Hul; Yoo, Hyun Jun; Yoo, Hyung Geun; Lee, Kie Jin

    2004-01-01

    We demonstrate a scanning near-field microwave microscope (NSMM) in the liquid environment using a tuning fork shear-force feedback method to control the distance between tip and sample. The probe tip for the NSMM is only immersed in water and attached to one prong of a quartz tuning fork and directly coupled to a high-quality dielectric resonator at an operating frequency f = 4.5-5.5 GHz. This distance control method is independent of the local microwave characteristics. The amplitude of the tuning fork was used as a set point of the distance control parameter in the liquid. To demonstrate the ability of the distance regulation system, we present the NSMM images of a copper film in air and liquid without and with readjusting the distance set point and a DNA film image in buffer solution.

  7. An Iteration Scheme for Contraction Mappings with an Application to Synchronization of Discrete Logistic Maps

    Directory of Open Access Journals (Sweden)

    Ke Ding

    2017-01-01

    Full Text Available This paper deals with designing a new iteration scheme associated with a given scheme for contraction mappings. This new scheme has a similar structure to that of the given scheme, in which those two iterative schemes converge to the same fixed point of the given contraction mapping. The positive influence of feedback parameters on the convergence rate of this new scheme is investigated. Moreover, the derived convergence and comparison results can be extended to nonexpansive mappings. As an application, the derived results are utilized to study the synchronization of logistic maps. Two illustrated examples are used to reveal the effectiveness of our results.

  8. Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback

    Directory of Open Access Journals (Sweden)

    Shao-Fang Wen

    2018-01-01

    Full Text Available The heteroclinic bifurcation and chaos of a Duffing oscillator with forcing excitation under both delayed displacement feedback and delayed velocity feedback are studied by Melnikov method. The Melnikov function is analytically established to detect the necessary conditions for generating chaos. Through the analysis of the analytical necessary conditions, we find that the influences of the delayed displacement feedback and delayed velocity feedback are separable. Then the influences of the displacement and velocity feedback parameters on heteroclinic bifurcation and threshold value of chaotic motion are investigated individually. In order to verify the correctness of the analytical conditions, the Duffing oscillator is also investigated by numerical iterative method. The bifurcation curves and the largest Lyapunov exponents are provided and compared. From the analysis of the numerical simulation results, it could be found that two types of period-doubling bifurcations occur in the Duffing oscillator, so that there are two paths leading to the chaos in this oscillator. The typical dynamical responses, including time histories, phase portraits, and Poincare maps, are all carried out to verify the conclusions. The results reveal some new phenomena, which is useful to design or control this kind of system.

  9. Impedance modulation and feedback corrections in tracking targets of variable size and frequency

    NARCIS (Netherlands)

    Selen, L.P.J.; van Dieen, J.H.; Beek, P.J.

    2006-01-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In

  10. ITER council proceedings: 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Continuing the ITER EDA, two further ITER Council Meetings were held since the publication of ITER EDA documentation series no, 20, namely the ITER Council Meeting on 27-28 February 2001 in Toronto, and the ITER Council Meeting on 18-19 July in Vienna. That Meeting was the last one during the ITER EDA. This volume contains records of these Meetings, including: Records of decisions; List of attendees; ITER EDA status report; ITER EDA technical activities report; MAC report and advice; Final report of ITER EDA; and Press release

  11. Active vibration control of clamped beams using positive position feedback controllers with moment pair

    International Nuclear Information System (INIS)

    Shin, Chang Joo; Jeong, Weui Bong; Hong, Chin Suk

    2012-01-01

    This paper investigates the active vibration control of clamp beams using positive position feedback (PPF) controllers with a sensor/ moment pair actuator. The sensor/moment pair actuator which is the non-collocated configuration leads to instability of the control system when using the direct velocity feedback (DVFB) control. To alleviate the instability problem, a PPF controller is considered in this paper. A parametric study of the control system with PPF controller is first conducted to characterize the effects of the design parameters (gain and damping ratio in this paper) on the stability and performance. The gain of the controller is found to affect only the relative stability. Increasing the damping ratio of the controller slightly improves the stability condition while the performance gets worse. In addition, the higher mode tuned PPF controller affects the system response at the lower modes significantly. Based on the characteristics of PPF controllers, a multi-mode controllable SISO PPF controller is then considered and tuned to different modes (in this case, three lowest modes) numerically and experimentally. The multi-mode PPF controller can be achieved to have a high gain margin. Moreover, it reduces the vibration of the beam significantly. The vibration levels at the tuned modes are reduced by about 11 dB

  12. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  13. Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems

    NARCIS (Netherlands)

    Vromen, T.G.M.; Dai, C.H.; van de Wouw, N.; Oomen, T.A.E.; Astrid, P.; Nijmeijer, H.

    2015-01-01

    The aim of this paper is to design a robust output-feedback controller to eliminate torsional stick-slip vibrations. A multi-modal model of the torsional dynamics with a nonlinear bit-rock interaction model is used. The controller design is based on skewed-μ DK-iteration and the stability of the

  14. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  15. A New Global Mascon Solution Tuned for High-Latitude Ice Studies

    Science.gov (United States)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D> McCarthy, J. J.; Loomis, B.

    2011-01-01

    A new global mascon solution has been developed with I-arc-degree spatial and IO-day temporal sampling. The global mas cons are estimated from the reduction of nearly 8 years of GRACE K-band range-rate data. Temporal and anisotropic spatial constraints have been applied for land, ocean and ice regions. The solution construction and tuning is focused towards the Greenland and Antarctic ice sheets (GIS and AIS) as well as the Gulf of Alaska mountain glaciers (GoA). Details of the solution development will be discussed, including the mascon parameter definitions, constraints, and the tuning of the constraint damping factor. Results will be presented, exploring the spatial and temporal variability of the ice sheets and GoA regions. A detailed error analysis will be discussed, including solution dependence on iteration, damping factor, forward modeling, and multitechnique comparisons. We also investigate the fundamental resolution of the solution and the spatial correlation of ice sheet inter-annual change. Finally, we discuss future improvements, including specific constraint application for the rest of the major land ice regions and improvements in solution regularization.

  16. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  17. Iterative near-term ecological forecasting: Needs, opportunities, and challenges

    Science.gov (United States)

    Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.

    2018-01-01

    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  18. Iterative near-term ecological forecasting: Needs, opportunities, and challenges.

    Science.gov (United States)

    Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P

    2018-02-13

    Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  19. Final report of the ITER EDA. Final report of the ITER Engineering Design Activities. Prepared by the ITER Council

    International Nuclear Information System (INIS)

    2001-01-01

    This is the Final Report by the ITER Council on work carried out by ITER participating countries on cooperation in the Engineering Design Activities (EDA) for the ITER. In this report the main ITER EDA technical objectives, the scope of ITER EDA, its organization and resources, engineering design of ITER tokamak and its main parameters are presented. This Report also includes safety and environmental assessments, site requirements and proposed schedule and estimates of manpower and cost as well as proposals on approaches to joint implementation of the project

  20. Study of an accelerating superconducting module and its feedback loop systems for the MYRRHA project

    International Nuclear Information System (INIS)

    Bouly, F.

    2011-11-01

    The MYRRHA ( Multi-purpose hybrid Research Reactor for High-tech Applications ) project aims at constructing an accelerator driven system (ADS) demonstrator (50 a 100 MWth) to explore the feasibility of nuclear waste transmutation. Such a subcritical reactor requires an extremely reliable accelerator which delivers a CW high power protons beam (600 MeV, 4 mA). The reference solution for this machine is a superconducting linear accelerator. This thesis presents the work - undertaken at IPN Orsay in October 2008 - on the study of a prototypical superconducting module and the feedback control systems of its cavity for the high energy part of the MYRRHA linac. First, the optimization and the design of 5-cell elliptical cavities (β=0,65), operating at 704.4 MHz, are presented. Then, the experimental work focuses on a reliability oriented study of the 'cryo-module' which hold a prototypical 5-cell cavity (β=0,47). In this study, the dynamic behavior of the fast tuning system of the cavity was measured and qualified. The 'field flatness' issue in 'low beta' multi-cell cavity was also brought to light. Finally, a fault-tolerance analysis of the linac was carried out. Toward this goal, a model of the cavity, its RF feedback loop system and its tuning system feedback loop was developed. This study enabled to determine the RF power needs, the tuning system requirements and as well as to demonstrate the feasibility of fast fault-recovery scenarios to minimize the number of beam interruptions in the MYRRHA linac. (author)

  1. Baseline Architecture of ITER Control System

    Science.gov (United States)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  2. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop

  3. iterClust: a statistical framework for iterative clustering analysis.

    Science.gov (United States)

    Ding, Hongxu; Wang, Wanxin; Califano, Andrea

    2018-03-22

    In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced differences between A and B may mask subtle differences between B1 and B2. Here we present iterClust, an iterative clustering framework, which can separate more pronounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences (e.g. B1 and B2), providing a comprehensive clustering trajectory. iterClust is implemented as a Bioconductor R package. andrea.califano@columbia.edu, hd2326@columbia.edu. Supplementary information is available at Bioinformatics online.

  4. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  5. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    Science.gov (United States)

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A pseudo differential Gm—C complex filter with frequency tuning for IEEE802.15.4 applications

    Science.gov (United States)

    Xin, Cheng; Lungui, Zhong; Haigang, Yang; Fei, Liu; Tongqiang, Gao

    2011-07-01

    This paper presents a CMOS Gm—C complex filter for a low-IF receiver of the IEEE 802.15.4 standard. A pseudo differential OTA with reconfigurable common mode feedback and common mode feed-forward is proposed as well as the frequency tuning method based on a relaxation oscillator. A detailed analysis of non-ideality of the OTA and the frequency tuning method is elaborated. The analysis and measurement results have shown that the center frequency of the complex filter could be tuned accurately. The chip was fabricated in a standard 0.35 μm CMOS process, with a single 3.3 V power supply. The filter consumes 2.1mA current, has a measured in-band group delay ripple of less than 0.16 μs and an IRR larger than 28 dB at 2 MHz apart, which could meet the requirements oftheIEEE802.15.4 standard.

  7. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  8. Commissioning experience from PEP-II HER longitudinal feedback

    International Nuclear Information System (INIS)

    Prabhakar, S.; Teytelman, D.; Fox, J.; Young, A.; Corredoura, P.; Tighe, R.

    1998-06-01

    The DSP-based bunch-by-bunch feedback system installed in the PEP-II HER has been used to damp HOM-induced instabilities at beam currents up to 6-5 mA during commissioning. Beam pseudospectra calcualted from feedback system data indicate the presence of coupled bunch modes that oincide with the 0-M-2 cavity HOM. Bunch current and synchronous phase measurements are also extracted from the data. These measurements reveal the impedance seen by the beam at revolution harmonics. The impedance peak at 3*frev indicates incorrect parking of the idle cavities, and explains the observed instability of mode 3. Bunch synchrotron tunes are calculated from lorentzian fits to the data. Bunch-to-bunch time variation due to the cavity transient is shown to be large enough to result in Landau damping of coupled bunch modes

  9. DWARF, 1-D Few-Group Neutron Diffusion with Thermal Feedback for Burnup and Xe Oscillation

    International Nuclear Information System (INIS)

    Anderson, E.C.; Putnam, G.E.

    1975-01-01

    1 - Description of problem or function: DWARF allows one-dimensional simulation of reactor burnup and xenon oscillation problems in slab, cylindrical, or spherical geometry using a few-group diffusion theory model. 2 - Method of solution: The few-group, neutron diffusion theory equations are reduced to a system of finite-difference equations that are solved for each group by the Gauss method at each time point. Fission neutron source iteration can be accelerated with Chebyshev extrapolation. A thermal feedback iterative loop is used to obtain consistent solutions for the distributions of reactor power, neutron flux, and fuel and coolant properties with the neutron group constants functions of the latter. Solutions for the new nuclide concentrations of a time-point are made with the flux assumed constant in the time interval. 3 - Restrictions on the complexity of the problem - Maxima of: 4 groups; 40 regions; 50 macroscopic materials (Only 10 are functions of the feedback variables); 50 nuclides per region; 250 mesh points

  10. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  11. ITER council proceedings: 2000

    International Nuclear Information System (INIS)

    2001-01-01

    No ITER Council Meetings were held during 2000. However, two ITER EDA Meetings were held, one in Tokyo, January 19-20, and one in Moscow, June 29-30. The parties participating in these meetings were those that partake in the extended ITER EDA, namely the EU, the Russian Federation, and Japan. This document contains, a/o, the records of these meetings, the list of attendees, the agenda, the ITER EDA Status Reports issued during these meetings, the TAC (Technical Advisory Committee) reports and recommendations, the MAC Reports and Advice (also for the July 1999 Meeting), the ITER-FEAT Outline Design Report, the TAC Reports and Recommendations both meetings), Site requirements and Site Design Assumptions, the Tentative Sequence of technical Activities 2000-2001, Report of the ITER SWG-P2 on Joint Implementation of ITER, EU/ITER Canada Proposal for New ITER Identification

  12. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    Science.gov (United States)

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of ITER upper port plug remote handling maintenance scenarios

    International Nuclear Information System (INIS)

    Koning, J.F.; Baar, M.R. de; Elzendoorn, B.S.Q.; Heemskerk, C.J.M.; Ronden, D.M.S.; Schuth, W.J.

    2012-01-01

    Highlights: ► Remote Handling Study Centre: providing RH compatibility analysis. ► Simulation: virtual reality including kinematics and realtime physics simulator. ► Applied on analysis of RH compatibility of Upper Launcher component replacement. ► Resulting in lowered maintenance procedure time and lessons learned. - Abstract: The ITER tokamak has a modular design, with port plugs, blanket modules and divertor cassettes. This set-up allows for maintenance of diagnostics, heating systems and first wall elements. The maintenance can be done in situ, or in the Hot Cell. Safe and effective remote handling (RH) will be ensured by the RH requirements and standards. Compliance is verified through remote handling compatibility assessments at the ITER Design Review milestones. The Remote Handling Study Centre at FOM Institute DIFFER is created to study ITER RH maintenance processes at different levels of complexity, from relatively simple situational awareness checks using snap-shots in the CAD system, time studies using virtual reality (VR) animations, to extensive operational sequence validation with multiple operators in real-time. The multi-operator facility mimics an RH work-cell as presently foreseen in the ITER RH control room. Novel VR technology is used to create a realistic setting in which a team of RH operators can interact with virtual ITER environments. A physics engine is used to emulate real-time contact interaction as to provide realistic haptic feed-back. Complex interactions between the RH operators and the control room system software are tested. RH task performance is quantified and operational resource usage estimated. The article provides a description and lessons learned from a recent study on replacement of the Steering Mirror Assembly on the ECRH (Electron Cyclotron Resonance Heating) Upper Launcher port plug.

  14. Analysis of ITER upper port plug remote handling maintenance scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J.F., E-mail: j.f.koning@heemskerk-innovative.nl [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Baar, M.R. de; Elzendoorn, B.S.Q. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Ronden, D.M.S.; Schuth, W.J. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Remote Handling Study Centre: providing RH compatibility analysis. Black-Right-Pointing-Pointer Simulation: virtual reality including kinematics and realtime physics simulator. Black-Right-Pointing-Pointer Applied on analysis of RH compatibility of Upper Launcher component replacement. Black-Right-Pointing-Pointer Resulting in lowered maintenance procedure time and lessons learned. - Abstract: The ITER tokamak has a modular design, with port plugs, blanket modules and divertor cassettes. This set-up allows for maintenance of diagnostics, heating systems and first wall elements. The maintenance can be done in situ, or in the Hot Cell. Safe and effective remote handling (RH) will be ensured by the RH requirements and standards. Compliance is verified through remote handling compatibility assessments at the ITER Design Review milestones. The Remote Handling Study Centre at FOM Institute DIFFER is created to study ITER RH maintenance processes at different levels of complexity, from relatively simple situational awareness checks using snap-shots in the CAD system, time studies using virtual reality (VR) animations, to extensive operational sequence validation with multiple operators in real-time. The multi-operator facility mimics an RH work-cell as presently foreseen in the ITER RH control room. Novel VR technology is used to create a realistic setting in which a team of RH operators can interact with virtual ITER environments. A physics engine is used to emulate real-time contact interaction as to provide realistic haptic feed-back. Complex interactions between the RH operators and the control room system software are tested. RH task performance is quantified and operational resource usage estimated. The article provides a description and lessons learned from a recent study on replacement of the Steering Mirror Assembly on the ECRH (Electron Cyclotron Resonance Heating) Upper Launcher port plug.

  15. Perl Modules for Constructing Iterators

    Science.gov (United States)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  16. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  17. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  18. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  19. ITER overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.R.

    2001-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  20. ITER Overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.

    1999-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  1. Instruction, Feedback and Biometrics: The User Interface for Fingerprint Authentication Systems

    Science.gov (United States)

    Riley, Chris; Johnson, Graham; McCracken, Heather; Al-Saffar, Ahmed

    Biometric authentication is the process of establishing an individual’s identity through measurable characteristics of their behaviour, anatomy or physiology. Biometric technologies, such as fingerprint systems, are increasingly being used in a diverse range of contexts from immigration control, to banking and personal computing. As is often the case with emerging technologies, the usability aspects of system design have received less attention than technical aspects. Fingerprint systems pose a number of challenges for users and past research has identified issues with correct finger placement, system feedback and instruction. This paper describes the development of an interface for fingerprint systems using an iterative, participative design approach. During this process, several different methods for the presentation of instruction and feedback were identified. The different types of instruction and feedback were tested in a study involving 82 participants. The results showed that feedback had a statistically significant effect on overall system performance, but instruction did not. The design recommendations emerging from this study, and the use of participatory design in this context, are discussed.

  2. ITER Council proceedings: 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ''ITER EDA Agreement and Protocol 2'' (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tasks; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings

  3. ITER council proceedings: 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ``ITER EDA Agreement and Protocol 2`` (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tastes; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings.

  4. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  5. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  6. Evaluation of high-performance network technologies for ITER

    International Nuclear Information System (INIS)

    Zagar, K.; Hunt, S.; Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J.

    2010-01-01

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  7. A pseudo differential Gm-C complex filter with frequency tuning for IEEE802.15.4 applications

    International Nuclear Information System (INIS)

    Cheng Xin; Yang Haigang; Liu Fei; Gao Tongqiang; Zhong Lungui

    2011-01-01

    This paper presents a CMOS G m -C complex filter for a low-IF receiver of the IEEE 802.15.4 standard. A pseudo differential OTA with reconfigurable common mode feedback and common mode feed-forward is proposed as well as the frequency tuning method based on a relaxation oscillator. A detailed analysis of non-ideality of the OTA and the frequency tuning method is elaborated. The analysis and measurement results have shown that the center frequency of the complex filter could be tuned accurately. The chip was fabricated in a standard 0.35 μm CMOS process, with a single 3.3 V power supply. The filter consumes 2.1mA current, has a measured in-band group delay ripple of less than 0.16 μs and an IRR larger than 28 dB at 2 MHz apart, which could meet the requirements oftheIEEE802.15.4 standard. (semiconductor integrated circuits)

  8. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  9. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    Kwon, Sun Yong

    2005-02-01

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  10. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  11. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  12. A method for tuning parameters of Monte Carlo generators and a determination of the unintegrated gluon density

    International Nuclear Information System (INIS)

    Bacchetta, Alessandro; Jung, Hannes; Kutak, Krzysztof

    2010-02-01

    A method for tuning parameters in Monte Carlo generators is described and applied to a specific case. The method works in the following way: each observable is generated several times using different values of the parameters to be tuned. The output is then approximated by some analytic form to describe the dependence of the observables on the parameters. This approximation is used to find the values of the parameter that give the best description of the experimental data. This results in significantly faster fitting compared to an approach in which the generator is called iteratively. As an application, we employ this method to fit the parameters of the unintegrated gluon density used in the Cascade Monte Carlo generator, using inclusive deep inelastic data measured by the H1 Collaboration. We discuss the results of the fit, its limitations, and its strong points. (orig.)

  13. Dynamics of iterative reader feedback. An analysis of two successive plus-minus evaluation studies

    NARCIS (Netherlands)

    de Jong, Menno D.T.; Rijnks, Dietha

    2006-01-01

    A brochure that had been revised on the basis of feedback from readers using the plus-minus evaluation method was evaluated again using the same method. This article compares the results of these two successive evaluation studies to examine the dynamics of evaluating and revising using a

  14. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  15. Progress of IRSN R&D on ITER Safety Assessment

    Science.gov (United States)

    Van Dorsselaere, J. P.; Perrault, D.; Barrachin, M.; Bentaib, A.; Gensdarmes, F.; Haeck, W.; Pouvreau, S.; Salat, E.; Seropian, C.; Vendel, J.

    2012-08-01

    The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the French "Autorité de Sûreté Nucléaire", is analysing the safety of ITER fusion installation on the basis of the ITER operator's safety file. IRSN set up a multi-year R&D program in 2007 to support this safety assessment process. Priority has been given to four technical issues and the main outcomes of the work done in 2010 and 2011 are summarized in this paper: for simulation of accident scenarios in the vacuum vessel, adaptation of the ASTEC system code; for risk of explosion of gas-dust mixtures in the vacuum vessel, adaptation of the TONUS-CFD code for gas distribution, development of DUST code for dust transport, and preparation of IRSN experiments on gas inerting, dust mobilization, and hydrogen-dust mixtures explosion; for evaluation of the efficiency of the detritiation systems, thermo-chemical calculations of tritium speciation during transport in the gas phase and preparation of future experiments to evaluate the most influent factors on detritiation; for material neutron activation, adaptation of the VESTA Monte Carlo depletion code. The first results of these tasks have been used in 2011 for the analysis of the ITER safety file. In the near future, this R&D global programme may be reoriented to account for the feedback of the latter analysis or for new knowledge.

  16. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  17. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    Science.gov (United States)

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  18. Real-Time Knee Adduction Moment Feedback for Gait Retraining Through Visual and Tactile Displays

    KAUST Repository

    Wheeler, Jason W.; Shull, Pete B.; Besier, Thor F.

    2011-01-01

    The external knee adduction moment (KAM) measured during gait is an indicator of tibiofemoral joint osteoarthritis progression and various strategies have been proposed to lower it. Gait retraining has been shown to be an effective, noninvasive approach for lowering the KAM. We present a new gait retraining approach in which the KAM is fed back to subjects in real-time during ambulation. A study was conducted in which 16 healthy subjects learned to alter gait patterns to lower the KAM through visual or tactile (vibration) feedback. Participants converged on a comfortable gait in just a few minutes by using the feedback to iterate on various kinematic modifications. All subjects adopted altered gait patterns with lower KAM compared with normal ambulation (average reduction of 20.7%). Tactile and visual feedbacks were equally effective for real-time training, although subjects using tactile feedback took longer to converge on an acceptable gait. This study shows that real-time feedback of the KAM can greatly increase the effectiveness and efficiency of subject-specific gait retraining compared with conventional methods. © 2011 American Society of Mechanical Engineers.

  19. Structural analysis of the ITER Vacuum Vessel regarding 2012 ITER Project-Level Loads

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.-M., E-mail: jean-marc.martinez@live.fr [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Jun, C.H.; Portafaix, C.; Choi, C.-H.; Ioki, K.; Sannazzaro, G.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Cambazar, M.; Corti, Ph.; Pinori, K.; Sfarni, S.; Tailhardat, O. [Assystem EOS, 117 rue Jacquard, L' Atrium, 84120 Pertuis (France); Borrelly, S. [Sogeti High Tech, RE2, 180 rue René Descartes, Le Millenium – Bat C, 13857 Aix en Provence (France); Albin, V.; Pelletier, N. [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France)

    2014-10-15

    Highlights: • ITER Vacuum Vessel is a part of the first barrier to confine the plasma. • ITER Vacuum Vessel as Nuclear Pressure Equipment (NPE) necessitates a third party organization authorized by the French nuclear regulator to assure design, fabrication, conformance testing and quality assurance, i.e. Agreed Notified Body (ANB). • A revision of the ITER Project-Level Load Specification was implemented in April 2012. • ITER Vacuum Vessel Loads (seismic, pressure, thermal and electromagnetic loads) were summarized. • ITER Vacuum Vessel Structural Margins with regards to RCC-MR code were summarized. - Abstract: A revision of the ITER Project-Level Load Specification (to be used for all systems of the ITER machine) was implemented in April 2012. This revision supports ITER's licensing by accommodating requests from the French regulator to maintain consistency with the plasma physics database and our present understanding of plasma transients and electro-magnetic (EM) loads, to investigate the possibility of removing unnecessary conservatism in the load requirements and to review the list and definition of incidental cases. The purpose of this paper is to present the impact of this 2012 revision of the ITER Project-Level Load Specification (LS) on the ITER Vacuum Vessel (VV) loads and the main structural margins required by the applicable French code, RCC-MR.

  20. ITER test programme

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Casini, G.

    1991-01-01

    ITER has been designed to operate in two phases. The first phase which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER. 15 refs, figs and tabs

  1. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  2. ITER-FEAT outline design report

    International Nuclear Information System (INIS)

    2001-01-01

    In July 1998 the ITER Parties were unable, for financial reasons, to proceed with construction of the ITER design proposed at that time, to meet the detailed technical objectives and target cost set in 1992. It was therefore decided to investigate options for the design of ITER with reduced technical objectives and with possibly decreased technical margins, whose target construction cost was one half that of the 1998 ITER design, while maintaining the overall programmatic objective. To identify designs that might meet the revised objectives, task forces involving the JCT and Home Teams met during 1998 and 1999 to analyse and compare a range of options for the design of such a device. This led at the end of 1999 to a single configuration for the ITER design with parameters considered to be the most credible consistent with technical limitations and the financial target, yet meeting fully the objectives with appropriate margins. This new design of ITER, called ''ITER-FEAT'', was submitted to the ITER Director to the ITER Parties as the ''ITER-FEAT Outline Design Report'' (ODR) in January 2000, at their meeting in Tokyo. The Parties subsequently conducted their domestic assessments of this report and fed the resulting comments back into the progressing design. The progress on the developing design was reported to the ITER Technical Advisory Committee (TAC) in June 2000 in the report ''Progress in Resolving Open Design Issues from the ODR'' alongside a report on Progress in Technology R and D for ITER. In addition, the progress in the ITER-FEAT Design and Validating R and D was reported to the ITER Parties. The ITER-FEAT design was subsequently approved by the governing body of ITER in Moscow in June 2000 as the basis for the preparation of the Final Design Report, recognising it as a single mature design for ITER consistent with its revised objectives. This volume contains the documents pertinent to the process described above. More detailed technical information

  3. Fast digital transverse feedback system for bunch train operation in CESR

    International Nuclear Information System (INIS)

    Rogers, J.T.; Billing, M.G.; Dobbins, J.A.

    1996-01-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e + e - collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  4. Fast digital transverse feedback system for bunch train operation in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J T; Billing, M G; Dobbins, J A [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies; and others

    1996-08-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  5. ITER council proceedings: 1995

    International Nuclear Information System (INIS)

    1996-01-01

    Records of the 8. ITER Council Meeting (IC-8), held on 26-27 July 1995, in San Diego, USA, and the 9. ITER Council Meeting (IC-9) held on 12-13 December 1995, in Garching, Germany, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the ITER Interim Design Report Package and Relevant Documents. Figs, tabs

  6. Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes

    Science.gov (United States)

    Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong

    2018-01-01

    In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.

  7. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS

    International Nuclear Information System (INIS)

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-01-01

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies

  8. ITER CTA newsletter. No. 3

    International Nuclear Information System (INIS)

    2001-11-01

    This ITER CTA newsletter comprises reports of Dr. P. Barnard, Iter Canada Chairman and CEO, about the progress of the first formal ITER negotiations and about the demonstration of details of Canada's bid on ITER workshops, and Dr. V. Vlasenkov, Project Board Secretary, about the meeting of the ITER CTA project board

  9. Evaluation of high-performance network technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K., E-mail: klemen.zagar@cosylab.co [Cosylab d.d., 1000 Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, 5616 Meisterschwanden (Switzerland); Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J. [Cosylab d.d., 1000 Ljubljana (Slovenia)

    2010-07-15

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  10. ITER council proceedings: 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This volume of the ITER EDA Documentation Series presents records of the 12th ITER Council Meeting, IC-12, which took place on 23-24 July, 1997 in Tampere, Finland. The Council received from the Parties (EU, Japan, Russia, US) positive responses on the Detailed Design Report. The Parties stated their willingness to contribute to fulfil their obligations in contributing to the ITER EDA. The summary discussions among the Parties led to the consensus that in July 1998 the ITER activities should proceed for additional three years with a general intent to enable an efficient start of possible, future ITER construction

  11. Iterative approach to self-adapting and altitude-dependent regularization for atmospheric profile retrievals.

    Science.gov (United States)

    Ridolfi, Marco; Sgheri, Luca

    2011-12-19

    In this paper we present the IVS (Iterative Variable Strength) method, an altitude-dependent, self-adapting Tikhonov regularization scheme for atmospheric profile retrievals. The method is based on a similar scheme we proposed in 2009. The new method does not need any specifically tuned minimization routine, hence it is more robust and faster. We test the self-consistency of the method using simulated observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We then compare the new method with both our previous scheme and the scalar method currently implemented in the MIPAS on-line processor, using both synthetic and real atmospheric limb measurements. The IVS method shows very good performances.

  12. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  13. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    International Nuclear Information System (INIS)

    Ablinger, J.; Radu, C.S.; Schneider, C.; Behring, A.; Imamoglu, E.; Van Hoeij, M.; Von Manteuffel, A.; Raab, C.G.

    2017-11-01

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ (2) qg and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  14. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Radu, C.S.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Imamoglu, E.; Van Hoeij, M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Mathematics; Von Manteuffel, A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Raab, C.G. [Johannes Kepler Univ., Linz (Austria). Inst. for Algebra

    2017-11-15

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ{sup (2)}{sub qg} and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  15. Learning culture and feedback: an international study of medical athletes and musicians.

    Science.gov (United States)

    Watling, Christopher; Driessen, Erik; van der Vleuten, Cees P M; Lingard, Lorelei

    2014-07-01

    Feedback should facilitate learning, but within medical education it often fails to deliver on its promise. To better understand why feedback is challenging, we explored the unique perspectives of doctors who had also trained extensively in sport or music, aiming to: (i) distinguish the elements of the response to feedback that are determined by the individual learner from those determined by the learning culture, and (ii) understand how these elements interact in order to make recommendations for improving feedback in medical education. Using a constructivist grounded theory approach, we conducted semi-structured interviews with 27 doctors or medical students who had high-level training and competitive or performance experience in sport (n = 15) or music (n = 12). Data were analysed iteratively using constant comparison. Key themes were identified and their relationships critically examined to derive a conceptual understanding of feedback and its impact. We identified three essential sources of influence on the meaning that feedback assumed: the individual learner; the characteristics of the feedback, and the learning culture. Individual learner traits, such as motivation and orientation toward feedback, appeared stable across learning contexts. Similarly, certain feedback characteristics, including specificity, credibility and actionability, were valued in sport, music and medicine alike. Learning culture influenced feedback in three ways: (i) by defining expectations for teachers and teacher-learner relationships; (ii) by establishing norms for and expectations of feedback, and (iii) by directing teachers' and learners' attention toward certain dimensions of performance. Learning culture therefore neither creates motivated learners nor defines 'good feedback'; rather, it creates the conditions and opportunities that allow good feedback to occur and learners to respond. An adequate understanding of feedback requires an integrated approach incorporating both

  16. Physics research needs for ITER

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1995-01-01

    Design of ITER entails the application of physics design tools that have been validated against the world-wide data base of fusion research. In many cases, these tools do not yet exist and must be developed as part of the ITER physics program. ITER's considerable increases in power and size demand significant extrapolations from the current data base; in several cases, new physical effects are projected to dominate the behavior of the ITER plasma. This paper focuses on those design tools and data that have been identified by the ITER team and are not yet available; these needs serve as the basis for the ITER Physics Research Needs, which have been developed jointly by the ITER Physics Expert Groups and the ITER design team. Development of the tools and the supporting data base is an on-going activity that constitutes a significant opportunity for contributions to the ITER program by fusion research programs world-wide

  17. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  18. Resource optimised reconfigurable modular parallel pipelined stochastic approximation-based self-tuning regulator architecture with reduced latency

    Directory of Open Access Journals (Sweden)

    Varghese Mathew Vaidyan

    2015-09-01

    Full Text Available Present self-tuning regulator architectures based on recursive least-square estimation are computationally expensive and require large amount of resources and time in generating the first control signal due to computational bottlenecks imposed by the calculations involved in estimation stage, different stages of matrix multiplications and the number of intermediate variables at each iteration and precludes its use in applications that have fast required response times and those which run on embedded computing platforms with low-power or low-cost requirements with constraints on resource usage. A salient feature of this study is that a new modular parallel pipelined stochastic approximation-based self-tuning regulator architecture which reduces the time required to generate the first control signal, reduces resource usage and reduces the number of intermediate variables is proposed. Fast matrix multiplication, pipelining and high-speed arithmetic function implementations were used for improving the performance. Results of implementation demonstrate that the proposed architecture has an improvement in control signal generation time by 38% and reduction in resource usage by 41% in terms of multipliers and 44.4% in terms of adders compared with the best existing related work, opening up new possibilities for the application of online embedded self-tuning regulators.

  19. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  20. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    Science.gov (United States)

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  2. ITER radio frequency systems

    International Nuclear Information System (INIS)

    Bosia, G.

    1998-01-01

    Neutral Beam Injection and RF heating are two of the methods for heating and current drive in ITER. The three ITER RF systems, which have been developed during the EDA, offer several complementary services and are able to fulfil ITER operational requirements

  3. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    Science.gov (United States)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  4. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  5. ITER definition phase

    International Nuclear Information System (INIS)

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned as a fusion device which would demonstrate the scientific and technological feasibility of fusion power. As a first step towards achieving this goal, the European Community, Japan, the Soviet Union, and the United States of America have entered into joint conceptual design activities under the auspices of the International Atomic Energy Agency. A brief summary of the Definition Phase of ITER activities is contained in this report. Included in this report are the background, objectives, organization, definition phase activities, and research and development plan of this endeavor in international scientific collaboration. A more extended technical summary is contained in the two-volume report, ''ITER Concept Definition,'' IAEA/ITER/DS/3. 2 figs, 2 tabs

  6. United States rejoin ITER

    International Nuclear Information System (INIS)

    Roberts, M.

    2003-01-01

    Upon pressure from the United States Congress, the US Department of Energy had to withdraw from further American participation in the ITER Engineering Design Activities after the end of its commitment to the EDA in July 1998. In the years since that time, changes have taken place in both the ITER activity and the US fusion community's position on burning plasma physics. Reflecting the interest in the United States in pursuing burning plasma physics, the DOE's Office of Science commissioned three studies as part of its examination of the option of entering the Negotiations on the Agreement on the Establishment of the International Fusion Energy Organization for the Joint Implementation of the ITER Project. These were a National Academy Review Panel Report supporting the burning plasma mission; a Fusion Energy Sciences Advisory Committee (FESAC) report confirming the role of ITER in achieving fusion power production, and The Lehman Review of the ITER project costing and project management processes (for the latter one, see ITER CTA Newsletter, no. 15, December 2002). All three studies have endorsed the US return to the ITER activities. This historical decision was announced by DOE Secretary Abraham during his remarks to employees of the Department's Princeton Plasma Physics Laboratory. The United States will be working with the other Participants in the ITER Negotiations on the Agreement and is preparing to participate in the ITA

  7. On fully three-dimensional resistive wall mode and feedback stabilization computations

    International Nuclear Information System (INIS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Guenter, S.

    2008-01-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208

  8. ITER towards the construction

    International Nuclear Information System (INIS)

    Shimomura, Y.

    2005-01-01

    The ITER Project has been significantly developed in the last few years in preparation for its construction. The ITER Participant's Negotiators have developed the Joint Implementation Agreement (JIA), ready for finalisation following selection of the construction site and nomination of the project's Director General. The ITER International Team and Participant Teams have continued technical and organisational preparations. Construction will be able to start immediately after the international ITER organisation is established, following signature of the JIA. The Project is strongly supported by the governments of the Participants as well as by the scientific community. The real negotiations, including siting and the final details of cost sharing, started in December 2003. The EU, with Cadarache, and Japan, with Rokkasho, have both promised large contributions to the project to strongly support their construction site proposals. Their wish to host ITER construction is too strong to allow convergence to a single site considering the ITER device in isolation. A broader collaboration among the Parties is therefore being contemplated, covering complementary activities to help accelerate fusion development towards a viable power source, and allow the Participants to reach a conclusion on ITER siting. This report reviews these preparations, and the status of negotiations

  9. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huguet, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.R.; Shimada, M.; Aymar, R.; Chuyanov, V.A.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties. (author)

  10. ITER CTA newsletter. No. 2

    International Nuclear Information System (INIS)

    2001-10-01

    This ITER CTA newsletter contains results of the ITER toroidal field model coil project presented by ITER EU Home Team (Garching) and an article in commemoration of the late Dr. Charles Maisonnier, one of the former leaders of ITER who made significant contributions to its development

  11. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  12. Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding

    Science.gov (United States)

    Jeong, Seongkwon; Lee, Jaejin

    2018-05-01

    The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.

  13. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  14. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    Science.gov (United States)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  15. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  16. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  17. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Science.gov (United States)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  18. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    International Nuclear Information System (INIS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-01-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed

  19. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    Science.gov (United States)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  20. Spirit and prospects of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E.P. [Kurchatov Institute of Atomic Energy, Moscow (Russian Federation)

    2002-10-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  1. Spirit and prospects of ITER

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    2002-01-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  2. Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping

    2018-06-01

    This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.

  3. ITER interim design report package documents

    International Nuclear Information System (INIS)

    1996-01-01

    This publication contains the Excerpt from the ITER Council (IC-8), the ITER Interim Design Report, Cost Review and Safety Analysis, ITER Site Requirements and ITER Site Design Assumptions and the Excerpt from the ITER Council (IC-9). 8 figs, 2 tabs

  4. ITER CTA newsletter. No. 6

    International Nuclear Information System (INIS)

    2002-01-01

    This ITER CTA Newsletter issue comprises information about the following ITER Meetings: The second negotiation meeting on the joint implementation of ITER, held in Tokyo(Japan) on 22-23 January 2002, and an international ITER symposium on burning plasma science and technology, held the day later after the second negotiation meeting at the same place

  5. ITER Status and Plans

    Science.gov (United States)

    Greenfield, Charles M.

    2017-10-01

    The US Burning Plasma Organization is pleased to welcome Dr. Bernard Bigot, who will give an update on progress in the ITER Project. Dr. Bigot took over as Director General of the ITER Organization in early 2015 following a distinguished career that included serving as Chairman and CEO of the French Alternative Energies and Atomic Energy Commission and as High Commissioner for ITER in France. During his tenure at ITER the project has moved into high gear, with rapid progress evident on the construction site and preparation of a staged schedule and a research plan leading from where we are today through all the way to full DT operation. In an unprecedented international effort, seven partners ``China, the European Union, India, Japan, Korea, Russia and the United States'' have pooled their financial and scientific resources to build the biggest fusion reactor in history. ITER will open the way to the next step: a demonstration fusion power plant. All DPP attendees are welcome to attend this ITER town meeting.

  6. ITER council proceedings: 1999

    International Nuclear Information System (INIS)

    1999-01-01

    In 1999 the ITER meeting in Cadarache (10-11 March 1999) and the Programme Directors Meeting in Grenoble (28-29 July 1999) took place. Both meetings were exclusively devoted to ITER engineering design activities and their agendas covered all issues important for the development of ITER. This volume presents the documents of these two important meetings

  7. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  8. An autoethnographic exploration of the use of goal oriented feedback to enhance brief clinical teaching encounters.

    Science.gov (United States)

    Farrell, Laura; Bourgeois-Law, Gisele; Ajjawi, Rola; Regehr, Glenn

    2017-03-01

    Supervision in the outpatient context is increasingly in the form of single day interactions between students and preceptors. This creates difficulties for effective feedback, which often depends on a strong relationship of trust between preceptor and student. Building on feedback theories focusing on the relational and dialogic aspects of feedback, this study explored the use of goal-oriented feedback in brief encounters with learners. This study used autoethnography to explore one preceptor's feedback interactions over an eight-month period both in the ambulatory setting and on the wards. Data included written narrative reflections on feedback interactions with twenty-three learners informed by discussions with colleagues and repeated reading of feedback literature. Thematic and narrative analyses of data were performed iteratively. Data analysis emphasized four recurrent themes. (1) Goal discussions were most effective when initiated early and integrated throughout the learning experience. (2) Both learner and preceptor goals were multiple and varied, and feedback needed to reflect this complexity. (3) Negotiation or co-construction of goals was important when considering the focus of feedback discussions in order to create safer, more effective interactions. (4) Goal oriented interactions offer potential benefits to the learner and preceptor. Goal oriented feedback promotes dialogue as it requires both preceptor and learner to acknowledge and negotiate learning goals throughout their interaction. In doing so, feedback becomes an explicit component of the preceptor-learner relationship. This enhances feedback interactions even in relatively brief encounters, and may begin an early educational alliance that can be elaborated with longer interactions.

  9. Future plan of ITER

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1998-01-01

    In cooperation of four countries, Japan, USA, EU and Russia, ITER plan has been proceeding as ''the conceptual design activities'' from 1988 to 1990 and ''the industrial design activities'' since 1992. To construct ITER, the legal and work side of ITER operation has been investigated by four countries. However, their economic conditions have been changed to be wrong. So that, construction of ITER can not begin after end of industrial design activities in 1998. Accordingly, they determined to continue the industrial design activities more three years in order to study low cost options and to test the superconductive model·coil. (S.Y.)

  10. ITER council proceedings: 1992

    International Nuclear Information System (INIS)

    1994-01-01

    At the signing of the ITER EDA Agreement on July, 1992, each of the Parties presented to the Director General the names of their designated members of the ITER Council. Upon receiving those names, the Director General stated that the ITER Engineering Design Activities were ''ready to begin''. The next step in this process was the convening of the first meeting of the ITER Council. The first meeting of the Council, held in Vienna, was opened by Director General Hans Blix. The second meeting was held in Moscow, the formal seat of the Council. This volume presents records of these first two Council meetings and, together with the previous volumes on the text of the Agreement and Protocol 1 and the preparations for their signing respectively, represents essential information on the evolution of the ITER EDA

  11. Estimation of Graphite Dust Production in ITER TBM

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Eung Seon

    2013-01-01

    This scheme uses simple equations and the calculation time is much less than others. However, the contact equation requires a specially tuned material properties and instability of system matrix were reported. Second, only a couple of pebbles were modeled using FEM(Finite Element Method) and appropriate boundary and loading conditions are imposed. This scheme gives a detailed information of stress distribution of the pebbles and the stability of calculation is well established. However, the calculation cost is fairly high and only a few pebble can be analyzed in detail at a time with specifically assigned contact conditions. In this study, a prediction model of graphite dust production in ITER(International Thermonuclear Experimental Reactor) TBM(Test Blanket Module) using FEM was introduced and the amount of dust production for an operation cycle was estimated. In this study, graphite dust generation in the reflector zone of ITER TBM was estimated using FE analysis. A unit-cell model was defined to simulate normal contact forces and slip distances on contact points between the center pebble and the surrounding pebbles. The dust production was calculated using Archard equation. The simulation was repeated with different friction coefficient of graphite material to investigate the effect of friction on the dust production. The calculation result showed that the amount of dust production was 2.22∼3.67e-4 g/m 3 which was almost linearly proportional to the friction coefficient of graphite material. The amount of graphite dust production was considered too much small for a dust explosion

  12. ITER physics design guidelines: 1989

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1990-01-01

    The physics basis for ITER has been developed from an assessment of the results of the last twenty-five years of tokamak research and from detailed analysis of important physics issues specifically for the ITER design. This assessment has been carried out with direct participation of members of the experimental teams of each of the major tokamaks in the world fusion program through participation in ITER workshops, contributions to the ITER Physics R and D Program, and by direct contacts between the ITER team and the cognizant experimentalists. Extrapolations to the present data base, where needed, are made in the most cautious way consistent with engineering constraints and performance goals of the ITER. In cases where a working assumptions had to be introduced, which is insufficiently supported by the present data base, is explicitly stated. While a strong emphasis has been placed on the physics credibility of the design, the guidelines also take into account that ITER should be designed to be able to take advantage of potential improvements in tokamak physics that may occur before and during the operation of ITER. (author). 33 refs

  13. ITER council proceedings: 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Records of the 10. ITER Council Meeting (IC-10), held on 26-27 July 1996, in St. Petersburg, Russia, and the 11. ITER Council Meeting (IC-11) held on 17-18 December 1996, in Tokyo, Japan, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the cost review and safety analysis. Figs, tabs

  14. ITER concept definition. V.2

    International Nuclear Information System (INIS)

    1989-01-01

    Volume II of the two volumes describing the concept definition of the International Thermonuclear Experimental Reactor deals with the ITER concept in technical depth, and covers all areas of design of the ITER tokamak. Included are an assessment of the current database for design, scoping studies, rationale for concepts selection, performance flexibility, the ITER concept, the operations and experimental/testing program, ITER parameters and design phase schedule, and research and development specific to ITER. This latter includes a definition of specific research and development tasks, a division of tasks among members, specific milestones, required results, and schedules. Figs and tabs

  15. ITER CTA newsletter. No. 10

    International Nuclear Information System (INIS)

    2002-07-01

    This ITER CTA newsletter issue comprises the ITER backgrounder, which was approved as an official document by the participants in the Negotiations on the ITER Implementation agreement at their fourth meeting, held in Cadarache from 4-6 June 2002, and information about two ITER meetings: one is the third meeting of the ITER parties' designated Safety Representatives, which took place in Cadarache, France from 6-7 June 2002, and the other is the second meeting of the International Tokamak Physics Activity (ITPA) topical group on diagnostics, which was held at General Atomics, San Diego, USA, from 4-8 March 2002

  16. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  17. Toward construction of ITER

    International Nuclear Information System (INIS)

    Shimomura, Yasuo

    2005-01-01

    The ITER Project has been significantly developed in the past years in preparation for its construction. The ITER Negotiators have developed a draft Joint Implementation Agreement (JIA), ready for completion following the nomination of the Project's Director General (DG). The ITER International Team and Participant Teams have continued technical and organizational preparations. The actual construction will be able to start immediately after the international ITER organization will be established, following signature of the JIA. The Project is now strongly supported by all the participants as well as by the scientific community with the final high-level negotiations, focused on siting and the concluding details of cost sharing, started in December 2003. The EU, with Cadarache, and Japan, with Rokkasho, have both promised large contributions to the project to strongly support their construction site proposals. The extent to which they both wish to host the ITER facility is such that large contributions to a broader collaboration among the Parties are also proposed by them. This covers complementary activities to help accelerate fusion development towards a viable power source, as well as may allow the Participants to reach a conclusion on ITER siting. (author)

  18. Application of a repetitive process setting to design of monotonically convergent iterative learning control

    Science.gov (United States)

    Boski, Marcin; Paszke, Wojciech

    2015-11-01

    This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.

  19. ITER-FEAT magnetic configuration and plasma position/shape control in the nominal PF scenario

    International Nuclear Information System (INIS)

    Gribov, Y.V.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The capability of the ITER-FEAT poloidal field system to support the four 'design' scenarios and the high current 'assessed' scenario have been studied. To operate with highly elongated plasma, the system has segmentation of the central solenoid and a separate fast feedback loop for plasma vertical stabilisation. Within the limits imposed on the coil currents, voltages and power, the poloidal field system provides the required plasma scenario and control capabilities. The separatrix deviation from the required position, in scenarios with minor disruptions is within less than about 100 mm. (author)

  20. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  1. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  2. Reduced Complexity Detection in MIMO Systems with SC-FDE Modulations and Iterative DFE Receivers

    Directory of Open Access Journals (Sweden)

    Filipe Casal Ribeiro

    2018-04-01

    Full Text Available This paper considers a Multiple-Input Multiple-Output (MIMO system with P transmitting and R receiving antennas and different overall noise characteristics on the different receiver antennas (e.g., due to nonlinear effects at the receiver side. Each communication link employs a Single-Carrier with Frequency-Domain Equalization (SC-FDE modulation scheme, and the receiver is based on robust iterative frequency-domain multi-user detectors based on the Iterative Block Decision Feedback Equalization (IB-DFE concept. We present low complexity efficient receivers that can employ low resolution Analog-to-Digital Converters (ADCs and require the inversion of matrices with reduced dimension when the number of receive antennas is larger than the number of independent data streams. The advantages of the proposed techniques are particularly high for highly unbalanced MIMO systems, such as in the uplink of Base Station (BS cooperation systems that aim for Single-Frequency Network (SFN operation or massive MIMO systems with much more antennas at the receiver side.

  3. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Feedback regulation of TGF-β signaling.

    Science.gov (United States)

    Yan, Xiaohua; Xiong, Xiangyang; Chen, Ye-Guang

    2018-01-01

    Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  6. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  7. CircleRides: developing an older adult transportation application and evaluating feedback.

    Science.gov (United States)

    Heinz, Melinda; Kelly, Norene

    2015-05-01

    The purpose of the current study was to assess perceptions of CircleRides, a paper prototype of a service website designed to meet older adult transportation needs. Researchers used purposive sampling to conduct two focus groups comprised of older adults to obtain feedback on the CircleRides prototype at the beginning of its iterative design process. One focus group was conducted in a continuing care retirement community (n = 13) and the other in an independent living community for older adults (n = 11). The study assessed perceptions of the CircleRides prototype as well as self-reported older adult transportation preferences and needs. Three themes emerged from the data: (a) trust and concern, (b) socialization, and (c) flexibility and options. Researchers found that participants are interested in transportation options; however, concern exists about trusting a new system or prototype that has not established a reputation. Findings from the current study offer lessons learned for future iterations and for creating transportation prototypes for older adults. Copyright 2015, SLACK Incorporated.

  8. The Effect of the Feedback Controller on Superconducting Tokamak AC Losses + AC-CRPP user manual

    International Nuclear Information System (INIS)

    Schaerz, B.; Bruzzone, P.; Favez, J.Y.; Lister, J.B.; Zapretilina, E.

    2001-11-01

    Superconducting coils in a Tokamak are subject to AC losses when the field transverse to the coil current varies. A simple model to evaluate the AC losses has been derived and benchmarked against a complete model used in the ITER design procedure. The influence of the feedback control strategy on the AC losses is examined using this model. An improved controller is proposed, based on this study. (author)

  9. Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas

    Science.gov (United States)

    Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.

    2006-10-01

    In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.

  10. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  11. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    Science.gov (United States)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  12. An iterative bidirectional heuristic placement algorithm for solving the two-dimensional knapsack packing problem

    Science.gov (United States)

    Shiangjen, Kanokwatt; Chaijaruwanich, Jeerayut; Srisujjalertwaja, Wijak; Unachak, Prakarn; Somhom, Samerkae

    2018-02-01

    This article presents an efficient heuristic placement algorithm, namely, a bidirectional heuristic placement, for solving the two-dimensional rectangular knapsack packing problem. The heuristic demonstrates ways to maximize space utilization by fitting the appropriate rectangle from both sides of the wall of the current residual space layer by layer. The iterative local search along with a shift strategy is developed and applied to the heuristic to balance the exploitation and exploration tasks in the solution space without the tuning of any parameters. The experimental results on many scales of packing problems show that this approach can produce high-quality solutions for most of the benchmark datasets, especially for large-scale problems, within a reasonable duration of computational time.

  13. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  14. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    Science.gov (United States)

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  15. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  16. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim

    2011-11-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  17. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim; El Sayed, Tamer S.; Ramadan, Hany E.

    2011-01-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  18. ITER ITA newsletter No. 31, June 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about initialling the ITER Agreement and its related instruments by seven ITER parties, which too place in Brussels on 24 May 2006. The initialling constituted the final act of the ITER negotiations. It confirmed the Parties' common acceptance of the negotiated texts, ad referendum, and signalled their intentions to move forward towards the entry into force of the ITER Agreement as soon as possible. 'ITER - Uniting science today, global energy tomorrow' was the theme of a number of media events timed to accompany a remarkable day in the history of the ITER international venture, May 24th 2006, initialling of the ITER international agreement

  19. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    This article summarizes progress made in the ITER Engineering Design Activities in the period between the ITER Meeting in Tokyo (January 2000) and June 2000. Topics: Termination of EDA, Joint Central Team and Support, Task Assignments, ITER Physics, Urgent and High Priority Physics Research Areas

  20. ITER EDA newsletter. V. 10, special issue

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter includes summaries of the reports of ITER EDA JCT Physics unit about ITER physics R and D during the Engineering Design Activities (EDA), ITER EDA JCT Naka JWC ITER technology R and D during the EDA, and Safety, Environment and Health group of ITER EDA JCT, Garching JWS on EDA activities related to safety

  1. ITER CTA newsletter. No. 13, October 2002

    International Nuclear Information System (INIS)

    2002-11-01

    This ITER CTA newsletter issue comprises concise information about an ITER related meeting concerning the joint implementation of ITER - the fifth ITER Negotiations Meeting - which was held in Toronto, Canada, 19-20 September, 2002, and information about assessment of the possible ITER site in Clarington, Ontario, Canada, which was the subject of the first official stage of the Joint Assessment of Specific Sites (JASS) for the ITER Project. This assessment was completed just before the Fifth ITER Negotiations Meeting

  2. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2008-01-01

    The aim of this paper is to summarize the ITER approach to machine components maintenance. A major objective of the ITER project is to demonstrate that a future power producing fusion device can be maintained effectively and offer practical levels of plant availability. During its operational lifetime, many systems of the ITER machine will require maintenance and modification; this can be achieved using remote handling methods. The need for timely, safe and effective remote operations on a machine as complex as ITER and within one of the world's most hostile remote handling environments represents a major challenge at every level of the ITER Project organization, engineering and technology. The basic principles of fusion reactor maintenance are presented. An updated description of the ITER remote maintenance system is provided. This includes the maintenance equipment used inside the vacuum vessel, inside the hot cell and the hot cell itself. The correlation between the functions of the remote handling equipment, of the hot cell and of the radwaste processing system is also described. The paper concludes that ITER has equipped itself with a good platform to tackle the challenges presented by its own maintenance and upgrade needs

  3. Iterative reconstruction methods for Thermo-acoustic Tomography

    International Nuclear Information System (INIS)

    Marinesque, Sebastien

    2012-01-01

    We define, study and implement various iterative reconstruction methods for Thermo-acoustic Tomography (TAT): the Back and Forth Nudging (BFN), easy to implement and to use, a variational technique (VT) and the Back and Forth SEEK (BF-SEEK), more sophisticated, and a coupling method between Kalman filter (KF) and Time Reversal (TR). A unified formulation is explained for the sequential techniques aforementioned that defines a new class of inverse problem methods: the Back and Forth Filters (BFF). In addition to existence and uniqueness (particularly for backward solutions), we study many frameworks that ensure and characterize the convergence of the algorithms. Thus we give a general theoretical framework for which the BFN is a well-posed problem. Then, in application to TAT, existence and uniqueness of its solutions and geometrical convergence of the algorithm are proved, and an explicit convergence rate and a description of its numerical behaviour are given. Next, theoretical and numerical studies of more general and realistic framework are led, namely different objects, speeds (with or without trapping), various sensor configurations and samplings, attenuated equations or external sources. Then optimal control and best estimate tools are used to characterize the BFN convergence and converging feedbacks for BFF, under observability assumptions. Finally, we compare the most flexible and efficient current techniques (TR and an iterative variant) with our various BFF and the VT in several experiments. Thus, robust, with different possible complexities and flexible, the methods that we propose are very interesting reconstruction techniques, particularly in TAT and when observations are degraded. (author) [fr

  4. ITER EDA Newsletter. Vol. 1, No. 1

    International Nuclear Information System (INIS)

    1992-11-01

    After the ITER Engineering Design Activities (EDA) Agreement and Protocol 1 had been signed by the four ITER parties on July 21, 1992 and had entered into force, the ITER Council suggested at its first meeting (Vienna, September 10-11, 1992) that the publication of the ITER Newsletter be continued during the EDA with assistance of the International Atomic Energy Agency. This suggestion was supported by the Agency and subsequently the ITER office in Vienna assumed its responsibilities for planning and executing activities related to the publication of the Newsletter. The ITER EDA Newsletter is planned to be a monthly publication aimed at disseminating broad information and understanding, including the description of the personal and institutional involvements in the ITER project in addition to technical facts about it. The responsibility for the Newsletter rests with the ITER council. In this first issue the signing of the ITER EDA Activities and Protocol 1 is reported. The EDA organizational structure is described. This issue also reports on the first ITER EDA council meeting, the opening of the ITER EDA NAKA Co-Centre, the first meeting of the ITER Technical Advisory Committee, activities of special working groups, an ITER Technical Meeting, as well as ''News in Brief'' and ''Coming Events''

  5. Report of the international symposium for ITER. 'Burning plasma science and technology on ITER'

    International Nuclear Information System (INIS)

    2002-10-01

    This report contains the presentations on the International Symposium for ITER, held on Jan. 24, 2002 on the occasion of the ITER Governmental Negotiations in Tokyo. This symposium is organized by Japan Atomic Energy Research Institute with the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The meaningful results were obtained through this symposium especially on new frontiers of science and technology brought by ITER, accelerated road maps towards realizing fusion energy, and portfolio of other fusion configurations from ITER. The 5 of the presented papers are indexed individually (J.P.N.)

  6. ITER Council tour of Clarington site

    International Nuclear Information System (INIS)

    Dautovich, D.

    2001-01-01

    The ITER Council meeting was recently held in Toronto on 27 and 28 February. ITER Canada provided local arrangements for the Council meeting on behalf of Europe as the Official host. Following the meeting, on 1 March, ITER Canada conducted a tour of the proposed ITER construction site at Charington, and the ITER Council members attended a luncheon followed by a speech by Dr. Peter Barnard, Chairman and CEO of ITER Canada, at the Empire Club of Canada. The official invitation to participate in these events came from Dr. Peter Harrison, Deputy Minister of Natural Resources Canada. This report provides a brief summary of the events on 1 March

  7. ITER licensing

    International Nuclear Information System (INIS)

    Gordon, C.W.

    2005-01-01

    ITER was fortunate to have four countries interested in ITER siting to the point where licensing discussions were initiated. This experience uncovered the challenges of licensing a first of a kind, fusion machine under different licensing regimes and helped prepare the way for the site specific licensing process. These initial steps in licensing ITER have allowed for refining the safety case and provide confidence that the design and safety approach will be licensable. With site-specific licensing underway, the necessary regulatory submissions have been defined and are well on the way to being completed. Of course, there is still work to be done and details to be sorted out. However, the informal international discussions to bring both the proponent and regulatory authority up to a common level of understanding have laid the foundation for a licensing process that should proceed smoothly. This paper provides observations from the perspective of the International Team. (author)

  8. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huget, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.; Shimada, M.; Aymar, R.; Chuyanov, V.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first 10 years' operation will be devoted primarily to physics issues at low neutron fluence and the following 10 years' operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes such as inductive high Q modes, long pulse hybrid modes, non-inductive steady-state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours per day but also in involving the world-wide fusion communities and in promoting scientific competition among the Parties. (author)

  9. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  10. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    OpenAIRE

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-01-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solv...

  11. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  12. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  13. Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Qing [Univ. of Colorado, Colorado Springs, CO (United States); Whaley, Richard Clint [Univ. of Texas, San Antonio, TX (United States); Qasem, Apan [Texas State Univ., San Marcos, TX (United States); Quinlan, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-23

    This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis, identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.

  14. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  15. ITER EDA Newsletter. V. 3, no. 8

    International Nuclear Information System (INIS)

    1994-08-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on the sixth ITER council meeting; introduces the newly appointed ITER director and reports on his address to the ITER council. The vacuum tank for the ITER model coil testing, installed at JAERI, Naka, Japan is also briefly described

  16. Performance and Complexity of Tunable Sparse Network Coding with Gradual Growing Tuning Functions over Wireless Networks

    DEFF Research Database (Denmark)

    Garrido, Pablo; Sørensen, Chres Wiant; Roetter, Daniel Enrique Lucani

    2016-01-01

    Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages...... a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and computational cost. In addition, it would be difficult to implement, due to the feedback delay. In this work...

  17. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.

    Science.gov (United States)

    Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin

    2010-04-16

    Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.

  18. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  19. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang; Bai, Fangzhou [Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Yin, Peifeng [Department of Computer Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16801 (United States); Wang, Binghong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  20. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    Science.gov (United States)

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  1. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    2001-01-01

    The 17th Meeting of the ITER Technical Advisory Committee (TAC-17) was held on February 19-22, the ITER Garching Work Site in Germany. The objective of the meeting was to review the Draft Final Design Report of ITER-FEAT and assess the ability of the self-consistent overall design both to satisfy the technical objectives previously defined and to meet the cost limitations. TAC-17 was also organized to confirm that the design and critical elements, with emphasis on the key recommendations made at previous TAC meetings, are such as to extend the confidence in starting ITER construction. It was also intended to provide the ITER Council, scheduled to meet on 27 and 28 February in Toronto, with a technical assessment and key recommendations of the above mentioned report

  2. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  3. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    The Project has focused on drafting the Plant Description Document (PDD), which will be published as the Technical Basis for the ITER Final Design Report (FDR), and its related documentation in time for the ITER review process. The preparations have involved continued intensive detailed design work, analyses and assessments by the Home Teams and the Joint Central Team, who have co-operated closely and efficiently. The main technical document has been completed in time for circulation, as planned, to TAC members for their review at TAC-17 (19-22 February 2001). Some of the supporting documents, such as the Plant Design Specification (PDS), Design Requirements and Guidelines (DRG1 and DRG2), and the Plant Safety Requirement (PSR) are also available for reference in draft form. A summary paper of the PDD for the Council's information is available as a separate document. A new documentation structure for the Project has been established. This hierarchical structure for documentation facilitates the entire organization in a way that allows better change control and avoids duplications. The initiative was intended to make this documentation system valid for the construction and operation phases of ITER. As requested, the Director and the JCT have been assisting the Explorations to plan for future joint technical activities during the Negotiations, and to consider technical issues important for ITER construction and operation for their introduction in the draft of a future joint implementation agreement. As charged by the Explorers, the Director has held discussions with the Home Team Leaders in order to prepare for the staffing of the International Team and Participants Teams during the Negotiations (Co-ordinated Technical Activities, CTA) and also in view of informing all ITER staff about their future directions in a timely fashion. One important element of the work was the completion by the Parties' industries of costing studies of about 83 ''procurement packages

  4. ITER ITA newsletter. No. 8, September 2003

    International Nuclear Information System (INIS)

    2003-10-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities including Robert Aymar's leaving ITER for CERN, ITER related issues at the IAEA General Conference and status and prospects of thermonuclear power and activity during the ITA on materials foe vessel and in-vessel components

  5. Metrics Feedback Cycle: measuring and improving user engagement in gamified eLearning systems

    Directory of Open Access Journals (Sweden)

    Adam Atkins

    2017-12-01

    Full Text Available This paper presents the identification, design and implementation of a set of metrics of user engagement in a gamified eLearning application. The 'Metrics Feedback Cycle' (MFC is introduced as a formal process prescribing the iterative evaluation and improvement of application-wide engagement, using data collected from metrics as input to improve related engagement features. This framework was showcased using a gamified eLearning application as a case study. In this paper, we designed a prototype and tested it with thirty-six (N=36 students to validate the effectiveness of the MFC. The analysis and interpretation of metrics data shows that the gamification features had a positive effect on user engagement, and helped identify areas in which this could be improved. We conclude that the MFC has applications in gamified systems that seek to maximise engagement by iteratively evaluating implemented features against a set of evolving metrics.

  6. ITER CTA newsletter. No. 9

    International Nuclear Information System (INIS)

    2002-06-01

    This ITER CTA newsletter contains information about the Fourth Negotiations Meeting on the Joint Implementation of ITER held in Cadarache, France on 4-6 June 2002 and about the meeting of the ITER CTA Project Board which took place on the occasion of the N4 Meeting at Cadarache on 3-4 June 2002

  7. ITER CTA newsletter. No. 1

    International Nuclear Information System (INIS)

    2001-01-01

    This ITER CTA newsletter comprises reports on ITER co-ordinated technical activities, information about the Meeting of the ITER CTA project board which took place in Vienna on 16 July 2001, and the Meeting of the expert group on MHD, disruptions and plasma control which was held on 25-26 June 2001 in Funchal, Madeira

  8. The JET ITER-like wall experiment: First results and lessons for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.efda.org [EFDA-CSU Culham, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium)

    2013-10-15

    Highlights: ► JET has recently completed the installation of an ITER-like wall. ► Important operational aspects have changed with the new wall. ► Initial experiments have confirmed the expected low fuel retention. ► Disruption dynamics have change dramatically. ► Development of wall-compatible, ITER-relevant regimes of operation has begun. -- Abstract: The JET programme is strongly focused on preparations for ITER construction and exploitation. To this end, a major programme of machine enhancements has recently been completed, including a new ITER-like wall, in which the plasma-facing armour in the main vacuum chamber is beryllium while that in the divertor is tungsten—the same combination of plasma-facing materials foreseen for ITER. The goal of the initial experimental campaigns is to fully characterise operation with the new wall, concentrating in particular on plasma-material interactions, and to make direct comparisons of plasma performance with the previous, carbon wall. This is being done in a progressive manner, with the input power and plasma performance being increased in combination with the commissioning of a comprehensive new real-time protection system. Progress achieved during the first set of experimental campaigns with the new wall, which took place from September 2011 to July 2012, is reported.

  9. ITER concept definition. V.1

    International Nuclear Information System (INIS)

    1989-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA), an agreement among the four parties representing the world's major fusion programs resulted in a program for conceptual design of the next logical step in the fusion program, the International Thermonuclear Experimental Reactor (ITER). The definition phase, which ended in November, 1989, is summarized in two reports: a brief summary is contained in the ITER Definition Phase Report (IAEA/ITER/DS/2); the extended technical summary and technical details of ITER are contained in this two-volume report. The first volume of this report contains the Introduction and Summary, and the remainder will appear in Volume II. In the Conceptual Design Activities phase, ITER has been defined as being a tokamak device. The basic performance parameters of ITER are given in Volume I of this report. In addition, the rationale for selection of this concept, the performance flexibility, technical issues, operations, safety, reliability, cost, and research and development needed to proceed with the design are discussed. Figs and tabs

  10. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  11. ITER ITA newsletter No. 32, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities. The ITER Parties, at their Ministerial Meeting in May 2006 in Brussels, initialled the draft text of the prospective Agreement on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project as well as the draft text of the Agreement on the Privileges and Immunities of the ITER International Fusion Energy Organisation for the Joint Implementation of the ITER Project. The Parties have requested that the IAEA Director General serve as Depositary of the two aforementioned Agreements and that the IAEA establish a Trust Fund to Support Common Expenditures under the ITER Transitional Arrangements, pending entry into force of the prospective Agreement on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project. At its June Meeting in Vienna, the IAEA Board of Governors approved these requests. There is also information about the Tenth Meeting of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics was held at the Kurchatov Institute, Moscow, from 10-14 April 2006

  12. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  13. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  14. ATLAS Run 1 Pythia8 tunes

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    We present tunes of the Pythia8 Monte~Carlo event generator's parton shower and multiple parton interaction parameters to a range of data observables from ATLAS Run 1. Four new tunes have been constructed, corresponding to the four leading-order parton density functions, CTEQ6L1, MSTW2008LO, NNPDF23LO, and HERAPDF15LO, each simultaneously tuning ten generator parameters. A set of systematic variations is provided for the NNPDF tune, based on the eigentune method. These tunes improve the modeling of observables that can be described by leading-order + parton shower simulation, and are primarily intended for use in situations where next-to-leading-order and/or multileg parton-showered simulations are unavailable or impractical.

  15. ITER EDA Newsletter. V. 10, no. 7

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter presents an overview of meetings held at IAEA Headquarters in Vienna during the week 16-20 July 2001 related to the successful completion of the ITER Engineering Design Activities (EDA). Among them were the final meeting of the ITER Council, the closing ceremony to commemorate the EDA completion, the final meeting of the ITER Management Advisory Committee, a briefing of issues related to ITER developments, and discussions on the possible joint implementation of ITER

  16. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback.

    Science.gov (United States)

    Grinthal, Alison; Aizenberg, Joanna

    2013-09-07

    A living organism is a bundle of dynamic, integrated adaptive processes: not only does it continuously respond to constant changes in temperature, sunlight, nutrients, and other features of its environment, but it does so by coordinating hierarchies of feedback among cells, tissues, organs, and networks all continuously adapting to each other. At the root of it all is one of the most fundamental adaptive processes: the constant tug of war between chemistry and mechanics that interweaves chemical signals with endless reconfigurations of macromolecules, fibers, meshworks, and membranes. In this tutorial we explore how such chemomechanical feedback - as an inherently dynamic, iterative process connecting size and time scales - can and has been similarly evoked in synthetic materials to produce a fascinating diversity of complex multiscale responsive behaviors. We discuss how chemical kinetics and architecture can be designed to generate stimulus-induced 3D spatiotemporal waves and topographic patterns within a single bulk material, and how feedback between interior dynamics and surface-wide instabilities can further generate higher order buckling and wrinkling patterns. Building on these phenomena, we show how yet higher levels of feedback and spatiotemporal complexity can be programmed into hybrid materials, and how these mechanisms allow hybrid materials to be further integrated into multicompartmental systems capable of hierarchical chemo-mechano-chemical feedback responses. These responses no doubt represent only a small sample of the chemomechanical feedback behaviors waiting to be discovered in synthetic materials, and enable us to envision nearly limitless possibilities for designing multiresponsive, multifunctional, self-adapting materials and systems.

  17. Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis.

    Science.gov (United States)

    Zaher, Ashraf A

    2008-03-01

    A technique is introduced for identifying uncertain and/or unknown parameters of chaotic dynamical systems via using simple state feedback. The proposed technique is based on bringing the system into a stable steady state and then solving for the unknown parameters using a simple algebraic method that requires access to the complete or partial states of the system depending on the dynamical model of the chaotic system. The choice of the state feedback is optimized in terms of practicality and causality via employing a single feedback signal and tuning the feedback gain to ensure both stability and identifiability. The case when only a single scalar time series of one of the states is available is also considered and it is demonstrated that a synchronization-based state observer can be augmented to the state feedback to address this problem. A detailed case study using the Lorenz system is used to exemplify the suggested technique. In addition, both the Rössler and Chua systems are examined as possible candidates for utilizing the proposed methodology when partial identification of the unknown parameters is considered. Finally, the dependence of the proposed technique on the structure of the chaotic dynamical model and the operating conditions is discussed and its advantages and limitations are highlighted via comparing it with other methods reported in the literature.

  18. A realtime feedback microprocessor for the TEVATRON

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1993-01-01

    A feedback microprocessor has been built for the TEVATRON. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor includes a finite state machine. Each state corresponds to a specific TEVATRON operation. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime correction. The authors also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. This talk will describe use of this device to control the TEVATRON tunes and discuss other uses

  19. IAEA activities related to ITER

    International Nuclear Information System (INIS)

    Dolan, T.J.; Schneider, U.

    2001-01-01

    As agreed between the IAEA and the ITER Parties, special sessions are dedicated to ITER at the IAEA Fusion Energy Conferences. At the 18th IAEA Fusion Energy Conference, held on 4-10 October 2000 in Sorrento, Italy, in the Artsimovich-Kadomtsev Memorial opening session there were special lectures by Carlo Rubbia (President, ENEA, Italy), A. Arima (Japan), and E.P. Velikhov (Russia); an overview talk on ITER by R. Aymar (ITER Director); and a talk on the FTU experiment by F. Romanelli. In total, 573 participants from 34 countries presented 389 papers (including 11 post-deadline papers and the 4 summaries)

  20. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  1. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  2. Pre-tuning of TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Furuya, Takaaki; Suzuki, Toshiji; Iino, Yohsuke.

    1990-01-01

    Pre-tuning of thirty-two TRISTAN superconducting cavities has been done. In this paper are described the pre-tuning system and the results of all the cavities. The average field flatness was 1.4 % after pre-tuning. From our experience, the followings are important, 1) to evacuate the cavity during the process of the pre-tuning to avoid the uncertainty in evacuation, 2) pre-tuning is needed after annealing because it causes changes of the cell length and the field profile and 3) field flatness sometimes changes when expanded and 4) cells should not be expanded more than 1.5 mm after pre-tuning since inelastic deformation occurs. (author)

  3. ITER ITA Newsletter. No. 29, March 2006

    International Nuclear Information System (INIS)

    2006-05-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities and meetings, namely, the ITER Director-General Nominee, Dr. Kaname Ikeda, took up his position as ITER Project Leader in Cadarache on 13 March, the consolidation of information technology infrastructure for ITER and about he Thirty-Fifth Meeting of the Fusion Power Co-ordinating Committee (FPCC), which was held on 28 February-1 March 2006 at the headquarters of the International Energy Agency (IEA) in Paris

  4. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1992-01-01

    This paper reports on results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits, but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. Much research and development (R ampersand D) and design analysis is needed to establish that ITER meets regulatory requirements. There is a further oportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, three programmatic challenges and three technical challenges must be overcome. The first step is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of three key technical challenges is plasma engineering - burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost

  5. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.

    Science.gov (United States)

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan

    2018-01-01

    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Status of ITER

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    At the end of engineering design activities (EDA) in July 2001, all the essential elements became available to make a decision on construction of ITER. A sufficiently detailed and integrated engineering design now exists for a generic site, has been assessed for feasibility, and costed, and essential physics and technology R and D has been carried out to underpin the design choices. Formal negotiations have now begun between the current participants--Canada, Euratom, Japan, and the Russian Federation--on a Joint Implementation Agreement for ITER which also establishes the legal entity to run ITER. These negotiations are supported on technical aspects by Coordinated Technical Activities (CTA), which maintain the integrity of the project, for the good of all participants, and concentrate on preparing for procurement by industry of the longest lead items, and for formal application for a construction license with the host country. This paper highlights the main features of the ITER design. With cryogenically-cooled magnets close to neutron-generating plasma, the design of shielding with adequate access via port plugs for auxiliaries such as heating and diagnostics, and of remote replacement and refurbishing systems for in-vessel components, are particularly interesting nuclear technology challenges. Making a safety case for ITER to satisfy potential regulators and to demonstrate, as far as possible at this stage, the environmental attractiveness of fusion as an energy source, is also important. The paper gives illustrative details on this work, and an update on the progress of technical preparations for construction, as well as the status of the above negotiations

  7. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  8. ITER CTA newsletter. No. 4

    International Nuclear Information System (INIS)

    2001-12-01

    This ITER CTA Newsletter contains information about the organization of the ITER Co-ordinated Technical Activities (CTA) International Team as the follow-up of the ITER CTA project board meeting in Toronto on 7 November 2001. It also includes a summary on the start of the international tokamak physics activity by Dr. D. Campbell, Chair of the ITPA Co-ordinating Committee

  9. ITER management advisory committee meeting

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2001-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 23 February in Garching, Germany. The main topics were: the consideration of the report by the Director on the ITER EDA Status, the review of the Work Programme, the review of the Joint Fund, the review of a schedule of ITER meetings, and the arrangements for termination and wind-up of the EDA

  10. Electron cyclotron power management for control of neoclassical tearing modes in the ITER baseline scenario

    Science.gov (United States)

    Poli, F. M.; Fredrickson, E. D.; Henderson, M. A.; Kim, S.-H.; Bertelli, N.; Poli, E.; Farina, D.; Figini, L.

    2018-01-01

    Time-dependent simulations are used to evolve plasma discharges in combination with a modified Rutherford equation for calculation of neoclassical tearing mode (NTM) stability in response to electron cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. Simulations indicate that it is critical to detect the island as soon as possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2, 1) . A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2, 1)- NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the upper launcher during the entire flattop phase. Assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10 .

  11. ITER ITA newsletter. No. 6, July 2003

    International Nuclear Information System (INIS)

    2003-09-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities. One of them was the farewell party for for Annick Lyraud and Robert Aymar, who will take up his position as Director-General of CERN in January 2004, another is information about Dr. Yasuo Shimomura, ITER interim project leader, and ITER technical work during the transitional arrangements

  12. Data-driven adaptive fractional order PI control for PMSM servo system with measurement noise and data dropouts.

    Science.gov (United States)

    Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan

    2018-04-01

    In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. ITER EDA newsletter. V. 7, no. 7

    International Nuclear Information System (INIS)

    1998-07-01

    This newsletter contains the articles: 'Extraordinary ITER council meeting', 'ITER EDA final safety meeting' and 'Summary report of the 3rd combined workshop of the ITER confinement and transport and ITER confinement database and modeling expert groups'

  14. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  15. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  16. Measurable Disturbances Compensation: Analysis and Tuning of Feedforward Techniques for Dead-Time Processes

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2016-04-01

    Full Text Available In this paper, measurable disturbance compensation techniques are analyzed, focusing the problem on the input-output and disturbance-output time delays. The feedforward compensation method is evaluated for the common structures that appear between the disturbance and process dynamics. Due to the presence of time delays, the study includes causality and instability phenomena that can arise when a classical approach for disturbance compensation is used. Different feedforward configurations are analyzed for two feedback control techniques, PID (Proportional-Integral-Derivative and MPC (Model Predictive Control that are widely used for industrial process-control applications. The specific tuning methodology for the analyzed process structure is used to obtain improved disturbance rejection performance regarding classical approaches. The evaluation of the introduced disturbance rejection schemes is performed through simulation, considering process constraints in order to highlight the advantages and drawbacks in common scenarios. The performance of the analyzed structure is expressed with different indexes that allow us direct comparisons. The obtained results show that the proper design and tuning of the feedforward action helps to significantly improve the overall control performance in process control tasks.

  17. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  18. ITER EDA newsletter. V. 1, no. 2

    International Nuclear Information System (INIS)

    1992-12-01

    This second issue of the ITER Newsletter during the EDA (Engineering Design Activities) reports on (i) the second ITER Council Meeting held in the Russian Research Centre (RRC) ''Kurchatov Institute'', Moscow, Russia, December 15-16, 1992, (ii) the opening ceremony of the ITER Council Office at the RRC, (iii) the first meeting of the ITER Management Advisory Committee (MAC), (iv) the start-up of the ITER EDA at Garching, Germany, (v) descriptions of the ITER Co-Centres at Naka, Japan, and (vi) San Diego, USA, (vii) contact persons activities, (viii) the adoption by the ITER Council of the recommendations by the Special Working Group 1 (SWG-1), (ix) news in brief, and (x) coming events

  19. The Most Common Feedback Themes in Communication Skills Training in an Internal Medicine Residency Program: Lessons from the Resident Audio-Recording Project.

    Science.gov (United States)

    Han, Heeyoung; Papireddy, Muralidhar Reddy; Hingle, Susan T; Ferguson, Jacqueline Anne; Koschmann, Timothy; Sandstrom, Steve

    2018-07-01

    Individualized structured feedback is an integral part of a resident's learning in communication skills. However, it is not clear what feedback residents receive for their communication skills development in real patient care. We will identify the most common feedback topics given to residents regarding communication skills during Internal Medicine residency training. We analyzed Resident Audio-recording Project feedback data from 2008 to 2013 by using a content analysis approach. Using open coding and an iterative categorization process, we identified 15 emerging themes for both positive and negative feedback. The most recurrent feedback topics were Patient education, Thoroughness, Organization, Questioning strategy, and Management. The residents were guided to improve their communication skills regarding Patient education, Thoroughness, Management, and Holistic exploration of patient's problem. Thoroughness and Communication intelligibility were newly identified themes that were rarely discussed in existing frameworks. Assessment rubrics serve as a lens through which we assess the adequacy of the residents' communication skills. Rather than sticking to a specific rubric, we chose to let the rubric evolve through our experience.

  20. ITER ITA newsletter. No. 11, December 2003

    International Nuclear Information System (INIS)

    2003-12-01

    This issue of the ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER including information from the editor about ITER update, about progress in ITER magnet design and preparation of procurement packages and about 25th anniversary of the First Steering Committee Meeting of the International Tokamak Reactor (INTOR) Workshop, organized under the auspices of the IAEA, took place at the IAEA Headquarters in Vienna

  1. Rokkasho: Japanese site for ITER

    International Nuclear Information System (INIS)

    Ohtake, S.; Yamaguchi, V.; Matsuda, S.; Kishimoto, H.

    2003-01-01

    The Atomic Energy Commission of Japan authorized ITER as the core machine of the Third Phase Basic Program of Fusion Energy Development. After a series of discussions in the Atomic Energy Commission and the Council of Science and Technology Policy, Japanese Government concluded formally with the Cabinet Agreement on 31 May 2002 that Japan should participate in the ITER Project and offer the Rokkasho-Mura site for construction of ITER to the Negotiations among Canada (CA), the European Union (EU), Japan (JA), and the Russian Federation (RF). The JA site proposal is now under the international assessment in the framework of the ITER Negotiations. (author)

  2. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  3. ITER EDA newsletter. V. 8, no. 12

    International Nuclear Information System (INIS)

    1999-12-01

    This ITER EDA Newsletter reports about the ITER Management Advisory Committee Meeting in Naka, the ITER Technical Advisory Committee Meeting in Naka and the meeting of the ITER SWG-P2 in Vienna. A separate abstract is prepared for each meeting

  4. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    Science.gov (United States)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  5. Children’s Feedback Preferences in Response to an Experimentally Manipulated Peer Evaluation Outcome: The Role of Depressive Symptoms

    Science.gov (United States)

    Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J.

    2007-01-01

    The present study examined the linkage between pre-adolescent children’s depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total ‘likeability’ score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children’s self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation. PMID:17279340

  6. ITER EDA newsletter. V. 10, no. 1

    International Nuclear Information System (INIS)

    2001-01-01

    This article provides a summary of results of the ITER Physics Committee Meeting, which was held on 14 October 2000 at the ITER Garching Joint Work Site, Germany. The ITER Physics Committee is the body responsible for overseeing, through the seven specialized Expert Groups, the R and D activities contributed voluntarily by the ITER Parties. The Parties' Physics Designated Persons, the Chairs and Co-Chairs of ITER Physics Expert Groups and the JCT members involved attended the Meeting. As usual, the meeting was chaired by the ITER Director, Dr. R. Aymar, who reported on the status of the ITER EDA. Dr. Aymar described the steps being taken in preparing the ITER-FEAT Final Design Report (FDR), and further stated that the Report would be available in time to be of benefit to the Negotiations on the ITER Joint Implementation, expected to start around May 2001. All Parties recognize that the ITER Physics Expert Group structure has been useful in focusing the tokamak physics activity on the ITER-relevant issues and provides an efficient worldwide collaboration on confirming innovative solutions. The concept of an international workshop to be organized as a pre-meeting of each Expert Group meeting, in order to involve U.S. scientists in the discussion of generic tokamak physics issues, was introduced in 2000, with some success, and its goal should be pursued

  7. Existence test for asynchronous interval iterations

    DEFF Research Database (Denmark)

    Madsen, Kaj; Caprani, O.; Stauning, Ole

    1997-01-01

    In the search for regions that contain fixed points ofa real function of several variables, tests based on interval calculationscan be used to establish existence ornon-existence of fixed points in regions that are examined in the course ofthe search. The search can e.g. be performed...... as a synchronous (sequential) interval iteration:In each iteration step all components of the iterate are calculatedbased on the previous iterate. In this case it is straight forward to base simple interval existence and non-existencetests on the calculations done in each step of the iteration. The search can also...... on thecomponentwise calculations done in the course of the iteration. These componentwisetests are useful for parallel implementation of the search, sincethe tests can then be performed local to each processor and only when a test issuccessful do a processor communicate this result to other processors....

  8. Iterative student-based testing of automated information-handling exercises

    Directory of Open Access Journals (Sweden)

    C. K. Ramaiah

    1995-12-01

    Full Text Available Much laboratory teaching of information-handling involves students in evaluating information provided either online or via a computer package. A lecturer can help students carry out these tasks in a variety of ways. In particular, it is customary to provide students with hand-outs, and there is good evidence that such hand-outs are a valuable resource, especially for lower-ability students (see, for example Saloman, 1979. In many of these exercises, students are passive receivers of information, in the sense that they assess the information but do not change it. However, it is sometimes possible to use student feedback to change the original input. In this case, the users' mental models of the system can be employed to modify the user-interface set up by the original designer (see Moran, 1981. A number of experiments have been carried out in the Department of Information and Library Studies at Loughborough University to examine how computer interfaces and instruction sheets used in teaching can be improved by student feedback. The present paper discusses examples of this work to help suggest both the factors to be taken into account and the sorts of changes involved. Our approach has been based on the concept of 'iterative usability testing', the value of which has recently been emphasized by Shneiderman (1993.

  9. ITER EDA Newsletter. V.3, no.3

    International Nuclear Information System (INIS)

    1994-03-01

    This ITER EDA Newsletter issue contains reports on (i) the completion of the ITER EDA Protocol 1, (ii) the signing of ITER EDA Protocol 2, (iii) a technical meeting on pumping and fuelling and (iv) a technical meeting on the ITER Tritium Plant

  10. Enlargement of Tuning Range in a Ferrite-Tuned Cavity Through Superposed Orthogonal and Parallel Magnetic Bias

    CERN Document Server

    Vollinger, C

    2013-01-01

    Conventional ferrite-tuned cavities operate either with bias fields that are orthogonal or parallel to the magnetic RF-field. For a cavity that tunes rapidly over an overall frequency range around 100-400 MHz with high Q, we use ferrite garnets exposed to an innovative new biasing method consisting of a superposition of perpendicular and parallel magnetic fields. This method leads to a significant enlargement of the high-Q cavity tuning range by defining an operation point close to the magnetic saturation and thus improving ferrite material behaviour. A further advantage of this technique is the fast tuning speed resulting from the fact that tuning is carried out either with pure parallel biasing, or together with a very small change of operating point from perpendicular bias. In this paper, several scaled test models of ferrite-filled resonators are shown; measurements on the set-ups are compared and discussed.

  11. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  12. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  13. ITER Fast Plant System Controller prototype based on PXIe platform

    International Nuclear Information System (INIS)

    Ruiz, M.; Vega, J.; Castro, R.; Sanz, D.; López, J.M.; Arcas, G. de; Barrera, E.; Nieto, J.; Gonçalves, B.; Sousa, J.; Carvalho, B.; Utzel, N.; Makijarvi, P.

    2012-01-01

    Highlights: ► Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. ► Efficient data acquisition and data movement using EPICS. ► Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  14. ITER EDA newsletter. V. 7, no. 1

    International Nuclear Information System (INIS)

    1998-01-01

    This issue of the ITER Newsletter contains a summary report on the Thirteenth meeting of the ITER Management Advisory Committee (MAC), a report on ITER at the International Conference on Fusion Reactor Materials and a report of a Russian scientist working at ITER Garching JWS

  15. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  16. Plasma control concepts for ITER

    International Nuclear Information System (INIS)

    Lister, J.B.; Nieswand, C.

    1997-01-01

    This overview paper skims over a wide range of issues related to the control of ITER plasmas. Although operation of the ITER project will require extensive developmental work to achieve the degree of control required, there is no indication that any of the identified problems will present overwhelming difficulties compared with the operation of present tokamaks. However, the precision of control required and the degree of automation of the final ITER plasma control system will present a challenge which is somewhat greater than for present tokamaks. In order to operate ITER optimally, integrated use of a large amount of diagnostic information will be necessary, evaluated and interpreted automatically. This will challenge both the diagnostics themselves and their supporting interpretation codes. The intervening years will provide us with the opportunity to implement and evaluate most of the new features required for ITER on existing tokamaks, with the exception of the control of an ignited plasma. (author) 7 figs., 7 refs

  17. ITER project and fusion technology

    International Nuclear Information System (INIS)

    Takatsu, H.

    2011-01-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R and D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  18. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  19. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  20. On the treatment of nonlinear local feedbacks within advanced nodal generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    Recent efforts to upgrade the underlying neutronics formulations within the in-core nuclear fuel management optimization code FORMOSA (Ref. 1) have produced two important developments; first, a computationally efficient and second-order-accurate advanced nodal generalized perturbation theory (GPT) model [derived from the nonlinear iterative nodal expansion method (NEM)] for evaluating core attributes (i.e., k eff and power distribution versus cycle burnup), and second, an equally efficient and accurate treatment of local thermal-hydraulic and fission product feedbacks embedded within NEM GPT. The latter development is the focus of this paper

  1. On One-Point Iterations and DIIS

    DEFF Research Database (Denmark)

    Østerby, Ole; Sørensen, Hans Henrik Brandenborg

    2009-01-01

    We analyze various iteration procedures in many dimensions inspired by the SCF iteration used in first principles electronic structure calculations. We show that the simple mixing of densities can turn a divergent (or slowly convergent) iteration into a (faster) convergent process provided all...

  2. The ITER activity

    International Nuclear Information System (INIS)

    Glass, A.J.

    1991-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a collaboration among four parties, the United States, the Soviet Union, Japan, and the European Communities, to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. ITER will demonstrate this through the construction of a tokamak fusion reactor capable of generating 1000 megawatts of fusion power. The ITER project has three missions, as follows: (1) Physics mission -- to demonstrate ignition and controlled burn, with pulse durations from 200 to 1000 S; (2) Technology mission -- to demonstrate the technologies essential to a reactor in an integrated system, operating with high reliability and availability in pulsed operation, with steady-state operation as the ultimate goal; and (3) Testing mission -- to test nuclear and high-heat-flux components at flux levels for 1 mw/m 2 , and fluences of order 1 mw-yr/m 2

  3. ITER ITA newsletter. No. 1, February 2003

    International Nuclear Information System (INIS)

    2003-04-01

    This first issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related meetings including eighth ITER Negotiations meeting, held on 18-19 February, 2003 in St. Petersburg, Russia, first meeting of the ITER preparatory committee, held on 17 February, 2003 in St. Petersburg, Russia and the third meeting of the ITPA (International Tokamak Physics Activity) coordinating committee, held on 24-25 October 2002 at the Max-Planck-Institut fuer Plasmaphysik, Garching

  4. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  5. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

    International Nuclear Information System (INIS)

    Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

    1999-01-01

    This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

  6. ITER ITA newsletter. No. 20, February-March 2005

    International Nuclear Information System (INIS)

    2005-03-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities including interview on the occasion of Academician E.P. Velikhov' 70th birthday conducted by Dr. Lev Golubbchikov, former ITER Contact Person of the Russian Federation and a new document management system of ITER called IDM (ITER Document Management), which supersedes the old IDoMS

  7. The ITER Remote Maintenance Management System

    International Nuclear Information System (INIS)

    Tesini, Alessandro; Rolfe, A.C.

    2009-01-01

    A major challenge for the ITER project is to develop and implement a Remote Maintenance System, which can deliver high Tokamak availability within the constraints of the overall ITER programme objectives. Much of the maintenance of ITER will be performed using remote handling methods and some with combined manual and remote activities working together. The organization and management of the ITER remote handling facilities will be of a scale unlike any other remote handling application in the world. The ITER remote handling design and procurement activities will require co-ordination and management across many different sites throughout the world. It will be a major challenge for the ITER project to ensure a consistent quality and technical approach in all of the contributing parties. To address this issue the IO remote handling team are implementing the ITER Maintenance Management Plan (IMMP) comprising an overarching document defining the policies and methodologies (ITER Remote Maintenance Management System or IMMS) and an associated ITER remote handling code of practise (IRHCOP). The IMMS will be in document form available as a pdf file or similar. The IRHCOP will be implemented as a web based application and will provide access to the central resource of the entire code of practise from any location in the world. The IRHCOP data library will be centrally controlled in order that users can be assured of the data relevance and authenticity. This paper will describe the overall approach being taken to deal with this challenge and go on to detail the structure and content of both the IMMS and the IRHCOP.

  8. An Extended Validity Argument for Assessing Feedback Culture.

    Science.gov (United States)

    Rougas, Steven; Clyne, Brian; Cianciolo, Anna T; Chan, Teresa M; Sherbino, Jonathan; Yarris, Lalena M

    2015-01-01

    NEGEA 2015 CONFERENCE ABSTRACT (EDITED): Measuring an Organization's Culture of Feedback: Can It Be Done? Steven Rougas and Brian Clyne. CONSTRUCT: This study sought to develop a construct for measuring formative feedback culture in an academic emergency medicine department. Four archetypes (Market, Adhocracy, Clan, Hierarchy) reflecting an organization's values with respect to focus (internal vs. external) and process (flexibility vs. stability and control) were used to characterize one department's receptiveness to formative feedback. The prevalence of residents' identification with certain archetypes served as an indicator of the department's organizational feedback culture. New regulations have forced academic institutions to implement wide-ranging changes to accommodate competency-based milestones and their assessment. These changes challenge residencies that use formative feedback from faculty as a major source of data for determining training advancement. Though various approaches have been taken to improve formative feedback to residents, there currently exists no tool to objectively measure the organizational culture that surrounds this process. Assessing organizational culture, commonly used in the business sector to represent organizational health, may help residency directors gauge their program's success in fostering formative feedback. The Organizational Culture Assessment Instrument (OCAI) is widely used, extensively validated, applicable to survey research, and theoretically based and may be modifiable to assess formative feedback culture in the emergency department. Using a modified Delphi technique and several iterations of focus groups amongst educators at one institution, four of the original six OCAI domains (which each contain 4 possible responses) were modified to create a 16-item Formative Feedback Culture Tool (FFCT) that was administered to 26 residents (response rate = 55%) at a single academic emergency medicine department. The mean

  9. Six-Dimensional Modeling of Coherent Bunch Instabilities and Related Feedback Systems using Power-Series Maps for the Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, D.

    2003-07-07

    The authors have developed 6-dimensional phase-space code that tracks macroparticles for the study of coherent bunch instabilities and related feedback systems. The model is based on power-series maps to represent the lattice, and allows for straightforward inclusion of effects such as amplitude dependent tune shift, chromaticity, synchrotron oscillations, and synchrotron radiation. It simulates long range wake fields such as resistive-wall effects as well as the higher order modes in cavities. The model has served to study the dynamics relevant to the transverse feedback system currently being commissioned for the Advanced Light Source (ALS). Current work integrates earlier versions into a modular system that includes models for transverse and longitudinal feedback systems. It is designed to provide a modular approach to the dynamics and diagnostics, allowing a user to modify the model of a storage ring at run-time without recompilation.

  10. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  11. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2007-01-01

    ITER is a joint international research and development project that aims to demonstrate the scientific and technological feasibility of fusion power. As soon as the plasma operation begins using tritium, the replacement of the vacuum vessel internal components will need to be done with remote handling techniques. To accomplish these operations ITER has equipped itself with a Remote Maintenance System; this includes the Remote Handling equipment set and the Hot Cell facility. Both need to work in a cooperative way, with the aim of minimizing the machine shutdown periods and to maximize the machine availability. The ITER Remote Handling equipment set is required to be available, robust, reliable and retrievable. The machine components, to be remotely handle-able, are required to be designed simply so as to ease their maintenance. The baseline ITER Remote Handling equipment is described. The ITER Hot Cell Facility is required to provide a controlled and shielded area for the execution of repair operations (carried out using dedicated remote handling equipment) on those activated components which need to be returned to service, inside the vacuum vessel. The Hot Cell provides also the equipment and space for the processing and temporary storage of the operational and decommissioning radwaste. A conceptual ITER Hot Cell Facility is described. (orig.)

  12. ITER EDA newsletter. V. 4, no. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport.

  13. ITER EDA newsletter. V. 4, no. 9

    International Nuclear Information System (INIS)

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport

  14. ITER EDA newsletter. V. 10, no. 6

    International Nuclear Information System (INIS)

    2001-06-01

    This ITER EDA Newsletter issue includes information about the ITER Management Advisory Committee Meeting held in Vienna on 16 July 2001 and also a summary of the ninth ITER Technical Meeting on safety and environment held at the ITER Garching Joint Work site, 8 to 10 May, 2001

  15. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.

    Science.gov (United States)

    Valdés, Bulmaro Adolfo; Schneider, Andrea Nicole; Van der Loos, H F Machiel

    2017-10-01

    To investigate whether the compensatory trunk movements of stroke survivors observed during reaching tasks can be decreased by force and visual feedback, and to examine whether one of these feedback modalities is more efficacious than the other in reducing this compensatory tendency. Randomized crossover trial. University research laboratory. Community-dwelling older adults (N=15; 5 women; mean age, 64±11y) with hemiplegia from nontraumatic hemorrhagic or ischemic stroke (>3mo poststroke), recruited from stroke recovery groups, the research group's website, and the community. In a single session, participants received augmented feedback about their trunk compensation during a bimanual reaching task. Visual feedback (60 trials) was delivered through a computer monitor, and force feedback (60 trials) was delivered through 2 robotic devices. Primary outcome measure included change in anterior trunk displacement measured by motion tracking camera. Secondary outcomes included trunk rotation, index of curvature (measure of straightness of hands' path toward target), root mean square error of hands' movement (differences between hand position on every iteration of the program), completion time for each trial, and posttest questionnaire to evaluate users' experience and system's usability. Both visual (-45.6% [45.8 SD] change from baseline, P=.004) and force (-41.1% [46.1 SD], P=.004) feedback were effective in reducing trunk compensation. Scores on secondary outcome measures did not improve with either feedback modality. Neither feedback condition was superior. Visual and force feedback show promise as 2 modalities that could be used to decrease trunk compensation in stroke survivors during reaching tasks. It remains to be established which one of these 2 feedback modalities is more efficacious than the other as a cue to reduce compensatory trunk movement. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. ITER EDA newsletter. V. 4, no.12

    International Nuclear Information System (INIS)

    1995-12-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report on the ninth ITER council meeting held December 12 - 13, 1995 in Garching near Munich, Germany (by Dr. E. Canobbio), a report on the status of the ITER EDA (by Dr. R. Aymar, ITER Director) and a report on the ninth meeting of the ITER Technical Advisory Committee (by Professor P. Rutherford, TAC Chair) held 27 - 29 November 1995, in Garching near Munich, Germany

  17. ITER ITA newsletter. No. 4, May 2003

    International Nuclear Information System (INIS)

    2003-07-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related meetings, one of them the eighth meeting of the ITER negotiators' standing sub-group (NSSG-8) and a number of related meetings from 14 to 22 May 2003 at Garching, Germany, another was bilateral blanket meeting between ITER International Team (IT) and the Research and Development Institute of Power Engineering (ENTEK), which was held in Moscow, Russian Federation on 22 and 23 May, 2003

  18. ITER EDA Newsletter. V. 4, no. 7

    International Nuclear Information System (INIS)

    1995-07-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains reports on (i) the 8th meeting of the ITER Technical Advisory Committee (TAC-8) held on June 29 - July 7, 1995 at the ITER San Diego Work Site, (ii) the 8th meeting of the ITER Management Advisory Committee (MAC-8) held at the ITER San Diego Work Site on July 9-10, 1995, (iii) the 33rd meeting of the International Fusion Research Council (FRC), held July 11, 1995 at the IAEA Headquarters in Vienna, Austria, and (iv) the ITER participation in the fifth topical meeting on Tritium Technology in Fission, Fusion and Isotopic Applications

  19. ITER ITA newsletter. No. 27, January 2006

    International Nuclear Information System (INIS)

    2006-02-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains concise information about two ITER related meetings including the twelfth ITER Negotiations Meeting and The Ninth Meeting of the ITPA Topical Group (TG) on Diagnostics was held at the National Fusion Research Centre (NFRC), Daejeon, Korea, from 10-14 October 2005

  20. ITER EDA newsletter. V. 5, no. 9

    International Nuclear Information System (INIS)

    1996-09-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER project contains an overview of one of the seven large ITER Research and Development Projects identified by the ITER Director, namely the Vacuum Vessel Sector, as well as an account of computer animation created for ITER

  1. ITER EDA newsletter. V. 5, no. 7

    International Nuclear Information System (INIS)

    1996-07-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Tenth ITER Council Meeting, held July 24-25, 1996, in St. Petersburg, Russia; a description of the Status of the ITER EDA by the ITER Director, Dr. R. Aymar; and a report on the so-called Task Number One by the ITER Special Working Group (Basis for the Start of Explorations, presenting possible scenarios toward siting, licensing and host support)

  2. ITER ITA newsletter. Special issue - December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains information about signing ITER Agreement, which took place on 21 November 2006 in Paris, France. It was great day for fusion research as Ministers from the seven ITER Parties in the presence of President Jacques Chirac and President of European Commission Jose Barroso and some 400 invited guests signed the Agreement setting up the ITER International Fusion Energy Organization. This issues contains the speeches, statements and remarks of Presidents and Ministers

  3. Direct Observation of Clinical Skills Feedback Scale: Development and Validity Evidence.

    Science.gov (United States)

    Halman, Samantha; Dudek, Nancy; Wood, Timothy; Pugh, Debra; Touchie, Claire; McAleer, Sean; Humphrey-Murto, Susan

    2016-01-01

    Construct: This article describes the development and validity evidence behind a new rating scale to assess feedback quality in the clinical workplace. Competency-based medical education has mandated a shift to learner-centeredness, authentic observation, and frequent formative assessments with a focus on the delivery of effective feedback. Because feedback has been shown to be of variable quality and effectiveness, an assessment of feedback quality in the workplace is important to ensure we are providing trainees with optimal learning opportunities. The purposes of this project were to develop a rating scale for the quality of verbal feedback in the workplace (the Direct Observation of Clinical Skills Feedback Scale [DOCS-FBS]) and to gather validity evidence for its use. Two panels of experts (local and national) took part in a nominal group technique to identify features of high-quality feedback. Through multiple iterations and review, 9 features were developed into the DOCS-FBS. Four rater types (residents n = 21, medical students n = 8, faculty n = 12, and educators n = 12) used the DOCS-FBS to rate videotaped feedback encounters of variable quality. The psychometric properties of the scale were determined using a generalizability analysis. Participants also completed a survey to gather data on a 5-point Likert scale to inform the ease of use, clarity, knowledge acquisition, and acceptability of the scale. Mean video ratings ranged from 1.38 to 2.96 out of 3 and followed the intended pattern suggesting that the tool allowed raters to distinguish between examples of higher and lower quality feedback. There were no significant differences between rater type (range = 2.36-2.49), suggesting that all groups of raters used the tool in the same way. The generalizability coefficients for the scale ranged from 0.97 to 0.99. Item-total correlations were all above 0.80, suggesting some redundancy in items. Participants found the scale easy to use (M = 4.31/5) and clear

  4. Iterative Development of an Online Dietary Recall Tool: INTAKE24

    Directory of Open Access Journals (Sweden)

    Emma Simpson

    2017-02-01

    Full Text Available Collecting large-scale population data on dietary intake is challenging, particularly when resources and funding are constrained. Technology offers the potential to develop novel ways of collecting large amounts of dietary information while making it easier, more convenient, intuitive, and engaging for users. INTAKE24 is an online multiple pass 24 h dietary recall tool developed for use in national food and nutrition surveys. The development of INTAKE24 was a four-stage iterative process of user interaction and evaluation with the intended end users, 11–24 years old. A total of 80 11–24 years old took part in the evaluation, 20 at each stage. Several methods were used to elicit feedback from the users including, ‘think aloud’, ‘eye tracking’, semi-structured interviews, and a system usability scale. Each participant completed an interviewer led recall post system completion. Key system developments generated from the user feedback included a ‘flat’ interface, which uses only a single interface screen shared between all of the various activities (e.g., free text entry, looking up foods in the database, portion size estimation. Improvements to the text entry, search functionality, and navigation around the system were also influenced through feedback from users at each stage. The time to complete a recall using INTAKE24 almost halved from the initial prototype to the end system, while the agreement with an interviewer led recall improved. Further developments include testing the use of INTAKE24 with older adults and translation into other languages for international use. Our future aim is to validate the system with recovery biomarkers.

  5. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  6. ITER ITA newsletter. No. 10, November 2003

    International Nuclear Information System (INIS)

    2003-12-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about an ITER related meeting, namely, the Ninth ITER Negotiations Meeting (N-9), which was held on 9-10 November 2003 at the Fragrant Hill Golden Resources Commerce Hotel in Beijing and information about research on magnetic confinement fusion (MCF) in China

  7. ITER ITA newsletter. No. 22, May 2005

    International Nuclear Information System (INIS)

    2005-06-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about Japanese Participant Team's recent activities in the ITER Transitional Arrangements(ITA) phase and ITER related meeting the Fourth IAEA Technical Meeting (IAEA-TM) on Negative Ion Based Neutral Beam Injectors which was held in Padova, Italy from 9-11 May 2005

  8. Iterative algorithms for the input and state recovery from the approximate inverse of strictly proper multivariable systems

    Science.gov (United States)

    Chen, Liwen; Xu, Qiang

    2018-02-01

    This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.

  9. Installation of the ITER committee industry. Participants guide; Installation du Comite industrie ITER. Dossier des participants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    ITER is an international project to design and build an experimental fusion reactor based on the tokamak concept. This guide presents the ITER project and objectives and the associated organizations in France, the recommendations and actions for ITER, the industrial mobilization, the industrial committee and its members, technological sheets for the enterprises and the statistical document of the SESSI. (A.L.B.)

  10. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ''ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R ampersand D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop

  11. Using Patterns for Multivariate Monitoring and Feedback Control of Linear Accelerator Performance: Proof-of-Concept Research

    International Nuclear Information System (INIS)

    Cordes, Gail Adele; Van Ausdeln, Leo Anthony; Velasquez, Maria Elena

    2002-01-01

    The report discusses preliminary proof-of-concept research for using the Advanced Data Validation and Verification System (ADVVS), a new INEEL software package, to add validation and verification and multivariate feedback control to the operation of non-destructive analysis (NDA) equipment. The software is based on human cognition, the recognition of patterns and changes in patterns in time-related data. The first project applied ADVVS to monitor operations of a selectable energy linear electron accelerator, and showed how the software recognizes in real time any deviations from the optimal tune of the machine. The second project extended the software method to provide model-based multivariate feedback control for the same linear electron accelerator. The projects successfully demonstrated proof-of-concept for the applications and focused attention on the common application of intelligent information processing techniques

  12. ITER CTA newsletter. No. 16, January 2003

    International Nuclear Information System (INIS)

    2003-04-01

    This ITER CTA newsletter contains information about some ITER related activities including ITER transitional arrangements (ITA) which will start on 1 January 2003, the USA rejoining ITER and People's Republic of China joining ITER, the visit of Mr. J. Koizumi, Prime Minister of Japan, to Kurchatov Institute, Moscow, Russian Federation on 11 January 2003, and the most recent meeting of the Scrape-Off Layer (SOL) and Divertor Physics Group of the International Tokamak Physics Activity (ITPA), which was held in Lausanne, Switzerland, on October 21-23, 2002 at the CRPP/EFL laboratory

  13. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  14. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  15. Final Report on ITER Task Agreement 81-08

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Moore

    2008-03-01

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.

  16. Multi-level iteration optimization for diffusive critical calculation

    International Nuclear Information System (INIS)

    Li Yunzhao; Wu Hongchun; Cao Liangzhi; Zheng Youqi

    2013-01-01

    In nuclear reactor core neutron diffusion calculation, there are usually at least three levels of iterations, namely the fission source iteration, the multi-group scattering source iteration and the within-group iteration. Unnecessary calculations occur if the inner iterations are converged extremely tight. But the convergence of the outer iteration may be affected if the inner ones are converged insufficiently tight. Thus, a common scheme suit for most of the problems was proposed in this work to automatically find the optimized settings. The basic idea is to optimize the relative error tolerance of the inner iteration based on the corresponding convergence rate of the outer iteration. Numerical results of a typical thermal neutron reactor core problem and a fast neutron reactor core problem demonstrate the effectiveness of this algorithm in the variational nodal method code NODAL with the Gauss-Seidel left preconditioned multi-group GMRES algorithm. The multi-level iteration optimization scheme reduces the number of multi-group and within-group iterations respectively by a factor of about 1-2 and 5-21. (authors)

  17. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  18. Approximated affine projection algorithm for feedback cancellation in hearing aids.

    Science.gov (United States)

    Lee, Sangmin; Kim, In-Young; Park, Young-Cheol

    2007-09-01

    We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.

  19. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  20. Efficient fractal-based mutation in evolutionary algorithms from iterated function systems

    Science.gov (United States)

    Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.

    2018-03-01

    In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.

  1. ITER EDA newsletter. V. 8, no. 9

    International Nuclear Information System (INIS)

    1999-09-01

    This edition of the ITER EDA Newsletter contains a contribution by the ITER Director, R. Aymar, on the subject of developments in ITER Physics R and D report on the completion of the ITER central solenoid model coils installation by H. Tsuji, Head fo the Superconducting Magnet Laboratory at JAERI in Naka, Japan. Individual abstracts are prepared for each of the two articles

  2. ITER EDA Newsletter. V. 4, no. 5

    International Nuclear Information System (INIS)

    1995-05-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains comments on the ITER project by the Permanent Representative of the Russian Federation to the International Organizations in Vienna; a report on the ITER Magnet Technical Meeting held at the Joint Work Site at Naka, Japan, April 19-21, 1995; and a contribution entitled ''ITER spouses cross the cultures''

  3. Potential for Australian involvement in ITER

    International Nuclear Information System (INIS)

    O'Connor, D. J.; Collins, G. A.; Hole, M. J.

    2006-01-01

    Full text: Full text: Fusion, the process that powers the sun and stars, offers a solution to the world's long-term energy needs: providing large scale energy production with zero greenhouse gas emissions, short-lived radio-active waste compared to conventional nuclear fission cycles, and a virtually limitless supply of fuel. Almost three decades of fusion research has produced spectacular progress. Present-day experiments have a power gain ratio of approximately 1 (ratio of power out to power in), with a power output in the 10's of megawatts. The world's next major fusion experiment, the International Thermonuclear Experimental Reactor (ITER), will be a pre-prototype power plant. Since announcement of the ITER site in June 2005, the ITER project, has gained momentum and political support. Despite Australia's foundation role in the field of fusion science, through the pioneering work of Sir Mark Oliphant, and significant contributions to the international fusion program over the succeeding years, Australia is not involved in the ITER project. In this talk, the activities of a recently formed consortium of scientists and engineers, the Australian ITER Forum will be outlined. The Forum is drawn from five Universities, ANSTO (the Australian Nuclear Science and Technology Organisation) and AINSE (the Australian Institute for Nuclear Science and Engineering), and seeks to promote fusion energy in the Australian community and negotiate a role for Australia in the ITER project. As part of this activity, the Australian government recently funded a workshop that discussed the ways and means of engaging Australia in ITER. The workshop brought the research, industrial, government and general public communities, together with the ITER partners, and forged an opportunity for ITER engagement; with scientific, industrial, and energy security rewards for Australia. We will report on the emerging scope for Australian involvement

  4. Final ITER CTA project board meeting

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2003-01-01

    The final ITER CTA Project Board Meeting (PB) took place in Barcelona, Spain on 8 December 2002. The PB took notes of the comments concerning the status of the International Team and the Participants Teams, including Dr. Aymar's report 'From ITER to a FUSION Power Reactor' and the assessment of the ITER project cost estimate

  5. Parallel S/sub n/ iteration schemes

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.

    1986-01-01

    The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial

  6. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  7. A feedback microprocessor for hadron colliders

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1992-12-01

    A feedback microprocessor has been built for the TEVATRON. It has been constructed to be applicable to hadron colliders in general. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor software includes a finite state machine. Each state corresponds to a specific TEVATRON operation and has a state-specific TEVATRON model. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime corrections. We also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. In this paper we will describe this device and its use to control the TEVATRON tunes as well as other possible applications

  8. ISTA-Net: Iterative Shrinkage-Thresholding Algorithm Inspired Deep Network for Image Compressive Sensing

    KAUST Repository

    Zhang, Jian

    2017-06-24

    Traditional methods for image compressive sensing (CS) reconstruction solve a well-defined inverse problem that is based on a predefined CS model, which defines the underlying structure of the problem and is generally solved by employing convergent iterative solvers. These optimization-based CS methods face the challenge of choosing optimal transforms and tuning parameters in their solvers, while also suffering from high computational complexity in most cases. Recently, some deep network based CS algorithms have been proposed to improve CS reconstruction performance, while dramatically reducing time complexity as compared to optimization-based methods. Despite their impressive results, the proposed networks (either with fully-connected or repetitive convolutional layers) lack any structural diversity and they are trained as a black box, void of any insights from the CS domain. In this paper, we combine the merits of both types of CS methods: the structure insights of optimization-based method and the performance/speed of network-based ones. We propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general $l_1$ norm CS reconstruction model. ISTA-Net essentially implements a truncated form of ISTA, where all ISTA-Net parameters are learned end-to-end to minimize a reconstruction error in training. Borrowing more insights from the optimization realm, we propose an accelerated version of ISTA-Net, dubbed FISTA-Net, which is inspired by the fast iterative shrinkage-thresholding algorithm (FISTA). Interestingly, this acceleration naturally leads to skip connections in the underlying network design. Extensive CS experiments demonstrate that the proposed ISTA-Net and FISTA-Net outperform existing optimization-based and network-based CS methods by large margins, while maintaining a fast runtime.

  9. Simulation of burning plasma dynamics in ITER

    International Nuclear Information System (INIS)

    Wang, J.F.; Amano, T.; Ogawa, Y.; Inoue, N.

    1996-02-01

    Dynamics of burning plasma for various transient situations in ITER plasma has been simulated with a 1.5-dimensional up-down asymmetry Tokamak Transport Simulation Code (TTSC). We have mainly paid attention to intrinsic plasma transport processes such as the confinement improvement and the change of plasma profiles. It is shown that a large excursion of the fusion power takes place with a small improvement of the plasma confinement; e.g., an increase of the global energy confinement by a factor of 1.22 yields the fusion power excursion of ∼ 30% within a few seconds. Any feedback control of fueling D-T gas is difficult to respond to this short time scale of fusion power transient. The effect of the plasma profile on the fusion power excursion has been studied, by changing the particle transport denoted by the inward pinch parameter C V . It is found that the fusion power excursion is mild and slow, and the feedback control is quite effective in suppressing the fusion power excursion and in shortening the duration time of power transient in this case. The change in the pumping efficiency has also been studied and a large excursion of the fusion power has not been observed, because of the decrease in the fuel density itself in the case of the increase in the pumping efficiency, and the helium ash accumulation in the case of the decrease in the pumping efficiency. Finally it is shown that the MHD sawteeth activity leads to the fusion power fluctuation of ± 20%, although it is helpful for the helium ash exhaust. (author)

  10. Iterative Design and Testing for the Development of a Game-Based Chlamydia Awareness Intervention: A Pilot Study.

    Science.gov (United States)

    Jiang, Rui; McKanna, James; Calabrese, Samantha; Seif El-Nasr, Magy

    2017-08-01

    Herein we describe a methodology for developing a game-based intervention to raise awareness of Chlamydia and other sexually transmitted infections among youth in Boston's underserved communities. We engaged in three design-based experiments. These utilized mixed methods, including playtesting and assessment methods, to examine the overall effectiveness of the game. In this case, effectiveness is defined as (1) engaging the target group, (2) increasing knowledge about Chlamydia, and (3) changing attitudes toward Chlamydia testing. These three experiments were performed using participants from different communities and with slightly different versions of the game, as we iterated through the design/feedback process. Overall, participants who played the game showed a significant increase in participants' knowledge of Chlamydia compared with those in the control group (P = 0.0002). The version of the game, including elements specifically targeting systemic thinking, showed significant improvement in participants' intent to get tested compared with the version of the game without such elements (Stage 2: P > 0.05; Stage 3: P = 0.0045). Furthermore, during both Stage 2 and Stage 3, participants showed high levels of enjoyment, mood, and participation and moderate levels of game engagement and social engagement. During Stage 3, however, participants' game engagement (P = 0.0003), social engagement (P = 0.0003), and participation (P = 0.0003) were significantly higher compared with those of Stage 2. Thus, we believe that motivation improvements from Stage 2 to 3 were also effective. Finally, participants' overall learning effectiveness was correlated with their prepositive affect (r = 0.52) and their postproblem hierarchy (r = -0.54). The game improved considerably from its initial conception through three stages of iterative design and feedback. Our assessment methods for each stage targeted and integrated learning, health, and engagement

  11. Guidelines: the do's, don'ts and don't knows of feedback for clinical education.

    Science.gov (United States)

    Lefroy, Janet; Watling, Chris; Teunissen, Pim W; Brand, Paul

    2015-12-01

    The guidelines offered in this paper aim to amalgamate the literature on formative feedback into practical Do's, Don'ts and Don't Knows for individual clinical supervisors and for the institutions that support clinical learning. The authors built consensus by an iterative process. Do's and Don'ts were proposed based on authors' individual teaching experience and awareness of the literature, and the amalgamated set of guidelines were then refined by all authors and the evidence was summarized for each guideline. Don't Knows were identified as being important questions to this international group of educators which if answered would change practice. The criteria for inclusion of evidence for these guidelines were not those of a systematic review, so indicators of strength of these recommendations were developed which combine the evidence with the authors' consensus. A set of 32 Do and Don't guidelines with the important Don't Knows was compiled along with a summary of the evidence for each. These are divided into guidelines for the individual clinical supervisor giving feedback to their trainee (recommendations about both the process and the content of feedback) and guidelines for the learning culture (what elements of learning culture support the exchange of meaningful feedback, and what elements constrain it?) Feedback is not easy to get right, but it is essential to learning in medicine, and there is a wealth of evidence supporting the Do's and warning against the Don'ts. Further research into the critical Don't Knows of feedback is required. A new definition is offered: Helpful feedback is a supportive conversation that clarifies the trainee's awareness of their developing competencies, enhances their self-efficacy for making progress, challenges them to set objectives for improvement, and facilitates their development of strategies to enable that improvement to occur.

  12. ITER EDA newsletter. V. 9, no. 11

    International Nuclear Information System (INIS)

    2000-11-01

    This issue of the ITER EDA Newsletter contains discussions of three meetings, i.e., (1) the Third ITER International Industry Liaison Meeting held in Toronto, Canada (November 7-9, 2000), (2) an informal meeting on ITER developments held in Sorrento, Italy (October 9, 2000), and (3) the Thirteenth Meeting of the ITER Physics Expert Group on Diagnostics held in Naka, Japan (September 21-22, 2000)

  13. Alara applied to iter design and operation

    International Nuclear Information System (INIS)

    Uzan-Elbez, Joelle; Rodriguez-Rodrigo, Lina; Porfiri, Maria Teresa; Taylor, Neil; Gordon, Charles; Garin, Pascal; Girard, Jean-Philippe

    2005-01-01

    Based on the existing data on ITER and the safety options for licensing ITER in Cadarache, the present work assesses the application of the as-low-as-reasonably-achievable (ALARA) principle, as it has been implemented in the design of ITER and will be applied during ITER operation, as well as the compliance of the design with EUR/96-29 directive and regulation applicable in France. The preliminary occupational radiation exposure estimate gives a value of about 250 man mSv/a, which is half the annual target for ITER and comes essentially from maintenance activities. Some examples of the approach are presented

  14. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Tianhua Li

    2013-09-01

    Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

  15. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  16. People's Republic of China joins ITER

    International Nuclear Information System (INIS)

    Huo Yuping

    2003-01-01

    The People's Republic of China is the largest developing country with a projected population of 1.6 - 2 billion people and an energy consumption growing from the current 1.3 Billion Tons Coal Equivalent (TCE) to more than 4 Billion TCE by 2050. This large demand needs to be accommodated in a sustainable way, requiring energy generation in an environmentally friendly way. Fusion is one of the most promising candidates to solve this important issue. This explains why in the second half of 2002, the ITER Participants' delegations to the ITER Negotiations received expression of interest from the People's Republic of China in the possibility of Chinese participation in ITER, including joining the ongoing Negotiations. The speed with which the Chinese authorities had made their decision to participate in the ITER Negotiations was impressive. The Prime Minister and the State Council had already confirmed their decision to apply to join ITER as soon as possible, and Mr. Xu Guanhua, Chinese Minister of Science and Technology, wrote on behalf of his government, on 10 January 2003, to the four heads of delegation in the ITER Negotiations, requesting that China participate in the present ITER Negotiations, pointing out that China intends to provide a substantial contribution to the Project, comparable to what is currently envisaged by some of the participants in the present Negotiations

  17. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  18. Dynamical behaviour of neuronal networks iterated with memory

    International Nuclear Information System (INIS)

    Melatagia, P.M.; Ndoundam, R.; Tchuente, M.

    2005-11-01

    We study memory iteration where the updating consider a longer history of each site and the set of interaction matrices is palindromic. We analyze two different ways of updating the networks: parallel iteration with memory and sequential iteration with memory that we introduce in this paper. For parallel iteration, we define Lyapunov functional which permits us to characterize the periods behaviour and explicitly bounds the transient lengths of neural networks iterated with memory. For sequential iteration, we use an algebraic invariant to characterize the periods behaviour of the studied model of neural computation. (author)

  19. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  20. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  1. ITER ITA newsletter No. 30, April-May 2006

    International Nuclear Information System (INIS)

    2006-06-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities including visit of Kaname Ikeda, director general nominee, to Naka; the common message from 6th preparatory meeting for ITER decision making; the eighth ITER preparatory committee and leaders meeting; principal deputy director-general Norbert Holtkamp and recollections of Dr. Michael Roberts on the occasion of his retirement

  2. ITER must make its case

    International Nuclear Information System (INIS)

    1998-01-01

    Last month, as expected, the four partners in the International Thermonuclear Experimental Reactor (ITER) project announced a three-year extension of the ITER engineering design activity. Detailed design work on the next-generation fusion-energy device started in 1992 and has cost about $1 bn so far. A decision to build the device, once scheduled to be taken this year, will now be made in 2001 at the earliest. The ITER council said that the extension would ''provide the framework for undertaking jointly site(s)-specific and other activities with the aim of enabling future decision on construction and operation of ITER''. What the project is really doing is buying time as it tries to find a cheaper option that the partners will find acceptable. The US is keen to cut the project's cost by two-thirds. (author)

  3. ITER management advisory committee meeting in NAKA

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 17 December 1999 in Naka, Japan. The main topics were the ITER EDA Status, Task Status Summary and Work Program and a schedule of ITER meetings

  4. On Controlled Iterated GSM Mappings and Related Operations

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1979-01-01

    In [17] G. Paun studied families of languages generated by iterated gsm mappings, iterated finite substitutions, and iterated homomorphisms. In this note we generalize some results in [17], and we discuss the relation between iterated finite substitutions (homomorphisms) and (deterministic) tabled

  5. On Controlled Iterated GSM Mappings and Related Operations

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1980-01-01

    In [17] G. Paun studied families of languages generated by iterated gsm mappings, iterated finite substitutions, and iterated homomorphisms. In this note we generalize some results in [17], and we discuss the relation between iterated finite substitutions (homomorphisms) and (deterministic) tabled

  6. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  7. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  8. ITER EDA newsletter. V. 5, no. 10

    International Nuclear Information System (INIS)

    1996-10-01

    This issue of the newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Fifth ITER Technical Meeting on Safety, Environment, and Regulatory Approval, held September 29 - October 7, 1996 at the ITER San Diego Joint Work Site; and a report on the Fifth ITER Diagnostics Expert Group Workshop and Technical Meeting on Diagnostics held in Montreal, Canada, 12-13 October 1996

  9. ITER EDA newsletter. V. 9, no. 8

    International Nuclear Information System (INIS)

    2000-08-01

    This ITER EDA Newsletter reports on the ITER meeting on 29-30 June 2000 in Moscow, summarizes the status report on the ITER EDA by R. Aymar, the ITER Director, and gives overviews of the expert group workshop on transport and internal barrier physics, confinement database and modelling and edge and pedestal physics, and the IEA workshop on transport barriers at edge and core. Individual abstracts have been prepared

  10. Iterative nonlinear unfolding code: TWOGO

    International Nuclear Information System (INIS)

    Hajnal, F.

    1981-03-01

    a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

  11. ITER co-ordinated technical activities

    International Nuclear Information System (INIS)

    2001-01-01

    As agreed upon between the ITER Engineering Design Activities (EDA) Parties 'Co-ordinated Technical Activities' (CTA) means technical activities which are deemed necessary to maintain the integrity of the international project, so as to prepare for the ITER joint implementation. The scope of these activities includes design adaptation to the specific site conditions, safety analysis and licensing preparation that are based on specific site offers, evaluation of cost and construction schedule, preparation of procurement documents and other issues raised by the Parties collectively, whilst assuring the coherence of the ITER project including design control

  12. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  13. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  14. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  15. An overview of control system for the ITER electron cyclotron system

    International Nuclear Information System (INIS)

    Purohit, D.; Bigelow, T.; Billava, D.; Bonicelli, T.; Caughman, J.; Darbos, C.; Denisov, G.; Gandini, F.; Gassmann, T.; Henderson, M.; Journeux, J.Y.; Kajiwara, K.; Kobayashi, N.; Nazare, C.; Oda, Y.; Omori, T.; Rao, S.L.; Rasmussen, D.; Ronden, D.; Saibene, G.

    2011-01-01

    The ITER electron cyclotron (EC) system having capability of up to 26 MW generated power at 170 GHz is being procured by 5 domestic agencies via 10 procurement arrangements. This implies diverse types of equipment and complex interface management. It also places a challenge on control system architecture to entertain the constraints of procurement slicing and meeting the overall functional requirement. The envisioned architecture is to use the local control units (supplied with each procurement) and a supervisory plant controller (by ITER). This offers a reliable control configuration for such delicate and complex EC plant system. The control system is envisioned to monitor the whole plant and perform automated tasks that are today performed via direct human intervention. For example, the automated gyrotron conditioning and active control of the EC plant to respond to requests from the plasma control system (PCS). This later aspect requires rapid shut down of the gyrotrons and power supplies, deviation of the actuators to direct the power from an equatorial to upper launcher and then restart of the power generation for rapid stabilization of the magneto hydrodynamic (MHD) instabilities that occur in high performance plasma operation. The plant controller will be designed for optimized performance with the PCS and the feedback control system used to actively control the power (with modulation capability up to 5 kHz) and launching direction for MHD stabilization.

  16. Design iteration in construction projects – Review and directions

    Directory of Open Access Journals (Sweden)

    Purva Mujumdar

    2018-03-01

    Full Text Available Design phase of any construction project involves several designers who exchange information with each other most often in an unstructured manner throughout the design phase. When these information exchanges happen to occur in cycles/loops, it is termed as design iteration. Iteration is an inherent and unavoidable aspect of any design phase which requires proper planning. Till date, very few researchers have explored the design iteration (“complexity” in construction sector. Hence, the objective of this paper was to document and review the complexities of iteration during design phase of construction projects for efficient design planning. To achieve this objective, exhaustive literature review on design iteration was done for four sectors – construction, manufacturing, aerospace, and software development. In addition, semi-structured interviews and discussions were done with a few design experts to verify the different dimensions of iteration. Finally, a design iteration framework was presented in this study that facilitates successful planning. Keywords: Design iteration, Types of iteration, Causes and impact of iteration, Models of iteration, Execution strategies of iteration

  17. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  18. ITER EDA newsletter. V. 9, no. 2

    International Nuclear Information System (INIS)

    2000-02-01

    This ITER EDA Newsletter reports on the seventh ITER technical meeting on safety and environment and contains the executive summary of the eleventh ITER scrape-off layer and divertor physics expert group meeting. Individual abstracts have been prepared

  19. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

  20. ITER site selection studies in Spain

    International Nuclear Information System (INIS)

    Medrano, M.; Alejaldre, C.; Doncel, J.; Garcia, A.; Ibarra, A.; Jimenez, J.A.; Sanchez de Mora, M.A.; Alcala, F.; Diez, J.E.; Dominguez, M.; Albisu, F.

    2003-01-01

    The studies carried out to evaluate and select a candidate site for International Thermonuclear Experimental Reactor (ITER) construction in Spain are presented in this paper. The ITER design, completed in July 2001, considered a number of technical requirements that must be fulfilled by the selected site. Several assumptions concerning the ITER site were made in order to carry on the design before final site selection. In the studies undertaken for ITER site selection in Spain, the referred technical requirements and assumptions were applied across the whole of Spain and two areas were identified as being preferential. These areas are on the Mediterranean coast and are situated in the Catalan and Valencian regions. A comparative evaluation based on technical characteristics for the concrete plots, proposed within the preferential areas, has been done. The result of these studies was the selection of a site that was deemed to be the most competitive--Vandellos (Tarragona)--and it was proposed to the European Commission for detailed studies in order to be considered as a possible European site for ITER construction. Another key factor for hosting ITER in Spain, is the licensing process. The present status is summarised in this paper

  1. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  2. Advances in iterative methods

    International Nuclear Information System (INIS)

    Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

    1981-01-01

    Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

  3. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  4. ITER EDA newsletter. V. 3, no. 2

    International Nuclear Information System (INIS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, 27-28 January 1994, a visit (28 January 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (28 January 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report

  5. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  6. Third ITER International Industry Liaison Meeting

    International Nuclear Information System (INIS)

    Dautovich, D.

    2000-01-01

    Following previous meetings held in 1996 in San Diego and in 1997 in Tokyo, the Third ITER International Industry Liaison Meeting (IILM) meeting was held under the European Chairmanship in Toronto, Canada, November 7-9, 2000. The intention of such meetings is to provide a forum for industrialists of the ITER EDA parties and other interested countries to develop common understandings on important issues of the timing and nature of Industry involvement in the ITER project. This article describes the main views from Industry on the preconstruction and construction phases and the cost and benefit schemes, while summarizing the progress made by the ITER project since the Tokyo meeting

  7. Apple iTunes music store

    OpenAIRE

    Lenzi, R.; Schmucker, M.; Spadoni, F.

    2003-01-01

    This technical report analyses the Apple iTunes Music Store and its success factors. Besides the technical aspects, user and customer aspects as well as content aspects are considered. Furthermore, iTunes Music Store's impact to online music distribution services is analysed and a short outlook to future music online distribution is given.

  8. ITER EDA newsletter. V. 5, no. 5

    International Nuclear Information System (INIS)

    1996-05-01

    This issues of the ITER Engineering Design Activities Newsletter contains a report on the Tenth Meeting of the ITER Management Advisory Committee held at JAERI Headquarters, Tokyo, June 5-6, 1996; on the Fourth ITER Divertor Physics and Divertor Modelling and Database Expert Group Workshop, held at the San Diego ITER Joint Worksite, March 11-15, 1996, and on the Agenda for the 16th IAEA Fusion Energy Conference (7-11 October 1996)

  9. Colorado Conference on iterative methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

  10. Tuning the climate sensitivity of a global model to match 20th Century warming

    Science.gov (United States)

    Mauritsen, T.; Roeckner, E.

    2015-12-01

    A climate models ability to reproduce observed historical warming is sometimes viewed as a measure of quality. Yet, for practical reasons historical warming cannot be considered a purely empirical result of the modelling efforts because the desired result is known in advance and so is a potential target of tuning. Here we explain how the latest edition of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) atmospheric model (ECHAM6.3) had its climate sensitivity systematically tuned to about 3 K; the MPI model to be used during CMIP6. This was deliberately done in order to improve the match to observed 20th Century warming over the previous model generation (MPI-ESM, ECHAM6.1) which warmed too much and had a sensitivity of 3.5 K. In the process we identified several controls on model cloud feedback that confirm recently proposed hypotheses concerning trade-wind cumulus and high-latitude mixed-phase clouds. We then evaluate the model fidelity with centennial global warming and discuss the relative importance of climate sensitivity, forcing and ocean heat uptake efficiency in determining the response as well as possible systematic biases. The activity of targeting historical warming during model development is polarizing the modeling community with 35 percent of modelers stating that 20th Century warming was rated very important to decisive, whereas 30 percent would not consider it at all. Likewise, opinions diverge as to which measures are legitimate means for improving the model match to observed warming. These results are from a survey conducted in conjunction with the first WCRP Workshop on Model Tuning in fall 2014 answered by 23 modelers. We argue that tuning or constructing models to match observed warming to some extent is practically unavoidable, and as such, in many cases might as well be done explicitly. For modeling groups that have the capability to tune both their aerosol forcing and climate sensitivity there is now a unique

  11. ITER ITA newsletter No. 33, August-September-October 2006

    International Nuclear Information System (INIS)

    2006-11-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains concise information about ITER related events such as public debate on ITER in Provence and fiftieth annual General Conference of the IAEA. Eight ITER related statements were made during Conference

  12. ITER EDA newsletter. V. 7, no. 6

    International Nuclear Information System (INIS)

    1998-06-01

    This newsletter contains the articles: 'ITER representation at the 11th Pacific Basin Nuclear Conference', 'Summary of discussion points and further deliberations in the special committee on the ITER project in the Atomic Energy Commission', and 'ITER radio frequency systems'

  13. ITER EDA Newsletter. V. 2, no. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This ITER EDA (Engineering Design Activities) Newsletter issue is dedicated to the description of the ITER EDA Home Teams (European Community, Japan, Russian Federation, USA), in particular their composition, tasks, responsibilities, national support and activities, aimed to design the ITER tokamak

  14. ITER ITA newsletter. No. 21, April 2005

    International Nuclear Information System (INIS)

    2005-05-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about Russian federation Participant Team's activity in the area of preparation for ITER construction and information about International Fusion materials irradiation Facility(IRMIF) project and prospects for implementation

  15. iHadoop: Asynchronous Iterations Support for MapReduce

    KAUST Repository

    Elnikety, Eslam

    2011-08-01

    MapReduce is a distributed programming framework designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter- iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This thesis also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  16. Peer feedback for examiner quality assurance on MRCGP International South Asia: a mixed methods study.

    Science.gov (United States)

    Perera, D P; Andrades, Marie; Wass, Val

    2017-12-08

    The International Membership Examination (MRCGP[INT]) of the Royal College of General Practitioners UK is a unique collaboration between four South Asian countries with diverse cultures, epidemiology, clinical facilities and resources. In this setting good quality assurance is imperative to achieve acceptable standards of inter rater reliability. This study aims to explore the process of peer feedback for examiner quality assurance with regard to factors affecting the implementation and acceptance of the method. A sequential mixed methods approach was used based on focus group discussions with examiners (n = 12) and clinical examination convenors who acted as peer reviewers (n = 4). A questionnaire based on emerging themes and literature review was then completed by 20 examiners at the subsequent OSCE exam. Qualitative data were analysed using an iterative reflexive process. Quantitative data were integrated by interpretive analysis looking for convergence, complementarity or dissonance. The qualitative data helped understand the issues and informed the process of developing the questionnaire. The quantitative data allowed for further refining of issues, wider sampling of examiners and giving voice to different perspectives. Examiners stated specifically that peer feedback gave an opportunity for discussion, standardisation of judgments and improved discriminatory abilities. Interpersonal dynamics, hierarchy and perception of validity of feedback were major factors influencing acceptance of feedback. Examiners desired increased transparency, accountability and the opportunity for equal partnership within the process. The process was stressful for examiners and reviewers; however acceptance increased with increasing exposure to receiving feedback. The process could be refined to improve acceptability through scrupulous attention to training and selection of those giving feedback to improve the perceived validity of feedback and improved reviewer feedback

  17. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  18. Cooperation between CERN and ITER

    CERN Document Server

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. Kaname Ikeda, the Director-General of the International Fusion Energy Organisation (ITER) (on the right) and Robert Aymar, Director-General of CERN, signing the agreement.The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March. One of the main purposes of this agreement is for CERN to give ITER the benefit of its experience in the field of technology as well as in administrative domains such as finance, procurement, human resources and informatics through the provision of consultancy services. Currently in its start-up phase at its Cadarache site, 70 km from Marseilles (France), ITER will focus its research on the scientific and technical feasibility of using fusion energy as a fu...

  19. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  20. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)