WorldWideScience

Sample records for iter operational space

  1. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  2. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huguet, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.R.; Shimada, M.; Aymar, R.; Chuyanov, V.A.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties. (author)

  3. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huget, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.; Shimada, M.; Aymar, R.; Chuyanov, V.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first 10 years' operation will be devoted primarily to physics issues at low neutron fluence and the following 10 years' operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes such as inductive high Q modes, long pulse hybrid modes, non-inductive steady-state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours per day but also in involving the world-wide fusion communities and in promoting scientific competition among the Parties. (author)

  4. Iterative approximation of the solution of a monotone operator equation in certain Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1988-01-01

    Let X=L p (or l p ), p ≥ 2. The solution of the equation Ax=f, f is an element of X is approximated in X by an iteration process in each of the following two cases: (i) A is a bounded linear mapping of X into itself which is also bounded below; and, (ii) A is a nonlinear Lipschitz mapping of X into itself and satisfies ≥ m |x-y| 2 , for some constant m > 0 and for all x, y in X, where j is the single-valued normalized duality mapping of X into X* (the dual space of X). A related result deals with the iterative approximation of the fixed point of a Lipschitz strictly pseudocontractive mapping in X. (author). 12 refs

  5. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  6. Expanding the operating space of ICRF on JET with a view to ITER

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Bonheure, G.; Durodie, F.; Lerche, E.; Lyssoivan, A.; Van Eester, D.; Weyssow, B.; Mantsinen, M.J.; Heikkinen, J.; Salmi, A.; Santala, M.I.K.; Noterdaeme, J.M.; Bovkov, V.V.; Alper, B.; Beaumont, P.; Blackman, T.; Vries, P. de; Gowers, C.; Felton, R.; Kiptily, V.; Lawson, K.; Lomas, P.; Mayoral, M.L.; Monakhov, I.; Popovichev, S.; Sharapov, S.; Bertalot, L.; Castaldo, C.; Tardocchi, M.; La Luna, E. de; Eriksson, L.G.; Baar, M. de; Meo, F.; Mironov, M.; Nunes, I.; Piazza, G.; Noterdaeme, J.M.

    2004-01-01

    The paper reports on ITER-relevant ICRF (ion cyclotron resonance frequency) physics investigated on JET in 2003 and early 2004: minority heating of He 3 and D in H plasmas, minority heating of tritium in D, investigations of finite Larmor radius effects on the RF-induced high-energy tails, fast wave heating and current drive, and new results on the heating efficiency of ICRF antennas. ELM (edge localized mode) studies using fast RF measurements, experimental demonstration of a new ELM-tolerant antenna matching scheme, and technical enhancements planned on the JET ICRF system for 2005, themselves likewise strongly driven by the preparation for ITER, are also summarized. (authors)

  7. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  8. ITER Operating Limits and Conditions

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.

    2006-01-01

    The Operating Limits and Conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which together define the domain of the safe operation of ITER in all foreseen ITER status (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components important for personnel or public safety (Safety Important Class, SIC) are identified from the overall plant safety analysis on functional importance to safety of the components. SIC classification has to be presented already inside the preliminary safety analysis report and approved by the licensing safety authority before the relevant construction. OLCs comprise the safety limits, i.e. that if exceeded could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems and the operational limits on equipment which warn from or stop a functional departure from a planned operational status that could challenge equipment and functions. The safety limits have to indicate clearly states that leave the nominal safety state of ITER; they are derived from the safety analysis of ITER. OLCs can represent in some cases few parameters grouping together. Some operational conditions, e.g. inventories, will be controlled through no real time measurements and procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants is considered at the maximum possible extent. This paper presents the guidelines to develop the ITER OLCs with particular reference to safety limits. A few examples are reported as well as open issues on some OLCs control and measurement and the relevant R-and-D planned to solve the issues. (author)

  9. ITER operating limit definition criteria

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.; Chiocchio, S.; Hureau, D.; Girard, J.Ph.; Gordon, C.; Portone, A.; Rodrigo, L. Rodriguez; Roldan, C.; Saibene, G.; Uzan-Elbez, J.

    2009-01-01

    The operating limits and conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which, together, define the domain of the safe operation of ITER in all foreseen ITER states (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components that are important for personnel or public safety (safety important class, SIC) are identified considering their functional importance in the overall plant safety analysis. SIC classification has to be presented already in the preliminary safety analysis report and approved by the licensing authority before manufacturing and construction. OLCs comprise the safety limits that, if exceeded, could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems, and the operational limits on equipment which warn against or stop a functional deviation from a planned operational status that could challenge equipment and functions. Some operational conditions, e.g. in-Vacuum Vessel (VV) radioactive inventories, will be controlled through procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants, is considered to the maximum possible extent. This paper presents the guidelines for the development of the ITER OLCs with particular reference to safety limits.

  10. Advanced scenarios for ITER operation

    Energy Technology Data Exchange (ETDEWEB)

    Sips, A.C.C. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2004-07-01

    In thermonuclear fusion research using magnetic confinement, the tokamak is the leading candidate for achieving conditions required for a reactor. An international experiment, ITER is proposed as the next essential and critical step on the path to demonstrating the scientific and technological feasibility of fusion energy. ITER is to produce and study plasmas dominated by self heating. This would give unique opportunities to explore, in reactor relevant conditions, the physics of {alpha}-particle heating, plasma turbulence and turbulent transport, stability limits to the plasma pressure and exhaust of power and particles. Important new results obtained in experiments, theory and modelling, enable an improved understanding of the physical processes occurring in tokamak plasmas and give enhanced confidence in ITER achieving its goals. In particular, progress has been made in research to raise the performance of tokamaks, aimed to extend the discharge pulse length towards steady-state operation (advanced scenarios). Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Advanced scenarios on the other hand use a modified current density profile. Different advanced scenarios range from (i) plasmas that sustain a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure, to (ii) discharges with an off axis maximum of the current density profile (reversed magnetic shear in the core), able to form internal transport barriers, to increase the confinement of the plasma. The physics of advanced tokamak discharges is described, together with an overview of recent results from different tokamak experiments. International collaboration between experiments aims to provide a better understanding, control and optimisation of these plasmas. The ability to explore advanced scenarios in ITER is very desirable, in order to verify the result obtained in

  11. Operational limits and disruptions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tsunematsu, T; Mizoguchi, T; Yoshino, R [Japan Atomic Energy Research Inst., Tokyo (Japan); Borrass, K; Engelmann, F; Pacher, G; Pacher, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.). NET Design Team; Cohen, S; Post, D [Princeton Univ., NJ (USA). Plasma Physics Lab.; Hogan, J; Uckan, N A [Oak Ridge National Lab., TN (USA); Krasheninnikov, S; Mukhovatov, V; Parail, V

    1990-12-15

    Detailed knowledge of the operational limits for beta, q and the plasma density will be required for successful and flexible operation of ITER. In this paper, the present data base and guidelines on operational limits and disruptions in the ITER design are presented. 10 refs., 1 fig.

  12. Alara applied to iter design and operation

    International Nuclear Information System (INIS)

    Uzan-Elbez, Joelle; Rodriguez-Rodrigo, Lina; Porfiri, Maria Teresa; Taylor, Neil; Gordon, Charles; Garin, Pascal; Girard, Jean-Philippe

    2005-01-01

    Based on the existing data on ITER and the safety options for licensing ITER in Cadarache, the present work assesses the application of the as-low-as-reasonably-achievable (ALARA) principle, as it has been implemented in the design of ITER and will be applied during ITER operation, as well as the compliance of the design with EUR/96-29 directive and regulation applicable in France. The preliminary occupational radiation exposure estimate gives a value of about 250 man mSv/a, which is half the annual target for ITER and comes essentially from maintenance activities. Some examples of the approach are presented

  13. Iterants, Fermions and Majorana Operators

    Science.gov (United States)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  14. Projection-iteration methods for solving nonlinear operator equations

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

    1989-09-01

    In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

  15. ITER parametric analysis and operational performance

    International Nuclear Information System (INIS)

    Perkins, L.J.; Spears, W.R.; Galambos, J.D.

    1991-01-01

    One of the key components of the ITER Conceptual Design Activities (CDA) is the determination of optimum design, investigation of operation in various modes, recommendation of baseline performance specifications, studies of sensitivity of ITER design to uncertainties in physics, investigation of operational flexibility, assessment of alternative designs, and determination of implications for extrapolation to prospective DEMO reactors. These terms of reference are reported in this document. Refs, figs and tabs

  16. Analysis of the ITER cryoplant operational modes

    International Nuclear Information System (INIS)

    Henry, D.; Journeaux, J.Y.; Roussel, P.; Michel, F.; Poncet, J.M.; Girard, A.; Kalinin, V.; Chesny, P.

    2007-01-01

    In the framework of an EFDA task, CEA is carrying out an analysis of the various ITER cryoplant operational modes. According to the project integration document, ITER is designed to be operated 365 days per year in order to optimize the available time of the Tokamak. It is anticipated that operation will be performed in long periods separated by maintenance periods (e.g. 10 days continuous operation and 1 week break) with annual or bi-annual major shutdown periods of a few months for maintenance, further installation and commissioning. For this operation schedule, auxiliary subsystems like the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different ITER operating states. The cryoplant consists of four identical 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. All of these cryogenic subsystems have to operate in parallel to remove the heat loads from the magnet, 80 K shields, cryopumps and other small users. After a brief recall of the main particularities of a cryogenic system operating in a Tokamak environment, the first part of this study is dedicated to the assessment of the main ITER operation states. A new design of refrigeration loop for the HTS current leads, the updated layout of the cryodistribution system and revised strategy for operations of the cryopumps have been taken into consideration. The relevant normal operating scenarios of the cryoplant are checked for the typical ITER operating states like plasma operation state, short term stand by, short term maintenance, or test and conditioning state. The second part of the paper is dedicated to the abnormal operating modes coming from the magnets and from those generated by the cryoplant itself. The occurrence of a fast discharge or a quench of the magnets generates large heat loads disturbances and produces exceptional high mass flow rates which have to be managed by the cryoplant, while a failure of a cryogenic component induces

  17. An iterative method for nonlinear demiclosed monotone-type operators

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1991-01-01

    It is proved that a well known fixed point iteration scheme which has been used for approximating solutions of certain nonlinear demiclosed monotone-type operator equations in Hilbert spaces remains applicable in real Banach spaces with property (U, α, m+1, m). These Banach spaces include the L p -spaces, p is an element of [2,∞]. An application of our results to the approximation of a solution of a certain linear operator equation in this general setting is also given. (author). 19 refs

  18. A functional approach for managing ITER operations

    International Nuclear Information System (INIS)

    Houtte, Didier van; Sagot, François; Okayama, Katsumi; Blackler, Kenneth

    2012-01-01

    Highlights: ► A function-oriented approach for defining and organizing all the functions required to perform the mission has been developed. ► A Functional Breakdown Structure providing a complete hierarchy of functions on multiple levels is presented. ► The FBS is used for giving a good visibility of ITER project needs and requirements. ► Reliability (R) and Inherent Availability (A I ) of basic functions are calculated from data on the structures, systems and components (failure rate and time to repair) for obtaining the Availability objectives of the ITER project. - Abstract: ITER is currently the most ambitious project on nuclear fusion research. Its objective is to demonstrate the feasibility of fusion as an energy source for the future. The complexity of the systems required to meet this challenge present many opportunities for omissions or incorrect assumptions. System engineering allows the engineer to deal with such a complexity by developing a Functional Breakdown Structure (FBS). Unlike a Plant Breakdown Structure (PBS), the FBS is a function-oriented tree, not a product-oriented tree. It details operations or activities that have to be performed as needed functions of the architecture, allowing identification of any missing elements, defining the personnel skills required to operate the architecture and managing the machine availability.

  19. Iterative solutions of nonlinear equations in smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-05-01

    Let E be a smooth Banach space over the real field, φ not= K is contained in E closed convex and bounded, T:K → K uniformly continuous and strongly pseudo-contractive. It is proved that the Ishikawa iteration process converges strongly to the unique fixed point of T. Applications of this result to the operator equations Au=f or u+Au=f where A is a strongly accretive mapping of E into itself and under various continuity assumptions on A are also given. (author). 41 refs

  20. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  1. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  2. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  3. Simulation and Analysis of the Hybrid Operating Mode in ITER

    International Nuclear Information System (INIS)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-01-01

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER

  4. Chapter 8: Plasma operation and control [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E.A.; Lister, J.B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A.C.C.; Wesley, J.C.

    2007-01-01

    and control is similar in ITER and present tokamaks, there is a principal qualitative difference. To minimize its cost, ITER has been designed with small margins in many plasma and engineering parameters. These small margins result in a significantly narrower operational space compared with present tokamaks. Furthermore, ITER operation is expensive and component damage resulting from purely operational errors might lead to a high and avoidable repair cost. These factors make it judicious to use validated plasma diagnostics and employ simulators to 'pre-test' the combined ITER operation and control systems. Understanding of how to do this type of pre-test validation is now developed in present day experiments. This research push should provide us with fully functional simulators before the first ITER operation

  5. Demonstration of ITER Operational Scenarios on DIII-D

    International Nuclear Information System (INIS)

    Doyle, E.J.; Budny, R.V.; DeBoo, J.C.; Ferron, J.R.; Jackson, G.L.; Luce, T.C.; Murakami, M.; Osborne, T.H.; Park, J.; Politzer, P.A.; Reimerdes, H.; Casper, T.A.; Challis, C.D.; Groebner, R.J.; Holcomb, C.T.; Hyatt, A.W.; La Haye, R.J.; McKee, G.R.; Petrie, T.W.; Petty, C.C.; Rhodes, T.L.; Shafer, M.W.; Snyder, P.B.; Strait, E.J; Wade, M.R.; Wang, G.; West, W.P.; Zeng, L.

    2008-01-01

    The DIII-D program has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g., the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for β N and H 98 , have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modeling, as well as for performance extrapolation to ITER. In all four scenarios normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of (ge) 400 MW of fusion power production and Q (ge) 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of ELMs, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the specified operating range in internal inductance at 15 MA for the poloidal field coil set, based on observations that the measured inductance in the baseline scenario case lay outside the original ITER specification

  6. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  7. Demonstration of ITER operational scenarios on DIII-D

    International Nuclear Information System (INIS)

    Doyle, E.J.; DeBoo, J.C.; Ferron, J.R.; Jackson, G.L.; Luce, T.C.; Osborne, T.H.; Politzer, P.A.; Groebner, R.J.; Hyatt, A.W.; La Haye, R.J.; Petrie, T.W.; Petty, C.C.; Murakami, M.; Park, J.-M.; Reimerdes, H.; Budny, R.V.; Casper, T.A.; Holcomb, C.T.; Challis, C.D.; McKee, G.R.

    2010-01-01

    The DIII-D programme has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g. the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for β N and H 98 , have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modelling, as well as for performance extrapolation to ITER. In all four scenarios, normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of ≥400 MW of fusion power production and Q ≥ 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of edge localized modes, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the physics requirements for the poloidal field coil set at 15 MA, based on observations that the inductance in the baseline scenario case evolves to a value that lies outside the original ITER specification.

  8. Applying principles of Design For Assembly to ITER maintenance operations

    International Nuclear Information System (INIS)

    Heemskerk, Cock; de Baar, Marco; Elzendoorn, Ben; Koning, Jarich; Verhoeven, Toon; Vreede, Fred de

    2009-01-01

    In ITER, maintenance operations in the vessel and in the Hot Cell will be largely done by Remote Handling (RH). Remotely performed maintenance actions tend to be more time-costly than actions performed by direct human access. With a human operator in the control loop and adequate situational feedback, a two-armed master slave manipulator system can mimic direct access with dexterous manipulation, tactile feedback and vision. But even then, turnaround times are still very high. Adapting the design for simplified maintenance operations can yield significant time savings. One of the methods known to produce a simpler, more robust design, which is also better suited for handling with robots, is Design For Assembly (DFA). This paper discusses whether and how the principles of DFA can be applied to simplify maintenance operations for ITER. While DFA is normally used with series-production and ITER is a unique product, it is possible to apply the principles of DFA to ITER maintenance operations. Furthermore, DFA's principles can be applied at different abstraction levels. Combining principles of DFA with Virtual Reality leads to new insights and provides additional value.

  9. Space Operations Learning Center

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  10. Geometric properties of Banach spaces and nonlinear iterations

    CERN Document Server

    Chidume, Charles

    2009-01-01

    Nonlinear functional analysis and applications is an area of study that has provided fascination for many mathematicians across the world. This monograph delves specifically into the topic of the geometric properties of Banach spaces and nonlinear iterations, a subject of extensive research over the past thirty years. Chapters 1 to 5 develop materials on convexity and smoothness of Banach spaces, associated moduli and connections with duality maps. Key results obtained are summarized at the end of each chapter for easy reference. Chapters 6 to 23 deal with an in-depth, comprehensive and up-to-date coverage of the main ideas, concepts and results on iterative algorithms for the approximation of fixed points of nonlinear nonexpansive and pseudo-contractive-type mappings. This includes detailed workings on solutions of variational inequality problems, solutions of Hammerstein integral equations, and common fixed points (and common zeros) of families of nonlinear mappings. Carefully referenced and full of recent,...

  11. Quantification and disposal of radioactive waste from ITER operation

    International Nuclear Information System (INIS)

    Olsson, G.; Devell, L.; Johnsson, B.; Gulden, W.

    1991-01-01

    The work on the safety and environment for the Next European Torus (NET) is being performed within the European Fusion Technology Safety and Environment Programme by the NET team and under NET contracts. In the area of NET-oriented investigations concerning waste management and disposal, Studsvik is concentrating on the operational waste from both NET and ITER (International Thermonuclear Experimental Reactor). This paper gives a characterization and quantification of the radioactive waste generated from the operation of ITER during the Physics Phase, and from the replacement of all blanket segments (European shielding blanket option) at the end of the Physics Phase after an integrated first-wall loading of 0.03 MWy/m 2 . The total activity contents and volumes of packaged waste from the Physics Phase operation and from the blanket replacement are estimated. The waste volume from replacement of the shielding blanket segments of ITER is considerably larger than estimated in earlier calculations for NET due to the fact that the ITER conceptual design includes more of the stell shielding in the removable segments. The waste handling and disposal are described using existing Swedish and German concepts for similar waste categories from nuclear fission reactors. This includes the choice of suitable packagings, intermediate storage time for cooling, and type of repository for final disposal. Some typical cost figures for waste handling are also presented. (orig.)

  12. Parametric analysis and operational performance of EDA-ITER

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Tsunematsu, Toshihide; Fujieda, Hirobumi.

    1994-06-01

    Confinement capability of EDA-ITER is investigated by using a 0-D model based on CDA physics design guidelines. Confinement enhancement factor (H-factor) is evaluated and required fusion power (P FUS ) for the ignition is calculated. It is found that ignition is possible in H-mode plasma (H=2) when helium accumulation (He) is 10% and P FUS ≥ 1 GW. For Rebut-Lallia scaling law, L-mode (H=1) ignition is possible when P FUS ≥ 3 GW. The required fusion power is, however, more than 4 GW even in H-mode plasmas when the helium accumulation is 20%. Therefore, it is an important future work to study how much helium accumulates in a burning plasma. Capability of steady-state mode operation is also investigated. Required current-drive power for H-mode plasma is about 140 MW when He=10% and the fusion gain Q is more than 5. If the enhanced confinement (H∼3) in high safety factor region (q∼5) can be adoptable, steady-state operation with Q>10 is possible and the required current-drive power is about 60 MW. In spite of the larger fusion power, the divertor heat load of EDA-ITER calculated by scaling models is comparable or smaller than that of CDA-ITER due to the longer connection length. Thermal instability of EDA-ITER is also investigated. The growth time is about 15 s for ITER89 power scaling law. Fusion power excursion is investigated in very preliminary way. It is found that the power rises from 1.5 GW to 3 GW in about 100 s if there is no control. Although this instability could be stabilized by beta limit or helium accumulation effect, it is an important future work since it may cause severe problem. (author)

  13. Iterative solution of nonlinear equations with strongly accretive operators

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1991-10-01

    Let E be a real Banach space with a uniformly convex dual, and let K be a nonempty closed convex and bounded subset of E. Suppose T:K→K is a strongly accretive map such that for each f is an element of K the equation Tx=f has a solution in K. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly to a solution of the equation Tx=f. Furthermore, our method shows that such a solution is necessarily unique. Explicit error estimates are given. Our results resolve in the affirmative two open problems (J. Math. Anal. Appl. Vol 151(2) (1990), p. 460) and generalize important known results. (author). 32 refs

  14. A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    OpenAIRE

    Manton, Jonathan H.

    2012-01-01

    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...

  15. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  16. First operation experiences with ITER-FEAT model pump

    International Nuclear Information System (INIS)

    Mack, A.; Day, Chr.; Haas, H.; Murdoch, D.K.; Boissin, J.C.; Schummer, P.

    2001-01-01

    Design and manufacturing of the model cryopump for ITER-FEAT have been finished. After acceptance tests at the contractor's premises the pump was installed in the TIMO-facility which was prepared for testing the pump under ITER-FEAT relevant operating conditions. The procedures for the final acceptance tests are described. Travelling time, positioning accuracy and leak rate of the main valve are within the requirements. The heat loads to the 5 and 80 K circuits are a factor two better than the designed values. The maximum pumping speeds for H 2 , D 2 , He, Ne were measured. The value of 58 m 3 /s for D 2 is well above the contractual required value of 40 m 3 /s

  17. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  18. On iterative solution of nonlinear functional equations in a metric space

    Directory of Open Access Journals (Sweden)

    Rabindranath Sen

    1983-01-01

    Full Text Available Given that A and P as nonlinear onto and into self-mappings of a complete metric space R, we offer here a constructive proof of the existence of the unique solution of the operator equation Au=Pu, where u∈R, by considering the iterative sequence Aun+1=Pun (u0 prechosen, n=0,1,2,…. We use Kannan's criterion [1] for the existence of a unique fixed point of an operator instead of the contraction mapping principle as employed in [2]. Operator equations of the form Anu=Pmu, where u∈R, n and m positive integers, are also treated.

  19. Development of ITER CODAC compatible gyrotron local control system and its operation

    International Nuclear Information System (INIS)

    Ohshima, Katsumi; Oda, Yasuhisa; Takahashi, Koji; Terakado, Masayuki; Ikeda, Ryosuke; Moriyama, Shinichi; Kajiwara, Ken; Sakamoto, Keishi; Hayashi, Kazuo

    2016-03-01

    In Japan Atomic Energy Agency, an ITER relevant control system for ITER gyrotron was developed according to Plant Control Design Handbook. This control system was developed based on ITER CODAC Core System and implemented state machine control of gyrotron operation system, sequential timing control of gyrotron oscillation startup, and data acquisition. The operation of ITER 170 GHz gyrotron was demonstrated with ITER relevant power supply configuration. This system is utilized for gyrotron operation test for ITER procurement. This report describes the architecture of gyrotron local control system, its basic and detailed design, and recent operation results. (author)

  20. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  1. Possibility of Q>5 stable, steady-state operation in ITER with moderate βN and H-factor

    International Nuclear Information System (INIS)

    Polevoi, A.R.; Mukhovatov, V.S.; Shimada, M.; Medvedev, S.Yu.; Ivanov, A.A.; Poshekhonov, Yu.Yu.; Pustovitov, V.D.; Chu, M.S.

    2003-01-01

    A possibility of steady state stable operation in ITER with Q>5 and moderate requirements for plasma confinement is investigated. It is shown that there is some parametrical space for such operation where the ideal kink modes could be stabilised by the first wall. It is found that operational space where the ideal kink modes can be stabilised by the conducting wall could be noticeably extended by a relatively small reduction of the pressure peaking factor. The resistive wall mode stabilisation in ITER is discussed. (author)

  2. Iterative approximation of a solution of a general variational-like inclusion in Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Kazmi, K.R.; Zegeye, H.

    2002-07-01

    In this paper, we introduce a class of η-accretive mappings in a real Banach space, and show that the η-proximal point mapping for η-m-accretive mapping is Lipschitz continuous. Further we develop an iterative algorithm for a class of general variational-like inclusions involving η-accretive mappings in real Banach space, and discuss its convergence criteria. The class of η-accretive mappings includes several important classes of operators that have been studied by various authors. (author)

  3. Picard iterations for nonlinear Lipschitz strong pseudo-contractions in uniformly smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1995-06-01

    Suppose E is a real uniformly smooth Banach space and K is a nonempty closed convex and bounded subset of E, T:K → K is a Lipschitz pseudo-contraction. It is proved that the Picard iterates of a suitably defined operator converges strongly to the unique fixed point of T. Furthermore, this result also holds for the slightly larger class of Lipschitz strong hemi-contractions. Related results deal with strong convergence of the Picard iterates to the unique solution of operator equations involving Lipschitz strongly accretive maps. Apart from establishing strong convergence, our theorems give existence, uniqueness and convergence-rate which is at least as fast as a geometric progression. (author). 51 refs

  4. On Controlled Iterated GSM Mappings and Related Operations

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1979-01-01

    In [17] G. Paun studied families of languages generated by iterated gsm mappings, iterated finite substitutions, and iterated homomorphisms. In this note we generalize some results in [17], and we discuss the relation between iterated finite substitutions (homomorphisms) and (deterministic) tabled

  5. On Controlled Iterated GSM Mappings and Related Operations

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1980-01-01

    In [17] G. Paun studied families of languages generated by iterated gsm mappings, iterated finite substitutions, and iterated homomorphisms. In this note we generalize some results in [17], and we discuss the relation between iterated finite substitutions (homomorphisms) and (deterministic) tabled

  6. Design of the ITER magnets to provide plasma operational flexibility

    International Nuclear Information System (INIS)

    Mitchell, N.; Bessette, D.; Ferrari, M.; Huguet, M.; Jong, C.; Takahashi, Y.; Yoshida, K.; Maix, R.; Krivchenkov, Y.; Zapretilina, E.

    2005-01-01

    The ITER magnets have been optimised and refined since the ITER Final Design Report (FDR) in 2001. Multiple design options have been eliminated and there is improved ability to drive a wide range of plasma configurations. Design iterations on the TF out of plane supports have eliminated stress concentrations in the inner keyways and have led to the choice of a so called friction-joint on the outside. The closure procedure for the TF case has been changed, with a new case segmentation, less risk of winding pack damage from shrinkage and better filling of the case-winding gaps. Selection of compact joints for the CS has enabled the peak field and cyclic stress levels in the conductor to be reduced while maintaining the flux capability. The uncertainty in the nuclear heat levels in the inner legs of the TF coils, and the need to operate with plasma nuclear powers from 360 to 700MW, lead to a thermal screen on the inside of the case with variable cooling capability. The electrical insulation specification has been refined after irradiation test results to give a better margin on the onset of degradation after operation to 3MWa/m 2 . The RWM stabilisation provided by the side CC has been extended by accepting higher voltages and heating from AC losses. R and D results from the model coil tests have shown lower than expected design margins for the Nb3Sn conductors. This has been offset by adopting the latest advances in strand performance, and the margins of the new conductor will be confirmed by testing in 2005. Preparation for procurement is underway with considerations on technically acceptable ways of splitting the magnet supply. (author)

  7. Space Station Freedom operations costs

    Science.gov (United States)

    Accola, Anne L.; Williams, Gregory J.

    1988-01-01

    Measures to reduce the operation costs of the Space Station which can be implemented in the design and development stages are discussed. Operational functions are described in the context of an overall operations concept. The provisions for operations cost responsibilities among the partners in the Space Station program are presented. Cost estimating methodologies and the way in which operations costs affect the design and development process are examined.

  8. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  9. An Automated Baseline Correction Method Based on Iterative Morphological Operations.

    Science.gov (United States)

    Chen, Yunliang; Dai, Liankui

    2018-05-01

    Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.

  10. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  11. Composition operators on function spaces

    CERN Document Server

    Singh, RK

    1993-01-01

    This volume of the Mathematics Studies presents work done on composition operators during the last 25 years. Composition operators form a simple but interesting class of operators having interactions with different branches of mathematics and mathematical physics. After an introduction, the book deals with these operators on Lp-spaces. This study is useful in measurable dynamics, ergodic theory, classical mechanics and Markov process. The composition operators on functional Banach spaces (including Hardy spaces) are studied in chapter III. This chapter makes contact with the theory of analytic functions of complex variables. Chapter IV presents a study of these operators on locally convex spaces of continuous functions making contact with topological dynamics. In the last chapter of the book some applications of composition operators in isometries, ergodic theory and dynamical systems are presented. An interesting interplay of algebra, topology, and analysis is displayed. This comprehensive and up-to-date stu...

  12. Spear operators between Banach spaces

    CERN Document Server

    Kadets, Vladimir; Merí, Javier; Pérez, Antonio

    2018-01-01

    This monograph is devoted to the study of spear operators, that is, bounded linear operators $G$ between Banach spaces $X$ and $Y$ satisfying that for every other bounded linear operator $T:X\\longrightarrow Y$ there exists a modulus-one scalar $\\omega$ such that $\\|G + \\omega\\,T\\|=1+ \\|T\\|$. This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on $L_1$. The relationships with the Radon-Nikodým property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

  13. Introduction to operator space theory

    CERN Document Server

    Pisier, Gilles

    2003-01-01

    An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.

  14. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  15. Structure of Hilbert space operators

    CERN Document Server

    Jiang, Chunlan

    2006-01-01

    This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K -theory, complex geometry and operator algebra tools. Sample Chapter(s). Chapter 1: Background (153 KB). Contents: Jordan Standard Theorem and K 0 -Group; Approximate Jordan Theorem of Opera

  16. A New General Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Singthong Urailuk

    2010-01-01

    Full Text Available We introduce a new general iterative method by using the -mapping for finding a common fixed point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong convergence theorem of the purposed iterative method is established under some certain control conditions. Our results improve and extend the results announced by many others.

  17. The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rabian Wangkeeree

    2012-01-01

    Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.

  18. The ITER poloidal field configuration and operation scenario

    International Nuclear Information System (INIS)

    Gribov, Y.; Portone, A.; Mondino, P.L.

    1995-01-01

    The ITER Poloidal Field (PF) system must satisfy the following requirements. (1) ITER must have a well-controlled, single null divertor magnetic configuration with nominal plasma current 21MA and moderate plasma elongation k95 < 1.65. (2) For a variety of plasma scenarios the ITER PF system must provide: inductive breakdown and start-up in an expanding-aperture limiter configuration near the outboard first wall; an inductive current ramp-up to the nominal plasma current with a reasonable assumption of resistive loss during current ramp-up; a pulse length of 1,000s for ignition and inductively-sustained burn at nominal plasma current; plasma shutdown (following fusion power termination) in a similar contracting-aperture limiter configuration. The present design of the PF system can satisfy the ITER requirements within specified limitations

  19. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    Science.gov (United States)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  20. Remote operational trials with the ITER FDR divertor handling equipment

    International Nuclear Information System (INIS)

    Irving, M.; Baldi, L.; Benamati, G.; Galbiati, L.; Giacomelli, S.; Lorenzelli, L.; Micciche, G.; Muro, L.; Polverari, A.; Palmer, J.; Martin, E.

    2003-01-01

    The ITER divertor test platform (DTP) located at ENEA's Research Centre in Brasimone, Italy is a full-scale mock-up of a 72 deg. arc of the ITER 1998 vessel divertor region--the result of a major initiative over the period 1996-2000. Since the implementation of this facility, the design of the ITER vessel--and therefore much of the remote maintenance equipment--has changed substantially. However, the nature and principles of the remote handling equipment are still very similar, and hence many valuable lessons can yet be learned from the existing equipment for the future. In particular, true remote handling tests of the major maintenance subsystems were seen as an important step in determining their suitability for ITER. This paper describes and documents a series of three, discrete, remote-handling trials carried out using most of the major DTP subsystems, and presents an overview of the conclusions and suggestions for future development of ITER cassette remote handling equipment

  1. Operations planning for Space Station Freedom - And beyond

    Science.gov (United States)

    Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.

    1992-01-01

    The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.

  2. Automating Space Station operations planning

    Science.gov (United States)

    Ziemer, Kathleen A.

    1989-01-01

    The development and implementation of the operations planning processes for the Space Station are discussed. A three level planning process, consisting of strategic, tactical, and execution level planning, is being developed. The integration of the planning procedures into a tactical planning system is examined and the planning phases are illustrated.

  3. Minimal and Maximal Operator Space Structures on Banach Spaces

    OpenAIRE

    P., Vinod Kumar; Balasubramani, M. S.

    2014-01-01

    Given a Banach space $X$, there are many operator space structures possible on $X$, which all have $X$ as their first matrix level. Blecher and Paulsen identified two extreme operator space structures on $X$, namely $Min(X)$ and $Max(X)$ which represents respectively, the smallest and the largest operator space structures admissible on $X$. In this note, we consider the subspace and the quotient space structure of minimal and maximal operator spaces.

  4. Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1993-05-01

    It is proved that the Mann iteration process converges strongly to the fixed point of a strictly hemi-contractive map in real uniformly smooth Banach spaces. The class of strictly hemi-contractive maps includes all strictly pseudo-contractive maps with nonempty fixed point sets. A related result deals with the Ishikawa iteration scheme when the mapping is Lipschitzian and strictly hemi-contractive. Our theorems generalize important known results. (author). 29 refs

  5. Primary design and operation analysis of ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  6. Means of Hilbert space operators

    CERN Document Server

    Hiai, Fumio

    2003-01-01

    The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.

  7. Spacelab shaping space operations planning

    Science.gov (United States)

    Steven, F. R.; Reinhold, C.

    1976-01-01

    An up-to-date picture is presented of the organizational structure, the key management personnel, and management relationships of the Spacelab program. Attention is also given to Spacelab's development status and plans for its operations. A number of charts are provided to illustrate the organizational relations. It is pointed out that the parties involved in Spacelab activities must yet resolve questions about ownership of transportation-system elements, payloads, ground support facilities, and data obtained from space missions.

  8. Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order

    International Nuclear Information System (INIS)

    He Qiu-Yan; Yuan Xiao; Yu Bo

    2017-01-01

    The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary order, is presented in this paper. The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained. K-index, P-index, O-index, and complexity index are introduced to contribute to performance analysis. Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order, these rational approximation impedance functions calculated by the iterating function meet computational rationality, positive reality, and operational validity. Then they are capable of having the operational performance of fractional operators and being physical realization. The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited. (paper)

  9. Vertical displacement events: a serious concern in future ITER operation

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.; Ulrickson, M.

    2007-01-01

    The strongly elongated plasma configuration in ITER-like devices is vertically unstable unless an active control feedback at the vertical position is applied. A malfunction of this feedback system for variety of reasons can lead to a rapid plasma vertical displacement at full plasma current. As the plasma contacts the top or bottom of the vacuum vessel, the current is rapidly forced to zero, similar to the behavior of the plasma after the thermal quench of a disruption. This phenomenon constitutes the vertical displacement events (VDE). This can result in melting and vaporization of the plasma-facing component (PFC) as well as melting of the copper substrate and burnout of the coolant channels. The upgraded HEIGHTS simulation package is used to simulate in full 3D the response of an entire ITER module response to a VDE. The initial temperature distribution of the PFC and the bulk substrate prior to the VDE is calculated according to steady state heat flux, module design, and initial coolant temperature. The models used in the upgraded HEIGHTS were recently benchmarked against VDE simulation experiments using powerful electron beam and show an excellent agreement with the data.The surface temperature can then be very high and could result in significant melting of substrate copper and damage the coolant channels. In the case of Be surface, surface vaporization is quite high and will remove most incoming plasma power at typical ITER VDE condition. Therefore, the transmitted heat flux to the substrate and the coolant channels are low enough to cause any significant damage. However, if tungsten is exposed to the VDE the situation is quite different. No significant surface vaporization will occur at the tungsten surface thus, leaving the majority of the incident plasma power to be conducted to the copper substrate causing melting at the interface and burnout of coolant channel with serious implications on the integrity and subsequent performance of this module. The

  10. Space station operating system study

    Science.gov (United States)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  11. Space Station Freedom operations planning

    Science.gov (United States)

    Accola, Anne L.; Keith, Bryant

    1989-01-01

    The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.

  12. Assessment of alternative vessel and blanket design on ITER operation

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M., E-mail: mario.cavinato@f4e.europa.e [FUSION FOR ENERGY Joint Undertaking, 08019 Barcelona (Spain); Portone, A.; Saibene, G.; Sartori, R. [FUSION FOR ENERGY Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G.; Ariola, M. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Napoli (Italy); Artaserse, G. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Reggio Calabria (Italy); Mattei, M. [Associazione Euratom-ENEA-CREATE, DIAM, Seconda Universita di Napoli, Via Roma 29, Aversa, CE 81031 Italy (Italy); Pironti, A. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Napoli (Italy); Villone, F. [Associazione Euratom-ENEA-CREATE, DIMET, Universita degli Studi di Cassino (Italy)

    2010-12-15

    In the framework of the ITER project, an investigation has been conducted on an alternative vessel and blanket design, aimed at reducing cost and production risk. The modifications proposed have a strong impact on plasma control since they affect the main conducting structures surrounding the plasma column, providing passive stabilization but at the same time shielding the field generated by the active coils to control the plasma motion and shape. An extensive analysis was performed to assess the plasma vertical controllability and the modified requirements to the in-vessel vertical stability coils system as well as to the external Poloidal Field coils system. A similar analysis was aimed at assessing the performance of the shape control system in presence of the modified structures. The effect on plasma breakdown was also evaluated in terms of maximum initial loop voltage, quality of magnetic null and the flux loss related to the breakdown delay that was quantified under the same hypothesis employed by ITER for the baseline design. Furthermore, the modified design presents issues for the magnetic diagnostic system, related to the shielding of the probes by the eddy currents, which were analysed with a 3D model. The results of the analyses performed have some general interest in particular regarding the influence on plasma stability of 3D structures with close proximity to the plasma. The present paper aims at giving an overview of the analyses that have been carried out and a summary of the results in terms of impact of the modified design on plasma control and scenario, and in general an evaluation of the role of passive structure in plasma vertical stability and shape control.

  13. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  14. Pseudodifferential operators on alpha-modulation spaces

    DEFF Research Database (Denmark)

    Borup, Lasse

    2004-01-01

    We study expansions of pseudodifferential operators from the Hörmander class in a special family of functions called brushlets. We prove that such operators have a sparse representation in a brushlet system. Using this sparsity, we show that a pseudodifferential operator extends to a bounded oper...... operator between $alpha$-modulation spaces. These spaces were introduced by Gröbner in [15]. They are, in some sense, intermediate spaces between the classical Besov and Modulation spaces....

  15. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in

  16. Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces

    International Nuclear Information System (INIS)

    Jin, Qinian

    2012-01-01

    By making use of duality mappings, we formulate an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme providing the increments by applying the Landweber iteration in Banach spaces to the local linearized equations. It has the advantage of reducing computational work by computing more cheap steps in each inner scheme. We first prove a convergence result for the exact data case. When the data are given approximately, we terminate the method by a discrepancy principle and obtain a weak convergence result. Finally, we test the method by reporting some numerical simulations concerning the sparsity recovery and the noisy data containing outliers. (paper)

  17. Double Sequences and Iterated Limits in Regular Space

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-09-01

    Full Text Available First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1 with the Fréchet filter on ℕ × ℕ (F2, we compare limF₁ and limF₂ for all double sequences in a non empty topological space.

  18. Development on JET of Advanced Tokamak Operations for ITER

    International Nuclear Information System (INIS)

    Tuccillo, A.A.; Crisanti, F.; Litaudon, X.

    2005-01-01

    Recent research on Advanced Tokamak in JET has focused on scenarii with both monotonic and reversed shear q profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide ITBs, R∼3.7m, are formed at ITER relevant triangularity δ∼0.45, with n e /n G ∼60% and ELMs moderated by Ne injection. At higher current (I P ≤3.5MA, δ∼0.25) wide ITBs sitting at R≥ 3.5m (positive shear region) have been developed, generally MHD events terminate these barrier otherwise limited in strength by power availability. ITBs with core density close to Greenwald value are obtained with plasma target preformed by opportune timing of LHCD, pellet injection and small amount of NBI power. ITB start with toroidal rotation 4 times lower than the standard NBI heated ITBs. Full CD is achieved in reversed shear ITBs at 3T/1.8 MA, by using 10MW NBI, 5MW ICRH and 3MW LH. Wide ITBs located at R=3.6m, without impurity accumulation and type-III ELMs edge can be sustained for a time close to neo-classical resistive time. These discharges have been extended to the maximum duration allowed by subsystems (20s) with the JET record of injected energy: E∼330 MJ. Integrated control of pressure and current profile isit; feature used in these discharges. Central ICRF mode conversion electron heating, added to about 14MW NBI power, produced impressive ITBs with equivalent Q DT ∼ 0.25. Conversely ion ITBs are obtained with low torque injection, by ICRH 3 He minority heating of ions, on pure LHCD electron ITBs. Similarity experiments between JET and AUG have compared the dynamics of ITBs and have been the starting point of Hybrid Scenarios activity, then developed at ρ* as low as ρ*∼3*10 -3 . The development of hybrid regime with dominant electron heating has also started. Injection of trace of tritium and a mixture of Ar/Ne allowed studying fuel and impurities transport in many of the explored AT scenarios. (author)

  19. Two New Iterative Methods for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Hu Changsong

    2010-01-01

    Full Text Available We consider two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed point of a countable family of nonexpansive mappings which solves the corresponding variational inequality. Our results improve and extend the corresponding ones announced by many others.

  20. Fixed point iterations for quasi-contractive maps in uniformly smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1992-05-01

    Two well-known fixed point iteration methods are applied to approximate fixed points of quasi-contractive maps in real uniformly smooth Banach spaces. While our theorems generalize important known results, our method is of independent interest. (author). 25 refs

  1. A General Iterative Method for a Nonexpansive Semigroup in Banach Spaces with Gauge Functions

    Directory of Open Access Journals (Sweden)

    Kamonrat Nammanee

    2012-01-01

    Full Text Available We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping Jφ, where φ is a gauge function on [0,∞. Our results improve and extend those announced by G. Marino and H.-K. Xu (2006 and many authors.

  2. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  3. Space Shuttle Probabilistic Risk Assessment (SPRA) Iteration 3.2

    Science.gov (United States)

    Boyer, Roger L.

    2010-01-01

    The Shuttle is a very reliable vehicle in comparison with other launch systems. Much of the risk posed by Shuttle operations is related to fundamental aspects of the spacecraft design and the environments in which it operates. It is unlikely that significant design improvements can be implemented to address these risks prior to the end of the Shuttle program. The model will continue to be used to identify possible emerging risk drivers and allow management to make risk-informed decisions on future missions. Potential uses of the SPRA in the future include: - Calculate risk impact of various mission contingencies (e.g. late inspection, crew rescue, etc.). - Assessing the risk impact of various trade studies (e.g. flow control valves). - Support risk analysis on mission specific events, such as in flight anomalies. - Serve as a guiding star and data source for future NASA programs.

  4. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  5. Preparation of acceptance tests and criteria for the Test Blanket Systems to be operated in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Cuquel, B. [AIRBUS Defence and Space S.A.S., 13115 Saint Paul Lez Durance (France); Demange, D.; Ghidersa, B.-E. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Giancarli, L.M.; Iseli, M.; Jourdan, T. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Nevière, J.-C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R.; Ring, W. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Initial guideline for acceptance testing and acceptance criteria for Test Blanket Systems in ITER. • These tests complement those required by the applicable codes and standards, and regulations. • Completion of TBS manufacture will be followed by Factory Acceptance Testing, prior to shipment. • Next steps are “Reception Inspection Tests”, and on-site pre-installation and components tests. • This guideline allows the detailing of the TBS specific test plans and their scheduling. - Abstract: This paper describes the main acceptance criteria and required acceptance tests for the components of the six Test Blanket Systems to be installed and operated in ITER. It summarizes the guide-line toward the establishment of detailed test plans for the TBS, starting from the end-product at the ITER Members factories, and to generally define the type of tests that have to be performed on the ITER site after shipment, and/or prior to the systems final commissioning phase.

  6. Investigation of key parameters for the development of reliable ITER baseline operation scenarios using CORSICA

    Science.gov (United States)

    Kim, S. H.; Casper, T. A.; Snipes, J. A.

    2018-05-01

    ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0  ×  10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.

  7. Elements of Hilbert spaces and operator theory

    CERN Document Server

    Vasudeva, Harkrishan Lal

    2017-01-01

    The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...

  8. An iterative method for Tikhonov regularization with a general linear regularization operator

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.

    2010-01-01

    Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan

  9. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  10. Strong Convergence Iterative Algorithms for Equilibrium Problems and Fixed Point Problems in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Shenghua Wang

    2013-01-01

    Full Text Available We first introduce the concept of Bregman asymptotically quasinonexpansive mappings and prove that the fixed point set of this kind of mappings is closed and convex. Then we construct an iterative scheme to find a common element of the set of solutions of an equilibrium problem and the set of common fixed points of a countable family of Bregman asymptotically quasinonexpansive mappings in reflexive Banach spaces and prove strong convergence theorems. Our results extend the recent ones of some others.

  11. Design of an overhead crane for the ITER NB cell remote handling maintenance operations

    Energy Technology Data Exchange (ETDEWEB)

    Taubmann, Gonzalo; Brochet, Laurent [IBERTEF A.I.E., Iberica de Tecnologia de Fusion, C/Magallanes 3, 28015 Madrid (Spain); Liniers, Macarena [Asociacion EURATOM-CIEMAT para la Fusion, Av. Complutense 22, 28040 Madrid (Spain)], E-mail: macarena.liniers@ciemat.es; Medrano, Mercedes; Sarasola, Xabier; Botija, Jose; Alonso, Javier [Asociacion EURATOM-CIEMAT para la Fusion, Av. Complutense 22, 28040 Madrid (Spain); Damiani, Carlo [FUSION FOR ENERGY, Josep Pla 2, Torres Diagonal Litoral Ed B3, 08019 Barcelona (Spain)

    2009-06-15

    In the neutral beam cell of ITER all the maintenance operations on the neutral beam components (BLC's) must be performed by an overhead crane of large payload capability (30-50 tonnes). A crane system is presented consisting of a monorail, a carriage, and a lifting mechanism. The monorail must give access to the BLC's in the beam line vessel, the front components connecting the NB vessel with the Tokamak, and a storage area at the north end of the NB cell. Rail switching points are required at the intersections between radial and toroidal branches. A translational switching mechanism is proposed. The crane carriage consists of two independent sub-carriages, each composed of four wheels. A set of four secondary wheels attached to the main carriage prevents the crane tilting due to the CoG misalignment of some loads. The elevation system proposed consists of an electromechanical crane of four independent drums and 50 tonnes payload. In parallel with the crane design, a logistics and space availability study has been carried out, leading to the detection of clearance or transport problems that could be taken into account in the final crane design.

  12. Design of an overhead crane for the ITER NB cell remote handling maintenance operations

    International Nuclear Information System (INIS)

    Taubmann, Gonzalo; Brochet, Laurent; Liniers, Macarena; Medrano, Mercedes; Sarasola, Xabier; Botija, Jose; Alonso, Javier; Damiani, Carlo

    2009-01-01

    In the neutral beam cell of ITER all the maintenance operations on the neutral beam components (BLC's) must be performed by an overhead crane of large payload capability (30-50 tonnes). A crane system is presented consisting of a monorail, a carriage, and a lifting mechanism. The monorail must give access to the BLC's in the beam line vessel, the front components connecting the NB vessel with the Tokamak, and a storage area at the north end of the NB cell. Rail switching points are required at the intersections between radial and toroidal branches. A translational switching mechanism is proposed. The crane carriage consists of two independent sub-carriages, each composed of four wheels. A set of four secondary wheels attached to the main carriage prevents the crane tilting due to the CoG misalignment of some loads. The elevation system proposed consists of an electromechanical crane of four independent drums and 50 tonnes payload. In parallel with the crane design, a logistics and space availability study has been carried out, leading to the detection of clearance or transport problems that could be taken into account in the final crane design.

  13. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  14. Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation

    International Nuclear Information System (INIS)

    Loarte, A; Saibene, G; Sartori, R; Riccardo, V; Andrew, P; Paley, J; Fundamenski, W; Eich, T; Herrmann, A; Pautasso, G; Kirk, A; Counsell, G; Federici, G; Strohmayer, G; Whyte, D; Leonard, A; Pitts, R A; Landman, I; Bazylev, B; Pestchanyi, S

    2007-01-01

    New experimental results on transient loads during ELMs and disruptions in present divertor tokamaks are described and used to carry out a extrapolation to ITER reference conditions and to draw consequences for its operation. In particular, the achievement of low energy/convective type I edge localized modes (ELMs) in ITER-like plasma conditions seems the only way to obtain transient loads which may be compatible with an acceptable erosion lifetime of plasma facing components (PFCs) in ITER. Power loads during disruptions, on the contrary, seem to lead in most cases to an acceptable divertor lifetime because of the relatively small plasma thermal energy remaining at the thermal quench and the large broadening of the power flux footprint during this phase. These conclusions are reinforced by calculations of the expected erosion lifetime, under these load conditions, which take into account a realistic temporal dependence of the power fluxes on PFCs during ELMs and disruptions

  15. Confinement margins for ignition and driven operation in Iter Eda ID

    International Nuclear Information System (INIS)

    Johner, J.

    1995-09-01

    Preliminary calculations for ITER EDA ID have been performed using the 1/2D thermal equilibrium code HELIOS. It is found that: - The maximum ignition margin for ITER ID (29%) is 6% less than for ITER OD (35%) and 5% less than for ITER CDA (34%). - Decreasing the ration τ * He /τ E from the nominal value 10 to a value of 5 gives a 12% gain in the maximum ignition margin. Increasing the ration from 10 to 15 causes a 22% loss in the margin. Furthermore, ignited equilibria non longer exist for τ * He /τ E ≥ 17.6. - Operation in driven mode with 50 MW of external power increases the confinement capability by 13%. With 100 MW, the improvement is 24%. - Lowering the fusion power from 1500 to 1000 MW slightly improves the maximum ignition margin (+5%) and allows operation below the Greenwald density limit. - A 10% reduction of the toroidal magnetic field with a correlative diminution of the plasma current for constant safety factor operation, causes a dramatic reduction (-18%) of the maximum ignition margin. - A fraction of neon of 0.68% would completely suppress the ignition margin. Furthermore, ignited equilibria, with the nominal fusion power and τ * He /τ E , no longer exist when the neon fraction exceeds 0.75%. (Author). 2 refs., 10 figs

  16. Heating and current drive requirements towards steady state operation in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Batchelor, D. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Harvey, B.; Petrov, Y. [CompX, Box 2672, Del Mar, CA 92014 (United States)

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  17. Heating and current drive requirements towards steady state operation in ITER

    Science.gov (United States)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  18. The French Space Operation Act: Technical Regulations

    Science.gov (United States)

    Trinchero, J. P.; Lazare, B.

    2010-09-01

    The French Space Operation Act(FSOA) stipulates that a prime objective of the National technical regulations is to protect people, property, public health and the environment. Compliance with these technical regulations is mandatory as of 10 December 2010 for space operations by French space operators and for space operations from French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by the applicant, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting technical regulations are as follows: requirements must as far as possible establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being the state of the art; requirements must take previous experience into account. Technical regulations are divided into three sections covering common requirements for the launch, control and return of a space object. A dedicated section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the technical regulations are: operator safety management system; study of risks to people, property, public health and the Earth’s environment; impact study on the outer space environment: space debris generated by the operation; planetary protection.

  19. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  20. The Application Strategy of Iterative Solution Methodology to Matrix Equations in Hydraulic Solver Package, SPACE

    International Nuclear Information System (INIS)

    Na, Y. W.; Park, C. E.; Lee, S. Y.

    2009-01-01

    As a part of the Ministry of Knowledge Economy (MKE) project, 'Development of safety analysis codes for nuclear power plants', KOPEC has been developing the hydraulic solver code package applicable to the safety analyses of nuclear power plants (NPP's). The matrices of the hydraulic solver are usually sparse and may be asymmetric. In the earlier stage of this project, typical direct matrix solver packages MA48 and MA28 had been tested as matrix solver for the hydraulic solver code, SPACE. The selection was based on the reasonably reliable performance experience from their former version MA18 in RELAP computer code. In the later stage of this project, the iterative methodologies have been being tested in the SPACE code. Among a few candidate iterative solution methodologies tested so far, the biconjugate gradient stabilization methodology (BICGSTAB) has shown the best performance in the applicability test and in the application to the SPACE code. Regardless of all the merits of using the direct solver packages, there are some other aspects of tackling the iterative solution methodologies. The algorithm is much simpler and easier to handle. The potential problems related to the robustness of the iterative solution methodologies have been resolved by applying pre-conditioning methods adjusted and modified as appropriate to the application in the SPACE code. The application strategy of conjugate gradient method was introduced in detail by Schewchuk, Golub and Saad in the middle of 1990's. The application of his methodology to nuclear engineering in Korea started about the same time and is still going on and there are quite a few examples of application to neutronics. Besides, Yang introduced a conjugate gradient method programmed in C++ language. The purpose of this study is to assess the performance and behavior of the iterative solution methodology compared to those of the direct solution methodology still being preferred due to its robustness and reliability. The

  1. Spirit and prospects of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E.P. [Kurchatov Institute of Atomic Energy, Moscow (Russian Federation)

    2002-10-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  2. Spirit and prospects of ITER

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    2002-01-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  3. External heating and current drive source requirements towards steady-state operation in ITER

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  4. Quality control in the design, fabrication and operation of the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    2006-01-01

    The ITER magnets are a complex system involving interfaces between many advanced technologies (superconductors, forging/welding/machining of massive structures, cryogenics, composites and moulding, high voltage electrical), yet at the same time form part of the ITER 'basic machine' which is required to operate at the design parameters, broadly failure free, for the design life of the tokamak. This imposes special quality control problems for the ITER project integration by the ITER International Team (IT) through the design, fabrication and operation. The magnets are not a test bed for new technology but in spite of this must use it, successfully. There is little previous experience of such a system but full functionality is required from the start, with limited opportunity for adjustment. And, finally, costs and schedule must be contained. The procurement strategy for the machine, with magnet components being supplied 'in kind', requires particular attention to the specifications, scheduling and quality control (QC). Special issues here are the testing requirements on magnet components, especially before final installation but also at critical intermediate stages. Unnecessary or ineffective quality control procedures cause delay and high costs, and divert attention from critical items. The main points of the magnet QC programme are summarised, including the use of codes and standards, qualification, manufacturing quality assurance, commissioning and in-service inspection

  5. Operations space diagram for ECRH and ECCD

    International Nuclear Information System (INIS)

    Bindslev, Henrik

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non-experts. JET and ITER like plasmas are used, but the method is generic. (author)

  6. Weighted local Hardy spaces associated with operators

    Indian Academy of Sciences (India)

    RUMING GONG

    2018-04-24

    5 days ago ... Studies 116 (1985) (Amsterdam: North Holland). [12] Gong R M and Yan L X, Littlewood–Paley and spectral multipliers on weighted L p spaces, J. Geom. Anal. 24 (2014) 873–900. [13] Gong R M, Li J and Yan L X, A local version of Hardy spaces associated with operators on metric spaces, Sci. China Math.

  7. Technological exploitation of Deuterium–Tritium operations at JET in support of ITER design, operation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P., E-mail: paola.batistoni@enea.it [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Campling, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, S. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Croft, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Giegerich, T. [Karlsruhe Institute of Technology, P.O.Box 3640, D-76021 Karlsruhe (Germany); Huddleston, T.; Lefebvre, X. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, I. [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, SI-1000 Ljubljana (Slovenia); Lilley, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Peacock, A. [JET Exploitation Unit, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, M. [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Popovichev, S.; Reynolds, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Vila, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Villari, R. [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Bekris, N. [ITER Physics Department, EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium–Tritium experiment on JET (DTE2). • The objective is to maximise the scientific and technological return of DT operations at JET in support of ITER. • Preparatory experiments, analyses and studies are carried out in several fusion nuclear technology areas. • These are: neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production. • This paper presents the progress since the start of the project in 2014. - Abstract: Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium–Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2.

  8. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    Science.gov (United States)

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  9. Helium experiments on Alcator C-Mod in support of ITER early operations

    Science.gov (United States)

    Kessel, C. E.; Wolfe, S. M.; Reinke, M. L.; Hughes, J. W.; Lin, Y.; Wukitch, S. J.; Baek, S. G.; Bonoli, P. T.; Chilenski, M.; Diallo, A.; the Alcator C-Mod Team

    2018-05-01

    Helium majority experiments on Alcator C-Mod were performed to compare with deuterium discharges, and inform ITER early operations. ELMy H-modes were produced with a special plasma shape at B T  =  5.3 T, I P  =  0.9 MA, at q 95 ~ 3.8. The He fraction ranged over, n He,L/n L  =  0.2-0.4, with n D,L/n L  =  0.15-0.26, compared to D plasmas with n D,L/n L  =  0.85-0.97. The power to enter the H-mode in He was found to be greater than ~2 times that for D discharges, in the low density region  operation in ITER.

  10. Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    C. Boiti

    2014-01-01

    Full Text Available We introduce the wave front set WF*P(u with respect to the iterates of a hypoelliptic linear partial differential operator with constant coefficients of a classical distribution u∈′(Ω in an open set Ω in the setting of ultradifferentiable classes of Braun, Meise, and Taylor. We state a version of the microlocal regularity theorem of Hörmander for this new type of wave front set and give some examples and applications of the former result.

  11. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Gargiulo, L.; Cordier, J.J.; Friconneau, J.P.; Grisolia, C.; Palmer, J.D.; Perrot, Y.; Samaille, F.

    2007-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools

  12. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)], E-mail: laurent.gargiulo@cea.fr; Cordier, J.J. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Grisolia, C. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Palmer, J.D. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany); Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Samaille, F. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)

    2007-10-15

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools.

  13. Dirac operators on coset spaces

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Immirzi, Giorgio; Lee, Joohan; Presnajder, Peter

    2003-01-01

    The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin c -structures. When a manifold is spin c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors, as shown by Avis, Isham, Cahen, and Gutt. Likewise, for manifolds like SU(3)/SO(3), which are not even spin c , we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S n =SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al

  14. Strong convergence of modified Ishikawa iterations for nonlinear ...

    Indian Academy of Sciences (India)

    interval [0, 1]. The second iteration process is referred to as Ishikawa's iteration process [11] which is .... Let E be a smooth Banach space with dual E∗ ..... and applications, in: Theory and Applications of Nonlinear Operators of Accretive and.

  15. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Laurent Gargiulo, L.; Cordier, J.-J.; Samaille, F.; Grisolia, Ch.; Perrot, Y.; Olivier, D.; Friconneau, J.-P.; Palmer, J.

    2006-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier. This project called AIA (Articulated Inspection Arm) is currently being developed at CEA under a European EFDA work program. The paper describes the detailed design, the manufacturing processes and the results of the first module test campaign in the CEA Tore Supra ME60 facility, at representative vacuum, temperature and nominal loading conditions. The second part of this work that is reported in the paper, concerns the description of the whole integration of the device on the Tore Supra tokamak that is foreseen to be operated on Tore Supra early 2007. The deployer system and the 10 m long storage vacuum vessel are presented. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development is presented in the paper. It will allow close inspection of the Tore Supra Plasma Facing Components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. Such viewing process could be used on ITER during the early stage of operation under a limited radiation level. The AIA technology is also showing promising potential for generic application in alternative systems for ITER. The feasibility study for viewing inspection of the beam line components in the neutral beam test facility is presented. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be

  16. An operational non destructive examination for ITER divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Escourbiac, F.; Farjon, J.L.; Vignal, N.; Cismondi, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [ITER International Team, Cadarache, 13 - St Paul Lez Durance (France); Riccardi, B. [CEFDA CSU-Garching, Garching bei Munchen (Germany)

    2007-07-01

    Full text of publication follows: To meet the power exhaust - heat flux of 20 MW/m{sup 2} - requirements of Plasma Facing Components (PFCs) during plasma operation requires control of their thermal and mechanical integrity. As heat exhaust capability and lifetime of PFCs during in-situ operation are linked to the manufacturing quality, it is an absolute requirement to develop reliable nondestructive examination methods, in particular of the CFC-CuCrZr joint, throughout the manufacturing process. Within the framework of Tokamak Tore Supra upgrade, a pioneering activity has been developed to evaluate the capability of the PFC to be efficiently cooled. In 1998 a test bed - so called SATIR - based on the heat transient method was developed by the CEA and is used today as an inspection tool in order to guarantee the PFCs performances. The technical procurement plan of ITER Divertor targets stated that all Cu cast layers on CFC armour should be subjected to 100% thermographic examination. Each ITER Party should demonstrate its technical capability to carry out the PFC with the required cooling efficiently. The ITER Divertor PFCs pose new challenges especially for the mono-block CFC thickness, and the number of full scale units to be tested which is higher than on any existing or under construction fusion machine. The SATIR method as functional inspection has been identified as the basis test to decide upon the final acceptance of the Divertor PFCs. In order to increase the detection sensitivity of SATIR test bed, several possibilities have been assessed i) the increase of the convective heat transfer coefficient, which improved in a significant way the sensitivity of SATIR diagnostic on ITER components. ii) the installation of a digital infrared camera and the improvement of the thermal signal processing, has led to a considerable increase of performances iii) an innovative process based on spatial image autocorrelation will allow to localize the interlayer defect

  17. Temperature effect on hydrocarbon deposition on molybdenum mirrors under ITER-relevant long-term plasma operation

    NARCIS (Netherlands)

    Rapp, J.; van Rooij, G. J.; Litnovsky, A.; Marot, L.; De Temmerman, G.; Westerhout, J.; Zoethout, E.

    2009-01-01

    Optical diagnostics in ITER will rely on mirrors near the plasma and the deterioration of the reflectivity is a concern. The effect of temperature on the deposition efficiency of hydrocarbons under long-term operation conditions similar to ITER was investigated in the linear plasma generator

  18. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L.M., E-mail: luciano.giancarli@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Iseli, M.; Lepetit, L.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Livingston, D. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom); Nevière, J.C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ricapito, I. [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wyse, S. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom)

    2014-10-15

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown.

  19. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  20. Theory of linear operators in Hilbert space

    CERN Document Server

    Akhiezer, N I

    1993-01-01

    This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.

  1. The International Thermonuclear Experimental Reactor (ITER) international organisation: which laws apply to this international nuclear operator?

    International Nuclear Information System (INIS)

    Grammatico-Vidal, L.

    2009-01-01

    ITER is being carried out by way of international collaboration between seven partners (the European atomic energy community -EURATOM-, China, India, Japan, Russia, south korea and the United states) which together represent more than half the world population. From a project organisation point of view, it is supported by both financial and in-kind contributions provided by each of the partner; each member makes its contribution through a special legal entity called a 'domestic agency' to an international organisation which was set up by the Agreement on the Establishment of an International Fusion Energy Organization for the joint Implementation of the ITER project signed in Paris on 21. november 2006 and which entered into force on 24. october 2007 after ratification by each of the partners. The international agreement is to remain in effect for a period of 35 years and may be renewed for a period of 10 years without any change to its content. It is supplemented by an agreement of the same date on the privileges and immunities of the organisation and of its staff. The function of the ITER organisation is to construct, commission, operate and permanently shutdown the ITER facility, to encourage their exploitation by laboratories, other institutions and personnel participating in the fusion energy research and development programmes of its members and to promote public understanding and acceptance of fusion energy. The unique institutional structure for this project will be described briefly in the introduction before analysing the law applicable to this international organisation, a French nuclear operator, unique in France today. (N.C.)

  2. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Baar, M.R. de; Boessenkool, H.; Graafland, B.; Haye, M.J.; Koning, J.F.; Vahedi, M.; Visser, M.

    2011-01-01

    Virtual Reality (VR) simulation can be used to study, improve and verify ITER maintenance operations during preparation. VR can also improve the situational awareness of human operators during actual Remote Handling (RH) operations. Until now, VR systems use geometric models of the environment and the objects being handled and kinematic models of the manipulation systems. The addition of dynamic effects into the VR simulation was investigated. Important dynamic effects are forces due to contact transitions and the bending of beams under heavy loads. A novel dynamics simulation module was developed and introduced as an add-on to the VR4Robots VR software. Tests were performed under simplified test conditions and in the context of realistic ITER maintenance tasks on a benchmark product and on the ECRH Upper Port Launcher Plug (UPL). The introduction of dynamic effects into VR simulations was found to add realism and provide new insights in procedure development. The quality of the haptic feedback depends strongly on the haptic device used to 'display' haptic feedback to the operator. Dynamic effect simulation can also form the basis for real-time guidance support to operators during the execution of maintenance tasks (augmented reality).

  3. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  4. Iterative methods for nonlinear set-valued operators of the monotone type with applications to operator equations

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1989-06-01

    The fixed points of set-valued operators satisfying a condition of monotonicity type in real Banach spaces with uniformly convex dual spaces are approximated by recursive averaging processes. Applications to important classes of linear and nonlinear operator equations are also presented. (author). 33 refs

  5. Seventh meeting of the ITER physics expert group on energetic particles, heating and steady state operations

    International Nuclear Information System (INIS)

    Gormezano, C.

    1999-01-01

    The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects

  6. RTO/RC ITER plasma performance: inductive and steady-state operation

    International Nuclear Information System (INIS)

    Mukhovatov, V.; Boucher, D.; Fujisawa, N.; Shimada, M.; Vayakis, G.; Janeschitz, G.; Matsumoto, H.; Leonov, V.; Polevoy, A.

    2000-01-01

    The plasma performance in two design options of the reduced-technical objectives/reduced cost (RTO/RC) ITER, i.e. IAM (intermediate aspect ratio machine) and LAM (low aspect ratio machine) is analysed. It is shown that Q=P fus /P aux ∼10 can be obtained in both options at inductively driven ELMy H-mode operation. The operation domain in LAM is found to be marginally larger than that in IAM. The non-inductive operation with Q approx.= 5 will be possible in both machines, provided a large amount of power with a high current drive efficiency is applied, or substantial improvement of the energy confinement time relative to the ELMy H-mode (H H =1.2-1.4) is obtained. The required values of H H and β N are marginally smaller in IAM. The IAM-like machine, ITER-FEAT (fusion energy advanced tokamak), proposed for a detailed engineering design is discussed in brief. (author)

  7. The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, André, E-mail: andre.grosman@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Bucalossi, Jérôme; Doceul, Louis [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, Frédéric [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Lipa, Manfred [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Merola, Mario [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Missirlian, Marc [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pitts, Richard A. [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Samaille, Franck; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► The WEST programme is a unique opportunity to experience the industrial scale manufacture of tungsten plasma-facing components similar to the ITER divertor ones. ► In Tore Supra, it will bring important know how for actively cooled W divertor operation. ► This can be done by a reasonable modification of the Tore Supra tokamak. ► A fast implementation of the project would make this information available in due time. ► This allows a significant contribution to the W ITER divertor risk minimization in its manufacturing and operation phase. -- Abstract: The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.

  8. Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER

    International Nuclear Information System (INIS)

    Nieminen, Peetu; Esque, Salvador; Muhammad, Ali; Mattila, Jouni; Vaeyrynen, Jukka; Siuko, Mikko; Vilenius, Matti

    2009-01-01

    Department of Intelligent Hydraulics and Automation (IHA) of Tampere University of Technology has been involved in the European Fusion program since 1994 within the ITER reactor maintenance activities. In this paper we discuss the design and development of a six degrees of freedom water hydraulic manipulator with a force feedback for teleoperation tasks. The manipulator is planned to be delivered to Divertor Test Platform 2 (DTP2) during year 2008. The paper also discusses the possibility to improve the fail safe and redundant operation of the manipulator. During the design of the water hydraulic manipulator, special provisions have been made in order to meet the safety requirements such as servo valve block for redundant operation and safety vane brakes for fail safe operation.

  9. Operation of an ITER relevant inspection robot on Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Hatchressian, Jean-Claude; Hernandez, Caroline; Houry, Michael [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Keller, Delphine [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Martins, Jean-Pierre [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Measson, Yvan; Perrot, Yann [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Samaille, Frank [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2009-06-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R and D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements. The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel. Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration. In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10{sup -6} Pa and 120 deg. C) after a conditioning phase at 200 deg. C to avoid outgassing pollution of the chamber. This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.

  10. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing...... the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v/v| ... scattering system with receivers on the high-field side would be sensitive to co- and counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution...

  11. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  12. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  13. Iterative deblending of simultaneous-source data using a coherency-pass shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang

    2017-10-01

    Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.

  14. Spectral Theory of Operators on Hilbert Spaces

    CERN Document Server

    Kubrusly, Carlos S

    2012-01-01

    This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat

  15. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  16. Fixed Point Theorems for T-Ciric Quasi-contractive Operator in CAT(0 Spaces

    Directory of Open Access Journals (Sweden)

    G. S. Saluja

    2013-08-01

    Full Text Available The purpose of this paper to study a three-step iterative algorithm for T-Ciric quasi-contractive (TCQC operator in the framework of CAT(0 spaces and establish strong convergence theorems for above said scheme and operator. Our results improve and extend the recent corresponding results from the existing literature (see, e.g., [28, 29, 30] and some others.

  17. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules

    International Nuclear Information System (INIS)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-01-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  18. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  19. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  20. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  1. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  2. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  3. Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces

    Directory of Open Access Journals (Sweden)

    Gurucharan Singh Saluja

    2010-01-01

    Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.

  4. Technical and operational assessment of molecular nanotechnology for space operations

    Science.gov (United States)

    McKendree, Thomas Lawrence

    2001-07-01

    This study assesses the performance of conventional technology and three levels of molecular nanotechnology (MNT) for space operations. The measures of effectiveness are technical performance parameters for five space transportation architectures, and the total logistics cost for an evaluation scenario with mining, market and factory locations on the Moon, Mars and asteroids. On these measures of effectiveness, improvements of 2--4 orders of magnitude are seen in chemical rockets, solar electric ion engines, solar sail accelerations (but not transit times), and in structural masses for planetary skyhooks and towers. Improvements in tether performance and logistics costs are nearer to 1 order of magnitude. Appendices suggest additional improvements may be possible in space mining, closed-environment life support, flexible operations, and with other space transportation architectures. In order to assess logistics cost, this research extends the facility location problem of location theory to orbital space. This extension supports optimal siting of a single facility serving circular, coplanar orbits, locations in elliptic planetary and moon orbits, and heuristic siting of multiple facilities. It focuses on conventional rocket transportation, and on high performance rockets supplying at least 1 m/s2 acceleration and 500,000 m/s exhaust velocity. Mathematica implementations are provided in appendices. Simple MNT allows diamond and buckytube construction. The main benefits are in chemical rocket performance, solar panel specific power, solar electric ion engine performance, and skyhook and tower structural masses. Complex MNT allows very small machinery, permitting large increases in solar panel specific power, which enables solar electric ion engines that are high performance rockets, and thus reduces total logistics costs an order of magnitude. Most Advance MNT allows molecular manufacturing, which enables self-repair, provides at least marginal improvements in nearly

  5. Space weather impact on radio device operation

    Directory of Open Access Journals (Sweden)

    Berngardt O.I.

    2017-09-01

    Full Text Available This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  6. Space weather impact on radio device operation

    Science.gov (United States)

    Berngardt, Oleg

    2017-09-01

    This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  7. Lower hybrid heating and current drive in Iter operation scenarios and outline system design

    International Nuclear Information System (INIS)

    1994-11-01

    Lower Hybrid Waves (LHW) are considered a valid method of plasma heating and the best demonstrated current drive method. Current drive by LHW possesses the unique feature, as compared to the other methods, to retain a good current drive efficiency in plasma regions of low to medium temperature, or in low-β phases of the discharges. This makes them an essential element to realize the so called 'advanced steady-state Tokamak scenarios' in which a hollow current density profile (deep shear reversal) - established during the ramp-up of the plasma current - offers the prospects of improved confinement and an MHD-stable route to continuous burn. This report contains both modelling and design studies of an LHW system for ITER. It aims primarily at the definition of concepts and parameters for steady-state operation using LHW combined with Fast Waves (FW), or other methods of generating a central seed current for high bootstrap current operation. However simulations addressing the use of LHW for current profile control in the high current pulsed operation scenario are also presented. The outline design of a LHW system which covers the needs for both pulsed and steady-state operation is described in detail. (author). 28 refs., 49 figs

  8. Information operator approach and iterative regularization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Hilgers, S.; Bargen, A. von; Rozanov, A.; Eichmann, K.-U.; Savigny, C. von; Burrows, J.P.

    2007-01-01

    In this study, we present the main features of the information operator approach for solving linear inverse problems arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-posed problems and derive the truncated versions of the Gauss-Newton and Levenberg-Marquardt methods. Although the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided, which exemplify the performances of the methods. These results correspond to the NO 2 retrieval from SCIAMACHY limb scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen

  9. Strong Convergence Theorems of a New General Iterative Process with Meir-Keeler Contractions for a Countable Family of -Strict Pseudocontractions in -Uniformly Smooth Banach Spaces

    Directory of Open Access Journals (Sweden)

    Song Yanlai

    2010-01-01

    Full Text Available We introduce a new iterative scheme with Meir-Keeler contractions for strict pseudocontractions in -uniformly smooth Banach spaces. We also discuss the strong convergence theorems for the new iterative scheme in -uniformly smooth Banach space. Our results improve and extend the corresponding results announced by many others.

  10. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  11. Operator space approach to steering inequality

    International Nuclear Information System (INIS)

    Yin, Zhi; Marciniak, Marcin; Horodecki, Michał

    2015-01-01

    In Junge and Palazuelos (2011 Commun. Math. Phys. 306 695–746) and Junge et al (2010 Commun. Math. Phys. 300 715–39) the operator space theory was applied to study bipartite Bell inequalities. The aim of the paper is to follow this line of research and use the operator space technique to analyze the steering scenario. We obtain a bipartite steering functional with unbounded largest violation of steering inequality, as well as constructing all ingredients explicitly. It turns out that the unbounded largest violation is obtained by a non maximally entangled state. Moreover, we focus on the bipartite dichotomic case where we construct a steering functional with unbounded largest violation of steering inequality. This phenomenon is different to the Bell scenario where only the bounded largest violation can be obtained by any bipartite dichotomic Bell functional. (paper)

  12. Operations Data Files, driving force behind International Space Station operations

    Science.gov (United States)

    Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael

    2017-09-01

    Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.

  13. SPACE MEDICINE and Medical Operations Overview

    Science.gov (United States)

    Dervay, Joe

    2009-01-01

    This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.

  14. Operation and control strategies in pre-series testing of cold circulating pumps for ITER

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Vaghela, H.; Sarkar, B.; Srinivas, M.; Choukekar, K.

    2013-01-01

    Cryo-distribution system of ITER is responsible for the distribution and control of forced-flow supercritical helium for cooling of the superconducting magnets and the cryo-pumps. The requirements of cold circulating pumps (CCP) for mass flow rates and performance are much higher than presently existing and commercially available one used at 4.0 K helium. Design up-scaling with pre-series test of CCP has been proposed including test infrastructure. Operation and control strategies for the test distribution box (TDB) of test infrastructure have been developed and analyzed using steady state and dynamic process simulation to cope with the functional requirements of CCPs. Off-normal scenario with CCP inlet pressure variation is an important concern, dynamic process responses during such scenario have been evaluated to verify the operability of CCP. The paper describes process simulation to cope with the functional requirements of CCPs along with evaluation of off-normal scenario to verify the operability of CCP. (author)

  15. Operation and coupling of LH waves with the ITER-like wall at JET

    International Nuclear Information System (INIS)

    Kirov, K K; Mailloux, J; Arnoux, G; Baranov, Yu; Brix, M; Mayoral, M-L; Rimini, F; Stamp, M; Ekedahl, A; Goniche, M; Petrzilka, V; Jachmich, S; Ongena, J

    2013-01-01

    In this paper important aspects of the lower hybrid (LH) operation with the ITER-like wall (ILW) [1] at JET are reported. Impurity release during LH operation was investigated and it was found that there is no significant Be increase with LH power. The concentration of W was analysed in more detail and it was concluded that LH negligibly contributes to its increase. No cases of W accumulation in LH-only heating experiments were observed so far. LH wave coupling was studied and optimised to achieve the level of system performance similar to before ILW installation. Measurements by Li-beam were used to study systematic dependencies of the scrape-off layer (SOL) density on the gas injection rate from a dedicated gas introduction module and the LH power and launcher position. Experimental results are supported by SOL transport modelling. Observations of arcs in front of the LH launcher and hotspots on magnetically connected sections of the vessel are reported. Overall, a relatively trouble-free operation of the LH system up to 2.5 MW of coupled radio frequency power in L-mode plasma was achieved with no indication that the power cannot be increased further. (paper)

  16. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  17. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  18. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  19. Operational Space Weather Products at IPS

    Science.gov (United States)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  20. Weighted composition operators from Bergman-type spaces into ...

    Indian Academy of Sciences (India)

    Weighted composition operators from Bergman-type spaces into Bloch spaces and little. Bloch spaces are characterized by function theoretic properties of their inducing maps. Keywords. Weighted composition operator; Bergman-type space; Bloch space. 1. Introduction. Let D be the open unit disk in the complex plane C.

  1. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  2. Space Telescope Control System science user operations

    Science.gov (United States)

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  3. Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2014-01-01

    Full Text Available We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  4. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  5. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    Science.gov (United States)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  6. ICRF heating in JET during initial operations with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ (Germany); Campergue, A-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Mlynar, J. [Association EURATOM-IPP.CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Collaboration: JET-EFDA Contributors

    2014-02-12

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  7. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  8. Heating, current drive and energetic particles studies on JET in preparation of ITER operation

    International Nuclear Information System (INIS)

    Noterdaeme, J.-M.; Budny, R.; Cardinali, A.

    2003-01-01

    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated far off axis with little or no refueling or momentum input are hollow with only small differences on whether the power deposition is located on the low field side or on the high field side. With LH current drive the magnetic shear was varied from slightly positive to negative. The improved coupling (through the use of plasma shaping and CD 4 ) allowed up to 3.4 MW of P LH in ITB plasmas with more than 15MW of combined NBI and ICRF heating. The q profile with negative magnetic shear and the ITB could be maintained for the duration of the high heating pulse (8s). Fast ions have been produced in JET with ICRF to simulate alpha particles: by using third harmonic 4 He heating, beam injected 4 He at 120 kV were accelerated to energies above 2 MeV, taking advantage of the unique capability of JET to use NBI with 4 He and to confine MeV class ions. ICRF heating was used to replicate the dynamics of alpha heating and the control of an equivalent Q=10 'burn' was simulated. (author)

  9. Composition operators between Bloch type spaces and Zygmund ...

    Indian Academy of Sciences (India)

    MS received 1 September 2009; revised 31 March 2011. Abstract. The boundedness and compactness of composition operators between. Bloch type spaces and Zygmund spaces of holomorphic functions in the unit ball are characterized in the paper. Keywords. Composition operator; Bloch type space; Zygmund space. 1.

  10. RF-source development for ITER: Large area H- beam extraction, modifications for long pulse operation and design of a half size ITER source

    International Nuclear Information System (INIS)

    Kraus, W.; Heinemann, B.; Falter, H.D.; Franzen, P.; Speth, E.; Entscheva, A.; Fantz, U.; Franke, T.; Holtum, D.; Martens, Ch.; McNeely, P.; Riedl, R.; Wilhelm, R.

    2005-01-01

    With an extraction area of 152 cm 2 a calorimetrically measured H - current density of 19.3 mA/cm 2 has been achieved at 0.45 Pa with 90 kW RF power. With 306 cm 2 the electrically measured H - current has reached up to 9.7 A corresponding to 32 mA/cm 2 at 100 kW. The current on the calorimeter is limited by the extraction system. Down to 0.2 Pa only a weak dependence on the source pressure has been observed. The test bed will be upgraded to demonstrate cw operation with deuterium. Based on the tested prototype a half size ITER RF-source of 80 cm x 90 cm with 360 kW RF power has been designed

  11. ITER overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.R.

    2001-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  12. ITER Overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.

    1999-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  13. Space Station Initial Operational Concept (IOC) operations and safety view - Automation and robotics for Space Station

    Science.gov (United States)

    Bates, William V., Jr.

    1989-01-01

    The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.

  14. Convexity Of Inversion For Positive Operators On A Hilbert Space

    International Nuclear Information System (INIS)

    Sangadji

    2001-01-01

    This paper discusses and proves three theorems for positive invertible operators on a Hilbert space. The first theorem gives a comparison of the generalized arithmetic mean, generalized geometric mean, and generalized harmonic mean for positive invertible operators on a Hilbert space. For the second and third theorems each gives three inequalities for positive invertible operators on a Hilbert space that are mutually equivalent

  15. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  16. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  17. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  18. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  19. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2007-01-01

    ITER is a joint international research and development project that aims to demonstrate the scientific and technological feasibility of fusion power. As soon as the plasma operation begins using tritium, the replacement of the vacuum vessel internal components will need to be done with remote handling techniques. To accomplish these operations ITER has equipped itself with a Remote Maintenance System; this includes the Remote Handling equipment set and the Hot Cell facility. Both need to work in a cooperative way, with the aim of minimizing the machine shutdown periods and to maximize the machine availability. The ITER Remote Handling equipment set is required to be available, robust, reliable and retrievable. The machine components, to be remotely handle-able, are required to be designed simply so as to ease their maintenance. The baseline ITER Remote Handling equipment is described. The ITER Hot Cell Facility is required to provide a controlled and shielded area for the execution of repair operations (carried out using dedicated remote handling equipment) on those activated components which need to be returned to service, inside the vacuum vessel. The Hot Cell provides also the equipment and space for the processing and temporary storage of the operational and decommissioning radwaste. A conceptual ITER Hot Cell Facility is described. (orig.)

  20. on differential operators on w 1,2 space and fredholm operators

    African Journals Online (AJOL)

    A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator

  1. Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino (Italy); Cau, Francesca; Cismondi, Fabio [Fusion for Energy, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [KIT, Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino (Italy); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino (Italy)

    2015-11-15

    The present gyrotron designs for EC plasma heating in nuclear fusion reactors require the safe exhaust of a power comparable to that injected into the plasma, in order to keep the maximum temperature below the acceptable value of 300 °C. In this paper, the commercial computational fluid dynamics (CFD) software STAR-CCM+{sup ®} is used to analyze the thermal performance of the annular copper collector of a 1 MW ITER gyrotron, equipped with a hypervapotron structure made of annular fins with rectangular cavities of aspect ratio (depth/width) = 3, cooled by highly subcooled (90–100 °C) pressurized water flowing at ∼4 m/s. It is assumed that the simple vertical sweeping strategy is used to reduce the very high peak heat flux on the collector (up to 30 MW/m{sup 2} transient, 5 MW/m{sup 2} time average), due to the spent electron beam. The 2D steady-state conjugate heat transfer problem is solved assuming azimuthal symmetry and accounting for 2-phase flow. The single-cavity flow and heat transfer problem is considered first, to optimize the mesh and the selection of the turbulence model. For the operating conditions considered in this paper, the full collector (100+ cavities) solution shows that boiling occurs only in a limited number of cavities close to the peaks of the heat flux, with the vapor remaining trapped in the bottom of the cavities, i.e. no full hypervapotron regime should be achieved in these operating conditions. The steady-state analysis allows the numerical evaluation of the heat transfer coefficients between Cu and water; these are then used as input for the simplified, purely thermal (solid only) analysis of the actual transient problem for the full collector. The results of the simplified model, which allows a huge reduction of the computational effort, are successfully benchmarked against those of a comprehensive thermal–hydraulic simulation. The computed peak Cu temperature is below the acceptable limit under the steady-state (time averaged

  2. Low-Complexity Iterative Receiver for Space-Time Coded Signals over Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Mohamed Siala

    2002-05-01

    Full Text Available We propose a low-complexity turbo-detector scheme for frequency selective multiple-input multiple-output channels. The detection part of the receiver is based on a List-type MAP equalizer which is a state-reduction algorithm of the MAP algorithm using per-survivor technique. This alternative achieves a good tradeoff between performance and complexity provided a small amount of the channel is neglected. In order to induce the good performance of this equalizer, we propose to use a whitened matched filter (WMF which leads to a white-noise “minimum phase” channel model. Simulation results show that the use of the WMF yields significant improvement, particularly over severe channels. Thanks to the iterative turbo processing (detection and decoding are iterated several times, the performance loss due to the use of the suboptimum List-type equalizer is recovered.

  3. Advances in iterative methods

    International Nuclear Information System (INIS)

    Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

    1981-01-01

    Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

  4. Economic consequences of commercial space operations

    Science.gov (United States)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  5. ITER TASK T252 (1995):Gamma radiation testing of a GaAs operational amplifier for instrument applications

    International Nuclear Information System (INIS)

    Hiemstra, D.

    1996-03-01

    The purpose of this 1995 ITER task was : to build an improved operational amplifier using GaAs MESFET technology, to build a reference voltage subcircuit using GaAs MESFET technology and to investigate the potential of GaAs HBT's to improve the noise performance of the GaAs MESFET operational amplifier. This work addresses the need for instrumentation-grade components to read sensors in an experimental fusion reactor, where the anticipated total dose for a useful service life is 3Grad(GaAs). It is an extension of our 1994 work. 3 tabs., 6 figs

  6. Operator Arithmetic-Harmonic Mean Inequality on Krein Spaces

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2014-03-01

    Full Text Available We prove an operator arithmetic-harmonic mean type inequality in Krein space setting, by using some block matrix techniques of indefinite type. We also give an example which shows that the operator arithmetic-geometric-harmonic mean inequality for two invertible selfadjoint operators on Krein spaces is not valid, in general.

  7. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  8. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  9. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  10. Self-Adjointness Criterion for Operators in Fock Spaces

    International Nuclear Information System (INIS)

    Falconi, Marco

    2015-01-01

    In this paper we provide a criterion of essential self-adjointness for operators in the tensor product of a separable Hilbert space and a Fock space. The class of operators we consider may contain a self-adjoint part, a part that preserves the number of Fock space particles and a non-diagonal part that is at most quadratic with respect to the creation and annihilation operators. The hypotheses of the criterion are satisfied in several interesting applications

  11. Leadership and Cultural Challenges in Operating the International Space Station

    Science.gov (United States)

    Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.

    2006-01-01

    Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.

  12. Main maintenance operations for Test Blanket Systems in ITER TBM port cells

    Energy Technology Data Exchange (ETDEWEB)

    Pascal, R., E-mail: romain.pascal@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Friconneau, J.-P.; Giancarli, L.M.; Gotewal, K.K.; Iseli, M.; Kim, B.Y.; Levesy, B.; Martins, J.-P.; Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Nevière, J.-C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Patisson, L. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Siarras, A. [Sogetti, Parc de la Duranne, 13857 Aix-en-Provence (France); Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: • The Test Blanket System components layout in Port Cell room is described. • The maintenance of the two Test Blanket Systems in ITER port cell is addressed. • The overall replacement/maintenance strategy is defined. • The main maintenance tasks of the systems are discussed. • The maintenance strategy and required tools are presented. -- Abstract: Each Test Blanket System in ITER is formed by an in-vessel component, the Test Blanket Module, and several associated ancillary systems (coolant and Tritium systems, instrumentation and control systems). The paper describes the overall replacement/maintenance strategy and the main maintenance tasks that have to be considered in the design of the systems. It shows that there are no critical issues.

  13. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Riccardo, V., E-mail: valeria.riccardo@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lomas, P.; Matthews, G.F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Nunes, I. [Associação EURATOM-IST, IPFN – Laboratório Associado, IST, Lisbon (Portugal); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Thompson, V. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Villedieu, E. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► 40 m{sup 2} of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets.

  14. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    International Nuclear Information System (INIS)

    Riccardo, V.; Lomas, P.; Matthews, G.F.; Nunes, I.; Thompson, V.; Villedieu, E.

    2013-01-01

    Highlights: ► 40 m 2 of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets

  15. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    Czech Academy of Sciences Publication Activity Database

    Jacquet, P.; Bobkov, V.; Colas, L.; Czarnecka, A.; Lerche, E.; Mayoral, M.-L.; Monakhov, I.; Van-Eester, D.; Arnoux, G.; Brezinsek, S.; Brix, M.; Campergue, A.-L.; Devaux, S.; Drewelow, P.; Graham, M.; Klepper, C.C.; Meigs, A.; Milanesio, D.; Mlynář, Jan; Pütterich, T.; Sirinelli, A.

    2014-01-01

    Roč. 21, č. 6 (2014), 061510-061510 ISSN 1070-664X. [Topical conference on radio frequency power in plasmas/20./. Sorrento, 25.06.2013-28.06.2013] Institutional support: RVO:61389021 Keywords : JET * ITER-like wall * ICRF heating * impurities * sawtooth * simulation * transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/6/10.1063/1.4884354

  16. Primary design and operation analysis of the ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  17. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  18. A note on supercyclic operators in locally convex spaces

    OpenAIRE

    Albanese, Angela A.; Jornet, David

    2018-01-01

    We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general setting. Some examples are given.

  19. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  20. Spectral decomposition of model operators in de Branges spaces

    International Nuclear Information System (INIS)

    Gubreev, Gennady M; Tarasenko, Anna A

    2011-01-01

    The paper is devoted to studying a class of completely continuous nonselfadjoint operators in de Branges spaces of entire functions. Among other results, a class of unconditional bases of de Branges spaces consisting of values of their reproducing kernels is constructed. The operators that are studied are model operators in the class of completely continuous non-dissipative operators with two-dimensional imaginary parts. Bibliography: 22 titles.

  1. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  2. ITER radio frequency systems

    International Nuclear Information System (INIS)

    Bosia, G.

    1998-01-01

    Neutral Beam Injection and RF heating are two of the methods for heating and current drive in ITER. The three ITER RF systems, which have been developed during the EDA, offer several complementary services and are able to fulfil ITER operational requirements

  3. Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • ITER blanket cooling system hydraulic behaviour is studied under draining transient. • A computational approach based on the finite volume method has been followed. • Draining efficiency has been assessed in term of transient duration and residual water. • Transient duration ranges from ∼40 to 50 s, under the reference draining scenario. • Residual water is predicted to range from few tens of gram up to few kilograms. - Abstract: Within the framework of the research and development activities supported by the ITER Organization on the blanket system issues, an intense analysis campaign has been performed at the University of Palermo with the aim to investigate the thermal-hydraulic behaviour of the cooling system of a standard 20° sector of ITER blanket during the draining transient operational procedure. The analysis has been carried out following a theoretical-computational approach based on the finite volume method and adopting the RELAP5 system code. In a first phase, attention has been focused on the development and validation of the finite volume models of the cooling circuits of the most demanding modules belonging to the standard blanket sector. In later phase, attention has been put to the numerical simulation of the thermal-hydraulic transient behaviour of each cooling circuit during the draining operational procedure. The draining procedure efficiency has been assessed in terms of both transient duration and residual amount of coolant inside the circuit, observing that the former ranges typically between 40 and 120 s and the latter reaches at most ∼8 kg, in the case of the cooling circuit of twinned modules #6–7. Potential variations to operational parameters and/or to circuit lay-out have been proposed and investigated to optimize the circuit draining performances. In this paper, the set-up of the finite volume models is briefly described and the key results are summarized and critically discussed.

  4. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non......A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates......, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required...

  5. Development of a RF source for ITER NBI: First results with D- operation

    International Nuclear Information System (INIS)

    Speth, E.; Falter, H.D.; Franzen, P.; Heinemann, B.; Bandyopadhyay, M.; Fantz, U.; Kraus, W.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    As an alternative for ITER NBI a RF source is being developed at IPP, Garching. This paper reports the first results with deuterium extracted from a restricted extraction area and accelerated to about 22 KeV. A current density of 150 A/m 2 (calorimetric) of D - ions has been reached so far in a Cs-seeded discharge with an electron/ion ration of ≤1. The effect of the magnetic filter field on the yield and the electron suppression and possible limitations/improvements are discussed. The neutron production rate is about a factor 40 lower than expected from positive ions. Possible reasons for this are discussed

  6. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  7. Sobolev type spaces associated with the q-Rubin's operator

    Directory of Open Access Journals (Sweden)

    Neji Bettaibi

    2014-05-01

    Full Text Available In this paper we introduce and   study   some $q$-Sobolev type spaces by using the harmonic analysis associated with the q-Rubin operator. In particular, embedding theorems for these spaces are established.  Next, we introduce the q-Rubin potential spaces and study some of its properties.

  8. Revitalizing Space Operations through Total Quality Management

    Science.gov (United States)

    Baylis, William T.

    1995-01-01

    The purpose of this paper is to show the reader what total quality management (TQM) is and how to apply TQM in the space systems and management arena. TQM is easily understood, can be implemented in any type of business organization, and works.

  9. Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm.

    Directory of Open Access Journals (Sweden)

    Higinio Mora

    Full Text Available The Iterative Closest Point (ICP algorithm is currently one of the most popular methods for rigid registration so that it has become the standard in the Robotics and Computer Vision communities. Many applications take advantage of it to align 2D/3D surfaces due to its popularity and simplicity. Nevertheless, some of its phases present a high computational cost thus rendering impossible some of its applications. In this work, it is proposed an efficient approach for the matching phase of the Iterative Closest Point algorithm. This stage is the main bottleneck of that method so that any efficiency improvement has a great positive impact on the performance of the algorithm. The proposal consists in using low computational cost point-to-point distance metrics instead of classic Euclidean one. The candidates analysed are the Chebyshev and Manhattan distance metrics due to their simpler formulation. The experiments carried out have validated the performance, robustness and quality of the proposal. Different experimental cases and configurations have been set up including a heterogeneous set of 3D figures, several scenarios with partial data and random noise. The results prove that an average speed up of 14% can be obtained while preserving the convergence properties of the algorithm and the quality of the final results.

  10. (s, μ)-similar operators in the Banach spaces

    International Nuclear Information System (INIS)

    Samarskij, V.G.

    1978-01-01

    The theory of the operator ideals formed by means of S function is developed. The problem of the construction of the operator acting from one Banach space to another whose S numbers are near to the given ones, is solved. Several conditions, sufficient for that any wholly continuous operator in the Gilbert space were transferred to the given pair of the Banach spaces without distorting too much the values of its S-numbers, are given. All the considered operators are assumed to be linear and continuous ones

  11. Modeling of complex gas distribution systems operating under any vacuum conditions: Simulations of the ITER divertor pumping system

    International Nuclear Information System (INIS)

    Vasileiadis, N.; Tatsios, G.; Misdanitis, S.; Valougeorgis, D.

    2016-01-01

    Highlights: • An integrated s/w for modeling complex rarefied gas distribution systems is presented. • Analysis is based on kinetic theory of gases. • Code effectiveness is demonstrated by simulating the ITER divertor pumping system. • The present s/w has the potential to support design work in large vacuum systems. - Abstract: An integrated software tool for modeling and simulation of complex gas distribution systems operating under any vacuum conditions is presented and validated. The algorithm structure includes (a) the input geometrical and operational data of the network, (b) the definition of the fundamental set of network loops and pseudoloops, (c) the formulation and solution of the mass and energy conservation equations, (d) the kinetic data base of the flow rates for channels of any length in the whole range of the Knudsen number, supporting, in an explicit manner, the solution of the conservation equations and (e) the network output data (mainly node pressures and channel flow rates/conductance). The code validity is benchmarked under rough vacuum conditions by comparison with hydrodynamic solutions in the slip regime. Then, its feasibility, effectiveness and potential are demonstrated by simulating the ITER torus vacuum system with the six direct pumps based on the 2012 design of the ITER divertor. Detailed results of the flow patterns and paths in the cassettes, in the gaps between the cassettes and along the divertor ring, as well as of the total throughput for various pumping scenarios and dome pressures are provided. A comparison with previous results available in the literature is included.

  12. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  13. Coordinate, Momentum and Dispersion operators in Phase space representation

    International Nuclear Information System (INIS)

    Rakotoson, H.; Raoelina Andriambololona; Ranaivoson, R.T.R.; Raboanary, R.

    2017-07-01

    The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the introduction section with a recall about the concept of representation of operators on wave function spaces. Then, we show that in the case of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with matrices. The explicit expressions of both the differential operators and matrices representations are established. Multidimensional generalization of the obtained results are performed and phase space representation of dispersion operators are given.

  14. A common fixed point for operators in probabilistic normed spaces

    International Nuclear Information System (INIS)

    Ghaemi, M.B.; Lafuerza-Guillen, Bernardo; Razani, A.

    2009-01-01

    Probabilistic Metric spaces was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [Alsina C, Schweizer B, Sklar A. On the definition of a probabilistic normed spaces. Aequationes Math 1993;46:91-8]. Here, we consider the equicontinuity of a class of linear operators in probabilistic normed spaces and finally, a common fixed point theorem is proved. Application to quantum Mechanic is considered.

  15. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  16. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Kravtsenyuk Olga V

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a gain in spatial resolution can be obtained.

  17. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Vladimir V. Lyubimov

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be obtained.

  18. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  19. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  20. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  1. Performance Support Tools for Space Medical Operations

    Science.gov (United States)

    Byrne, Vicky E.; Schmidt, Josef; Barshi, Immanuel

    2009-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Human factors personnel at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground. This area of research involved the feasibility of Just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction were captured. Information needed by the FS during ISS mission support, especially for an emergency situation (e.g. fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS

  2. Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space

    International Nuclear Information System (INIS)

    Feng Youling; Cao, Yang; Wang Haijun

    2012-01-01

    By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.

  3. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  4. A universal operator on the Gurarii space

    Czech Academy of Sciences Publication Activity Database

    Garbulińska-Węgrzyn, J.; Kubiś, Wieslaw

    2015-01-01

    Roč. 73, č. 1 (2015), s. 143-158 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : almost isometry * Gurariî * isometrically universal operator Subject RIV: BA - General Mathematics Impact factor: 0.464, year: 2015 http://www.mathjournals.org/jot/2015-073-001/2015-073-001-007.html

  5. U.S. Army Space Operational Narrative

    Science.gov (United States)

    2012-03-20

    fire, and effects ( MFE ), the operational support (OS), and the functional support division (FSD); it is further divided into many more specialties...cyberspace expertise at the highest levels is a must for the Army. Both ARCYBERCOM and USASMDC/ARSTRAT commands are key positions filled by MFE officers... MFE officers with the majority from infantry and armor (31). The FA, AD, and EN branches will round out the top five.47 Half of the Army branches are

  6. Wiener-Hopf operators on spaces of functions on R+ with values in a Hilbert space

    OpenAIRE

    Petkova, Violeta

    2006-01-01

    A Wiener-Hopf operator on a Banach space of functions on R+ is a bounded operator T such that P^+S_{-a}TS_a=T, for every positive a, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on R+ with values in a separable Hilbert space.

  7. Studies on representative disruption scenarios, associated electromagnetic and heat loads and operation window in ITER

    International Nuclear Information System (INIS)

    Fujieda, Hirobumi; Shimada, Michiya; Kawano, Yasunori; Ohmori, Junji; Neyatani, Yuzuru; Sugihara, Masayoshi; Gribov, Yuri; Ioki, Kimihiro; Khayrutdinov, Rustan; Lukash, Victor

    2007-07-01

    The impacts of plasma disruptions on ITER have been investigated in detail to confirm the robustness of the design of the machine to the potential consequential loads. The loads include both electromagnetic (EM) and heat loads on the in-vessel components and the vacuum vessel (VV). Several representative disruption scenarios are specified based on newly derived physics guidelines for the shortest current quench time as well as the maximum product of halo current fraction and toroidal peaking factor arising from disruptions in ITER. Disruption simulations with the DINA code and EM load analyses with a 3D finite element method (FEM) code are performed for these scenarios. Some margins are confirmed in the EM load on in-vessel components due to induced eddy and halo currents for these representative scenarios. However, the margins are not very large. The heat load on various parts of the first wall due to the vertical movement and the thermal quench (TQ) is calculated with a 2D heat conduction code based on the database of heat deposition during disruptions and simulation results with the DINA code. It is found that the beryllium (Be) wall will not melt during the vertical movement. Significant melting is anticipated for the upper Be wall and tungsten divertor baffle due to the TQ after the vertical movement. However, its impact could be substantially mitigated by implementing a reliable detection system of the vertical movement and a mitigation system, e.g., massive noble gas injection (MGI). Some melting of the upper Be wall is anticipated at major disruptions (MD). At least several tens of unmitigated disruptions must be considered even if an advanced prediction/mitigation system is implemented. With these unmitigated disruptions, the loss of Be layer is expected to be within approx. = 30-100 μm/event out of 10 mm thick Be first wall. Various post processing programs of the results simulated with the DINA code, which are developed for the design work, are

  8. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    Science.gov (United States)

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  9. NASA deep space network operations planning and preparation

    Science.gov (United States)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  10. 76 FR 20717 - NASA Advisory Council; Space Operations Committee; Meeting.

    Science.gov (United States)

    2011-04-13

    ...: Doubletree Hotel, 2080 North Atlantic Ave, Cocoa Beach, FL 32931. FOR FURTHER INFORMATION CONTACT: Mr. Jacob... for the meeting includes the following topics: --Space Operations Mission Directorate FY2012 Budget...

  11. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    Science.gov (United States)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  12. Beyond Safe Operating Space: Finding Chemical Footprinting Feasible

    DEFF Research Database (Denmark)

    Posthuma, Leo; Bjørn, Anders; Zijp, Michiel C.

    2014-01-01

    undefined boundary in their selection of planetary boundaries delineating the “safe operating space for humanity”. Can we use the well-known concept of “ecological footprints” to express a chemical pollution boundary aimed at preventing the overshoot of the Earth’s capacity to assimilate environmental...... scenarios that allow us to avoid “chemical overshoot” beyond the Earth’s safe operating space....

  13. Quantized fields and operators on a partial inner product space

    International Nuclear Information System (INIS)

    Shabani, J.

    1985-11-01

    We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)

  14. An Operations Management System for the Space Station

    Science.gov (United States)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  15. The enhanced pellet centrifuge launcher at ASDEX Upgrade: Advanced operation and application as technology test facility for ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Ploeckl, B., E-mail: bernhard.ploeckl@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Day, Chr. [Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Lamalle, Ph. [ITER Organization, Route de Vinon sur Verdon, CS 90046, 13067 Saint-Paul-lez-Durance (France); Lang, P.T.; Rohde, V.; Viezzer, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    The pellet centrifuge at ASDEX Upgrade has served for more than 20 years as a powerful tool for plasma control. Its recently enhanced control system provides more thorough control over parameters and a detailed view of all measured values. A study has recently been initiated on the conceptual design of an optimized DEMO core particle fuelling system. For this approach, first technical tests aimed on an optimized pellet transfer with respect to the preparation of the solid fuel and the transfer systems have been performed. An investigation of the temperature dependence of transfer efficiency (mass loss due to erosion and broken pellets) has revealed a weak dependence. For ITER, in which it is intended to operate a heating scheme with ICRF minority heating of He-3, test injections are performed using D{sub 2}-pellets as carriers for He-4. Admixing of N{sub 2} was investigated as well.

  16. How the Station will operate. [operation, management, and maintenance in space

    Science.gov (United States)

    Cox, John T.

    1988-01-01

    Aspects of the upcoming operational phase of the Space Station (SS) are examined. What the crew members will do with their time in their specialized roles is addressed. SS maintenance and servicing and the interaction of the SS Control Center with Johnson Space Center is discussed. The planning of payload operations and strategic planning for the SS are examined.

  17. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  18. Survey on nonlocal games and operator space theory

    International Nuclear Information System (INIS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states

  19. Survey on nonlocal games and operator space theory

    Energy Technology Data Exchange (ETDEWEB)

    Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-15

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  20. Influence of Extrinsic Information Scaling Coefficient on Double-Iterative Decoding Algorithm for Space-Time Turbo Codes with Large Number of Antennas

    Directory of Open Access Journals (Sweden)

    TRIFINA, L.

    2011-02-01

    Full Text Available This paper analyzes the extrinsic information scaling coefficient influence on double-iterative decoding algorithm for space-time turbo codes with large number of antennas. The max-log-APP algorithm is used, scaling both the extrinsic information in the turbo decoder and the one used at the input of the interference-canceling block. Scaling coefficients of 0.7 or 0.75 lead to a 0.5 dB coding gain compared to the no-scaling case, for one or more iterations to cancel the spatial interferences.

  1. A gap analysis of meteorological requirements for commercial space operators

    Science.gov (United States)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  2. A software environment to execute automatic operational sequences on the ITER-FEAT DTP facility

    International Nuclear Information System (INIS)

    Fermani, G.; Zarfino, M.

    2001-01-01

    The divertor test platform (DTP) maintenance operations are carried out by means of the remote handling equipments (RHE), each dedicated to perform a set of specialised remote actions. Each RHE is controlled by an RHE control system (RHE-CS) and can be locally operated by an RHE-operator using the local control panel (LOP). To perform the maintenance activity, the DTP-operator coordinates the remote operations of every RHEs, using the supervisory system (DTP S S). Because the remote maintenance activities demand for a high degree of parallelism, automation and cooperation between various RHEs, the development of a software environment (OSAExE) that had the indicated characteristics has been necessary. The OSAExE environment is applicable to any distributed and cooperating system that is modelled as a set of autonomous subsystems. Each maintenance remote sequence needs to be modelled as a modified Petri-net diagram and subsequently 'compiled', in order to be automatically executed on OSAExE environment. The OSAExE architecture allows both, to program 'event driven' automatic sequences, and to maintain unchanged all the existing DTP S S features

  3. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  4. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  5. Particles and Dirac-type operators on curved spaces

    International Nuclear Information System (INIS)

    Visinescu, Mihai

    2003-01-01

    We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)

  6. (Ln-bar, g)-spaces. Variation operator

    International Nuclear Information System (INIS)

    Manoff, S.; Dimitrov, B.

    1998-01-01

    A variation operator is determined over (L n bar, g)-spaces as a linear differential operator, acting on tensor fields in a given basis. Its commutation relations with the Lie differential operator, with the covariant differential operator and with the contraction operator are imposed. The corollaries from using the different commutation relations in a Lagrangian formalism are found and two types of variation methods are distinguished: the common (canonical) method of Lagrangians with partial derivatives (MLPD) and the method of Lagrangians with covariant derivatives (MLCD)

  7. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Roccella, R.

    2007-01-01

    diagnostic lines does not foresee an interface between the TBM and the PP back side shield because of the very restricted space conditions. Therefore the diagnostic lines will be routed inside of a pipe which is attached to the TBM rear part. This instrumentation pipe is designed to penetrate the whole radiation shield up to the interface between the PP back side shield rear part and the Ancillary Equipment Unit (AEU). At this interface the diagnostic lines exit the instrumentation pipe by a feed through where they are connected to a multi plug which provides the connection to the Data Acquisition System. The vacuum boundary between the back side shield and the instrumentation pipe will be provided by a bellow. After a consistent concept for the integration of the HCPB TBM in ITER has been developed, further investigation will be needed to develop tools and procedures which are required to install the TBM into the PP during the maintenance and refurbishment operations in the hot cell. (orig.)

  8. Air operations language for military space ground systems

    Science.gov (United States)

    Davis, P.

    The trends in military space ground system architecture is toward large amounts of software and more widely distributed processors. At the same time, life cycle cost considerations dictate that fewer personnel with minimized skill levels and knowledge operate and support these systems. This squeeze necessitates more human engineering and operational planning into the design of these systems. Several techniques have been developed to satisfy these requirements. An operations language is one of these techniques. It involves a specially defined syntax for control of the system. Individual directives are able to be grouped into operations language procedures. These procedures can be prepared offline ahead of time by more skilled personnel and then used to ensure repeatability of operational sequences and reduce operator errors. The use of an operations language also provides benefits for the handling of contingency operations as well as in the system testing and validation programs.

  9. Inverse Free Iterative Methods for Nonlinear Ill-Posed Operator Equations

    Directory of Open Access Journals (Sweden)

    Ioannis K. Argyros

    2014-01-01

    ill-posed operator equation F(x=y. The proposed method is a modified form of Tikhonov gradient (TIGRA method considered by Ramlau (2003. The regularization parameter is chosen according to the balancing principle considered by Pereverzev and Schock (2005. The error estimate is derived under a general source condition and is of optimal order. Some numerical examples involving integral equations are also given in this paper.

  10. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  11. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  12. Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guiding [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Peebles, W. A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Crocker, N. A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Wannberg, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Lau, Cornwall H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hanson, Gregory R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Doane, John L. [General Atomics, San Diego, CA (United States)

    2017-10-19

    The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarization rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.

  13. Feasibility study of the cut and weld operations by RH on the cooling pipes of ITER NB components

    International Nuclear Information System (INIS)

    Pineiro, Oscar; Fernandez, Carlos; Medrano, Mercedes; Liniers, Macarena; Botija, Jose; Alonso, Javier; Sarasola, Xabier; Damiani, Carlo

    2009-01-01

    The maintenance operations of ITER NB components inside the vessel - Beam Line Components (BLC's) involve the removal of the faulty component, its transport to the hot cell as well as the reverse operations of transport of the repaired/new component and its reinstallation inside the vessel. Prior to the removal of the BLC's the cooling pipes must be detached from the component following a procedure that applies to the cutting of the pipes and subsequent welding when the component is re-installed. The purpose of this study, conducted in the framework of EFDA, is to demonstrate the feasibility of the cut and weld operations on the water pipes of the BLC's using fully remote handling techniques. Viable technologies for the cut and weld operations have been identified within the study; in particular the following aspects will be presented in the paper: - Different strategies can be pursued in the detachment of the components depending on the number of cut and weld operations to be performed on the pipes. The selected strategy will impact on the procedure to be followed likewise on important aspects as the requirements of the flexible joints assembled on the pipes. - The existing cutting techniques have been examined in the light of the remotely performed pipe cutting at the NB cell. Modifications of commercial tools have been proposed in order to adapt them to the BLC's pipes requirements. The debris produced during the cutting process must be controlled and collected, therefore a cleaning system has been integrated in the adapted cutting tool referred above. - The existing welding techniques have been also examined and compared based on different criteria such as complexity, reliability, alignment tolerances, etc. TIG welding is the preferred technique as it stands out for its superior performance. The commercial tools identified need to be adapted to the NB environment. - The alignment of the pipes is a critical issue concerning the remote welding. A proper alignment

  14. Frechet differentiation of nonlinear operators between fuzzy normed spaces

    International Nuclear Information System (INIS)

    Yilmaz, Yilmaz

    2009-01-01

    By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.

  15. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  16. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  17. Advances towards QH-mode viability for ELM-stable operation in ITER

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Burrell, K.H.; DeBoo, J.C.; Schaffer, M.J.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Lanctot, M.J.; Reimerdes, H.; McKee, G.R.; Schmitz, L.

    2011-01-01

    The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.

  18. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  19. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  20. Unbounded weighted composition operators in L²-spaces

    CERN Document Server

    Budzyński, Piotr; Jung, Il Bong; Stochel, Jan

    2018-01-01

    This book establishes the foundations of the theory of bounded and unbounded weighted composition operators in L²-spaces. It develops the theory in full generality, meaning that the weighted composition operators under consideration are not regarded as products of multiplication and composition operators. A variety of seminormality properties are characterized and the first-ever criteria for subnormality of unbounded weighted composition operators is provided. The subtle interplay between the classical moment problem, graph theory and the injectivity problem is revealed and there is an investigation of the relationships between weighted composition operators and the corresponding multiplication and composition operators. The optimality of the obtained results is illustrated by a variety of examples, including those of discrete and continuous types. The book is primarily aimed at researchers in single or multivariable operator theory.

  1. Spectral analysis of difference and differential operators in weighted spaces

    International Nuclear Information System (INIS)

    Bichegkuev, M S

    2013-01-01

    This paper is concerned with describing the spectrum of the difference operator K:l α p (Z,X)→l α p (Z......athscrKx)(n)=Bx(n−1),  n∈Z,  x∈l α p (Z,X), with a constant operator coefficient B, which is a bounded linear operator in a Banach space X. It is assumed that K acts in the weighted space l α p (Z,X), 1≤p≤∞, of two-sided sequences of vectors from X. The main results are obtained in terms of the spectrum σ(B) of the operator coefficient B and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles

  2. Weighted Differentiation Composition Operator from Logarithmic Bloch Spaces to Zygmund-Type Spaces

    Directory of Open Access Journals (Sweden)

    Huiying Qu

    2014-01-01

    Full Text Available Let H( denote the space of all holomorphic functions on the unit disk of ℂ, u∈H( and let  n be a positive integer, φ a holomorphic self-map of , and μ a weight. In this paper, we investigate the boundedness and compactness of a weighted differentiation composition operator φ,unf(z=u(zf(n(φ(z,f∈H(, from the logarithmic Bloch spaces to the Zygmund-type spaces.

  3. Analysis of remote operating systems for space-based servicing operations, volume 1

    Science.gov (United States)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  4. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  5. Why advanced computing? The key to space-based operations

    Science.gov (United States)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  6. Future plan of ITER

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1998-01-01

    In cooperation of four countries, Japan, USA, EU and Russia, ITER plan has been proceeding as ''the conceptual design activities'' from 1988 to 1990 and ''the industrial design activities'' since 1992. To construct ITER, the legal and work side of ITER operation has been investigated by four countries. However, their economic conditions have been changed to be wrong. So that, construction of ITER can not begin after end of industrial design activities in 1998. Accordingly, they determined to continue the industrial design activities more three years in order to study low cost options and to test the superconductive model·coil. (S.Y.)

  7. ITER test programme

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Casini, G.

    1991-01-01

    ITER has been designed to operate in two phases. The first phase which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER. 15 refs, figs and tabs

  8. The energy-momentum operator in curved space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1983-01-01

    It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)

  9. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  10. Expanding the operating space of ICRF on JET with a view to ITER

    DEFF Research Database (Denmark)

    Lamalle, P.U.; Mantsinen, M.J.; Noterdaeme, J.M.

    2006-01-01

    when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen...

  11. Integrating Space Systems Operations at the Marine Expeditionary Force Level

    Science.gov (United States)

    2015-06-01

    Operation ARSST Army Space Support Team BCT Brigade Combat Team BDA Battle Damage Assessment BLOS Beyond Line of Site C2 Command and Control CMCC-CP...accurate imagery of known target locations. Additionally, ISR systems provide a convenient battle damage assessment ( BDA ) option necessary to determine

  12. Hilbert-type inequalities for Hilbert space operators | Krnic ...

    African Journals Online (AJOL)

    In this paper we establish a general form of the Hilbert inequality for positive invertible operators on a Hilbert space. Special emphasis is given to such inequalities with homogeneous kernels. In some general cases the best possible constant factors are also derived. Finally, we obtain the improvement of previously deduced ...

  13. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  14. On convergence of nuclear and correlation operators in Hilbert space

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1985-01-01

    The convergence of sequences of nuclear operators on a separable Hilbert space is studied. Emphasis is given to trace-norm convergence, which is a basic property in stochastic systems theory. Obviously trace-norm convergence implies uniform convergence. The central theme of the paper focus the opposite way, by investigating when convergence in a weaker topology turns out to imply convergence in a stronger topology. The analysis carried out here is exhaustive in the following sense. All possible implications within a selected set of asymptotic properties for sequences of nuclear operators are established. The special case of correlation operators is also considered in detail. (Author) [pt

  15. Selfadjoint operators in spaces of functions of infinitely many variables

    CERN Document Server

    Berezanskiĭ, Yu M

    1986-01-01

    Questions in the spectral theory of selfadjoint and normal operators acting in spaces of functions of infinitely many variables are studied in this book, and, in particular, the theory of expansions in generalized eigenfunctions of such operators. Both individual operators and arbitrary commuting families of them are considered. A theory of generalized functions of infinitely many variables is constructed. The circle of questions presented has evolved in recent years, especially in connection with problems in quantum field theory. This book will be useful to mathematicians and physicists interested in the indicated questions, as well as to graduate students and students in advanced university courses.

  16. Feasibility study of the cut and weld operations by RH on the cooling pipes of ITER NB components

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, Oscar; Fernandez, Carlos [TECNATOM Avda. Montes de Oca 28700 S Sebastian de los Reyes, Madrid (Spain); Medrano, Mercedes [EURATOM-CIEMAT Association for Fusion. Avda. Complutense, 22. 28040 Madrid (Spain)], E-mail: mercedes.medrano@ciemat.es; Liniers, Macarena; Botija, Jose; Alonso, Javier; Sarasola, Xabier [EURATOM-CIEMAT Association for Fusion. Avda. Complutense, 22. 28040 Madrid (Spain); Damiani, Carlo [EFDA-Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    The maintenance operations of ITER NB components inside the vessel - Beam Line Components (BLC's) involve the removal of the faulty component, its transport to the hot cell as well as the reverse operations of transport of the repaired/new component and its reinstallation inside the vessel. Prior to the removal of the BLC's the cooling pipes must be detached from the component following a procedure that applies to the cutting of the pipes and subsequent welding when the component is re-installed. The purpose of this study, conducted in the framework of EFDA, is to demonstrate the feasibility of the cut and weld operations on the water pipes of the BLC's using fully remote handling techniques. Viable technologies for the cut and weld operations have been identified within the study; in particular the following aspects will be presented in the paper: - Different strategies can be pursued in the detachment of the components depending on the number of cut and weld operations to be performed on the pipes. The selected strategy will impact on the procedure to be followed likewise on important aspects as the requirements of the flexible joints assembled on the pipes. - The existing cutting techniques have been examined in the light of the remotely performed pipe cutting at the NB cell. Modifications of commercial tools have been proposed in order to adapt them to the BLC's pipes requirements. The debris produced during the cutting process must be controlled and collected, therefore a cleaning system has been integrated in the adapted cutting tool referred above. - The existing welding techniques have been also examined and compared based on different criteria such as complexity, reliability, alignment tolerances, etc. TIG welding is the preferred technique as it stands out for its superior performance. The commercial tools identified need to be adapted to the NB environment. - The alignment of the pipes is a critical issue concerning the remote welding

  17. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  18. Generalized space and linear momentum operators in quantum mechanics

    International Nuclear Information System (INIS)

    Costa, Bruno G. da; Borges, Ernesto P.

    2014-01-01

    We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p ^ q , and its canonically conjugate deformed position operator x ^ q . A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed

  19. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  20. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  1. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  2. Joint Space Operations Center (JSpOC) Mission System (JMS)

    Science.gov (United States)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  3. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    Science.gov (United States)

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  4. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  5. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  6. The Race Toward Becoming Operationally Responsive in Space

    Science.gov (United States)

    Nagy, J.; Hernandez, V.; Strunce, R.

    The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started

  7. Spaces of fractional quotients, discrete operators, and their applications. II

    International Nuclear Information System (INIS)

    Lifanov, I K; Poltavskii, L N

    1999-01-01

    The theory of discrete operators in spaces of fractional quotients is developed. A theorem on the stability of discrete operators under smooth perturbations is proved. On this basis, using special quadrature formulae of rectangular kind, the convergence of approximate solutions of hypersingular integral equations to their exact solutions is demonstrated and a mathematical substantiation of the method of closed discrete vortex frameworks is obtained. The same line of argument is also applied to difference equations arising in the solution of the homogeneous Dirichlet problem for a general second-order elliptic equation with variable coefficients

  8. Organizing for low cost space operations - Status and plans

    Science.gov (United States)

    Lee, C.

    1976-01-01

    Design features of the Space Transportation System (vehicle reuse, low cost expendable components, simple payload interfaces, standard support systems) must be matched by economical operational methods to achieve low operating and payload costs. Users will be responsible for their own payloads and will be charged according to the services they require. Efficient use of manpower, simple documentation, simplified test, checkout, and flight planning are firm goals, together with flexibility for quick response to varying user needs. Status of the Shuttle hardware, plans for establishing low cost procedures, and the policy for user charges are discussed.

  9. Automated space vehicle control for rendezvous proximity operations

    Science.gov (United States)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  10. Convex analysis and monotone operator theory in Hilbert spaces

    CERN Document Server

    Bauschke, Heinz H

    2017-01-01

    This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...

  11. Applying AI tools to operational space environmental analysis

    Science.gov (United States)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  12. Manifold learning to interpret JET high-dimensional operational space

    International Nuclear Information System (INIS)

    Cannas, B; Fanni, A; Pau, A; Sias, G; Murari, A

    2013-01-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption. (paper)

  13. Operationalizing safe operating space for regional social-ecological systems.

    Science.gov (United States)

    Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako

    2017-04-15

    This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  15. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Science.gov (United States)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  16. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems. SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  17. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems.

    SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  18. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  19. International Cooperation of Payload Operations on the International Space Station

    Science.gov (United States)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  20. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost

    2012-01-01

    a particular skeleton ad-hoc for repeated execution turns out to be considerably complicated, and raises general questions about introducing state into a stateless parallel computation. In addition, one would strongly prefer an approach which leaves the original skeleton intact, and only uses it as a building...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...

  1. CO2 on the International Space Station: An Operations Update

    Science.gov (United States)

    Law, Jennifer; Alexander, David

    2016-01-01

    PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.

  2. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  3. Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

    Directory of Open Access Journals (Sweden)

    V. S. Guliyev

    2015-01-01

    Full Text Available We study the continuity properties of the generalized fractional integral operator Iρ on the generalized local Morrey spaces LMp,φ{x0} and generalized Morrey spaces Mp,φ. We find conditions on the triple (φ1,φ2,ρ which ensure the Spanne-type boundedness of Iρ from one generalized local Morrey space LMp,φ1{x0} to another LMq,φ2{x0}, 1space WLMq,φ2{x0}, 1

  4. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  5. Soldier-Warfighter Operationally Responsive Deployer for Space

    Science.gov (United States)

    Davis, Benny; Huebner, Larry; Kuhns, Richard

    2015-01-01

    The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) project was a joint project between the U.S. Army Space & Missile Defense Command (SMDC) and NASA. The effort, lead by SMDC, was intended to develop a three-stage liquid bipropellant (liquid oxygen/liquid methane), pressure-fed launch vehicle capable of inserting a payload of at least 25 kg to a 750-km circular orbit. The vehicle design was driven by low cost instead of high performance. SWORDS leveraged commercial industry standards to utilize standard hardware and technologies over customized unique aerospace designs. SWORDS identified broadly based global industries that have achieved adequate levels of quality control and reliability in their products and then designed around their expertise and business motivations.

  6. Space platforms - A cost effective evolution of Spacelab operation

    Science.gov (United States)

    Stofan, A. J.

    1981-01-01

    The capabilities added to the Shuttle/Spacelab configuration by the addition of the Power Extension Package (PEP), the Power System (PS), and the Science and Applications Space Platforms (SASP) are reviewed with an emphasis on SASP. SASP are intended for placement in orbit by the Shuttle to test new instruments and systems, for clustering of instrumentation, and for servicing, refurbishment, repair, or augmentation by the Shuttle. The PEP permits extended stays in orbit (30 days), and the PS is an orbital solar array and energy storage system acting as a free flying spacecraft. The Shuttle can deliver payloads to the PS or attach to it for extension of the Spacelab operations. Applications of SASP for long term space-based biological experiments are outlined, and the fact that SASP do not increase the required Shuttle in-orbit time is stressed.

  7. Learning strategies of public health nursing students: conquering operational space.

    Science.gov (United States)

    Hjälmhult, Esther

    2009-11-01

    To develop understanding of how public health nursing students learn in clinical practice and explore the main concern for the students and how they acted to resolve this main concern. How professionals perform their work directly affects individuals, but knowledge is lacking in understanding how learning is connected to clinical practice in public health nursing and in other professions. Grounded theory. Grounded theory was used in gathering and analysing data from 55 interviews and 108 weekly reports. The participants were 21 registered nurses who were public health nursing students. The grounded theory of conquering operational space explains how the students work to resolve their main concern. A social process with three identified phases, positioning, involving and integrating, was generated from analysing the data. Their subcategories and dimensions are related to the student role, relations with a supervisor, student activity and the consequences of each phase. Public health nursing students had to work towards gaining independence, often working against 'the system' and managing the tension by taking a risk. Many of them lost, changed and expanded their professional identity during practical placements. Public health nursing students' learning processes in clinical training are complex and dynamic and the theory of 'Conquering operational space' can assist supervisors in further developing their role in relation to guiding students in practice. Relationships are one key to opening or closing access to situations of learning and directly affect the students' achievement of mastering. The findings are pertinent to supervisors and educators as they prepare students for practice. Good relationships are elementary and supervisors can support students in conquering the field by letting students obtain operational space and gain independence. This may create a dialectical process that drives learning forward.

  8. ITER task title - source term data, modelling, and analysis. ITER subtask no. S81TT05/5 (SEP 1-1). Global tritium source term analysis basis document. Subtask 1: operational tritium effluents and releases. Final report (1995 TASK)

    International Nuclear Information System (INIS)

    Kalyanam, K.M.

    1996-06-01

    This document represents the final report for the global tritium source term analysis task initiated in 1995. The report presents a room-by-room map/table at the subsystem level for the ITER tritium systems, identifying the major equipment, secondary containments, tritium release sources, duration/frequency of tritium releases and the release pathways. The chronic tritium releases during normal operation, as well as tritium releases due to routine maintenance of the Water Distillation Unit, Isotope Separation System and Primary and Secondary Heat Transport Systems, have been estimated for most of the subsystems, based on the IDR design, the Design Description Documents (April - Jun 1995 issues) and the design updates up to December 1995. The report also outlines the methodology and the key assumptions that are adopted in preparing the tritium release estimates. The design parameters for the ITER Basic Performance Phase (BPP) have been used in estimating the tritium releases shown in the room-by-room map/table. The tritium release calculations and the room-by-room map/table have been prepared in EXCEL, so that the estimates can be refined easily as the design evolves and more detailed information becomes available. (author). 23 refs., tabs

  9. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  10. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  11. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  12. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  13. ITER concept definition. V.2

    International Nuclear Information System (INIS)

    1989-01-01

    Volume II of the two volumes describing the concept definition of the International Thermonuclear Experimental Reactor deals with the ITER concept in technical depth, and covers all areas of design of the ITER tokamak. Included are an assessment of the current database for design, scoping studies, rationale for concepts selection, performance flexibility, the ITER concept, the operations and experimental/testing program, ITER parameters and design phase schedule, and research and development specific to ITER. This latter includes a definition of specific research and development tasks, a division of tasks among members, specific milestones, required results, and schedules. Figs and tabs

  14. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    Science.gov (United States)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  15. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  16. New operational spaces for the electron cyclotron resonance heating at ASDEX upgrade

    International Nuclear Information System (INIS)

    Hoehnle, Hendrik Sebastian

    2012-01-01

    In this thesis, new electron cyclotron resonance heating (ECRH) scenarios were developed for an extension of the operational space at the tokamak ASDEX Upgrade in view of ITER compatibility. In the last years, the first wall material at ASDEX Upgrade was changed from graphite to tungsten, and the ECRH is needed to control the tungsten concentration in the plasma core. But, in ITER-like plasma discharges at ASDEX Upgrade, the usage of the ECRH in the typically used second harmonic extraordinary polarised mode (X2 mode) is limited. In these ITER-scenarios a small safety factor should be achieved, which implements an increase of the plasma current at ASDEX Upgrade. A higher plasma current and a high confinement lead to a raised density and for the ITER scenario to an electron density above the cutoff of the X2 mode at ASDEX Upgrade. Therefore, the X2 mode is reflected at the cutoff layer and cannot be used for central heating and the control of the tungsten concentration. One possibility to overcome this problem is to apply the third harmonic mode at reduced magnetic field. Here the cutoff is increased by 33% due to the dependence on the magnetic field. However, at the reachable plasma parameters at the reduced field the absorption of the X3 mode is incomplete (60-70 %) and the shine-trough power can destroy microwave sensitive components in ASDEX Upgrade. To solve this problem the magnetic field has to be optimized. A slightly increased magnetic field from 1.7 T to 1.8 T moves the second harmonic resonance in the region of confined plasma with high temperatures and density, so that this resonance can act as beam dump. The deposition in the plasma core is still central enough for the tungsten control ability of the ECRH. The benefit of the beam dump was verified in experiments with two different magnetic fields (1.7 T and 1.8 T). In case of the higher magnetic field, the stray radiation was reduced; simultaneously the electron temperature was increased. In addition

  17. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  18. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  19. Phase-space formalism: Operational calculus and solution of evolution equations in phase-space

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-05-01

    Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied

  20. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  1. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Science.gov (United States)

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  2. Human-Automation Allocations for Current Robotic Space Operations

    Science.gov (United States)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To

  3. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  4. Applications of human error analysis to aviation and space operations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1998-01-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) we have been working to apply methods of human error analysis to the design of complex systems. We have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. We are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. These applications lead to different requirements when compared with HR.As performed as part of a PSA. For example, because the analysis will begin early during the design stage, the methods must be usable when only partial design information is available. In addition, the ability to perform numerous ''what if'' analyses to identify and compare multiple design alternatives is essential. Finally, since the goals of such human error analyses focus on proactive design changes rather than the estimate of failure probabilities for PRA, there is more emphasis on qualitative evaluations of error relationships and causal factors than on quantitative estimates of error frequency. The primary vehicle we have used to develop and apply these methods has been a series of prqjects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. The first NASA-sponsored project had the goal to evaluate human errors caused by advanced cockpit automation. Our next aviation project focused on the development of methods and tools to apply human error analysis to the design of commercial aircraft. This project was performed by a consortium comprised of INEEL, NASA, and Boeing Commercial Airplane Group. The focus of the project was aircraft design and procedures that could lead to human errors during airplane maintenance

  5. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  6. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  7. The ITER activity

    International Nuclear Information System (INIS)

    Glass, A.J.

    1991-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a collaboration among four parties, the United States, the Soviet Union, Japan, and the European Communities, to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. ITER will demonstrate this through the construction of a tokamak fusion reactor capable of generating 1000 megawatts of fusion power. The ITER project has three missions, as follows: (1) Physics mission -- to demonstrate ignition and controlled burn, with pulse durations from 200 to 1000 S; (2) Technology mission -- to demonstrate the technologies essential to a reactor in an integrated system, operating with high reliability and availability in pulsed operation, with steady-state operation as the ultimate goal; and (3) Testing mission -- to test nuclear and high-heat-flux components at flux levels for 1 mw/m 2 , and fluences of order 1 mw-yr/m 2

  8. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    Science.gov (United States)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  9. Scheduling of Iterative Algorithms with Matrix Operations for Efficient FPGA Design—Implementation of Finite Interval Constant Modulus Algorithm

    Czech Academy of Sciences Publication Activity Database

    Šůcha, P.; Hanzálek, Z.; Heřmánek, Antonín; Schier, Jan

    2007-01-01

    Roč. 46, č. 1 (2007), s. 35-53 ISSN 0922-5773 R&D Projects: GA AV ČR(CZ) 1ET300750402; GA MŠk(CZ) 1M0567; GA MPO(CZ) FD-K3/082 Institutional research plan: CEZ:AV0Z10750506 Keywords : high-level synthesis * cyclic scheduling * iterative algorithms * imperfectly nested loops * integer linear programming * FPGA * VLSI design * blind equalization * implementation Subject RIV: BA - General Mathematics Impact factor: 0.449, year: 2007 http://www.springerlink.com/content/t217kg0822538014/fulltext.pdf

  10. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    ) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS

  11. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  12. General Purpose Data-Driven Monitoring for Space Operations

    Science.gov (United States)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault

  13. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  14. Fire monitoring from space: from research to operation

    Science.gov (United States)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  15. Anomaly Detection for Next-Generation Space Launch Ground Operations

    Science.gov (United States)

    Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.

    2010-01-01

    NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.

  16. ITER Status and Plans

    Science.gov (United States)

    Greenfield, Charles M.

    2017-10-01

    The US Burning Plasma Organization is pleased to welcome Dr. Bernard Bigot, who will give an update on progress in the ITER Project. Dr. Bigot took over as Director General of the ITER Organization in early 2015 following a distinguished career that included serving as Chairman and CEO of the French Alternative Energies and Atomic Energy Commission and as High Commissioner for ITER in France. During his tenure at ITER the project has moved into high gear, with rapid progress evident on the construction site and preparation of a staged schedule and a research plan leading from where we are today through all the way to full DT operation. In an unprecedented international effort, seven partners ``China, the European Union, India, Japan, Korea, Russia and the United States'' have pooled their financial and scientific resources to build the biggest fusion reactor in history. ITER will open the way to the next step: a demonstration fusion power plant. All DPP attendees are welcome to attend this ITER town meeting.

  17. Kennedy Space Center Orion Processing Team Planning for Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  18. ITER licensing

    International Nuclear Information System (INIS)

    Gordon, C.W.

    2005-01-01

    ITER was fortunate to have four countries interested in ITER siting to the point where licensing discussions were initiated. This experience uncovered the challenges of licensing a first of a kind, fusion machine under different licensing regimes and helped prepare the way for the site specific licensing process. These initial steps in licensing ITER have allowed for refining the safety case and provide confidence that the design and safety approach will be licensable. With site-specific licensing underway, the necessary regulatory submissions have been defined and are well on the way to being completed. Of course, there is still work to be done and details to be sorted out. However, the informal international discussions to bring both the proponent and regulatory authority up to a common level of understanding have laid the foundation for a licensing process that should proceed smoothly. This paper provides observations from the perspective of the International Team. (author)

  19. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  20. Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results

    Science.gov (United States)

    1985-01-01

    The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.

  1. Plasma control concepts for ITER

    International Nuclear Information System (INIS)

    Lister, J.B.; Nieswand, C.

    1997-01-01

    This overview paper skims over a wide range of issues related to the control of ITER plasmas. Although operation of the ITER project will require extensive developmental work to achieve the degree of control required, there is no indication that any of the identified problems will present overwhelming difficulties compared with the operation of present tokamaks. However, the precision of control required and the degree of automation of the final ITER plasma control system will present a challenge which is somewhat greater than for present tokamaks. In order to operate ITER optimally, integrated use of a large amount of diagnostic information will be necessary, evaluated and interpreted automatically. This will challenge both the diagnostics themselves and their supporting interpretation codes. The intervening years will provide us with the opportunity to implement and evaluate most of the new features required for ITER on existing tokamaks, with the exception of the control of an ignited plasma. (author) 7 figs., 7 refs

  2. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  3. Spatiality of Derivations of Operator Algebras in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Quanyuan Chen

    2011-01-01

    Full Text Available Suppose that A is a transitive subalgebra of B(X and its norm closure A¯ contains a nonzero minimal left ideal I. It is shown that if δ is a bounded reflexive transitive derivation from A into B(X, then δ is spatial and implemented uniquely; that is, there exists T∈B(X such that δ(A=TA−AT for each A∈A, and the implementation T of δ is unique only up to an additive constant. This extends a result of E. Kissin that “if A¯ contains the ideal C(H of all compact operators in B(H, then a bounded reflexive transitive derivation from A into B(H is spatial and implemented uniquely.” in an algebraic direction and provides an alternative proof of it. It is also shown that a bounded reflexive transitive derivation from A into B(X is spatial and implemented uniquely, if X is a reflexive Banach space and A¯ contains a nonzero minimal right ideal I.

  4. Soldier/Warfighter Operationally Responsive Deployer for Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The SWORDS launcher is a cooperative project between Office of the  Secretary of Defense, U.S. Army Space and Missile Defense Command/ Army Forces Strategic Command...

  5. ITER power electrical networks

    International Nuclear Information System (INIS)

    Sejas Portela, S.

    2011-01-01

    The ITER project (International Thermonuclear Experimental Reactor) is an international effort to research and development to design, build and operate an experimental facility to demonstrate the scientific and technological possibility of obtaining useful energy from the physical phenomenon known as nuclear fusion.

  6. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  7. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-005)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council.... ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 7C61, Washington, DC 20546. FOR FURTHER INFORMATION...

  8. Comparison of the Tritium permeated from ITER Blanket in normal operation and its short range impact of HT over France, Swiss or Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.

    2015-07-01

    In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)

  9. Deep Space Network equipment performance, reliability, and operations management information system

    Science.gov (United States)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  10. ITER plant systems

    International Nuclear Information System (INIS)

    Kolbasov, B.; Barnes, C.; Blevins, J.

    1991-01-01

    As part of a series of documents published by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this publication describes the conceptual design of the ITER plant systems, in particular (i) the heat transport system, (ii) the electrical distribution system, (iii) the requirements for radioactive equipment handling, the hot cell, and waste management, (iv) the supply system for fluids and operational chemicals, (v) the qualitative analyses of failure scenarios and methods of burn stability control and emergency shutdown control, (vi) analyses of tokamak building functions and design requirements, (vii) a plant layout, and (viii) site requirements. Refs, figs and tabs

  11. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  12. Development of simulation-based evaluation system for iterative design of HMI to reduce human workload of operating crew in nuclear power plant

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Kameda, Akiyuki; Nakagawa, Takashi; Wu, Wei; Yoshikawa, Hidekazu

    2001-01-01

    Human workload is one of the key factors to reduce the human error during the operation in the commercialized nuclear power plants (NPP). In order to produce a high quality design of human machine interface (HMI), the evaluation and simulation method was developed to analyze operator's workload, where the model of operator crew was adopted on the basis of the model proposed by Reason. The workload such as length of the eye movement and moving length of the operators were visualized in the CRT image as well as the movie-file during the simulation. The developed computer code system was named simulation-based evaluation and analysis support system for man-machine interface design (SEAMAID), which was a simulation-based evaluation and analysis support system for man-machine interface design in the domain of NPP. The SEAMAID simulates the interaction between the operating crew and HMI, thus supports to evaluate the HMI by using the simulation results. The case study was conducted to evaluate the conventional central control room design. As a consequence, the authors were confirmed that SEAMAID was a useful tool to improve HMI design evaluating the workload data among several iterative design. (author)

  13. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    Science.gov (United States)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  14. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  15. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  16. The multiplication operators on some analytic function spaces of the ...

    Indian Academy of Sciences (India)

    Given f ∈ E1(Bn) we still denote by f (ξ) (ξ ∈ Sn) its admissible limit at the boundary which exists a.e. A ... BMOA is a Banach space under the following norm: || f ||2 ..... The same inequalities hold when ga is replaced by fa by the same observations. ... The case of the Bloch space and the weighted Bloch space. As in the ...

  17. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  18. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  19. Existence of zeros for operators taking their values in the dual of a Banach space

    Directory of Open Access Journals (Sweden)

    Ricceri Biagio

    2004-01-01

    Full Text Available Using continuous selections, we establish some existence results about the zeros of weakly continuous operators from a paracompact topological space into the dual of a reflexive real Banach space.

  20. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-074)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, July 28, 2010, 2-5 p.m. EDT. ADDRESSES: Doubletree..., Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda for the...

  1. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-017)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-12 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Room 2U22. FOR FURTHER INFORMATION CONTACT...

  2. Analyticity spaces of self-adjoint operators subjected to perturbations with applications to Hankel invariant distribution spaces

    NARCIS (Netherlands)

    Eijndhoven, van S.J.L.; Graaf, de J.

    1986-01-01

    A new theory of generalized functions has been developed by one of the authors (de Graaf). In this theory the analyticity domain of each positive self-adjoint unbounded operator $\\mathcal{A}$ in a Hilbert space $X$ is regarded as a test space denoted by $\\mathcal{S}_{x,\\mathcal{A}} $. In the first

  3. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    International Nuclear Information System (INIS)

    Kim, Hae Jin; Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu; Hillairet, Julien; Choi, Jin Joo

    2015-01-01

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  4. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Jin, E-mail: haejin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu [National Fusion Research Institute, Daejeon (Korea, Republic of); Hillairet, Julien [CEA/IRFM, Saint-lez-Durance (France); Choi, Jin Joo [Kwangwoon University, Seoul (Korea, Republic of)

    2015-10-15

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  5. Toeplitz operators on higher Cauchy-Riemann spaces

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav; Zhang, G.

    2017-01-01

    Roč. 22, č. 22 (2017), s. 1081-1116 ISSN 1431-0643 Institutional support: RVO:67985840 Keywords : Toeplitz operator * Hankel operator * Cauchy-Riemann operators Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 0.800, year: 2016 https://www. math .uni-bielefeld.de/documenta/vol-22/32.html

  6. properties of the SN - equivalent integral transport operator in slab geometry and the iterative acceleration of neutron transport methods

    International Nuclear Information System (INIS)

    Massimiliano, Rosa; Azmy, Y.Y.; Morel, J.E.

    2005-01-01

    The general expressions for the matrix elements of the discrete Sn-equivalent integral transport operator have been derived in slab geometry. Their asymptotic behavior has been investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in a diffusive limit obtained as the thick limit of computational cell size for a highly scattering medium, has shown that the discretized integral transport operator is approximated by a sparse matrix characterized by a tri-diagonal diffusion-like coupling stencil. Also, the tri-diagonal matrix structure, characteristic of the diffusion coupling stencil, is approached at a fast exponential rate. In the case of periodically heterogeneous slab configurations, the asymptotic behavior investigated is that in which the cells' optical thicknesses are pushed apart, i.e. the thick is made thicker while the thin is made thinner at a prescribed rate. It has been shown that in this limit the discretized integral transport operator is approximated by a penta-diagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tri-diagonal structure at a fast exponential rate. The existence of a low order tri-diagonal approximation to the full discrete integral transport operator in the case of a periodically heterogeneous slab might provide a basic understanding of the superior convergence properties of diffusion-based acceleration schemes observed in slab geometry, even in the presence of sharp material discontinuities. The obtained results also suggest that a sparse approximation to the S n -equivalent integral transport operator might itself be used as the low-order operator in an acceleration scheme for the

  7. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  8. Generalized Polar Decompositions for Closed Operators in Hilbert Spaces and Some Applications

    OpenAIRE

    Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei

    2008-01-01

    We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.

  9. Space/Flight Operable Miniature Six Axis Transducer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FUTEK will fully design and manufacture a sensor capable of measuring forces in and about each axis. The unit will measure forces up to 300 Newton's in the principle...

  10. Commanding and Planning for Robots in Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous systems like unmanned spacecraft or robotic vehicles have filled critical roles in NASA's great successes, surviving the harsh...

  11. Uniform Convergence and Spectra of Operators in a Class of Fréchet Spaces

    Directory of Open Access Journals (Sweden)

    Angela A. Albanese

    2014-01-01

    Full Text Available Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri, which relate conditions on the spectrum of a bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class of quojection Fréchet spaces. These results are then applied to establish various mean ergodic theorems for continuous operators acting in such Fréchet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel.

  12. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  13. On the L-characteristic of nonlinear superposition operators in lp-spaces

    International Nuclear Information System (INIS)

    Dedagic, F.

    1995-04-01

    In this paper we describe the L-characteristic of the nonlinear superposition operator F(x) f(s,x(s)) between two Banach spaces of functions x from N to R. It was shown that L-characteristic of the nonlinear superposition operator which acts between two Lebesgue spaces has so-called Σ-convexity property. In this paper we show that L-characteristic of the operator F (between two Banach spaces) has the convexity property. It means that the classical interpolation theorem of Reisz-Thorin for a linear operator holds for the nonlinear operator superposition which acts between two Banach spaces of sequences. Moreover, we consider the growth function of the operator superposition in mentioned spaces and we show that one has the logarithmically convexity property. (author). 7 refs

  14. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DEFF Research Database (Denmark)

    Akemann, G.; Damgaard, Poul Henrik; Splittorff, Kim

    2011-01-01

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral Perturbation Theory and chiral Random Matrix Theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator...... as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral Random Matrix Theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral Perturbation Theory. All results are obtained for fixed index...... of the Wilson Dirac operator. The low-energy constants of Wilson chiral Perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator....

  15. An Iterative Method to Derive the Equivalent Centrifugal Compressor Performance at Various Operating Conditions: Part I: Modelling of Suction Parameters Impact

    Directory of Open Access Journals (Sweden)

    Waleed Albusaidi

    2015-08-01

    Full Text Available This paper introduces a new iterative method to predict the equivalent centrifugal compressor performance at various operating conditions. The presented theoretical analysis and empirical correlations provide a novel approach to derive the entire compressor map corresponding to various suction conditions without a prior knowledge of the detailed geometry. The efficiency model was derived to reflect the impact of physical gas properties, Mach number, and flow and work coefficients. One of the main features of the developed technique is the fact that it considers the variation in the gas properties and stage efficiency which makes it appropriate with hydrocarbons. This method has been tested to predict the performance of two multistage centrifugal compressors and the estimated characteristics are compared with the measured data. The carried comparison revealed a good matching with the actual values, including the stable operation region limits. Furthermore, an optimization study was conducted to investigate the influences of suction conditions on the stage efficiency and surge margin. Moreover, a new sort of presentation has been generated to obtain the equivalent performance characteristics for a constant discharge pressure operation at variable suction pressure and temperature working conditions. A further validation is included in part two of this study in order to evaluate the prediction capability of the derived model at various gas compositions.

  16. Space shuttle/payload interface analysis. Volume 4: Business Risk and Value of Operations in Space (BRAVO). Part 1: Summary

    Science.gov (United States)

    1974-01-01

    Background information is provided which emphasizes the philosophy behind analytical techniques used in the business risk and value of operations in space (BRAVO) study. The focus of the summary is on the general approach, operation of the procedures, and the status of the study. For Vol. 1, see N74-12493; for Vol. 2, see N74-14530.

  17. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  18. Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors.

    Science.gov (United States)

    Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee

    2016-11-20

    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.

  19. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  20. Molecular decompostition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    . Molecular decompositions for all the considered spaces are derived with the help of the algebra of almost diagonal operators. As an application, we obtain boundedness results on the considered spaces for Fourier multipliers and for pseudodifferential operators with suitable adapted homogeneous symbols using...

  1. Ordering of ''ladder'' operators, the Wigner function for number and phase, and the enlarged Hilbert space

    International Nuclear Information System (INIS)

    Luks, A.; Perinova, V.

    1993-01-01

    A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)

  2. Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators

    DEFF Research Database (Denmark)

    Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    and Triebel–Lizorkin spaces with full range of indices is established too. As an application, we obtain equivalent norm characterizations for the spaces mentioned above. Non-classical spaces as well as Lebesgue, Hardy, (generalized) Sobolev and Lipschitz spaces are also covered by our approach.......We consider spaces of homogeneous type associated with a non-negative self-adjoint operator whose heat kernel satisfies certain upper Gaussian bounds. Spectral multipliers are introduced and studied on distributions associated with this operator. The boundedness of spectral multipliers on Besov...

  3. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  4. ITER technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties.

  5. ITER technical basis

    International Nuclear Information System (INIS)

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties

  6. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  7. Maximal multiplier operators in Lp(·)(Rn) spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Kopaliani, T.

    2016-01-01

    Roč. 140, č. 4 (2016), s. 86-97 ISSN 0007-4497 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : spherical maximal function * variable Lebesque spaces * boundedness result Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2016 http://www.sciencedirect.com/science/article/pii/S0007449715000329

  8. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  9. Moving Toward Space Internetworking via DTN: Its Operational Challenges, Benefits, and Management

    Science.gov (United States)

    Barkley, Erik; Burleigh, Scott; Gladden, Roy; Malhotra, Shan; Shames, Peter

    2010-01-01

    The international space community has begun to recognize that the established model for management of communications with spacecraft - commanded data transmission over individual pair-wise contacts - is operationally unwieldy and will not scale in support of increasingly complex and sophisticated missions such as NASA's Constellation project. Accordingly, the international Inter-Agency Operations Advisory Group (IOAG) ichartered a Space Internetworking Strategy Group (SISG), which released its initial recommendations in a November 2008 report. The report includes a recommendation that the space flight community adopt Delay-Tolerant Networking (DTN) to address the problem of interoperability and communication scaling, especially in mission environments where there are multiple spacecraft operating in concert. This paper explores some of the issues that must be addressed in implementing, deploying, and operating DTN as part of a multi-mission, multi-agency space internetwork as well as benefits and future operational scenarios afforded by DTN-based space internetworking.

  10. Some means inequalities for positive operators in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2017-01-01

    Full Text Available Abstract In this paper, we obtain two refinements of the ordering relations among Heinz means with different parameters via the Taylor series of some hyperbolic functions and by the way, we derive new generalizations of Heinz operator inequalities. Moreover, we establish a matrix version of Heinz inequality for the Hilbert-Schmidt norm. Finally, we introduce a weighted multivariate geometric mean and show that the weighted multivariate operator geometric mean possess several attractive properties and means inequalities.

  11. ITER physics design guidelines: 1989

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1990-01-01

    The physics basis for ITER has been developed from an assessment of the results of the last twenty-five years of tokamak research and from detailed analysis of important physics issues specifically for the ITER design. This assessment has been carried out with direct participation of members of the experimental teams of each of the major tokamaks in the world fusion program through participation in ITER workshops, contributions to the ITER Physics R and D Program, and by direct contacts between the ITER team and the cognizant experimentalists. Extrapolations to the present data base, where needed, are made in the most cautious way consistent with engineering constraints and performance goals of the ITER. In cases where a working assumptions had to be introduced, which is insufficiently supported by the present data base, is explicitly stated. While a strong emphasis has been placed on the physics credibility of the design, the guidelines also take into account that ITER should be designed to be able to take advantage of potential improvements in tokamak physics that may occur before and during the operation of ITER. (author). 33 refs

  12. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    Science.gov (United States)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  13. Interactive Planning for Capability Driven Air & Space Operations

    Science.gov (United States)

    2008-04-30

    Time, Routledge and Kegan , London, UK, 1980. [5] A. Bochman, Concerted instant–interval temporal semantics I: Temporal ontologies, Notre Dame Journal...then return true else deleteStatement (X, rj , Y ) end if end for return false Figure 8 shows the search space for instance in Table 2. The green ...nodes are those for which the set of relations cor- responding to the path from the root form a consistent set. A path from root to a green leaf node

  14. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-03-01

    Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs

  15. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2008-01-01

    The aim of this paper is to summarize the ITER approach to machine components maintenance. A major objective of the ITER project is to demonstrate that a future power producing fusion device can be maintained effectively and offer practical levels of plant availability. During its operational lifetime, many systems of the ITER machine will require maintenance and modification; this can be achieved using remote handling methods. The need for timely, safe and effective remote operations on a machine as complex as ITER and within one of the world's most hostile remote handling environments represents a major challenge at every level of the ITER Project organization, engineering and technology. The basic principles of fusion reactor maintenance are presented. An updated description of the ITER remote maintenance system is provided. This includes the maintenance equipment used inside the vacuum vessel, inside the hot cell and the hot cell itself. The correlation between the functions of the remote handling equipment, of the hot cell and of the radwaste processing system is also described. The paper concludes that ITER has equipped itself with a good platform to tackle the challenges presented by its own maintenance and upgrade needs

  16. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  17. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  18. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    Science.gov (United States)

    2015-06-01

    TRAINING MARINES FOR OPERATIONS WITH DEGRADED OR DENIED SPACE-ENABLED CAPABILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David M. Garcia 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...could possibly have been linked to the blast as well [19]. Space Debris (4) There are over 20,000 pieces of debris the size of a softball or greater

  19. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  20. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  1. US--ITER activation analysis

    International Nuclear Information System (INIS)

    Attaya, H.; Gohar, Y.; Smith, D.

    1990-09-01

    Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise gamma sources have been calculated everywhere in the reactor at several times after shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divertor. The results are presented for different continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed. 6 refs., 12 figs., 1 tab

  2. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  3. Density operator description of geometric phenomena in the ray space

    Indian Academy of Sciences (India)

    set of generators for the related 2-sphere ray subspace (Ь2), highlighting the physical oper- ations performable ... generators, we propose a single-query quantum search algorithm to extract a desired ray exactly from a ..... The first observation [22] of noncyclic amplitudes and phases was made in a neutron in- terference ...

  4. ITER council proceedings: 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Continuing the ITER EDA, two further ITER Council Meetings were held since the publication of ITER EDA documentation series no, 20, namely the ITER Council Meeting on 27-28 February 2001 in Toronto, and the ITER Council Meeting on 18-19 July in Vienna. That Meeting was the last one during the ITER EDA. This volume contains records of these Meetings, including: Records of decisions; List of attendees; ITER EDA status report; ITER EDA technical activities report; MAC report and advice; Final report of ITER EDA; and Press release

  5. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  6. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  7. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    The Project has focused on drafting the Plant Description Document (PDD), which will be published as the Technical Basis for the ITER Final Design Report (FDR), and its related documentation in time for the ITER review process. The preparations have involved continued intensive detailed design work, analyses and assessments by the Home Teams and the Joint Central Team, who have co-operated closely and efficiently. The main technical document has been completed in time for circulation, as planned, to TAC members for their review at TAC-17 (19-22 February 2001). Some of the supporting documents, such as the Plant Design Specification (PDS), Design Requirements and Guidelines (DRG1 and DRG2), and the Plant Safety Requirement (PSR) are also available for reference in draft form. A summary paper of the PDD for the Council's information is available as a separate document. A new documentation structure for the Project has been established. This hierarchical structure for documentation facilitates the entire organization in a way that allows better change control and avoids duplications. The initiative was intended to make this documentation system valid for the construction and operation phases of ITER. As requested, the Director and the JCT have been assisting the Explorations to plan for future joint technical activities during the Negotiations, and to consider technical issues important for ITER construction and operation for their introduction in the draft of a future joint implementation agreement. As charged by the Explorers, the Director has held discussions with the Home Team Leaders in order to prepare for the staffing of the International Team and Participants Teams during the Negotiations (Co-ordinated Technical Activities, CTA) and also in view of informing all ITER staff about their future directions in a timely fashion. One important element of the work was the completion by the Parties' industries of costing studies of about 83 ''procurement packages

  8. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  9. Blue limits of the Blue Planet : An exploratory analysis of safe operating spaces for human water use under deep uncertainty

    NARCIS (Netherlands)

    Kwakkel, J.H.; Timmermans, J.S.

    2012-01-01

    In the Nature article ‘A safe operating space for humanity’, Rockström et al. (2009) introduce the concept of a safe operating space for humanity. A safe operating space is the space for human activities that will not push the planet out of the ‘Holocene state’ that has seen human civilizations

  10. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  11. ITER leader to head CERN

    CERN Document Server

    Feder, Toni

    2003-01-01

    After successfully chairing an external review committee for CERN last year, Robert Aymar will leave ITER to become director general of the European particle physics laboratory rom 2004. Before ITER he also successfully managed the startup or Tore Supra. He will attempt to ensure that the LHC begins operating in 2007 - two years late - and is paid for by 2010 and will also start the planning for life after the LHC (1 page)

  12. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  13. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  14. Self-Commutators of Composition Operators with Monomial Symbols on the Dirichlet Space

    Directory of Open Access Journals (Sweden)

    A. Abdollahi

    2011-01-01

    Full Text Available Let (=,∈, for some positive integer and the composition operator on the Dirichlet space induced by . In this paper, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators ∗,∗ and self-commutators of , which expose that the spectrum and point spectrum coincide. We also find the eigenfunctions of the operators.

  15. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  16. Building an Open Data Portal for the European Space Agency Climate Change Initiative based on an Iterative Development Methodology and Linked Data Technologies

    Science.gov (United States)

    Kershaw, P.; Bennett, V. L.; Stephens, A.; Wilson, A.; Waterfall, A. M.; Petrie, R.; Iwi, A.; Donegan, S.; Juckes, M. N.; Parton, G.

    2016-12-01

    The Climate Change Initiative (CCI) programme was initiated by the European Space Agency (ESA) in 2009 to address the GCOS Essential Climate Variable (ECV) requirements to provide stable, long-term, satellite-based data products to characterise the climate system and its changes. CEDA, working as part of a project consortium, were awarded the contract to build the Open Data Portal, consisting collectively of a central archive and single point of access for dissemination of the data to the international user community. Reflecting climate and earth observation community requirements, the system needed to support a range of access services in use by this domain and specifically, to integrate into existing infrastructure in the form of the Earth System Grid Federation (ESGF). This range of requirements together with the heterogeneity of the ECV datasets presented significant challenges. However, the use of Linked Data technologies and an iterative approach to data model development and data publishing have been instrumental in meeting the objectives and building a cohesive system. The portal supports data discovery based on the OGC CSW specification and on ESGF's powerful faceted search. These services provide complementary content at different levels of granularity and it therefore became clear that a common data model was needed. Key terms are defined in vocabularies serialised in SKOS and OWL and are accessible from a central vocabulary server to provide a single authoritative source for applications consuming metadata content. Exploiting the vocabulary service therefore, it has been possible to develop an innovative solution tagging ISO 19115 records for the CSW with the equivalent vocabulary terms used for the ESGF faceted search system. In this way it has been possible to create a rich user interface for the portal combining search results from both search services and the ability to dynamically populate facet selection and context-based help information from the

  17. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  18. Scalar and configuration traces of operators in large spectroscopic spaces

    International Nuclear Information System (INIS)

    Chang, B.D.; Wong, S.S.M.

    1978-01-01

    In statistical spectroscopic calculations, the primary input is the trace of products of powers of Hamiltonian and excitation operators. The lack of a systematic approach to trace evaluation has been in the past one of the major difficulties in the applications of statistical spectroscopic methods. A general method with a simple derivation is described here to evaluate the scalar and configuration traces for operators expressed either in the m-scheme or fully coupled JT scheme. It is shown to be an effective method by actually programming it on a computer. Implications on the future applications of statistical spectroscopy in the area of level density, strength function and perturbation theory are also briefly discussed. (Auth.)

  19. Reducing Operating Costs by Optimizing Space in Facilities

    Science.gov (United States)

    2012-03-01

    Design: Mapping the High Performance Workscape. Jossey-Bass. San Francisco. Berkman, Elliot. (2012). A Conceptual Guide to Statistics using SPSS. Sage ...Cleaning: Includes labor costs for in-house and contract service, payroll , taxes and fringe benefits, plus salaried supervisors and managers, as well as...Labor costs include payroll , taxes and fringe benefits for employees and contracted workers. Personnel include operating engineers, general

  20. Winter School on Operator Spaces, Noncommutative Probability and Quantum Groups

    CERN Document Server

    2017-01-01

    Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems.  A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions.  The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The l...

  1. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  2. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  3. Automatic sequencing and control of Space Station airlock operations

    Science.gov (United States)

    Himel, Victor; Abeles, Fred J.; Auman, James; Tqi, Terry O.

    1989-01-01

    Procedures that have been developed as part of the NASA JSC-sponsored pre-prototype Checkout, Servicing and Maintenance (COSM) program for pre- and post-EVA airlock operations are described. This paper addresses the accompanying pressure changes in the airlock and in the Advanced Extravehicular Mobility Unit (EMU). Additionally, the paper focuses on the components that are checked out, and includes the step-by-step sequences to be followed by the crew, the required screen displays and prompts that accompany each step, and a description of the automated processes that occur.

  4. Space Technology - Game Changing Development NASA Facts: Autonomous Medical Operations

    Science.gov (United States)

    Thompson, David E.

    2018-01-01

    The AMO (Autonomous Medical Operations) Project is working extensively to train medical models on the reliability and confidence of computer-aided interpretation of ultrasound images in various clinical settings, and of various anatomical structures. AI (Artificial Intelligence) algorithms recognize and classify features in the ultrasound images, and these are compared to those features that clinicians use to diagnose diseases. The acquisition of clinically validated image assessment and the use of the AI algorithms constitutes fundamental baseline for a Medical Decision Support System that will advise crew on long-duration, remote missions.

  5. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  6. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1992-01-01

    This paper reports on results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits, but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. Much research and development (R ampersand D) and design analysis is needed to establish that ITER meets regulatory requirements. There is a further oportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, three programmatic challenges and three technical challenges must be overcome. The first step is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of three key technical challenges is plasma engineering - burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost

  7. Global integration of the Schrödinger equation within the wave operator formalism: the role of the effective Hamiltonian in multidimensional active spaces

    International Nuclear Information System (INIS)

    Jolicard, Georges; Viennot, David; Leclerc, Arnaud; Killingbeck, John P

    2016-01-01

    A global solution of the Schrödinger equation, obtained recently within the wave operator formalism for explicitly time-dependent Hamiltonians (Leclerc and Jolicard 2015 J. Phys. A: Math. Theor. 48 225205), is generalized to take into account the case of multidimensional active spaces. An iterative algorithm is derived to obtain the Fourier series of the evolution operator issuing from a given multidimensional active subspace and then the effective Hamiltonian corresponding to the model space is computed and analysed as a measure of the cyclic character of the dynamics. Studies of the laser controlled dynamics of diatomic models clearly show that a multidimensional active space is required if the wavefunction escapes too far from the initial subspace. A suitable choice of the multidimensional active space, including the initial and target states, increases the cyclic character and avoids divergences occuring when one-dimensional active spaces are used. The method is also proven to be efficient in describing dissipative processes such as photodissociation. (paper)

  8. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  9. Digital Motion Imagery, Interoperability Challenges for Space Operations

    Science.gov (United States)

    Grubbs, Rodney

    2012-01-01

    With advances in available bandwidth from spacecraft and between terrestrial control centers, digital motion imagery and video is becoming more practical as a data gathering tool for science and engineering, as well as for sharing missions with the public. The digital motion imagery and video industry has done a good job of creating standards for compression, distribution, and physical interfaces. Compressed data streams can easily be transmitted or distributed over radio frequency, internet protocol, and other data networks. All of these standards, however, can make sharing video between spacecraft and terrestrial control centers a frustrating and complicated task when different standards and protocols are used by different agencies. This paper will explore the challenges presented by the abundance of motion imagery and video standards, interfaces and protocols with suggestions for common formats that could simplify interoperability between spacecraft and ground support systems. Real-world examples from the International Space Station will be examined. The paper will also discuss recent trends in the development of new video compression algorithms, as well likely expanded use of Delay (or Disruption) Tolerant Networking nodes.

  10. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  11. PI Microgravity Services Role for International Space Station Operations

    Science.gov (United States)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  12. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  13. Heavy-Lift for a New Paradigm in Space Operations

    Science.gov (United States)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  14. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

    CERN Document Server

    Lerner, Nicolas

    2010-01-01

    This book is devoted to the study of pseudo-differential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for nonselfadjoint operators. The first chapter is introductory and gives a presentation of classical classes of pseudo-differential operators. The second chapter is dealing with the general notion of metrics on the phase space. We expose some elements of the so-called Wick calculus and introduce g

  15. Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces

    International Nuclear Information System (INIS)

    Arai, A.

    1985-01-01

    We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)

  16. Increasing Efficiency of Routine Robot Space Operations through Adjustable Autonomy and Learning from Human Instructions

    Data.gov (United States)

    National Aeronautics and Space Administration — This research aims to address the execution of repetitive, routine and potentially hazardous tasks by robots operating in crewed low Earth orbit, lunar and...

  17. Occupational Analysis Products: Space Systems Operations - AFSC 1C6X1 (CD-ROM)

    National Research Council Canada - National Science Library

    Boerstler, Robert E

    2004-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 30.4 MB. SYSTEMS DETAIL NOTE: ABSTRACT: The Space Systems Operations career ladder was surveyed to obtain current task and equipment data for use in evaluating current training programs...

  18. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    Science.gov (United States)

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  19. Overview of magnetic control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zabeo, L., E-mail: luca.zabeo@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Ambrosino, G., E-mail: ambrosin@unina.it [CREATE/Universitá di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’informazione, Naples (Italy); Cavinato, M., E-mail: mario.cavinato@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Torres Diagonal Litoral - B3, 08019 Barcelona (Spain); Gribov, Y., E-mail: yuri.gribov@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Kavin, A., E-mail: kavina@sintez.niiefa.spb.su [D.V. Efremov Scientific Research Institute, 196641 St. Petersburg (Russian Federation); Lukash, V., E-mail: lukash@nfi.kiae.ru [Kurchatov Institute, Moscow (Russian Federation); Mattei, M., E-mail: massimiliano.mattei@unina2.it [CREATE/Seconda Universitá di Napoli, Dip. Ingegneria Industriale e dell’informazione, Naples (Italy); Pironti, A., E-mail: pironti@unina.it [CREATE/Seconda Universitá di Napoli, Dip. Ingegneria Industriale e dell’informazione, Naples (Italy); Snipes, J.A., E-mail: joseph.snipes@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Vayakis, G., E-mail: george.vayakis@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Winter, A., E-mail: axel.winter@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France)

    2014-05-15

    ITER is targeting Q = 10 with 500 MW of fusion power. To meet this target, the plasma needs to be controlled and shaped for a period of hundreds of seconds, avoiding contact with internal components, and acting against instabilities that could result in the loss of control of the plasma and in its disruptive termination. Axisymmetric magnetic control is a well-understood area being the basic control for any tokamak device. ITER adds more stringent constraints to the control primarily due to machine protection and engineering limits. The limits on the actuators by means of the maximum current and voltage at the coils and the few hundred ms time response of the vacuum vessel requires optimization of the control strategies and the validation of the capabilities of the machine in controlling the designed scenarios. Scenarios have been optimized with realistic control strategies able to guarantee robust control against plasma behavior and engineering limits due to recent changes in the ITER design. Technological issues such as performance changes associated with the optimization of the final design of the central solenoid, control of fast transitions like H to L mode to avoid plasma-wall contact, and optimization of the plasma ramp-down have been modeled to demonstrate the successful operability of ITER and compatibility with the latest refinements in the magnetic system design. Validation and optimization of the scenarios refining the operational space available for ITER and associated control strategies will be proposed. The present capabilities of magnetic control will be assessed and the remaining critical aspects that still need to be refined will be presented. The paper will also demonstrate the capabilities of the diagnostic system for magnetic control as a basic element for control. In fact, the noisy environment (affecting primarily vertical stability), the non-axisymmetric elements in the machine structure (affecting the accuracy of the identification of the

  20. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  1. On the approximative normal values of multivalued operators in topological vector space

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Khuat van Ninh

    1989-09-01

    In this paper the problem of approximation of normal values of multivalued linear closed operators from topological vector Mackey space into E-space is considered. Existence of normal value and convergence of approximative values to normal value are proved. (author). 4 refs

  2. Cognitive Operations on Space and Their Impact on the Precision of Location Memory

    Science.gov (United States)

    Lansdale, Mark; Humphries, Joyce; Flynn, Victoria

    2013-01-01

    Learning about object locations in space usually involves the summation of information from different experiences of that space and requires various cognitive operations to make this possible. These processes are poorly understood and, in the extreme, may not occur--leading to mutual exclusivity of memories (Baguley, Lansdale, Lines, & Parkin,…

  3. Space operation system for Chang'E program and its capability ...

    Indian Academy of Sciences (India)

    investment. Due to the constraint in program cost, space operation for China's first lunar exploration program will be provided by the aerospace TT&C network designed for China's manned space pro- gram. The TT&C network consists of a ... foreign spacecrafts and for five spaceships in flight experiments of China's manned ...

  4. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  5. ITER must make its case

    International Nuclear Information System (INIS)

    1998-01-01

    Last month, as expected, the four partners in the International Thermonuclear Experimental Reactor (ITER) project announced a three-year extension of the ITER engineering design activity. Detailed design work on the next-generation fusion-energy device started in 1992 and has cost about $1 bn so far. A decision to build the device, once scheduled to be taken this year, will now be made in 2001 at the earliest. The ITER council said that the extension would ''provide the framework for undertaking jointly site(s)-specific and other activities with the aim of enabling future decision on construction and operation of ITER''. What the project is really doing is buying time as it tries to find a cheaper option that the partners will find acceptable. The US is keen to cut the project's cost by two-thirds. (author)

  6. The ITER CODAC conceptual design

    International Nuclear Information System (INIS)

    Lister, J.B.; Farthing, J.W.; Greenwald, M.; Yonekawa, I.

    2007-01-01

    CODAC orchestrates the activity of 60-90 Plant Systems in normal ITER operation. Interlock Systems protect ITER from potentially damaging operating off-normal conditions. Safety Systems protect the personnel and the environment and will be subject to licensing. The principal challenges to be met in the design and implementation of CODAC include: complexity, reliability, transparent access respecting security, a high experiment data rate and data volume since ITER is an experimental reactor, scientific exploitation from multiple Participant Team Experiment Sites and the long 35-year period for construction and operation. Complexity is addressed by prescribing the communication interfaces to the Plant Systems and prescribing the technical implementation within the Plant Systems. Plant Systems export to CODAC all the information on their construction and operation as 'self-description'. Complexity is also addressed by automating the operation of ITER and of the plasma, using a structured data description of 'Operation Schedules' which encompass all non-manual control, including Plasma Control. Reliability is addressed by maximising code reuse and maximising the use of existing products thereby minimising in-house development. The design is hierarchical and modular in both hardware and software. The latter facilitates evolution of methods during the project lifetime. Guaranteeing security while maximising access is addressed by flow separation. Out-flowing data, including experimental signals and the status of ITER plant is risk-free. In-flowing commands and data originate from Experiment Sites. The Cadarache Experiment Site is equated with the Remote Experiment Sites and a rigorous 'Operation Request Gatekeeper' is provided. The high data rates and data volumes are handled with high performance networks. Global Area Networks allow Participant Teams to access all CODAC data and applications. Scientific exploitation of ITER will remain a human as well as technical

  7. Space Weather Operation at KASI With Van Allen Probes Beacon Signals

    Science.gov (United States)

    Lee, Jongkil; Kim, Kyung-Chan; Giuseppe, Romeo; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin

    2018-02-01

    The Van Allen Probes (VAPs) are the only modern National Aeronautics and Space Administration (NASA) spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of these data via a 7 m satellite-tracking antenna and used these beacon data for space weather operations. An approximately 15 min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux >2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

  8. Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach

    International Nuclear Information System (INIS)

    Reznik, Benni; Groisman, Berry; Aharonov, Yakir

    2002-01-01

    We present a systematic simple method for constructing deterministic remote operations on single and multiple systems of arbitrary discrete dimensionality. These operations include remote rotations, remote interactions, and measurements. The resources needed for an operation on a two-level system are one ebit and a bidirectional communication of two cbits, and for an n-level system, a pair of entangled n-level particles and two classical 'nits'. In the latter case, there are n-1 possible distinct operations per n-level entangled pair. Similar results apply for generating interaction between a pair of remote systems, while for remote measurements only one-directional classical communication is needed. We further consider remote operations on N spatially distributed systems, and show that the number of possible distinct operations increases here exponentially, with the available number of entangled pairs that are initially distributed between the systems. Our results follow from the properties of a hybrid state-operator object (stator), which describes quantum correlations between states and operations

  9. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  10. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  11. Application of the French Space Operation Act and the Development of Space Activities in the Field of Launchers

    Science.gov (United States)

    Cahuzac, F.; Biard, A.

    2012-01-01

    The development of space activities has led France to define a new legal framework: French Space Operation Act (FSOA). The aim of this act, is to define the conditions according to which the French government authorizes and checks the spatial operations under its jurisdiction or its international responsibility as State of launch, according to the international treaties of the UN on space, in particular the Treaty (1967) on Principles Governing the Activities of States in the Exploration and Use of Outer Space, the Convention ( 1972 ) on International Liability for Damage Caused by Space Objects, and the Convention (1975) on Registration of Objects Launched into Outer Space. The main European space centre is the Guiana Space Centre (CSG), settled in France. A clarification of the French legal framework was compulsory to allow the arrival of new launchers (Soyuz and Vega). This act defines the competent authority, the procedure of authorization and licenses, the regime for operations led from foreign countries, the control of spatial objects, the enabling of inspectors, the delegation of monitoring to CNES, the procedure for urgent measures necessary for the safety, the registration of spatial objects. In this framework, the operator is fully responsible of the operation that he leads. He is subjected to a regime of authorization and to governmental technical monitoring delegated to CNES. In case of litigation, the operator gets the State guarantee above a certain level of damage to third party. The introduction of FSOA has led to issue a Technical Regulation set forth, in particular for the safety of persons and property, the protection of public health and the environment. This general regulation is completed by a specific regulation applicable to CSG that covers the preparation phase of the launch, and all specificities of the launch range, as regards the beginning of the launch. The Technical Regulation is based on 30 years of Ariane's activities and on the

  12. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Science.gov (United States)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  13. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    International Nuclear Information System (INIS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-01-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed

  14. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  15. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  16. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    Science.gov (United States)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  17. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  18. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface

    International Nuclear Information System (INIS)

    Zolotarev, Vladimir A

    2009-01-01

    Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.

  19. On the factorization of integral operators on spaces of summable functions

    International Nuclear Information System (INIS)

    Engibaryan, Norayr B

    2009-01-01

    We consider the factorization I-K=(I-U + )(I-U - ), where I is the identity operator, K is an integral operator acting on some Banach space of functions summable with respect to a measure μ on (a,b) subset of (-∞,+∞) continuous relative to the Lebesgue measure, (Kf)(x)=∫ a b k(x,t)f(t)μ(dt), x element of (a,b), and U ± are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators K with positive kernels and for Hilbert-Schmidt operators.

  20. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  1. Cross-cultural issues in space operations: A survey study among ground personnel of the European Space Agency

    Science.gov (United States)

    Sandal, Gro Mjeldheim; Manzey, Dietrich

    2009-12-01

    Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.

  2. ITER concept definition. V.1

    International Nuclear Information System (INIS)

    1989-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA), an agreement among the four parties representing the world's major fusion programs resulted in a program for conceptual design of the next logical step in the fusion program, the International Thermonuclear Experimental Reactor (ITER). The definition phase, which ended in November, 1989, is summarized in two reports: a brief summary is contained in the ITER Definition Phase Report (IAEA/ITER/DS/2); the extended technical summary and technical details of ITER are contained in this two-volume report. The first volume of this report contains the Introduction and Summary, and the remainder will appear in Volume II. In the Conceptual Design Activities phase, ITER has been defined as being a tokamak device. The basic performance parameters of ITER are given in Volume I of this report. In addition, the rationale for selection of this concept, the performance flexibility, technical issues, operations, safety, reliability, cost, and research and development needed to proceed with the design are discussed. Figs and tabs

  3. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  4. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  5. Development of thick wall welding and cutting tools for ITER

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi

    1998-01-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  6. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  7. Space Operations

    Science.gov (United States)

    2013-05-29

    support, products, and services, as required. US Tenth Fleet is the SSE for fleet satellite (FLTSAT) and ultrahigh frequency follow-on ( UFO ). b...direct support of Navy and joint forces. These systems include FLTSAT, UFO , MUOS, and varied payloads (Interim Polar and GBS). 10. Air Force Component...33-50 GHz S S-band, 2-4 GHz SHF super high frequency UFO ultrahigh frequency (UHF) follow-on WGS Wideband Global Satellite Communications System X

  8. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  9. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  10. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  11. Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators.

    Science.gov (United States)

    Zhao, Jing; Zong, Haili

    2018-01-01

    In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.

  12. ITER project and fusion technology

    International Nuclear Information System (INIS)

    Takatsu, H.

    2011-01-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R and D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  13. ITER Council proceedings: 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ''ITER EDA Agreement and Protocol 2'' (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tasks; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings

  14. ITER council proceedings: 2000

    International Nuclear Information System (INIS)

    2001-01-01

    No ITER Council Meetings were held during 2000. However, two ITER EDA Meetings were held, one in Tokyo, January 19-20, and one in Moscow, June 29-30. The parties participating in these meetings were those that partake in the extended ITER EDA, namely the EU, the Russian Federation, and Japan. This document contains, a/o, the records of these meetings, the list of attendees, the agenda, the ITER EDA Status Reports issued during these meetings, the TAC (Technical Advisory Committee) reports and recommendations, the MAC Reports and Advice (also for the July 1999 Meeting), the ITER-FEAT Outline Design Report, the TAC Reports and Recommendations both meetings), Site requirements and Site Design Assumptions, the Tentative Sequence of technical Activities 2000-2001, Report of the ITER SWG-P2 on Joint Implementation of ITER, EU/ITER Canada Proposal for New ITER Identification

  15. ITER council proceedings: 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ``ITER EDA Agreement and Protocol 2`` (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tastes; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings.

  16. Future In-Space Operations (FISO): A Working Group and Community Engagement

    Science.gov (United States)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  17. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  18. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  19. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  20. Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)

    Science.gov (United States)

    Griffin, Sandy (Editor)

    1990-01-01

    Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.

  1. The Advantages, Potentials and Safety of VTOL Suborbital Space Tourism Operations

    Science.gov (United States)

    Ridzuan Zakaria, N.; Nasrun, N.; Abu, J.; Jusoh, A.; Azim, L.; Said, A.; Ishak, S.; Rafidi Zakaria, N.

    2012-01-01

    Suborbital space tourism offers short-time zero gravity and Earth view from space to its customers, and a package that can offer the longest duration of zero- gravity and the most exciting Earth view from space to its customer can be considered a better one than the others. To increase the duration of zero gravity time involves the design and engineering of the suborbital vehicles, but to improve the view of Earth from space aboard a suborbital vehicle, involves more than just the design and engineering of the vehicle, but more on the location of where the vehicle operates. So far, most of the proposed operations of suborbital space tourism vehicles involve a flight to above 80km and less than 120km and taking-off and landing at the same location. Therefore, the operational location of the suborbital vehicle clearly determines the view of earth from space that will be available to its passengers. The proposed operational locations or spaceports usually are existing airports such as the airport at Curacao Island in the Caribbean or spaceport specially built at locations with economic interests such as Spaceport America in New Mexico or an airport that is going to be built, such as SpaceportSEA in Selangor, Malaysia. Suborbital vehicles operating from these spaceports can only offer limited views of Earth from space which is only few thousand kilometers of land or sea around their spaceports, and a clear view of only few hundred kilometers of land or sea directly below them, even though the views can be enhanced by the application of optical devices. Therefore, the view of some exotic locations such as a colorful coral reef, and phenomena such as a smoking volcano on Earth which may be very exciting when viewed from space will not be available on these suborbital tourism packages. The only possible way for the passengers of a suborbital vehicle to view such exotic locations and phenomena is by flying above or near them, and since it will not be economic and will be

  2. First formal ITER negotiations make excellent progress

    International Nuclear Information System (INIS)

    Barnard, P.

    2001-01-01

    November 8 and 9 2001 marked the historic beginning of formal negotiations meetings on the ITER project. Delegations from Canada, the European Union, Japan and the Russian Federation met in Toronto, Canada, for the first in a series of Negotiations that is expected to lead, by the end of 2002, to an agreement on the joint implementation of ITER. This agreement will govern, under international law, the construction, operation and decommissioning of ITER. The Negotiations concluded by issuing a joint news release, reflecting a commitment to share the progress reports on the efforts to implement ITER

  3. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  4. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    International Nuclear Information System (INIS)

    Kalay, Berfin; Demiralp, Metin

    2014-01-01

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin

  5. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  6. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  7. Iterative optimization of quantum error correcting codes

    International Nuclear Information System (INIS)

    Reimpell, M.; Werner, R.F.

    2005-01-01

    We introduce a convergent iterative algorithm for finding the optimal coding and decoding operations for an arbitrary noisy quantum channel. This algorithm does not require any error syndrome to be corrected completely, and hence also finds codes outside the usual Knill-Laflamme definition of error correcting codes. The iteration is shown to improve the figure of merit 'channel fidelity' in every step

  8. On equivalence classes in iterative learning control

    NARCIS (Netherlands)

    Verwoerd, M.H.A.; Meinsma, Gjerrit; de Vries, Theodorus J.A.

    2003-01-01

    This paper advocates a new approach to study the relation between causal iterative learning control (ILC) and conventional feedback control. Central to this approach is the introduction of the set of admissible pairs (of operators) defined with respect to a family of iterations. Considered are two

  9. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  10. Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2017-01-01

    Full Text Available Abstract In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators I α $I_{\\alpha}$ in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutators [ b , I α ] $[b,I_{\\alpha}]$ formed by b and I α $I_{\\alpha}$ are established. Also we study related problems about two-weight, weak type inequalities for I α $I_{\\alpha}$ and [ b , I α ] $[b,I_{\\alpha}]$ in the Morrey-type spaces and give partial results.

  11. Collision risk investigation for an operational spacecraft caused by space debris

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2017-04-01

    The collision probability between an operational spacecraft and a population of space debris is investigated. By dividing the 3-dimensional operational space of the spacecraft into several space volume cells (SVC) and proposing a boundary selection method to calculate the collision probability in each SVC, the distribution of the collision risk, as functions of the time, the orbital height, the declination, the impact elevation, the collision velocity, etc., can be obtained. Thus, the collision risk could be carefully evaluated over a time span for the general orbital configurations of the spacecraft and the space debris. As an application, the collision risk for the Tiangong-2 space laboratory caused by the cataloged space debris is discussed and evaluated. Results show that most of the collision threat comes from the front left and front right in Tiangong-2's local, quasi-horizontal plane. And the collision probability will also accumulate when Tiangong-2 moves to the largest declinations (about {±} 42°). As a result, the manned space activities should be avoided at those declinations.

  12. Impacts of space weather and space climate on pipeline network operations

    Science.gov (United States)

    Trichtchenko, Larisa

    2014-05-01

    The geomagnetic fluctuations are accompanied by geo-electric (telluric) field and telluric currents at the surface of the Earth and in the pipelines. These currents interfere with pipeline corrosion protection, creating pipe-to-soil potential (PSP) fluctuations. It impacts pipeline operations in two ways. One is that non-disturbed "true" level of the protection is not known, which might lead to the wrong conclusions that a pipeline coating is damaged and digging out the section of the pipeline is needed. The other effect is changes in the electrical conditions in the pipeline-soil interface, compromising the corrosion protection and possibly causing enhancement of the corrosion. The global trend for construction of more pipelines in northern regions means placing them into areas where natural geomagnetic variations are larger and consequently telluric activity is more extreme, in comparison with pipelines located further south. This paper describes the solutions implemented as the result of the two projects done by NRCan researchers led by the author on request from pipeline companies. Two methods were proposed and implemented to address the problems. One is the statistical estimation of the telluric activity in the area of the planned pipelines. These statistical considerations then used as guidance in the design of corrosion protection systems to counteract the excessive corrosion. The other, to deal with the corrupted results during the pipeline surveys, is to forecast the geomagnetic storms for proper planning of the surveys. In addition, the developed telluric activity identification tool can be used in the analysis of the corrupted survey data.

  13. Iterated crowdsourcing dilemma game

    Science.gov (United States)

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-02-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.

  14. Some s-numbers of an integral operator of Hardy type in Banach function spaces

    Czech Academy of Sciences Publication Activity Database

    Edmunds, D.; Gogatishvili, Amiran; Kopaliani, T.; Samashvili, N.

    2016-01-01

    Roč. 207, July (2016), s. 76-97 ISSN 0021-9045 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : Hardy type operators * Banach function spaces * s- numbers * compact linear operators Subject RIV: BA - General Mathematics Impact factor: 0.931, year: 2016 http://www.sciencedirect.com/science/article/pii/S0021904516000265

  15. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    Science.gov (United States)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace

  16. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ''ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R ampersand D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop

  17. Algebraic Properties of Quasihomogeneous and Separately Quasihomogeneous Toeplitz Operators on the Pluriharmonic Bergman Space

    Directory of Open Access Journals (Sweden)

    Hongyan Guan

    2013-01-01

    Full Text Available We study some algebraic properties of Toeplitz operator with quasihomogeneous or separately quasihomogeneous symbol on the pluriharmonic Bergman space of the unit ball in ℂn. We determine when the product of two Toeplitz operators with certain separately quasi-homogeneous symbols is a Toeplitz operator. Next, we discuss the zero-product problem for several Toeplitz operators, one of whose symbols is separately quasihomogeneous and the others are quasi-homogeneous functions, and show that the zero-product problem for two Toeplitz operators has only a trivial solution if one of the symbols is separately quasihomogeneous and the other is arbitrary. Finally, we also characterize the commutativity of certain quasihomogeneous or separately quasihomogeneous Toeplitz operators.

  18. Priorities of Coworking Space Operation Based on Comparison of the Hosts and Users’ Perspectives

    Directory of Open Access Journals (Sweden)

    Jongseok Seo

    2017-08-01

    Full Text Available More than 1,180,000 people use several thousand coworking spaces these days, but the running of coworking spaces is a rather fragile business model. Coworking spaces need entrepreneurial sustainability as well. Therefore, this study identifies success factors for sustainable business through analysis of users and hosts’ demands and priorities about coworking spaces. To identify the priorities, we conducted a questionnaire survey with 60 hosts and 56 users by using the analytic hierarchy process method. We found that hosts thought community and communication most important, followed by space and interior, service diversity, and price plan, and users considered relationship facilitation the most important, followed by service diversity, price plan, and networking event and party. After discussions with coworking space hosts and users to understand the differences in viewpoints, we combined the results to find the highest priorities. Finally, we identified relationship facilitation, service diversity, and price plan as having the highest priorities for sustainable coworking space operation for both sides. This study has major implications for research into improving management of coworking spaces as it asks users and hosts to select and focus on elements of priority in their decision making for entrepreneurial sustainability and management innovation.

  19. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  20. ITER council proceedings: 1995

    International Nuclear Information System (INIS)

    1996-01-01

    Records of the 8. ITER Council Meeting (IC-8), held on 26-27 July 1995, in San Diego, USA, and the 9. ITER Council Meeting (IC-9) held on 12-13 December 1995, in Garching, Germany, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the ITER Interim Design Report Package and Relevant Documents. Figs, tabs