WorldWideScience

Sample records for iter h-mode plasmas

  1. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Science.gov (United States)

    Leekhaphan, P.; Onjun, T.

    2011-04-01

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  2. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Leekhaphan, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (Thailand); Onjun, T. [Thammasat University, School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology (Thailand)

    2011-04-15

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for {omega}{sub E Multiplication-Sign B} calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  3. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  4. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  5. Scaling of the H-mode power threshold for ITER

    International Nuclear Information System (INIS)

    1998-01-01

    Analysis of the latest ITER H-mode threshold database is presented. The power necessary for the transition to H-mode is estimated for ITER, with or without the inclusion of radiation losses from the bulk plasma, in terms of the main engineering variables. The main geometrical variables (aspect ratio ε, elongation κ and average triangularity δ) are also included in the analysis. The H-mode transition is also considered from the point of view of the local edge variables, and the electron temperature at 90% of the poloidal flux is expressed in terms of both local and global variables. (author)

  6. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  7. 'Snowflake' H Mode in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-01-01

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  8. Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas

    Science.gov (United States)

    Wynn, A.; Lipschultz, B.; Cziegler, I.; Harrison, J.; Jaervinen, A.; Matthews, G. F.; Schmitz, J.; Tal, B.; Brix, M.; Guillemaut, C.; Frigione, D.; Huber, A.; Joffrin, E.; Kruzei, U.; Militello, F.; Nielsen, A.; Walkden, N. R.; Wiesen, S.; Contributors, JET

    2018-05-01

    The low temperature boundary layer plasma (scrape-off layer or SOL) between the hot core and the surrounding vessel determines the level of power loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces—and subsequent erosion. We find that increases in SOL parallel resistivity, Λdiv (=[L || ν eiΩi]/c sΩe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in SOL shoulder amplitude, A s, only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with A s for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv and A s is also found for H-mode discharges. Thus, while it may be necessary for Λdiv to be above a threshold of ~1 for shoulder formation and/or growth, another mechanism is required. More significantly, we find that in contrast to parallel resistivity, outer divertor recycling, as quantified by the total outer divertor Balmer D α emission, I-D α , does scale with A s where Λdiv does and even where Λdiv does not. Divertor recycling could lead to SOL density shoulder formation through: (a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and (b) changes in radial electric fields which lead to E  ×  B poloidal flows as well as potentially affecting SOL turbulence birth characteristics. Thus, changes in divertor recycling may be the sole process involved in bringing about SOL density shoulders or it may be that it acts in tandem with parallel resistivity.

  9. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    International Nuclear Information System (INIS)

    C. E. Kessel, D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, T. Casper, M. Cavinato, H. Fujieda, R. Hawryluk, L. D. Horton, A. Kavin, R. Kharyrutdinov, F. Koechl, J. Leuer, A. Loarte, P. J. Lomas, T. Luce, V. Lukash, M. Mattei, I.Nunes, V. Parail, A. Polevoi, A. Portone, R. Sartori, A.C.C. Sips, P. R. Thomas, A. Welander and J. Wesley

    2008-01-01

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation

  10. Theory of anomalous transport in H-mode plasmas

    International Nuclear Information System (INIS)

    Itoh, S.; Itoh, K.; Fukuyama, A.; Yagi, M.

    1993-05-01

    Theory of the anomalous transport is developed, and the unified formula for the L- and H-mode plasmas is presented. The self-sustained ballooning-mode turbulence is solved in the presence of the inhomogeneous radial electric field, E r . Reductions in transport coefficients and the amplitude and decorrelation length of fluctuations due to E r ' are quantitatively analyzed. Combined with the E r -bifurcation model, the thickness of the transport barrier is simultaneously determined. (author)

  11. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    International Nuclear Information System (INIS)

    Hughes, J.W.; Reinke, M.L.; Terry, J.L.; Brunner, D.; Greenwald, M.; Hubbard, A.E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S.J.; Loarte, A.

    2011-01-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H 98 ≥ 1) in H-mode and its relation to H-mode threshold power scaling, P th , are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above P th . In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D α (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, P net , and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H 98 near unity. As P net is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N 2 , high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4x), all while maintaining H 98 ∼ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of P net , helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that P net /P th of one or greater is likely to lead to H

  12. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  13. H-mode development in TEXT-U limiter plasmas

    International Nuclear Information System (INIS)

    Roberts, D.R.; Bravenec, R.V.; Bengtson, R.D.

    1996-01-01

    H-mode transitions in TEXT-U limiter plasmas have been observed at q a ∼ 3 and I p ∼ 250 kA (P OH ∼ 300 kW) with at least 300 kW of central electron-cyclotron heating (ECH). These are dithering transitions which are induced by sawtooth crashes and display the typical signatures of H-modes (D α drop, spontaneous density increase, evidence of a transport barrier). However, they show only a slight improvement over L-mode energy confinement. The vessel walls are boronized and conditioned prior to experiments to achieve low-impurity influx and particle recycling. Discharges which undergo transitions are fuelled almost entirely on residual recycling. Transitions are observed when limited on a toroidally localized top or bottom limiter and, more often, when the limiter surface is 'fresh', which is achieved by alternating between top and bottom limiters on successive shots. No strong dependence upon the distance from the low-field-side limiter has been found. Transitions are not yet observed when limited on the high-field-side wall tiles or in the case of TEXT-U diverted configurations. Preliminary measurements with the 2 MeV heavy-ion beam probe (HIBP) (in the core) and Langmuir probes (in the edge) indicate that the plasma potential drops outside the q = 1 radius while only small changes are observed in the density fluctuations level. (author)

  14. Energy confinement and transport of H-mode plasmas in tokamak

    International Nuclear Information System (INIS)

    Urano, Hajime

    2005-02-01

    A characteristic feature of the high-confinement (H-mode) regime is the formation of a transport barrier near the plasma edge, where steepening of the density and temperature gradients is observed. The H-mode is expected to be a standard operation mode in a next-step fusion experimental reactor, called ITER-the International Thermonuclear Experimental Reactor. However, energy confinement in the H-mode has been observed to degrade with increasing density. This is a critical constraint for the operation domain in the ITER. Investigation of the main cause of confinement degradation is an urgent issue in the ITER Physics Research and Development Activity. A key element for solving this problem is investigation of the energy confinement and transport properties of H-mode plasmas. However, the influence of the plasma boundary characterized by the transport barrier in H-modes on the energy transport of the plasma core has not been examined sufficiently in tokamak research. The aim of this study is therefore to investigate the energy confinement properties of H-modes in a variety of density, plasma shape, seed impurity concentration, and conductive heat flux in the plasma core using the experimental results obtained in the JT-60U tokamak of Japan Atomic Energy Research Institute. Comparison of the H-mode confinement properties with those of other tokamaks using an international multi-machine database for extrapolation to the next step device was also one of the main subjects in this study. Density dependence of the energy confinement properties has been examined systematically by separating the thermal stored energy into the H-mode pedestal component determined by MHD stability called the Edge Localized Modes (ELMs) and the core component governed by gyro-Bohm-like transport. It has been found that the pedestal pressure imposed by the destabilization of ELM activities led to a reduction in the pedestal temperature with increasing density. The core temperature for each

  15. Particle transport in JET and TCV-H mode plasmas

    International Nuclear Information System (INIS)

    Maslov, M.

    2009-10-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  16. W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER

    Science.gov (United States)

    Köchl, F.; Loarte, A.; de la Luna, E.; Parail, V.; Corrigan, G.; Harting, D.; Nunes, I.; Reux, C.; Rimini, F. G.; Polevoi, A.; Romanelli, M.; Contributors, JET

    2018-07-01

    Tokamak operation with W PFCs is associated with specific challenges for impurity control, which may be particularly demanding in the transition from stationary H-mode to L-mode. To address W control issues in this phase, dedicated experiments have been performed at JET including the variation of the decrease of the power and current, gas fuelling and central ion cyclotron heating (ICRH), and applying active ELM control by vertical kicks. The experimental results obtained demonstrate the key role of maintaining ELM control to control the W concentration in the exit phase of H-modes with slow (ITER-like) ramp-down of the neutral beam injection power in JET. For these experiments, integrated fully predictive core+edge+SOL transport modelling studies applying discrete models for the description of transients such as sawteeth and ELMs have been performed for the first time with the JINTRAC suite of codes for the entire transition from stationary H-mode until the time when the plasma would return to L-mode focusing on the W transport behaviour. Simulations have shown that the existing models can appropriately reproduce the plasma profile evolution in the core, edge and SOL as well as W accumulation trends in the termination phase of JET H-mode discharges as function of the applied ICRH and ELM control schemes, substantiating the ambivalent effect of ELMs on W sputtering on one side and on edge transport affecting core W accumulation on the other side. The sensitivity with respect to NB particle and momentum sources has also been analysed and their impact on neoclassical W transport has been found to be crucial to reproduce the observed W accumulation characteristics in JET discharges. In this paper the results of the JET experiments, the comparison with JINTRAC modelling and the adequacy of the models to reproduce the experimental results are described and conclusions are drawn regarding the applicability of these models for the extrapolation of the applied W

  17. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  18. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  19. BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL

    International Nuclear Information System (INIS)

    KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.

    2002-01-01

    OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density

  20. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, δ, which is most consistent with the data is with the normalized edge pressure, (β POL PED ) 0.4 . Fits of δ to a function of temperature, such as ρ POL , are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes

  1. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  2. Scaling of ELM and H-mode pedestal characteristics in ITER shape discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-07-01

    The authors have shown a correlation between the H-mode pressure pedestal height and the energy confinement enhancement in ITER shape discharges on DIII-D which is consistent with the behavior of H in different ELM classes. The width of the steep gradient region was found to equally well fit the scalings δ/R ∝ (ρ POL /R) 2/3 and δ/R ∝ (β POL PED /R) 1/2 . The normalized pressure gradient α MHD was found to be relatively constant just before a type I ELM. An estimate of T PED for ITER gave 1 to 5 keV. They also estimate ΔE ELM ≅ 26 MJ for ITER. They identified a distinct class of type III ELM at low density which may play a role in setting H at powers near the H-mode threshold power

  3. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    Science.gov (United States)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  4. High performance H-mode plasmas at densities above the Greenwald limit

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Osborne, T.H.; Leonard, A.W.

    2001-01-01

    Densities up to 40 percent above the Greenwald limit are reproducibly achieved in high confinement (H ITER89p =2) ELMing H-mode discharges. Simultaneous gas fueling and divertor pumping were used to obtain these results. Confinement of these discharges, similar to moderate density H-mode, is characterized by a stiff temperature profile, and therefore sensitive to the density profile. A particle transport model is presented that explains the roles of divertor pumping and geometry for access to high densities. Energy loss per ELM at high density is a factor of five lower than predictions of an earlier scaling, based on data from lower density discharges. (author)

  5. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  6. Pedestal characteristics and MHD stability of H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pitzschke, A.

    2011-01-01

    The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the frame of this thesis, the impact of plasma shaping and heating on the properties of the edge transport barrier (ETB) in the high confinement mode (H-mode) was studied. This mode of operation is foreseen as one of the reference scenarios for ITER, the International Tokamak Experimental Reactor, which is being built to demonstrate the feasibility of thermonuclear fusion using magnetic confinement. A feature of H-mode regime operation are edge localized modes (ELMs), instabilities driven by the steep pressure gradients that form in the plasma edge region due to a transport barrier. During an ELM event, energy and particles are expelled from the plasma in a short burst. This will cause serious problems with respect to the heat load on plasma facing components in a tokamak of the size of ITER. Understanding of the phenomena associated with ELMs is thus required and dedicated investigations of their theory and experimental observations are carried out in many laboratories worldwide. This thesis presents several experimental and numerical investigations of tokamak behavior for configurations where the plasma edge plays an important role. From the experimental viewpoint, studies of transport barriers are challenging, as plasma parameters change strongly within a narrow spatial region. As part of the work presented here, the TCV Thomson scattering system was upgraded to meet the requirements for diagnosing electron temperature and density with high spatial resolution in the region of internal and external transport barriers. Simultaneously, the data analysis was significantly improved to cope with statistical uncertainties and alleviate possible systematic errors. For measurements of the time evolution of density and

  7. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  8. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    Science.gov (United States)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  9. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  10. MHD-activity in ohmic, diverted and limited H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pochelon, A.; Anton, M.; Buehlmann, F.; Dutch, M.J.; Duval, B.P.; Hirt, A.; Hofmann, F.; Joye, B.; Lister, J.B.; Llobet, X.; Martin, Y.; Moret, J.M.; Nieswand, C.; Pietrzyk, A.Z.; Tonetti, G.; Weisen, H.

    1994-01-01

    During its first year of operation the TCV tokamak has produced a variety of plasma configurations with currents in the range 150 to 800 kA and elongations in the range of 1.0 to 2.05. Ohmic H-modes have been obtained in diverted discharges and discharges limited on the graphite tiles inner wall. After boronisation in May 1994 H-modes with line average densities up to 1.7x10 20 m -3 , corresponding to a Murakami parameter of 10, were obtained. (author) 5 figs., 2 refs

  11. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Chung, Chin-Wook

    2010-01-01

    An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.

  12. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy

  13. Comparison of L- and H-mode plasma edge fluctuations in MAST

    International Nuclear Information System (INIS)

    Dudson, B D; Dendy, R O; Kirk, A; Meyer, H; Counsell, G F

    2005-01-01

    Edge turbulence measurements from a reciprocating Langmuir probe in MAST are presented. A comparison of the range/standard deviation (R/S), growth of range, first moment and differencing and rescaling methods for calculating the Hurst exponent is made. The differencing and rescaling method is found to be the most useful for identifying scaling over long time-periods. A comparison is made between L-mode, dithering H-mode and H-mode plasma edge turbulence and evidence for self-similarity is found. Tests are performed and it is demonstrated that the results are due to properties of the data, and are not artefacts of the methods. A comparison of Hurst exponent methods with the autocorrelation function and power spectrum is used to demonstrate the presence of long-time correlation in L-mode data, and the absence of long-time correlation in the case of dithering H-mode

  14. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  15. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  16. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    International Nuclear Information System (INIS)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-01-01

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement

  17. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2005-01-01

    Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A new model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. The model for the pedestal and ELMs is used in the ASTRA integrated transport code to follow the time evolution of tokamak discharges from L-mode through the transition from L-mode to H-mode, with the formation of the H-mode pedestal, and, subsequently, to the triggering of ELMs. Turbulence driven by the ion temperature gradient mode, resistive ballooning mode, trapped electron mode, and electron temperature gradient mode contributes to the anomalous thermal transport at the plasma edge in this model. Formation of the pedestal and the L-H transition is the direct result of E(vector) r x B(vector) flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by MHD instabilities. Two mechanisms for triggering ELMs are considered: ELMs are triggered by ballooning modes if the pressure gradient exceeds the ballooning threshold or by peeling modes if the edge current density exceeds the peeling mode threshold. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (author)

  18. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A. M., E-mail: garofalo@fusion.gat.com; Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Eldon, D.; Grierson, B. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027-6900 (United States); Holland, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Huijsmans, G. T. A.; Liu, F.; Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Zeng, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States)

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  19. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  20. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    Science.gov (United States)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  1. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  2. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    Science.gov (United States)

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  3. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  4. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  5. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  6. Pedestal Temperature Model for Type III ELMy H-mode Plasma

    International Nuclear Information System (INIS)

    Buangam, W.; Suwanna, S.; Onjun, T.; Poolyarat, N.; Picha, R.; Singhsomroje, W.

    2009-07-01

    Full text: It is widely known that the improved performance of H-mode plasma results mainly from a formation of the pedestal, which is a narrow region of strong pressure gradient near the edge of plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for type III ELMy H-mode plasma are developed by using two different approaches: a theory-based approaches and an empirical approach. For a theory-based approach, a model is developed based on the calculation of thermal energy in the pedestal region and on accepted scaling laws of energy confinement time. For an empirical model, a scaling law for pedestal temperature in terms of plasma controlled parameters, such as plasma current, magnetic field, heating power, is deduced from experimental data. Predictions from these models are compared with experimental data from the Pedestal International Database. Statistical quantities, such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of the models. It is found that the theory-based model predicts the pedestal temperature values moderately well yielding RMSE between 30% and 40%. The IPB98(y,3) scaling law yields with best agreement with RMSE of 30.4%. The empirical model predicts the pedestal temperature value with better agreement, yield RMSE of 25.9%

  7. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2004-01-01

    Recent advances in the integrated modeling of ELMy (edge localized mode) H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of E r x B flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (authors)

  8. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kim, Y.; St. John, H.E.; Seraydarian, R.P.; Wade, M.R.

    1994-01-01

    Poloidal and toroidal rotation of the main ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been measured via charge exchange recombination spectroscopy in the DIII-D tokamak. It was discovered that the main ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction, in qualitative agreement with the neoclassical theory. The deduced radial electric field in the edge is of the same negative-well shape regardless of which ion species is used, validating the fundamental nature of the electric field in L-H transition phenomenology

  9. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  10. Methane penetration in DIII-D ELMing H-mode plasmas

    International Nuclear Information System (INIS)

    West, W.P.; Lasnier, C.J.; Whyte, D.G.; Isler, R.C.; Evans, T.E.; Jackson, G.L.; Rudakov, D.; Wade, M.R.; Strachan, J.

    2003-01-01

    Carbon penetration into the core plasma during midplane and divertor methane puffing has been measured for DIII-D ELMing H-mode plasmas. The methane puffs are adjusted to a measurable signal, but global plasma parameters are only weakly affected (line average density, e > increases by E , drops by 6+ density profiles in the core measured as a function of time using charge exchange recombination spectroscopy. The methane penetration factor is defined as the difference in the core content with the puff on and puff off, divided by the carbon confinement time and the methane puffing rate. In ELMing H-mode discharges with ion ∇B drift direction into the X-point, increasing the line averaged density from 5 to 8x10 19 m -3 dropped the penetration factor from 6.6% to 4.6% for main chamber puffing. The penetration factor for divertor puffing was below the detection limit (<1%). Changing the ion ∇B drift to away from the X-point decreased the penetration factor by more than a factor of five for main chamber puffing

  11. Particle and power deposition on divertor targets in EAST H-mode plasmas

    International Nuclear Information System (INIS)

    Wang, L.; Xu, G.S.; Guo, H.Y.; Chen, R.; Ding, S.; Gan, K.F.; Gao, X.; Gong, X.Z.; Jiang, M.; Liu, P.; Liu, S.C.; Luo, G.N.; Ming, T.F.; Wan, B.N.; Wang, D.S.; Wang, F.M.; Wang, H.Q.; Wu, Z.W.; Yan, N.; Zhang, L.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs. (paper)

  12. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  13. Operational conditions and characteristics of ELM-events during H-mode plasmas in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Grigull, P.; Wobig, H.; Kisslinger, J.; McCormick, K.; Anton, M.; Baldzuhn, J.; Fiedler, S.; Fuchs, Ch.; Geiger, J.; Giannone, L.; Hartfuss, H.-J.; Holzhauer, E.; Hirsch, M.; Jaenicke, R.; Kick, M.; Maassberg, H.; Wagner, F.; Weller, A.

    2000-01-01

    H-mode operation in the low-shear stellarator W7-AS is achieved for specific plasma edge topologies characterized by three 'operational windows' of the edge rotational transform. An explanation for this strong influence of the magnetic configuration could be the increase of viscous damping if rational surfaces and thus island structures occur within the relevant plasma edge layer, thereby impeding the development of an edge transport barrier. Prior to the final transition to a quiescent state, the plasma edge passes a rich phenomenology of dynamic behaviour such as dithering and ELMs. Plasma edge parameters indicate that a quiescent H-mode occurs if a certain edge pressure is achieved. (author)

  14. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  15. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  16. Plasma interaction with tungsten samples in the COMPASS tokamak in ohmic ELMy H-modes

    International Nuclear Information System (INIS)

    Dimitrova, M; Weinzettl, V; Matejicek, J; Dejarnac, R; Stöckel, J; Havlicek, J; Panek, R; Popov, Tsv; Marinov, S; Costea, S

    2016-01-01

    This paper reports experimental results on plasma interaction with tungsten samples with or without pre-grown He fuzz. Under the experimental conditions, arcing was observed on the fuzzy tungsten samples, resulting in localized melting of the fuzz structure that did not extend into the bulk. The parallel power flux densities were obtained from the data measured by Langmuir probes embedded in the divertor tiles on the COMPASS tokamak. Measurements of the current-voltage probe characteristics were performed during ohmic ELMy H-modes reached in deuterium plasmas at a toroidal magnetic field B T = 1.15 T, plasma current I p = 300 kA and line-averaged electron density n e = 5×10 19 m -3 . The data obtained between the ELMs were processed by the recently published first-derivative probe technique for precise determination of the plasma potential and the electron energy distribution function (EEDF). The spatial profile of the EEDF shows that at the high-field side it is Maxwellian with a temperature of 5 -- 10 eV. The electron temperatures and the ion-saturation current density obtained were used to evaluate the radial distribution of the parallel power flux density as being in the order of 0.05 -- 7 MW/m 2 . (paper)

  17. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W. M., E-mail: solomon@fusion.gat.com; Bortolon, A.; Grierson, B. A.; Nazikian, R.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Snyder, P. B.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Leonard, A. W.; Meneghini, O.; Osborne, T. H.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Loarte, A. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2016-05-15

    A new high pedestal regime (“Super H-mode”) has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  18. Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code

    International Nuclear Information System (INIS)

    Unterberg, B; Kalupin, D; Tokar', M Z; Corrigan, G; Dumortier, P; Huber, A; Jachmich, S; Kempenaars, M; Kreter, A; Messiaen, A M; Monier-Garbet, P; Ongena, J; Puiatti, M E; Valisa, M; Hellermann, M von

    2004-01-01

    Self-consistent modelling of energy and particle transport of the plasma background and impurities has been performed with the code RITM for argon seeded high density H-mode plasmas in JET. The code can reproduce both the profiles in the plasma core and the structure of the edge pedestal. The impact of argon on core transport is found to be small; in particular, no significant change in confinement is observed in both experimental and modelling results. The same transport model, which has been used to reproduce density peaking in the radiative improved mode in TEXTOR, reveals a flat density profile in Ar seeded JET H-mode plasmas in agreement with the experimental observations. This behaviour is attributed to the rather flat profile of the safety factor in the bulk of H-mode discharges

  19. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  20. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  1. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  2. First-wall heat-flux measurements during ELMing H-mode plasma

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.

    1994-01-01

    In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection

  3. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  4. Ion orbit loss and pedestal width of H-mode tokamak plasmas in limiter geometry

    International Nuclear Information System (INIS)

    Xiao Xiaotao; Liu Lei; Zhang Xiaodong; Wang Shaojie

    2011-01-01

    A simple analytical model is proposed to analyze the effects of ion orbit loss on the edge radial electric field in a tokamak with limiter configuration. The analytically predicted edge radial electric field is consistent with the H-mode experiments, including the width, the magnitude, and the well-like shape. This model provides an explanation to the H-mode pedestal structure. Scaling of the pedestal width based on this model is proposed.

  5. Plasma control concepts for ITER

    International Nuclear Information System (INIS)

    Lister, J.B.; Nieswand, C.

    1997-01-01

    This overview paper skims over a wide range of issues related to the control of ITER plasmas. Although operation of the ITER project will require extensive developmental work to achieve the degree of control required, there is no indication that any of the identified problems will present overwhelming difficulties compared with the operation of present tokamaks. However, the precision of control required and the degree of automation of the final ITER plasma control system will present a challenge which is somewhat greater than for present tokamaks. In order to operate ITER optimally, integrated use of a large amount of diagnostic information will be necessary, evaluated and interpreted automatically. This will challenge both the diagnostics themselves and their supporting interpretation codes. The intervening years will provide us with the opportunity to implement and evaluate most of the new features required for ITER on existing tokamaks, with the exception of the control of an ignited plasma. (author) 7 figs., 7 refs

  6. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    International Nuclear Information System (INIS)

    Lore, J. D.; Reinke, M. L.; Lipschultz, B.; Brunner, D.; LaBombard, B.; Terry, J.; Pitts, R. A.; Feng, Y.

    2015-01-01

    Experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (∼1.1) in divertor electron temperatures for high-power enhanced D-alpha H-mode plasmas. This is in contrast to similar experiments in Ohmically heated L-mode plasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. The consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE

  7. Modification of adhered dust on plasma-facing surfaces due to exposure to ELMy H-mode plasma in DIII-D

    Directory of Open Access Journals (Sweden)

    I. Bykov

    2017-08-01

    Full Text Available Transient heat load tests have been conducted in the lower divertor of DIII-D using DiMES manipulator in order to study the behavior of dust on tungsten Plasma Facing Components (PFCs during ELMy H-mode discharges. Samples with pre-adhered, pre-characterized dust have been exposed at the outer strike point (OSP in a series of discharges with varied intra-(inter- ELM heat fluxes. We used C dust because of its high sublimation temperature and non-metal properties. Al dust as a surrogate for Be and W dust were employed as relevant to that in the ITER divertor. The poor initial thermal contact between the substrate and the particles led to overheating, sublimation and shrinking of the carbon dust, and wetting induced coagulation of Al dust. Little modification of the W dust was observed. An enhanced surface adhesion and improvement of the thermal contact of C and Al dust were the result of exposure. A post mortem “adhesive tape” sampling showed that 70% of Al, <5% of W and C particles could not be removed from the surface owing to the improved adhesion. Al and C but not W particles that could be lifted had W inclusions indicating damage to the substrate. This suggests that non destructive methods may be inefficient for removal of dust in ITER.

  8. The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D

    International Nuclear Information System (INIS)

    T.H. Osborne; J.R. Ferron; R.J. Groebner; L.L. Lao; A.W. Leonard; R. Maingi; R.L. Miller; A.D. Turnbull; M.R. Wade; J.G. Watkins

    1999-01-01

    The characteristics of the H-mode are studied in discharges with varying triangularity and squareness. The pressure at the top of the H-mode pedestal increases strongly with triangularity primarily due to an increase in the margin by which the edge pressure gradient exceeds the ideal ballooning mode first stability limit. Two models are considered for how the edge may exceed the ballooning mode limit. In one model [1], access to the ballooning mode second stable regime allows the edge pressure gradient and associated bootstrap current to continue to increase until an edge localized, low toroidal mode number, ideal kink mode is destabilized. In the second model [2], the finite width of the H-mode transport barrier, and diamagnetic effects raise the pressure gradient limit above the ballooning mode limit. We observe a weak inverse dependence of the width of the H-mode transport barrier, Δ, on triangularity relative to the previously obtained [3] scaling Δ ∞ (β P PED ) 1/2 . The energy loss for Type I ELMs increases with triangularity in proportion to the pedestal energy increase. The temperature profile is found to respond stiffly to changes in T PED at low temperature, while at high temperature the response is additive. The response of the density profile is also found to play a role in the response of the total stored energy to changes in the W PED

  9. First HIBP Measurement of Plasma Potential During the H-Mode Transition on the TUMAN-3M Tokamak

    International Nuclear Information System (INIS)

    Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Shevkin, E.A.; Tukachinsky, A.S.; Zhubr, N.A.; Chmyga, A.A.; Dreval, N.B.; Khrebtov, S.M.; Komarov, A.S.; Krupnik, L.I.; Oost, G. van; Tendler, M.

    2003-01-01

    The difficulty of Heavy Ion Beam Probe (HIBP) application on the TUMAN-3M (R=0.53m, a=0.22m, BT=0.8T, Ip=140kA, Te=0.5keV, n<4 1019m-3) -- significant toroidal shift of beam trajectory -- is caused by high ratio of poloidal field to toroidal one. Strong UV radiation from the plasma loads the energy analyzer's detector and complicates the problem even more. This paper presents the results of first measurement of plasma potential evolution in the discharges performed in ohmic H-mode using 80 keV K+ beam and a Proca-Green secondary ion energy analyzer. Spatial region covered by the diagnostic in the experiments discussed was 0< r<0.6a. Spatial scan was performed utilizing the toroidal field decrease due to capacity power supply battery discharge. The change in plasma potential of the order of 100V has been measured during the H-mode formation. The potential in core plasma (r<0.6a) starts to change simultaneously with L-H transition, and than changes during ∼6-8ms after the transition. Thus, the potential changes rather slowly in a comparison with L-H transition timescale (∼2ms for TUMAN-3M ohmic H-mode). Possible explanation to the slow change in central plasma potential may be a formation of potential well structure at the plasma edge, in which radial electric field changes direction. This kind of structure is beneficial for the edge turbulent transport suppression because of high |∂Er/∂r|, but not necessary requires a strong change in central plasma potential to occur immediately. The results from microwave reflectometry support this hypothesis

  10. Drift-based Model for Power Scrape-off Width in Low-Gas-Puff H-mode Plasmas: Theory and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R., E-mail: rgoldston@pppl.gov [Princeton Plasma Physics Laboratory, Princeton (United States)

    2012-09-15

    . The strong parallel flows and plasma charging implied by this model suggest a mechanism for H-mode transition, consistent with the observation that LSN divertors have lower power threshold and the JT-60 divertor did not accommodate H-mode. These results suggest that ITER may need to operate at least transiently in the low SOL regime presented here in order to achieve H-mode transition. (author)

  11. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  12. Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

    International Nuclear Information System (INIS)

    Breger, P.; Zastrow, K.-D.; Davies, S.J.; K ig, R.W.T.; Summers, D.D.R.; Hellermann, M.G. von; Flewin, C.; Hawkes, N.C.; Pietrzyk, Z.A.; Porte, L.

    1998-01-01

    Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in- and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model. (author)

  13. ITER-EDA physics design requirements and plasma performance assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Galambos, J.; Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S.

    1996-01-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R ampersand D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of ∼1.6 that produces a nominal fusion power of ∼1.5 GW for an ignited burn pulse length of ≥1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement (τ E = 0.85 x τ ITER93H ), helium exhaust (τ* He /τ E = 10), representative plasma impurities (n Be /n e = 2%), and beta limit [β N = β(%)/(I/aB) ≤ 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power (∼ 1--1.5 GW) and fluence (∼1 MWa/m 2 ) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust (τ* He /τ E ≤ 5) and potential operation in reverse-shear mode significantly improve ITER performance

  14. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  15. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  16. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  17. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  18. Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges

    International Nuclear Information System (INIS)

    Langer, U.; Taglauer, E.; Fischer, R.

    2001-01-01

    In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels

  19. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  20. L to H-mode Power Threshold and Confinement Characteristics of H-modes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Na, Y.S., E-mail: ftwalker.hyuns@gmail.com [Seoul National University, Seoul (Korea, Republic of); Ahn, J. W. [Oak Ridge National Laboratory, Oak Ridge (United States); Jeon, Y. M.; Yoon, S. W.; Lee, K. D.; Ko, W. H.; Bae, Y. S.; Kim, W. C.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-09-15

    well. The results presented here are expected to support establishment of ITER H-mode plasmas. (author)

  1. Evolution of the radial electric field in a JET H-mode plasma

    International Nuclear Information System (INIS)

    Andrew, Y.; Hawkes, N.C.; Biewer, T.; Crombe, K.; Keeling, D.; De la Luna, E.; Giroud, C.; Korotkov, A.; Meigs, A.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.; Andrew, Y.; Hawkes, N.C.; Keeling, D.; Giroud, C.; Korotkov, A.; Meigs, A.; Biewer, T.; Crombe, K.; De la Luna, E.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.

    2008-01-01

    Results from recent measurements of carbon impurity ion toroidal and poloidal rotation velocities, ion temperature, ion density and the resulting radial electric field (E r ) profiles are presented from an evolving Joint European Torus (JET) tokamak plasma over a range of energy and particle confinement regimes. Significant levels of edge plasma poloidal rotation velocity have been measured for the first time on JET, with maximum values of ±9 km/s. Such values of poloidal rotation provide an important contribution to the total edge plasma E r profiles. Large values of shear in the measured E r profiles are observed to arise as a consequence of the presence of the edge transport barrier (ETB) and do not appear to be necessary for their formation or destruction. These results have an important impact on potential mechanisms for transport barrier triggering and sustainment in present-day and future high-performance fusion plasmas. (authors)

  2. Characterization of fueling NSTX H-mode plasmas diverted to a liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kugel, H.W.; Abrams, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kallman, J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mansfield, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); and others

    2013-07-15

    Deuterium fueling experiments were conducted with the NSTX Liquid Lithium Divertor (LLD). Lithium evaporation recoated the LLD surface to approximate flowing liquid Li to sustain D retention. In the first experiment with the diverted outer strike point on the LLD, the difference between the applied D gas input and the plasma D content reached very high values without disrupting the plasma, as would normally occur in the absence of Li pumping, and there was also little change in plasma D content. In the second experiment, constant fueling was applied, as the LLD temperature was varied to change the surface from solid to liquid. The D retention was relatively constant, and about the same as that for solid Li coatings on graphite, or twice that achieved without Li PFC coatings. Contamination of the LLD surface was also possible due to compound formation and erosion and redeposition from carbon PFCs.

  3. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.c [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic); Rohde, V.; Mueller, H.W.; Herrmann, A. [Institute of Plasma Physics, Association EURATOM/IPP, Garching (Germany); Ionita, C.; Schrittwieser, R.; Mehlmann, F. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OAW (Austria); Stoeckel, J.; Horacek, J.; Brotankova, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic)

    2009-06-15

    Experimental investigations of the plasma potential and electric field were performed for ELMy H-mode plasmas in the vicinity of the limiter shadow of ASDEX Upgrade. A fast reciprocating probe with a probe head containing four ball-pen probes (BPPs) [J. Adamek et al., Czech. J. Phys. 54 (2004) C95 - C99.] was used on the midplane manipulator. Different gradients of the plasma potential were observed during ELMs and in between them. The temporal resolution of the direct plasma potential measurements with BPP was determined by using power-spectra analysis.

  4. Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Baumel, S.

    2003-01-01

    Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper,...

  5. ELMy-H mode as limit cycle and chaotic oscillations in tokamak plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi.

    1991-06-01

    A model of Edge Localized Modes (ELMs) in tokamaks is presented. A limit cycle solution is found in time-dependent Ginzburg Landau type model equation of L/H transition, which has a hysteresis curve between the plasma gradient and flux. The oscillation of edge density appears near the L/H transition boundary. Spatial structure of the intermediate state (mesophase) is obtained in the edge region. Chaotic oscillation is predicted due to random neutrals and external oscillations. (author)

  6. Magnetic perturbation experiments on MAST L- and H-mode plasmas using internal coils

    Czech Academy of Sciences Publication Activity Database

    Kirk, A.; Liu, Y.Q.; Nardon, E.; Tamain, P.; Cahyna, Pavel; Chapman, I.; Denner, P.; Meyer, H.; Mordijck, S.; Temple, D.

    2011-01-01

    Roč. 53, č. 6 (2011), 065011-065011 ISSN 0741-3335 R&D Projects: GA ČR GAP205/11/2341 Institutional research plan: CEZ:AV0Z20430508 Keywords : Resonant magnetic perturbations * L-H transition * spherical tokamaks * edge localized modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.425, year: 2011 http://dx.doi.org/10.1088/0741-3335/53/6/065011

  7. ELMy-H mode as limit cycle and chaotic oscillations in tokamak plasmas

    International Nuclear Information System (INIS)

    Itoh Sanae, I.; Itoh, Kimitaka; Fukuyama, Atsushi; Miura, Yukitoshi.

    1991-05-01

    A model of Edge Localized Modes (ELMs) in tokamak plasmas is presented. A limit cycle solution is found in the transport equation (time-dependent Ginzburg-Landau type), which a has hysteresis curve between the gradient and flux. Periodic oscillation of the particle outflux and L/H intermediate state are predicted near the L/H transition boundary. A mesophase in spatial structure appears near edge. Chaotic oscillation is also predicted. (author)

  8. H-mode access during plasma current ramp-up in TCV

    International Nuclear Information System (INIS)

    Martin, Y.; Behn, R.; Furno, I.; Labit, B.; Reimerdes, H.

    2014-01-01

    A recent TCV experiment has investigated the dependence of the L–H transition threshold power on the plasma current ramp-rate and the X-point height above the divertor target, which both have previously been seen to affect the transition behaviour. Systematic scans in ohmically heated plasmas do not show any dependence on the plasma current ramp-up rate. In contrast, the threshold power is found to increase by a factor of two while the X-point is moved from about 10 cm up to 35 cm above the vessel floor. However, further increase, up to 60 cm, does not lead to any further increase of the required power. The Fundamenski et al model is tested against the measurements. Estimates of the Wagner number (Wa) at L–H transitions are generally close to unity, in accordance with the model. In contrast, estimates of Wa before the L–H transition, i.e. in L-mode, do not show the expected evolution towards unity. (paper)

  9. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  10. A Comparison of Plasma Performance Between Single-Null and Double-Null Configurations During Elming H-Mode

    International Nuclear Information System (INIS)

    Petrie, T.W.; Fenstermacher, M.E.; Allen, S.L.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Greenfield, C.M.; Hyatt, A.W.; Lasnier, C.J.; La Haye, R.J.; Leonard, A.W.; Mahdavi, M.A.; Osborne, T.H.; Porter, G.D.; Rhodes, T.L.; Thomas, D.M.; Watkins, J.G.; West, W.P.; Wolf, N.S.

    1999-01-01

    Tokamak plasma performance generally improves with increased shaping of the plasma cross section, such as higher elongation and higher triangularity. The stronger shaping, especially higher triangularity, leads to changes in the magnetic topology of the divertor. Because there are engineering and divertor physics issues associated with changes in the details of the divertor flux geometry, especially as the configuration transitions from a single-null (SN) divertor to a marginally balanced double-null (DN) divertor, we have undertaken a systematic evaluation of the plasma characteristics as the magnetic geometry is varied, particularly with respect to (1) energy confinement, (2) the response of the plasma to deuterium gas fueling, (3) the operational density range for the ELMing H-mode, and (4) heat flux sharing by the diverters. To quantify the degree of divertor imbalance (or equivalently, to what degree the shape is double-null or single-null), we define a parameter DRSEP. DRSEP is taken as the radial distance between the upper divertor separatrix and the lower divertor separatrix, as determined at the outboard midplane. For example, if DRSEP=O, the configuration is a magnetically balanced DN; if DRSEP = +1.0 cm, the divertor configuration is biased toward the upper divertor. Three examples are shown in Fig. 1. In the following discussions, VB drift is directed toward the lower divertor

  11. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  12. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Stöckel, Jan; Brotánková, Jana; Horáček, Jan; Rohde, V.; Müller, H. W.; Herrmann, A.; Schrittwieser, R.; Mehlmann, F.; Ionita, C.

    390-391, - (2009), s. 1114-1117 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Device/18th./. Toledo, 26.05.2008-30.05.2008] R&D Projects: GA AV ČR KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge plasma * Electric field * ELMs * H-mode * ASDEX-Upgrade Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.933, year: 2009 http://dx.doi.org/10.1016/j.jnucmat.2009.01.286

  13. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    Science.gov (United States)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  14. Transport analysis of the edge zone of H-mode plasmas by computer simulation

    International Nuclear Information System (INIS)

    Becker, G.; Murmann, H.

    1988-01-01

    Local transport and ideal ballooning stability in the L-phase and ELM-free H-phase in ASDEX are analysed by computer modelling. It is found that the diffusivities χ e and D at the edge are reduced by a factor of six a few milliseconds after the H-transition. Local transport in the inner plasma improves at an early stage by a typical factor of two. A change in the collisionality regime of electrons and ions does not take place. During the L-phase and the quiescent H-phase ideal ballooning modes are found to be stable. Computer experiments further show that a significant reduction in the particle flux at the separatrix takes place which is closely connected with the H-transition process. This explains the observed buildup of a density shoulder on a millisecond time-scale and the drop of the particle flow into the divertor. A strong decrease of the electron heat conduction flux at the separatrix is, however, ruled out in ELM-free periods. On the assumption of electrostatic turbulence induced transport, these results are consistent with measured density fluctuation levels near the separatrix. (author). 20 refs, 9 figs

  15. Dynamics of the Plasma Edge during the L-H Transition and H-mode in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Scannell, R.; Meyer, H.; Cunningham, G.; Field, A.; Kirk, A.; Samuli, S.; Patel, A., E-mail: rory.scannell@ccfe.ac.uk [EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Dunai, D.; Zoletnik, S. [KFKI-RMKI, EURATOM Association, Budapest (Hungary)

    2012-09-15

    Full text: The evolution of the MAST plasma during the L-H transition has been studied in the density range 1.5 - 3.0 x 10{sup 19} m{sup -3}. A dithering transition phase, the duration of which depends on the plasma density, is observed before the transition to ELMy or ELM free H-mode. A range of new diagnostic data has been taken during these periods, showing a spin-up of the perpendicular He{sup +} flow correlated with changes in the Da emission. In this density range the power threshold increases with increasing density. As well as the expected power threshold dependency on absolute density, the threshold power is observed to depend on the density evolution prior to the transition. Small changes in fuelling location, plasma current, toroidal field and plasma shape can lead to changes in the power threshold by a factor of two, significantly larger than hose predicted by the scaling. The pedestal evolution between typical type I ELMs in connected double null configuration on MAST show increasing pedestal pressure and width as function time through the ELM cycle. This results in an expanding high pressure gradient region with little increase in peak pressure gradient within this region. It has been shown that the triggering of these ELMs is caused by decreasing stability limit as the transport barrier moves inwards. Application of n = 6 resonant magnetic perturbations to the plasma causes ELM mitigation, with smaller but much more frequent ELMs. The pressure gradients in this mitigated period are significantly less than those observed during non-mitigated type I ELMs. This reduction in pressure gradient, which indicates a different stability limit, results from both a decrease in pedestal height and increase in pedestal width. (author)

  16. Intra-ELM phase modelling of a JET ITER-like wall H-mode discharge with EDGE2D-EIRENE

    Energy Technology Data Exchange (ETDEWEB)

    Harting, D.M., E-mail: Derek.Harting@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wiesen, S. [Institute of Energy and Climate Research – IEK4, Association EURATOM-FZJ, D-52425 Jülich (Germany); Groth, M. [Aalto University, Association EURATOM-Tekes, Espoo (Finland); Brezinsek, S. [Institute of Energy and Climate Research – IEK4, Association EURATOM-FZJ, D-52425 Jülich (Germany); Corrigan, G.; Arnoux, G. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Boerner, P. [Institute of Energy and Climate Research – IEK4, Association EURATOM-FZJ, D-52425 Jülich (Germany); Devaux, S.; Flanagan, J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Järvinen, A. [Aalto University, Association EURATOM-Tekes, Espoo (Finland); Marsen, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-17491 Greifswald (Germany); Reiter, D. [Institute of Energy and Climate Research – IEK4, Association EURATOM-FZJ, D-52425 Jülich (Germany)

    2015-08-15

    We present the application of an improved EDGE2D-EIRENE SOL transport model for the ELM phase utilizing kinetic correction of the sheath-heat-transmission coefficients and heat-flux-limiting factors used in fluid SOL modelling. With a statistical analysis over a range of similar type-I ELMy H-mode discharges performed at the end of the first JET ITER-like wall campaign, we achieved a fast (Δt = 200 μs) temporal evolution of the outer midplane n{sub e} and T{sub e} profiles and the target-heat and particle-flux profiles, which provides a good experimental data set to understand the characteristics of an ELM cycle. We will demonstrate that these kinetic corrections increase the simulated heat-flux-rise time at the target to experimentally observed times but the power-decay time at the target is still underestimated by the simulations. This longer decay times are potentially related to a change of the local recycling coefficient at the tungsten target plate directly after the heat pulse.

  17. Investigation of the influence of divertor recycling on global plasma confinement in JET ITER-like wall

    NARCIS (Netherlands)

    Tamain, P.; Joffrin, E.; Bufferand, H.; Jarvinen, A.; Brezinsek, S.; Ciraolo, G.; Delabie, E.; Frassinetti, L.; Giroud, C.; Groth, M.; Lipschultz, B.; Lomas, P.; Marsen, S.; Menmuir, S.; Oberkofler, M.; Stamp, M.; Wiesen, S.; JET-EFDA Contributors,

    2015-01-01

    Abstract The impact of the divertor geometry on global plasma confinement in type I ELMy H-mode has been investigated in the JET tokamak equipped with ITER-Like Wall. Discharges have been performed in which the position of the strike-points was changed while keeping the bulk plasma equilibrium

  18. Plasma position and shape control for ITER

    International Nuclear Information System (INIS)

    Portone, A.; Gribov, Y.; Huguet, M.

    1995-01-01

    Key features and main results about the control of the plasma shape in ITER are presented. A control algorithm is designed to control up to 6 gaps between the plasma separatrix and the plasma facing components during the reference burn phase. Nonlinear simulations show the performances of the controller in the presence of plasma vertical position offsets, beta drops and power supply voltage saturation

  19. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N. [College of Science, Donghua University, Shanghai 201620 (China); Xu, G. S., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  20. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing...

  1. ITER plasma safety interface models and assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bartels, H-W.; Honda, T.; Amano, T.; Boucher, D.; Post, D.; Wesley, J.

    1996-01-01

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered

  2. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    International Nuclear Information System (INIS)

    Wilson, R.; Kessel, C.E.; Wolfe, S.; Hutchinson, I.H.; Bonoli, P.; Fiore, C.; Hubbard, A.E.; Hughes, J.; Lin, Y.; Ma, Y.; Mikkelsen, D.; Reinke, M.; Scott, S.; Sips, A.C.C.; Wukitch, S.

    2010-01-01

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also.

  3. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  4. Low-n magnetohydrodynamic edge instabilities in quiescent H-mode plasmas with a safety-factor plateau

    International Nuclear Information System (INIS)

    Zheng, L.J.; Kotschenreuther, M.T.; Valanju, P.

    2013-01-01

    Low-n magnetohydrodynamic (MHD) modes in the quiescent high confinement mode (H-mode) pedestal are investigated in this paper. Here, n is the toroidal mode number. The low collisionality regime is considered, so that a safety-factor plateau arises in the pedestal region because of the strong bootstrap current. The JET-like (Joint European Torus) equilibria of quiescent H-mode discharges are generated numerically using the VMEC code. The stability of this type of equilibria is analysed using the AEGIS code, with subsonic rotation effects taken into account. The current investigation extends the previous studies of n = 1 modes to n = 2 and 3 modes. The numerical results show that the MHD instabilities in this type of equilibria have characteristic features of the infernal mode. We find that this type of mode tends to prevail when the safety-factor value in the shear-free region is slightly larger than an integer. In this case the frequencies (ω n ) of modes with toroidal mode number n roughly follow the rule ω n ∼ −nΩ p , where Ω p is the local rotation frequency where the infernal harmonic prevails. Since the infernal mode tends to develop near the pedestal top, where pressure driving is strong but magnetic shear stabilization is weak, this local rotation frequency tends to be close to the pedestal top value. These typical mode features bear close resemblance to the edge harmonic oscillations (or outer modes) at the quiescent H-mode discharges observed experimentally. (paper)

  5. Burning plasmas in ITER for energy source

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki

    2002-01-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  6. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  7. Statistical study of TCV disruptivity and H-mode accessibility

    International Nuclear Information System (INIS)

    Martin, Y.; Deschenaux, C.; Lister, J.B.; Pochelon, A.

    1997-01-01

    Optimising tokamak operation consists of finding a path, in a multidimensional parameter space, which leads to the desired plasma characteristics and avoids hazards regions. Typically the desirable regions are the domain where an L-mode to H-mode transition can occur, and then, in the H-mode, where ELMs and the required high density< y can be maintained. The regions to avoid are those with a high rate of disruptivity. On TCV, learning the safe and successful paths is achieved empirically. This will no longer be possible in a machine like ITER, since only a small percentage of disrupted discharges will be tolerable. An a priori knowledge of the hazardous regions in ITER is therefore mandatory. This paper presents the results of a statistical analysis of the occurrence of disruptions in TCV. (author) 4 figs

  8. Pellet fuelling and ELMy H-mode physics at JET

    International Nuclear Information System (INIS)

    Horton, L.D.

    2001-01-01

    As the reference operating regime for ITER, investigations of the ELMy H-mode have received high priority in the JET experimental programme. Recent experiments have concentrated in particular on operation simultaneously at high density and high confinement using high field side (HFS) pellet launch. The enhanced fuelling efficiency of HFS pellet fuelling is found to scale favourably to a large machine such as JET. The achievable density of ELMy H-mode plasmas in JET has been significantly increased using HFS fuelling although at the expense of confinement degradation back to L-mode levels. Initial experiments using control of the pellet injection frequency have shown that density and confinement can simultaneously be increased close to the values necessary for ITER. The boundaries of the available ELMy H-mode operational space have also been extensively explored. The power necessary to maintain the high confinement normally associated with ELMy H-mode operation is found to be substantially higher than the H-mode threshold power. The compatibility of ELMy H-modes with divertor operation acceptable for a fusion device has been studied. Narrow energy scrape-off widths are measured which place stringent limits on divertor power handling. Deuterium and tritium codeposition profiles are measured to be strongly in/out asymmetric. Successful modelling of these profiles requires the inclusion of the (measured) scrape-off layer flows and of the production in the divertor of hydrocarbon molecules with sticking coefficients below unity. Helium exhaust and compression are found to be within the limits sufficient for a reactor. (author)

  9. ITER plasma facing components, design and development

    International Nuclear Information System (INIS)

    Vieider, G.; Cardella, A.; Akiba, M.; Matera, R.; Watson, R.

    1991-01-01

    The paper summarizes the collaborative effort of the ITER Conceptual Design Activity (CDA) on Plasma Facing Components (PFC) which focused on the following main tasks: (a) The definition of basic design concepts for the First Wall (FW) and Divertor Plates (DP), (b) the analysis of the performance and likely lifetime of these PFC designs including the identification of major critical issues, (c) the start of R and D work giving already first results, and the definition of the required further R and D program to support the contemplated ITER Engineering Design Activity (EDA). From the ITER CDA effort on PFC it is mainly concluded that: (a) The expected PFC operating conditions lead to design solutions at the limit of present technology in particular for the divertor, which may constrain the overall machine performance, (b) the development of convincing PFC designs requires an intensified R and D effort both on PFC technology and plasma physics. (orig.)

  10. Selection of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.; Chiocchio, S.

    1996-01-01

    ITER will be the first tokamak having long pulse operation using deuterium-tritium fuel. The problem of designing heat removal structures for steady state in a neutron environment is a major technical goal for the ITER Engineering Design Activity (EDA). The steady state heat flux specified for divertor components is 5 MW/m 2 for normal operation with transients to 15 MW/m 2 for up to 10 s. The selection of materials for plasma facing components is one of the major research activities. Three materials are being considered for the divertor; carbon fiber composites, beryllium, and tungsten. This paper discusses the relative advantages and disadvantages of these materials. The final section of plasma facing materials for the ITER divertor will not be made until the end of the EDA

  11. Comparing 1.5D ONETWO and 2D SOLPS analyses of inter-ELM H-mode plasma in DIII-D

    International Nuclear Information System (INIS)

    Owen, Larry W.; Canik, John; Groebner, R.; Callen, J.D.; Bonnin, X.; Osborne, T.H.

    2010-01-01

    A DIII-D inter-ELM H-mode plasma that is in approximate transport equilibrium is analysed with the 1.5D ONETWO core code and the 2D SOLPS code. In order to investigate the importance of core-edge coupling and 2D effects, including divertor fuelling across the X-point and poloidal asymmetries that are not explicitly included in ONETWO, the domain of SOLPS is extended to very near the magnetic axis. Two principal objectives are (1) to determine whether poloidal asymmetries in the plasma distributions are large enough to vitiate a core-type interpretive plasma transport analysis and (2) to determine whether the interpretive transport coefficients and neutral beam power and particle sources from ONETWO, when used in 2D SOLPS full plasma simulations, yield the same quality fits to the measured upstream density and temperature profiles as obtained with ONETWO. Results show that only a small increase in the separatrix value of the particle diffusion coefficient, and no change in the thermal diffusivities from ONETWO was needed to get excellent agreement of the upstream SOLPS density and temperature profiles and the Thomson scattering and CER data. Good agreement of the ONETWO and SOLPS flux surface averaged distributions of the core electron and D+ densities and temperatures are also obtained. Likewise the C6+ density, with a simple chemical sputtering model based on a constant fraction of the divertor D+ flux, the core heat and particle fluxes and the neutral density reveal no 2D effects in the core/pedestal region that would vitiate a 1.5D treatment of the inter-ELM H-mode plasma.

  12. Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade

    NARCIS (Netherlands)

    Rapp, J.; Kallenbach, A.; Neu, R.; Eich, T.; Fischer, R.; Herrmann, A.; Potzel, S.; van Rooij, G. J.; Zielinski, J. J.; ASDEX Upgrade team,

    2012-01-01

    The type-III ELMy H-mode might be the solution for an integrated ITER operation scenario fulfilling the fusion power amplification factor (output fusion power to input heating power) of Q = 10 with simultaneous acceptable steady-state and transient power loads to the plasma-facing components. This

  13. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  14. Operation and control of ITER plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Features incorporated in the design of the International Thermonuclear Experimental Reactor (ITER) tokamak and its ancillary and plasma diagnostic systems that will facilitate operation and control of ignited and/or high-Q DT plasmas are presented. Control methods based upon straight-forward extrapolation of techniques employed in the present generation of tokamaks are found to be adequate and effective for DT plasma control with burn durations of ≥1000 s. Examples of simulations of key plasma control functions including magnetic configuration control and fusion burn (power) control are given. The prospects for the creation and control of steady-state plasmas sustained by non-inductive current drive are also discussed. (author)

  15. H-mode study in CHS

    International Nuclear Information System (INIS)

    Toi, K.; Morisaki, T.; Sakakibara, S.

    1995-02-01

    In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)

  16. ITER plasma facing materials. Some critical considerations

    International Nuclear Information System (INIS)

    Barabash, V.; Dietz, K.J.; Federici, G.; Janeschitz, G.; Matera, R.; Tanaka, S.

    1995-01-01

    The description of current status with the choice of materials for ITER plasma facing components is presented. The main problem with lifetime of divertor elements is the particle and energy-induced erosion of armour materials. A solution for the first operation phase consists in using Be as an armour for the first wall and the divertor, however other possible materials (e.g. W) could be considered. (orig.)

  17. Magnetic configuration control of ITER plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Mattei, M.; Portone, A.; Ambrosino, G.; Artaserse, G.; Crisanti, F.; De Tommasi, G.; Fresa, R.; Sartori, F.; Villone, F.

    2007-01-01

    The aim of this paper is to present some new tools used to review the capability of the ITER Poloidal Field (PF) system in controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. Some preliminary results obtained during ongoing activities in collaboration between ENEA/CREATE and EFDA are presented. The paper is divided in two main parts devoted, respectively, to the presentation of a procedure for the PF current optimisation during the scenario, and of a software environment for the study of the PF system capabilities using the plasma linearized response. The proposed PF current optimisation procedure is then used to assess Scenario 2 design, also taking into account the presence of axisymmetric eddy currents and possible variations of poloidal beta and internal inductance. The numerical linear model based tool derived from the JET oriented eXtreme Shape Controller (XSC) tools is finally used to obtain results on the strike point sweeping in ITER

  18. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    Science.gov (United States)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  19. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  20. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    Czech Academy of Sciences Publication Activity Database

    Ekedahl, A.; Petržílka, Václav; Baranov, Y.; Biewer, T.M.; Brix, M.; Goniche, M.; Jacquet, P.; Kirov, K.K.; Klepper, C.C.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.; Rachlew, E.

    2012-01-01

    Roč. 54, č. 7 (2012), 074004-074004 ISSN 0741-3335. [IAEA Fusion Energy Conference 2010/23./. Daejeon, 11.10.2010-16.10.2010] R&D Projects: GA ČR GA202/07/0044; GA ČR GAP205/10/2055; GA MŠk(CZ) LG11018 Institutional research plan: CEZ:AV0Z20430508 Keywords : LH wave * plasma * current drive * tokamak * LHCD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/7/074004/pdf/0741-3335_54_7_074004.pdf

  1. Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV

    International Nuclear Information System (INIS)

    Porte, L.; Coda, S.; Alberti, S.; Arnoux, G.; Blanchard, P.; Bortolon, A.; Fasoli, A.; Goodman, T.P.; Klimanov, Y.; Martin, Y.; Maslov, M.; Scarabosio, A.; Weisen, H.

    2007-01-01

    Intense electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) are employed on the Tokamak a Configuration Variable (TCV) both in second- and third-harmonic X-mode (X2 and X3). The plasma behaviour under such conditions is driven largely by the electron dynamics, motivating extensive studies of the heating and relaxation phenomena governing both the thermal and suprathermal electron populations. In particular, the dynamics of suprathermal electrons are intimately tied to the physics of X2 ECCD. ECRH is also a useful tool for manipulating the electron distribution function in both physical and velocity space. Fundamental studies of the energetic electron dynamics have been performed using periodic, low-duty-cycle bursts of ECRH, with negligible average power injection, and with electron cyclotron emission (ECE). The characteristic times of the dynamical evolution are clearly revealed. Suprathermal electrons have also been shown to affect the absorption of X3 radiation. Thermal electrons play a crucial role in high density plasmas where indirect ion heating can be achieved through ion-electron collisions. In recent experiments ∼ 1.35 MW of vertically launched X3 ECRH was coupled to a diverted ELMy H-mode plasma. In cases where ≥ 1.1 MW of ECRH power was coupled, the discharge was able to transition into a quasi-stationary ELM-free H-mode regime. These H-modes operated at β N ∼ 2, n-bar e /n G approx. 0.25 and had high energy confinement, H IPB98(y,2) up to ∼ 1.6. Despite being purely electron heated and having no net particle source these discharges maintained a density peaking factor (n e,o /(n e ) ∼ 1.6). They also exhibited spontaneous toroidal momentum production in the co-current direction. The momentum production is due to a transport process as there is no external momentum input. This process supports little or no radial gradient of the toroidal velocity

  2. Beryllium application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Barabash, V.; Cardella, A.; Jakeman, R.; Ioki, K.; Janeschitz, G.; Parker, R.; Tivey, R.; Pacher, H.D.; Wu, C.H.; Bartels, H.W.

    1997-01-01

    Beryllium is a candidate armour material for the in-vessel components of the International Thermonuclear Experimental Reactor (ITER), namely the primary first wall, the limiter, the baffle and the divertor. However, a number of issues arising from the performance requirements of the ITER plasma facing components (PFCs) must be addressed to better assess the attractiveness of Be as armour for these different components. These issues include heat loading limits arising from temperature and stress constraints under steady state conditions, armour lifetime including the effects of sputtering erosion as well as vaporisation and loss of melt during disruption events, tritium retention and permeation, and chemical hazards, in particular with respect to potential Be/steam reaction. Other issues such as fabrication and the possibility of in-situ repair are not performance-dependent but have an important impact on the overall assessment of Be as PFC armour. This paper describes the present view on Be application for ITER PFCs. The key issues are discussed including an assessment of the current level of understanding based on analysis and experimental data; and on-going activities as part of the ITER EDA R and D program are highlighted. (orig.)

  3. Studies of Turbulence and Transport in Alcator C-Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO

    Science.gov (United States)

    Porkolab, M.; Lin, L.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Mikkelsen, D.

    2008-11-01

    We present recent experimental measurements of turbulence and transport in C-Mod H-Mode plasmas with and without internal transport barriers (ITB) using the phase contrast imaging (PCI) diagnostic and compare the results with GYRO predictions. In plasmas without ITB, the fluctuation above 300 kHz observed by PCI agrees with ITG in GYRO simulation, including the direction of propagation, wavenumber spectrum, and absolute intensity within experimental uncertainly (+/-75%). After transition to ITBs, the observed overall fluctuation intensity increases. GYRO simulation in the core shows that ITG dominates in ITBs but its intensity is lower than the overall experimental measurements which may also include contributions from the plasma edge. These results, as well as the impact of varying ∇Ti, ∇n, and ExB shear on turbulence will be discussed. C.L. Fiore et al., Fusion Sci. Technol., 51, 303 (2007). M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006). J. Candy et al., Phys. Rev. Lett., 91, 045001 (2003).

  4. Magnetic Configuration Control of ITER Plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Artaserse, G.; Mattei, M.; Ambrosino, G.; Crisanti, F.; Tommasi, G. de; Fresa, R.; Portone, A.; Sartori, F.; Villone, F.

    2006-01-01

    The aim of this paper is to review the capability of the ITER Poloidal Field (PF) system of controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. The paper is broadly divided in two main sections devoted, respectively, to open loop (feed-forward) and closed loop (feedback) control. In the first part of the study the PF system is assessed with respect to the initiation, ramp-up, sustained burn, ramp-down phases of the main plasma inductive scenario. The limiter-to-divertor configuration transition phase is considered in detail with the aim of assessing the PF capability to form an X-point at the lowest possible current and, therefore, to relax the thermal load on the limiter surfaces. Moreover, during the sustained burn it is important to control plasmas with a broad range of current density profiles. In the second part of the study the plasma vertical feedback control requirements are assessed in details, in particular for the high elongation configurations achievable during the early limiter-to-X point transition phase. Non-rigid plasma displacement models are used to assess the control system voltage and current requirements of different radial field control circuits obtained, for example, by connecting the outermost PF coils, some CS coils, coils sub-sections etc. At last, the main 3D effects of the vessel ports are modeled and their impact of vertical stabilization evaluated. (author)

  5. The ITER Plasma Control System Simulation Platform

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W.; Welander, A.S.; Winter, A.

    2015-01-01

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  6. The ITER Plasma Control System Simulation Platform

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.L., E-mail: walker@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Ambrosino, G.; De Tommasi, G. [CREATE/Università di Napoli Federico II, Napoli (Italy); Humphreys, D.A. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Napoli (Italy); Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Welander, A.S. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France)

    2015-10-15

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  7. The H-mode of ASDEX

    International Nuclear Information System (INIS)

    1989-01-01

    The paper is a review of investigations of the H-mode on ASDEX performed since its discovery in 1982. The topics discussed are: (1) the development of the plasma profiles, with steep gradients in the edge region and flat profiles in the bulk plasma, (2) the MHD properties resulting from the profile changes, including an extensive stability analysis, (3) the impurity development, with special emphasis on the MHD aspects and on neoclassical impurity transport effects in quiescent H-phases, and (4) the properties of the edge plasma, including the evidence of three-dimensional distortions at the edge. The part on confinement includes scaling studies and the results of transport analysis. The power threshold of the H-mode is found to depend weakly on the density, but there is probably no dependence on the toroidal field or the current. For the operational range of the H-mode, new results for the limiter H-mode on ASDEX and the development of the H-mode under beam current drive conditions are included. A number of experiments are described which demonstrate the crucial role of the edge electron temperature in the L-H transition. New results of magnetic and density fluctuation studies at the plasma edge within the edge transport barrier are presented. Finally, the findings on ASDEX are compared with results obtained on other machines and are used to test various H-mode theories. (author). 131 refs, 103 figs, 1 tab

  8. Influence of plasma pedestal profiles on access to ELM-free regimes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Poshekhonov, Yu. Yu., E-mail: naida@a5.kiam.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Konovalov, S. V., E-mail: konoval-sv@nrcki.ru [National Research Nuclear University “MEPhI,” (Russian Federation); Polevoi, A. R., E-mail: alexei.polevoi@iter.org [ITER Organization (France)

    2016-05-15

    The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reaching high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.

  9. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Barada, K.; Rhodes, T. L.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90024 (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Yan, Z. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamak energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints

  10. Simulation of burning plasma dynamics in ITER

    International Nuclear Information System (INIS)

    Wang, J.F.; Amano, T.; Ogawa, Y.; Inoue, N.

    1996-02-01

    Dynamics of burning plasma for various transient situations in ITER plasma has been simulated with a 1.5-dimensional up-down asymmetry Tokamak Transport Simulation Code (TTSC). We have mainly paid attention to intrinsic plasma transport processes such as the confinement improvement and the change of plasma profiles. It is shown that a large excursion of the fusion power takes place with a small improvement of the plasma confinement; e.g., an increase of the global energy confinement by a factor of 1.22 yields the fusion power excursion of ∼ 30% within a few seconds. Any feedback control of fueling D-T gas is difficult to respond to this short time scale of fusion power transient. The effect of the plasma profile on the fusion power excursion has been studied, by changing the particle transport denoted by the inward pinch parameter C V . It is found that the fusion power excursion is mild and slow, and the feedback control is quite effective in suppressing the fusion power excursion and in shortening the duration time of power transient in this case. The change in the pumping efficiency has also been studied and a large excursion of the fusion power has not been observed, because of the decrease in the fuel density itself in the case of the increase in the pumping efficiency, and the helium ash accumulation in the case of the decrease in the pumping efficiency. Finally it is shown that the MHD sawteeth activity leads to the fusion power fluctuation of ± 20%, although it is helpful for the helium ash exhaust. (author)

  11. Plasma scram in ITER L-mode ignited plasmas

    International Nuclear Information System (INIS)

    Villar Colome, J.; Johner, J.; Ane, J.M.

    1995-01-01

    The security of ITER will depend on the capability of the system in rapidly extinguishing the 1.5 GW of nominal fusion power without disruption. The local RLW transport model is used to simulate such a Plasma Scram. The conditions for a passively secure operation point in steady-state are discussed in terms of particle exhaust. The time scales of the process should determine the power supplies of both equilibrium coils and central solenoid. (authors). 6 refs., 4 figs., 2 tabs

  12. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  13. Limiter H-mode experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C [Oak Ridge National Lab., TN (USA); Bretz, N L; Fredrickson, E D; McGuire, K M; Nazikian, R; Park, H K; Schivell, J; Taylor, G; Bitter, B; Budny, R; Cohen, S A; Kilpatrick, S J; LeBlanc, B; Manos, D M; Meade, D; Paul, S F; Scott, S D; Stratton, B C; Synakowski, E J; Towner, H H; Weiland, R M; Arunasalam, V; Bateman, G; Bell, M G; Bell, R; Boivin, R; Cavallo, A; Cheng, C Z; Chu, T K; Cowl,

    1990-12-15

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bi-directional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, >2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The TRANSP analysis shows that transport in these H-modes is similar to that of supershots within the inner 60 cm of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering near the edge shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time beam emission spectroscopy shows a coherent mode near the boundary with m = 15--20 at 20--30 kHz which is propagating in the ion direction. During an ELM event these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz increase in intensity.

  14. Overview of long pulse H-mode operation on EAST

    Science.gov (United States)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  15. The plasma position control of ITER EDA plasma

    International Nuclear Information System (INIS)

    Senda, Ikuo; Nishio, Satoshi; Tsunematsu, Toshihide; Nishino, Toru; Fujieda, Hirobumi.

    1994-09-01

    The study on the plasma position control of ITER EDA performed by Japan Home Team during the sensitivity study in 1994 is summarized. The controllabilities of plasmas in the Outline Design and elongated version are compared. The model used to describe the motion of the plasma is a rigid model. The PD feedback control is applied with respect to the displacements of the plasma from the equilibrium. Three types of fluctuations, which initiate the motion of the plasma, are examined, namely a finite horizontal fluctuation field, a small horizontal fluctuation field such that the motion of the plasma is governed by the passive structures and an abrupt change of the poloidal beta β p and internal inductance l i . In the simulations of finite horizontal fluctuation fields, controls depend on the strength of the fluctuations, for instance, 3-5V is needed for 5-10G of fluctuation fields in the Outline Design. When the fluctuation field is small and the plasma displacement grows in a characteristic time of the passive structures, a few volt of the control voltage is enough to obtain good controllability. It is shown that the control when (β p , l i ) changes simultaneously is demanding and a large control voltage is required to maintain satisfactory control. Comparing the elongated version with the Outline Design, the control voltage which is larger than the Outline Design by a factor of 2-3 is required to obtain the same controllability in the elongated version. (author)

  16. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  17. RTO/RC ITER plasma performance: inductive and steady-state operation

    International Nuclear Information System (INIS)

    Mukhovatov, V.; Boucher, D.; Fujisawa, N.; Shimada, M.; Vayakis, G.; Janeschitz, G.; Matsumoto, H.; Leonov, V.; Polevoy, A.

    2000-01-01

    The plasma performance in two design options of the reduced-technical objectives/reduced cost (RTO/RC) ITER, i.e. IAM (intermediate aspect ratio machine) and LAM (low aspect ratio machine) is analysed. It is shown that Q=P fus /P aux ∼10 can be obtained in both options at inductively driven ELMy H-mode operation. The operation domain in LAM is found to be marginally larger than that in IAM. The non-inductive operation with Q approx.= 5 will be possible in both machines, provided a large amount of power with a high current drive efficiency is applied, or substantial improvement of the energy confinement time relative to the ELMy H-mode (H H =1.2-1.4) is obtained. The required values of H H and β N are marginally smaller in IAM. The IAM-like machine, ITER-FEAT (fusion energy advanced tokamak), proposed for a detailed engineering design is discussed in brief. (author)

  18. Impurity accumulation and performance of ITER and DEMO plasmas in the presence of transport barriers

    International Nuclear Information System (INIS)

    Chatthong, B; Promping, J; Onjun, T

    2017-01-01

    In this work, the impurity accumulations and their performance in the presence of both ITB and ETB in ITER and DEMO plasmas are investigated using a BALDUR integrated predictive modelling code. In these simulations, a combination of a neoclassical transport model NCLASS and an anomalous transport model Mixed Bohm/gyro-Bohm is used. The boundary condition is described at the top of the pedestal, which is calculated theoretically based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient model. The toroidal flow is calculated based on the NTV (neoclassical toroidal viscosity) toroidal velocity model. The time evolution of plasma temperature and density profiles of ITER and DEMO (Korean K-DEMO and Japanese DEMO models A, B and C) plasmas are simulated in H -mode scenario with and without ITB formation. It is found that Japanese DEMO model C yields highest plasma temperature; while Korean DEMO yields the best plasma performance among those designs considered. Impurity accumulation is found to be highest in Japanese DEMO model B. (paper)

  19. H-modes studies in PDX

    International Nuclear Information System (INIS)

    Fonck, R.J.; Beirsdorfer, P.; Bell, M.

    1984-07-01

    A regime of enhanced energy confinement during neutral beam heating has been obtained routinely in the PDX tokamak after modifications to form a closed divertor geometry. Plasma density profiles were broad and the electron temperature at the plasma edge reached values of approx. 400 eV in the H-mode phase of a discharge. A comparison of closed divertor discharges with moderate and intense gas puffing indicates that a requirement for obtaining high confinement times is the localization of the plasma fueling source in the divertor throat region. While high confinement was attained at moderate injected powers (P/sub INJ/ less than or equal to 3 MW), confinement was degraded at higher powers due to both increased edge instabilities and, especially, the intense gas puffing needed to prevent disruptions. Initial results with a particle scoop limiter indicate high particle confinement times and energy confinement times approaching those of diverted H-mode plasmas

  20. A quantitative analysis of the effect of ELMs on H-mode thermal energy confinement in DIII-D

    International Nuclear Information System (INIS)

    Schissel, D.P.; Osborne, T.H.; Carlstrom, T.N.; Zohm, H.

    1992-06-01

    The desire to reach ignition in future tokamaks the energy confinement time critical parameter. The most promising enhanced (over L-mode) confinement regime is the H-mode, discovered on ASDEX with neutral beam heating, and then confirmed with various auxiliary heating sources on numerous machines. The knowledge of how H-mode τ E depends on different parameters is of chemical importance to the performance predictions for next generation devices. Inter-machine H-mode total and thermal energy confinement (τ th ) scalings, which are being utilized to predict ITER thermal energy confinement, have been created for discharges where the Edge Localized Mode (ELM) instability has not been present. Confinement scaling research hm concentrated on this ELM-free H-mode phase mostly owing to the difficulty of characterizing ELM behavior. To date, long pulse H-mode operation has only been achieved by utilizing ELMs to flush out unpurities and prevent radiative collapse of the discharge. Unfortunately, accompanying the ELMS is a decrease of the plasma stored energy due to the expulsion of particles near the edge of the discharge resulting in a reduction of the steep edge electron density gradient. In order to predict ITER's H-mode τ th in the presence of ELMS, an estimated 25% confinement degradation factor has been applied to the ELM-free predictions. Our work, summarized in this paper, indicates that this 25% reduction factor is too large and instead a value of approximately 15% would be more appropriate

  1. Impacts of pellets injected from the low-field side on plasma in ITER

    International Nuclear Information System (INIS)

    Wisitsorasak, A.; Onjun, T.

    2011-01-01

    Impacts of pellets injected from the low-field side (LFS) on plasma in ITER are investigated using the 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model. The pellet ablation model is coupled with the plasma core transport model, which is a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport model. The boundary conditions are assumed to be at the top of the pedestal, in which the pedestal parameters are predicted using a pedestal model based on the theoretical-based pedestal width scaling (either magnetic and flow shear stabilization width scaling, or flow shear stabilization width scaling, or normalized poloidal pressure width scaling) and the infinite-n ballooning mode pressure gradient limit. These pedestal models depend sensitively on the density at the top of the pedestal, which can be strongly influenced by the injection of pellets. The combination of the MMM95 and NCLASS models, together with the pedestal and NGS models, is used to simulate the time evolution of the plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the injection of LFS pellets. It is found that the injection of pellets results in a complicated plasma scenario, especially in the outer region of the plasma and the plasma conditions at the boundary in which the pellet has an impact on increasing the plasma edge density, but reducing the plasma edge temperature. The LFS pellet has a stronger impact on the edge as compared to the center. For fusion performance, the pellet can result in either enhancement or degradation, depending sensitively on the pellet parameters; such as the pellet size, pellet velocity, and pellet frequency. For example, when a series of deuterium pellets with a size of 0.5 cm, velocity of 1 km/s, and frequency of 2 Hz are injected into the ITER plasma from the LFS, the

  2. ELM Dynamics in TCV H-modes

    Science.gov (United States)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  3. ELM Dynamics in TCV H-modes

    International Nuclear Information System (INIS)

    Degeling, A.W.; Martin, Y.R.; Lister, J.B.; Llobet, X.; Bak, P.E.

    2003-01-01

    TCV (Tokamak a Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma -- wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock

  4. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  5. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  6. H-mode profile parametrization for extrapolation and control

    International Nuclear Information System (INIS)

    Imre, K.; Riedel, K.S.; Schissel, D.P.; Schunke, B.

    1996-01-01

    A steady-state ELMy H-mode profile data set of 68 DIII-D discharges and 74 JET discharges is fitted with an error of 7-8%. The advantages of a parametrization of the plasma profiles in terms of a semi-parametric representation, T(ρ, I p , n-bar, B t , P L , R), are described. The shape of the temperature profile depends almost exclusively upon the size, R and q 95 , with a secondary dependence on the heating power. The density profile depends primarily upon q95 with a secondary dependence on n-bar. The line-average temperature T-bar e scales as n-bar -0.31 instead of T-bar∼''n-bar'' -1.0 . The predicted ITER temperature is T-bar = 17.1 keV. (Author)

  7. Plasma-safety assessment model and safety analyses of ITER

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Bartels, H.-H.; Uckan, N.A.; Sugihara, M.; Seki, Y.

    2001-01-01

    A plasma-safety assessment model has been provided on the basis of the plasma physics database of the International Thermonuclear Experimental Reactor (ITER) to analyze events including plasma behavior. The model was implemented in a safety analysis code (SAFALY), which consists of a 0-D dynamic plasma model and a 1-D thermal behavior model of the in-vessel components. Unusual plasma events of ITER, e.g., overfueling, were calculated using the code and plasma burning is found to be self-bounded by operation limits or passively shut down due to impurity ingress from overheated divertor targets. Sudden transition of divertor plasma might lead to failure of the divertor target because of a sharp increase of the heat flux. However, the effects of the aggravating failure can be safely handled by the confinement boundaries. (author)

  8. Multi-Level iterative methods in computational plasma physics

    International Nuclear Information System (INIS)

    Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.

    1999-01-01

    Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD

  9. Passive shut-down of ITER plasma by Be evaporation

    International Nuclear Information System (INIS)

    Amano, Tsuneo.

    1996-02-01

    In an accident event where the cooling system of first wall of the ITER fails, the first wall temperature continues to rise as long as the ignited state of the core plasma persists. In this paper, a passive shut-down scheme of the ITER from this accident by evaporated Be from the first wall is examined. It is shown the estimated Be influx 5 10 24 /sec is sufficient to quench the ignition. (author)

  10. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Labs., Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Lab. to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 23 ions/m 2 .s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures

  11. Numerical simulation of plasma vertical position stabilization in ITER

    International Nuclear Information System (INIS)

    Astapkovich, A.M.; Sadakov, S.N.

    1992-01-01

    The paper deals with numerical simulation of plasma vertical position stabilization in ITER. The calculations are performed using EDDY C-2 code by the method of direct numerical simulation of transient electromagnetic processes taking into account the evolution of plasma position, cross-section shape and full plasma current. When simulating free vertical plasma drift in ITER with twin passive stabilization loops, it was shown that account of the effects of cross-section deformation and plasma current alternations results in almost two fold degradation of passive stabilization parameters as compared to the calculations for 'rigid displacement' model. In terms of methodology, the account of the effects of cross section deformation and plasma current alternations requires clarification of the definitions for reverse increment of vertical instability and for stability margin coefficient. The simulation of plasma pinch return to equilibrium position after the closure of control coils allows to assess the required parameters of active control system and demonstrate the effect of screen current reverse in twin loops. The obtained results were used to develop the ITER conceptual design and affected the choice of the concept of twin passive loops and new positron of control coils as the basis approaches. 11 refs.; 12 figs.; 1 tab

  12. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  13. Status of the COMPASS tokamak and characterization of the first H-mode

    Science.gov (United States)

    Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS Team

    2016-01-01

    This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.

  14. Carbon fiber composites application in ITER plasma facing components

    Science.gov (United States)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  15. Carbon fiber composites application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Matera, R.; Akiba, M.; Nakamura, K.; Bonal, J.P.; Pacher, H.D.; Roedig, M.; Vieider, G.; Wu, C.H.

    1998-01-01

    Carbon fiber composites (CFCs) are one of the candidate armour materials for the plasma facing components of the international thermonuclear experimental reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R and D needs are critically discussed. (orig.)

  16. Implementation strategy for the ITER plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Ambrosino, G.; Bauvir, B.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neto, A.; Raupp, G.; Snipes, J.A.; Stephen, A.V.; Treutterer, W.; Walker, M.L.; Zabeo, L.

    2015-01-01

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  17. Implementation strategy for the ITER plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A., E-mail: axel.winter@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Ambrosino, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Bauvir, B. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Tommasi, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Humphreys, D.A. [General Atomics, San Diego, CA (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Dip. Ingegneria Industriale e dell’Informazione (Italy); Neto, A. [Fusion for Energy, Barcelona (Spain); Raupp, G. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Snipes, J.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Stephen, A.V. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Treutterer, W. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Walker, M.L. [General Atomics, San Diego, CA (United States); Zabeo, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  18. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  19. Neutron Profiles and Fuel Ratio nT /nD Measurements in JET ELMy H-mode Plasmas with Tritium Puff

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Popovichev, S.; Bertalot, L.; Murari, A.; Conroy, S.; Mlynář, Jan; Voitsekhovitch, I.

    2006-01-01

    Roč. 46, č. 7 (2006), s. 725-740 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * JET * plasma profile * tomography * neutron diagnostics * fuel * tritium transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.839, year: 2006

  20. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  1. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  2. Armour Materials for the ITER Plasma Facing Components

    Science.gov (United States)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A. R.; ITER Home Teams,

    The selection of the armour materials for the Plasma Facing Components (PFCs) of the International Thermonuclear Experimental Reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-à-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R&D.

  3. Armour materials for the ITER plasma facing components

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A.R.

    1999-01-01

    The selection of the armour materials for the plasma facing components (PFCs) of the international thermonuclear experimental reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-a-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R and D. (orig.)

  4. Towards fully authentic modelling of ITER divertor plasmas

    International Nuclear Information System (INIS)

    Maddison, G.P.; Hotston, E.S.; Reiter, D.; Boerner, P.

    1991-01-01

    Ignited next step tokamaks such as NET or ITER are expected to use a poloidal magnetic divertor to facilitate exhaust of plasma particles and energy. We report a development coupling together detailed computational models for both plasma and recycled neutral particle transport processes, to produce highly detailed and consistent design solutions. A particular aspect is involvement of an accurate specification of edge magnetic geometries, determined by an original equilibrium discretisation code, named LINDA. Initial results for a prototypical 22MA ITER double-null configuration are presented. Uncertainties in such modelling are considered, especially with regard to intrinsic physical scale lengths. Similar results produced with a simple, analytical treatment of recycling are also compared. Finally, a further extension allowing true oblique target sections is anticipated. (author) 8 refs., 5 figs

  5. Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K.H.; Garofalo, A.M.; Osborne, T.H.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Fenstermacher, M.E.; Orlov, D.M.

    2013-01-01

    Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from n = 3 fields to replace counter-I p torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with neutral beam injection (NBI) torque ranging continuously from counter-I p up to co-I p values of about 1 N m. This co-I p torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to rf wave heated plasmas. These n = 3 fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values ν ped * ∼0.08, β T ped ∼ 1%$ and β N = 2. Discharges have confinement quality H 98y2 = 1.3, exceeding the value required for ITER. Initial work with low q 95 = 3.4 QH-mode plasmas transiently reached fusion gain values of G = β N H 89 /q 95 2 =0.4, which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without n = 3 fields and with co-I p NBI; these shots exhibit co-I p plasma rotation and require NBI torque ⩾2 N m. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling–ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted torque from neoclassical toroidal viscosity. (paper)

  6. Robustness of radiative mantle plasma power exhaust solutions for ITER

    International Nuclear Information System (INIS)

    Mandrekas, J.; Stacey, W.M.; Kelly, F.A.

    1997-01-01

    The robustness of impurity-seeded radiative mantle solutions for ITER to uncertainties in several physics and operating parameters is examined. The results indicate that ∼ 50--90% of the input power can be radiated from inside the separatrix with Ne, Ar and Kr injection, without significant detriment to the core power balance or collapse of the edge temperature profile, for a wide range of conditions on the impurity pinch velocity, edge temperature pedestal, and plasma density

  7. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  8. Erosion of beryllium under ITER - Relevant transient plasma loads

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  9. Experimental modelling of plasma-graphite surface interaction in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu.V.; Guseva, M.I.; Gureev, V.M.; Danelyan, L.S.; Neumoin, V.E.; Petrov, V.B.; Khripunov, B.I.; Sokolov, Yu.A.; Stativkina, O.V.; Stolyarova, V.G. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Vasiliev, V.I.; Strunnikov, V.M. [TRINITI, Troizk (Russian Federation)

    1998-10-01

    The investigation of graphite erosion under normal operation ITER regime and disruption was performed by means of exposure of RGT graphite samples in a stationary deuterium plasma to a dose of 10{sup 22} cm{sup -2} and subsequent irradiation by power (250 MW/cm{sup 2}) pulse deuterium plasma flow imitating disruption. The stationary plasma exposure was carried out in the installation LENTA with the energy of deuterium ions being 200 eV at target temperatures of 770 C and 1150 C. The preliminary exposure in stationary plasma at temperature of physical sputtering does not essentially change the erosion due to a disruption, whereas exposure at the temperature of radiation enhanced sublimation dramatically increases the erosion due to disruption. In the latter case, the depth of erosion due to a disruption is determined by the depth of a layer with decreased strength. (orig.) 9 refs.

  10. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Matthias

    2013-10-23

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favourable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. This H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In this thesis, the HDL is revisited in the fully tungsten walled ASDEX Upgrade tokamak (AUG). In AUG discharges, four distinct operational phases were identified in the approach towards the HDL. First, there is a stable H-mode, where the plasma density increases at steady confinement, followed by a degrading H-mode, where the core electron density is fixed and the confinement, expressed as the energy confinement time, reduces. In the third phase, the breakdown of the H-mode and transition to the L-mode, the overall electron density is fixed and the confinement decreases further, leading, finally, to an L-mode, where the density increases again at a steady confinement at typical L-mode values until the disruptive Greenwald limit is reached. These four phases are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analysed. Radiation losses and several other mechanisms, that were proposed as explanations for the HDL, are ruled out for the current set of AUG experiments with tungsten walls. In addition, a threshold of the radial electric field or of the power flux into the divertor appears to be responsible for the final transition back to L-mode, however, it does not determine the onset of the HDL. The observation of the four phases is explained by the combination of two mechanisms: a fueling limit due to an outward shift of the ionization profile and an additional energy loss channel, which decreases the confinement. The latter is most likely created by an increased radial convective transport at the edge of the plasma. It is shown that the

  11. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    International Nuclear Information System (INIS)

    Bernert, Matthias

    2013-01-01

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favourable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. This H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In this thesis, the HDL is revisited in the fully tungsten walled ASDEX Upgrade tokamak (AUG). In AUG discharges, four distinct operational phases were identified in the approach towards the HDL. First, there is a stable H-mode, where the plasma density increases at steady confinement, followed by a degrading H-mode, where the core electron density is fixed and the confinement, expressed as the energy confinement time, reduces. In the third phase, the breakdown of the H-mode and transition to the L-mode, the overall electron density is fixed and the confinement decreases further, leading, finally, to an L-mode, where the density increases again at a steady confinement at typical L-mode values until the disruptive Greenwald limit is reached. These four phases are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analysed. Radiation losses and several other mechanisms, that were proposed as explanations for the HDL, are ruled out for the current set of AUG experiments with tungsten walls. In addition, a threshold of the radial electric field or of the power flux into the divertor appears to be responsible for the final transition back to L-mode, however, it does not determine the onset of the HDL. The observation of the four phases is explained by the combination of two mechanisms: a fueling limit due to an outward shift of the ionization profile and an additional energy loss channel, which decreases the confinement. The latter is most likely created by an increased radial convective transport at the edge of the plasma. It is shown that the

  12. Effects of plasma disruption events on ITER first wall materials

    International Nuclear Information System (INIS)

    Cardella, A.; Gorenflo, H.; Lodato, A.; Ioki, K.; Raffray, R.

    2000-01-01

    In ITER, plasma disruption events may occur producing large fast thermal transients on plasma facing materials. Particularly important for the integrity of the first wall (FW) are relatively 'long' duration off-normal events such as plasma vertical displacement events (VDE) and runaway electrons (RE). An analytical methodology has been developed to specifically assess the effect of these events on FW plasma facing materials. For the typical energy densities and event duration expected for the primary and baffle FW, some melting and evaporation of the FW armor will occur without the beneficial effect of vapor shielding, and the metallic heat sink may also be damaged due to over-heating. The method is able to calculate the amount of melted and evaporated material, taking into account the evolution of the evaporated and melted layer and to evaluate possible effects of local temporary loss of cooling. The method has been used to analyze the effects of VDE and RE events for ITER, to study recent disruption simulation experiments and to benchmark experimental and analytical results

  13. Design of the ITER Plasma-Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.

    2009-07-01

    The ITER plasma-facing components cover an area of about 850 m{sup 2} and consist of the Divertor, the Blanket and the Test Blanket Modules (TBMs) with their corresponding frames. The Divertor is located at the bottom of the plasma chamber and is aimed at exhausting the major part of the plasma thermal power (including alpha power) and at minimizing the helium and impurity content in the plasma. It consists of 54 cassette assemblies. Each assembly has 3 plasma-facing components (PFCs), namely the inner and outer target and the dome, which are mounted onto a steel support structure, the cassette body. The targets directly intercept the magnetic field lines and are designed to withstand heat fluxes as high as 20 MW/m{sup 2}. CFC is the reference design solution for the armour of the lower part of the targets. However, the resultant high erosion rate could potentially limit machine operation in the DT phase (due to co-deposition with T). Therefore, prior to the DT phase, the divertor PFCs will be replaced with a new set entirely covered with W armour. The Divertor is a RH Class 1 component, which is planned to be replaced 3 times during the 20 years of the ITER operation. The construction phase of the ITER Divertor is being launched. The Blanket covers the largest fraction of the plasma-facing surface. Each of the 440 Blanket modules consists of a first wall (FW) panel, which is mechanically attached onto a Shield Module (SM). The design heat flux is set up to 1 or 5 MW/m{sup 2}. The FW panels are covered by Be tiles, which are joined onto a copper alloy (CuCrZr) heat sink, which is in turn intimately joined onto a 316L(N) stainless steel part. The SM is a block of 316L(N)-IG steel, where an array of cooling channels are obtained by machining and welding. The TBMs are mock-ups of DEMO breeding blankets. There are three ITER equatorial ports devoted to TBM testing, each of them allocating two TBMs, inserted in a thick steel frame. The frame is a water-cooled 316L

  14. LIDAR TS for ITER core plasma. Part I: layout & hardware

    Science.gov (United States)

    Salzmann, H.; Gowers, C.; Nielsen, P.

    2017-12-01

    The original time-of-flight design of the Thomson scattering diagnostic for the ITER core plasma has been shown up by ITER. This decision was justified by insufficiencies of some of the components. In this paper we show that with available, present day technology a LIDAR TS system is feasible which meets all the ITER specifications. As opposed to the conventional TS system the LIDAR TS also measures the high field side of the plasma. The optical layout of the front end has been changed only little in comparison with the latest one considered by ITER. The main change is that it offers an optical collection without any vignetting over the low field side. The throughput of the system is defined only by the size and the angle of acceptance of the detectors. This, in combination with the fact that the LIDAR system uses only one set of spectral channels for the whole line of sight, means that no absolute calibration using Raman or Rayleigh scattering from a non-hydrogen isotope gas fill of the vessel is needed. Alignment of the system is easy since the collection optics view the footprint of the laser on the inner wall. In the described design we use, simultaneously, two different wavelength pulses from a Nd:YAG laser system. Its fundamental wavelength ensures measurements of 2 keV up to more than 40 keV, whereas the injection of the second harmonic enables measurements of low temperatures. As it is the purpose of this paper to show the technological feasibility of the LIDAR system, the hardware is considered in Part I of the paper. In Part II we demonstrate by numerical simulations that the accuracy of the measurements as required by ITER is maintained throughout the given plasma parameter range. The effect of enhanced background radiation in the wavelength range 400 nm-500 nm is considered. In Part III the recovery of calibration in case of changing spectral transmission of the front end is treated. We also investigate how to improve the spatial resolution at the

  15. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  16. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  17. ITER-FEAT - The future international burning plasma experiment - Overview

    International Nuclear Information System (INIS)

    Aymar, R.; Chuyanov, V.; Huguet, M.; Shimomura, Y.

    2001-01-01

    The focus of effort in the ITER Engineering Design Activities (EDA) since 1998 has been the development of a new design to meet revised technical objectives and a cost reduction target of about 50% of the previously accepted cost estimate. Drawing on the design solutions already developed and using the latest physics results and outputs from technology R and D projects, the Joint Central Team and Home Teams, working jointly, have been able to converge towards a new design which will allow the exploration of a range of burning plasma conditions, with a capacity to progress towards possible modes of steady state operation. As such the new ITER design, whilst having reduced technical objectives from its predecessor, will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy. The main features of the current design and of its projected performance are introduced and the outlook for construction and operation is summarised. (author)

  18. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; P. de Vries,; Zarzoso, D.

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have beta(Nu) similar to 1.5-2, H-98 similar to 1, whereas the hybrid

  19. Collisional drift waves in the H-mode edge

    International Nuclear Information System (INIS)

    Sen, S.

    1994-01-01

    The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs

  20. Ohmic H-mode studies in TUMAN-3

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Levin, L.S.; Tukachinsky, A.S.; Tendler, M.

    1994-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. The crucial role of the radial electric field in the L-H transition was found in the experiments with boundary biasing. The possibility of initiating the H-mode using single pellet injection was demonstrated. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Thermal energy confinement time enhanced by a factor of 10 compared to predictions of Neo-Alcator scaling. Longest energy confinement time (30 ms) was obtained in the small tokamak TUMAN-3. Absolute values of the energy confinement time are in agreement with scaling proposed for description of the ELM-free H-modes in devices with powerful auxiliary heating (''DIII-D/JET H-mode'' scaling). (author)

  1. Erosion of beryllium under ITER – Relevant transient plasma loads

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P.; Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M.; Gervash, A.A.; Safronov, V.M.

    2015-01-01

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m 2 at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m 2 shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m 2 shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m 2 pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m 2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology

  2. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  3. Technological challenges at ITER plasma facing components production in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, 196641 St. Petersburg (Russian Federation); Belyakov, V.A.; Gervash, A.A.; Giniyatulin, R.N.; Guryeva, T.M.; Kuznetsov, V.E.; Makhankov, A.N.; Okunev, A.A. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Sevryukov, O.N. [MEPhI, 115409 Moscow (Russian Federation)

    2016-11-01

    Highlights: • Technological aspects of ITER PFC manufacturing in Russia are presented. • Range of technologies to be used during manufacturing of ITER PFC at Efremov Institute has been, in general, defined and their complexity, originality and difficulty are described. • Some features and challenges of welding, brazing and various tests are discussed. - Abstract: Major part of ITER plasma facing components will be manufactured in the Russian Federation (RF). Operational conditions and other requirements to these components, as well as the scale of production, are quite unique. These unique features and related technological solutions found in the frame of the project are discussed. Procedure breakdown and results of qualification for the proposed technologies and potential producers are presented, based on mockups production and testing. Design of qualification mockups and prototypes, testing programs and results are described. Basic quantitative and qualitative parameters of manufactured components and methods of quality control are presented. Critical manufacturing issues and prospects for unique production for future fusion needs are discussed.

  4. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  5. Chapter 8: Plasma operation and control [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E.A.; Lister, J.B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A.C.C.; Wesley, J.C.

    2007-01-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m -1 ), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape-the plasma magnetic control, as well as control of other plasma global parameters or their profiles-the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  6. ITER vacuum vessel, in vessel components and plasma facing materials

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Enoeda, M.; Federici, G.

    2007-01-01

    Design of the NB ports including duct liners under heat loads of the neutral beams has been developed. Design of the in-wall shielding has been developed in more details considering the supporting structure and the assembly method. The ferromagnetic inserts have previously not been installed in the outboard midplane region due to irregularity caused by the tangential ports for NB injection. Due to this configuration, the maximum ripple is relatively large (∝1 %) in a limited region of the plasma and the toroidal field flux lines fluctuate ∝10 mm in the FW region. To avoid these problems, additional ferromagnetic inserts are to be installed in the equatorial port region. Detailed studies were carried out on the ITER vacuum vessel to define appropriate codes and standards in the context of the ITER licensing in France. A set of draft documents regarding the ITER vacuum vessel structural code were prepared including an RCC-MR Addendum for the ITER VV with justified exceptions or modifications. The main deviation from the base Code is the extensive use of UT in lieu of radiography for the volumetric examination of all one-side access welds of the outer shell and field joint. The procurement allocation of blanket modules among 6 parties was fixed and the blanket module design has progressed in cooperation with parties. Fabrication of mock-ups for prequalification testing is under way and the tests will be performed in 2007-2008. Development of new beryllium materials is progressing in China and Russia. The ITER limiters will be installed in equatorial ports at two toroidal locations. The limiter plasma-facing surface protrudes ∝8 cm from the FW during the start-up and shutdown phase. In the new limiter concept, the limiters are retracted by ∝8 cm during the plasma flat top phase. This concept gives important advantages; (i) mitigation of the particle and heat loads due to disruptions, ELMs and blobs, (ii) improvement of the power coupling with the ICRH antenna

  7. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow

    International Nuclear Information System (INIS)

    Knoll, D.A.

    1998-01-01

    The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented

  8. Design of the ITER magnets to provide plasma operational flexibility

    International Nuclear Information System (INIS)

    Mitchell, N.; Bessette, D.; Ferrari, M.; Huguet, M.; Jong, C.; Takahashi, Y.; Yoshida, K.; Maix, R.; Krivchenkov, Y.; Zapretilina, E.

    2005-01-01

    The ITER magnets have been optimised and refined since the ITER Final Design Report (FDR) in 2001. Multiple design options have been eliminated and there is improved ability to drive a wide range of plasma configurations. Design iterations on the TF out of plane supports have eliminated stress concentrations in the inner keyways and have led to the choice of a so called friction-joint on the outside. The closure procedure for the TF case has been changed, with a new case segmentation, less risk of winding pack damage from shrinkage and better filling of the case-winding gaps. Selection of compact joints for the CS has enabled the peak field and cyclic stress levels in the conductor to be reduced while maintaining the flux capability. The uncertainty in the nuclear heat levels in the inner legs of the TF coils, and the need to operate with plasma nuclear powers from 360 to 700MW, lead to a thermal screen on the inside of the case with variable cooling capability. The electrical insulation specification has been refined after irradiation test results to give a better margin on the onset of degradation after operation to 3MWa/m 2 . The RWM stabilisation provided by the side CC has been extended by accepting higher voltages and heating from AC losses. R and D results from the model coil tests have shown lower than expected design margins for the Nb3Sn conductors. This has been offset by adopting the latest advances in strand performance, and the margins of the new conductor will be confirmed by testing in 2005. Preparation for procurement is underway with considerations on technically acceptable ways of splitting the magnet supply. (author)

  9. On global H-mode scaling laws for JET

    International Nuclear Information System (INIS)

    Kardaun, O.; Lackner, K.; Thomsen, K.; Christiansen, J.; Cordey, J.; Gottardi, N.; Keilhacker, M.; Smeulders, P.

    1989-01-01

    Investigation of the scaling of the energy confinement time τ E with various plasma parameters has since long been an interesting, albeit not uncontroversial topic in plasma physics. Various global scaling laws have been derived for ohmic as well as (NBI and/or RF heated) L-mode discharges. Due to the scarce availability of computerised, extensive and validated H-mode datasets, systematic statistical analysis of H-mode scaling behaviour has hitherto been limited. A common approach is to fit the available H-mode data by an L-mode scaling law (e.g., Kaye-Goldston, Rebut-Lallia) with one or two adjustable constant terms. In this contribution we will consider the alternative approach of fitting all free parameters of various simple scaling models to two recently compiled datasets consisting of about 140 ELM-free and 40 ELMy H-mode discharges, measured at JET in the period 1986-1988. From this period, approximately all known H-mode shots have been included that satisfy the following criteria: D-injected D + discharges with no RF heating, a sufficiently long (≥300 ms) and regular P NBI flat-top, and validated main diagnostics. (author) 13 refs., 1 tab

  10. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    International Nuclear Information System (INIS)

    Hughes, J.W.; Walk, J.R.; Davis, E.M.; LaBombard, B.; Baek, S.G.; Churchill, R.M.; Greenwald, M.; Hubbard, A.E.; Lipschultz, B.; Marmar, E.S.; Reinke, M.L.; Rice, J.E.; Theiler, C.; Terry, J.; White, A.E.; Whyte, D.G.; Snyder, P.B.; Groebner, R.J.; Osborne, T.; Diallo, A.

    2013-01-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling–ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of β pol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices. (paper)

  11. Phenomenological model for H-mode

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1985-08-01

    A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition

  12. Erosion products of ITER divertor materials under plasma disruption simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Gureev, V.M.; Kolbasov, B.N.; Korshunov, S.N.; Martynenko, Yu.V. E-mail: martyn@nfi.kiae.ru; Stolyarova, V.G.; Strunnikov, V.M.; Vasiliev, V.I

    2003-09-01

    Candidate ITER divertor armor materials: carbon-fiber-composite and four tungsten grades/alloys as well as mixed re-deposited W+Be and W+C layers were exposed in electrodynamic plasma accelerator MKT which provided a pulsed deuterium plasma flux simulating plasma disruptions with maximum ion energy of 1-2 keV, an energy density of 300 kJ/m{sup 2} per shot and a pulse duration of {approx}60 {mu}s. The number of pulses was from 2 to 10. The resultant erosion products were collected on a basalt filter and Si-collectors and studied in terms of morphology and size distribution using both scanning and transmission electron microscopy. Metal erosion products usually occurred in the form of spherical droplets, sometimes flakes. Their size distribution depended on the positioning of the collector. Simultaneously irradiated W, CFC and mixed W+Be targets appeared to have undergone a greater erosion than the same targets irradiated individually. Particles sized from 0.01 to 30 {mu}m were found on collectors and on a molten W-surface. A model of droplet emission and behavior in shielding plasma is provided.

  13. LH transition theories and theory of H-mode

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-01-01

    Recent developments in H-mode theory are discussed with earlier work described to put new theories in context. Much of the recent work concerns the development of the radial electric field near the plasma edge and its impact on transport driven by fluctuations, and is the main topic discussed. (author)

  14. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Doyle, E J [University of California, Los Angeles, California (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Moyer, R A [University of California, San Diego, California (United States); Osborne, T H; Schaffer, M J; Snyder, P B [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Thomas, P R [CEA Cadarache EURATOM Association, Cadarache (France); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Boedo, J A [University of California, San Diego, California (United States); Garofalo, A M [Columbia University, New York, New York (United States); Gohil, P; Jackson, G L; La Haye, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Lasnier, C J [Lawrence Livermore National Laboratory, Livermore, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Rhodes, T L [University of California, Los Angeles, California (United States); Scoville, J T [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Wang, G [University of California, Los Angeles, California (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, New Mexico (United States); Zeng, L [University of California, Los Angeles, California (United States)

    2005-12-15

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

  15. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    International Nuclear Information System (INIS)

    Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L

    2005-01-01

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport

  16. H-mode transition physics close to DN on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.

    2004-01-01

    Full text: ELMy H-mode is the base-line operating scenario for the next step fusion device ITER. To improve active and passive pedestal control a deeper understanding of H- mode physics is desirable. MAST contributes towards this understanding with good edge diagnostics, and by accessing extreme parameter regimes. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX-Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. The 30% reduction in threshold power close to C-DN observed on ASDEX-Upgrade, though significant, is less than the factor of two or more observed in both large spherical tokamaks, MAST and NSTX. This points towards the importance of field line curvature for this effect. The power thresholds measured in C-DN on MAST and NSTX are very similar. Despite this strong effect on the power threshold, changes in most edge parameters in L-mode due to the different magnetic configurations are small. However, significant changes are seen in the toroidal impurity flow velocity, related to the radial electric field, and in the scrape-off-layer temperature decay length at the high field side. The statistical comparison of MAST data with various H-mode theories suggests that different instabilities need to be stabilised at different spatial positions in the region where the pedestal forms to access H-mode. Pedestal temperatures observed on MAST are two to five times lower than in MAST equivalent discharges at ASDEX-Upgrade. However, the pedestal densities are similar. The differences in L-mode are less significant. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are

  17. Transition to H-mode by energetic electrons

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae.

    1992-07-01

    Effect of the electron loss due to the toroidal ripple on an H-mode transition is studied. When energetic electrons exist in tokamaks, e.g., in the case of the current drive by lower hybrid (LH) waves, the edge electric field can show the bifurcation to the more positive value. In this state, both the electron loss and ion loss (such as loss cone loss) are reduced. The criterion for the transition is derived. Comparison with H-mode in JT-60 LH plasma shows a qualitative agreement. (author)

  18. Change of transport at L- and H-mode transition

    International Nuclear Information System (INIS)

    Itoh, Sanae-I; Itoh, Kimitaka.

    1990-01-01

    A new refined model of the L-mode and H-mode transition in tokamaks is presented based on the bifurcation of the radial electric field, E r , near edge. The radial gradient of E r is newly introduced to explain the sudden change of fluctuations as well as plasma fluxes at the onset of transition. This model predicts that the L-to H-mode transition is associated with the decrease of dE r /dr causing reduction of particle and energy fluxes at critical gradient. (author)

  19. Plasma exposure of different tungsten grades with plasma accelerators under ITER-relevant conditions

    International Nuclear Information System (INIS)

    Makhlaj, Vadym A; Garkusha, Igor E; Aksenov, Nikolay N; Byrka, Oleg V; Bazylev, Boris; Landman, Igor; Linke, Jochen; Wirtz, Marius; Malykhin, Sergey V; Pugachov, Anatoliy T; Sadowski, Marek J; Skladnik-Sadowska, Elzbieta

    2014-01-01

    This paper presents the results of tungsten irradiation experiments performed with three plasma facilities: the QSPA Kh-50 quasi-steady-state plasma accelerator, the PPA pulsed plasma gun and the magneto-plasma compressor. Targets made of different kinds of tungsten (sintered, rolled and deformed) were irradiated with powerful plasma streams at heat fluxes relevant to edge-localized modes in ITER. The irradiated targets were analyzed and two different meshes of cracks were identified. It has been shown that the major cracks do not depend on the tungsten grade. This has been attributed to ductile-to-brittle transition effects. Meshes of inter-granular micro-cracks were detected for energy loads above the melting threshold and these were probably caused by the re-solidification process. The blister-like and cellular-like structures were observed on sample surfaces exposed to helium and hydrogen plasmas. (paper)

  20. Improved H-mode access in connected DND in MAST

    International Nuclear Information System (INIS)

    Meyer, H; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Field, A R; Kirk, A; McClements, K G; Price, M; Taylor, D

    2005-01-01

    In the Mega-Amp Spherical Tokamak, MAST, the formation of the edge transport barrier leading to the high-confinement (H-mode) regime is greatly facilitated by operating in a double null diverted (DND) configuration where both X-points are practically on the same flux surface. Ohmic H-modes are presently only obtained in these connected double null diverted (CDND) configurations. The ease of H-mode access is lost if the two flux surfaces passing through the X-points are radially separated by more than one ion Larmor radius (ρ i ∼ 6 mm) at the low-field-side mid-plane. The change of the magnetic configuration from disconnected to CDND is accompanied by a change in the radial electric field of about ΔE ψ ∼ -1 kV m -1 and a reduction of the electron temperature decay length in the high-field-side scrape-off-layer. Other parameters at the plasma edge, in particular those affecting the H-mode access criteria of common L/H transition theories, are not affected by the slight changes to the magnetic configuration. It is believed that the observed change in E ψ , which may result from differences in ion orbit losses, leads to a higher initial E x B flow shear in CDND configurations which could lead to the easier H-mode access

  1. LIDAR Thomson scattering for ITER core plasma revisited

    International Nuclear Information System (INIS)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2016-01-01

    The authors have become aware that the development of the hitherto planned time-of-flight Thomson scattering system for the ITER core plasma is not proceeding and that conventional Thomson scattering set-ups are being discussed as an alternative. In this paper, we want to point out the advantages of LIDAR and show how criticized details of the original design can be improved. We present a design of the front optics, which in neutronics terms closely resembles a layout already previously accepted. The presented design does not require Raman scattering calibration for the density measurement. Comparison with the JET Core LIDAR system and simulations at higher temperatures both show that with the new design the specified accuracy can be met with a 1–2 J laser. Current laser and detector technology is reviewed. A strategy for how to proceed is presented

  2. Overview of physics basis for ITER

    International Nuclear Information System (INIS)

    Mukhovatov, V; Shimada, M; Chudnovskiy, A N; Costley, A E; Gribov, Y; Federici, G; Kardaun, O; Kukushkin, A S; Polevoi, A; Pustovitov, V D; Shimomura, Y; Sugie, T; Sugihara, M; Vayakis, G

    2003-01-01

    ITER will be the first magnetic confinement device with burning DT plasma and fusion power of about 0.5 GW. Parameters of ITER plasma have been predicted using methodologies summarized in the ITER Physics Basis (1999 Nucl. Fusion 39 2175). During the past few years, new results have been obtained that substantiate confidence in achieving Q>=10 in ITER with inductive H-mode operation. These include achievement of a good H-mode confinement near the Greenwald density at high triangularity of the plasma cross section; improvements in theory-based confinement projections for the core plasma, even though further studies are needed for understanding the transport near the plasma edge; improvement in helium ash removal due to the elastic collisions of He atoms with D/T ions in the divertor predicted by modelling; demonstration of feedback control of neoclassical tearing modes and resultant improvement in the achievable beta values; better understanding of edge localized mode (ELM) physics and development of ELM mitigation techniques; and demonstration of mitigation of plasma disruptions. ITER will have a flexibility to operate also in steady-state and intermediate (hybrid) regimes. The 'advanced tokamak' regimes with weak or negative central magnetic shear and internal transport barriers are considered as potential scenarios for steady-state operation. The paper concentrates on inductively driven plasma performance and discusses requirements for steady-state operation in ITER

  3. Plasma instability issues for ITER and their possible impact on plasma performance

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Campbell, D.

    2009-01-01

    Full text: There are many types of plasma instabilities that may affect ITER performance. Prediction of their impact, however, is complicated by scaling relative to present plasmas. Here we summarize some of the potential impacts of a variety of instabilities on ITER performance and the uncertainties in evaluating those impacts. ELMs are one of the most significant issues because of the high localized heat loads on the plasma facing components walls caused by the filamentary structures. ITER presently plans to employ two methods to attempt to amelioriate the localized damage from large ELMS: resonant magnetic perturbations and pellet pacing. In either case, the net effect on confinement must be minimized relative to the expected confinement under natural ELMy conditions. Pacing ELMs with high frequency pellet injection raises at least two fundamental physics questions: i) how effective are very localized perturbations from the pellet cloud at triggering ELMs?, and ii) can we assure that the local perturbation does not lock the ELMs into a pattern of localized deposition? It is expected that answering these questions would require 3-D models, while present models are based on peeling-ballooning stability with 1-D models for plasma profiles. A similar set of complicating factors can be identified for other instabilities. Alfven eigenmodes in ITER are expected to be driven primarily by the energetic alphas, but MeV neutral beam injection of up to 33 MW raises the issue of synergistic effects (e.g., loss of NB fast ions from AEs driven by fast alphas), and non-linear interaction among a 'sea' of many high-n potentially unstable modes expected from ITER's large size. Instabilities that are weakened by the strong toroidal rotation (e.g. turbulence or resistive wall modes) in present NB-heated machines may be more robust under the much weaker external torque provided by ITER's high energy beams. A better understanding of extrinsic rotation driven largely by conditions at

  4. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    International Nuclear Information System (INIS)

    Li Miao-Hui; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range. These H-mode discharges are characterized by a sudden drop in D α emission and a spontaneous rise in main plasma density. Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D 2 gas from a pipe near the grill mouse. The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode, and current drive (CD) efficiency decreases due to the increase in density. Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported. (physics of gases, plasmas, and electric discharges)

  5. Offset linear scaling for H-mode confinement

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.

    1992-01-01

    An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)

  6. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  7. Report of the international symposium for ITER. 'Burning plasma science and technology on ITER'

    International Nuclear Information System (INIS)

    2002-10-01

    This report contains the presentations on the International Symposium for ITER, held on Jan. 24, 2002 on the occasion of the ITER Governmental Negotiations in Tokyo. This symposium is organized by Japan Atomic Energy Research Institute with the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The meaningful results were obtained through this symposium especially on new frontiers of science and technology brought by ITER, accelerated road maps towards realizing fusion energy, and portfolio of other fusion configurations from ITER. The 5 of the presented papers are indexed individually (J.P.N.)

  8. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  9. Application of divertor cryopumping to H-mode density control in DIII-D

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Ferron, J.R.; Hyatt, A.W.

    1993-11-01

    In this paper we describe the method and the results of experiments where a unique in-vessel cryopump-baffle system was used to control density of H-mode plasmas. We were able to independently regulate current and density of ELMing H-mode plasmas, each over a range of factor two, and measure the H-mode confinement scaling with plasma density and current. With a modest pumping speed of ∼40 kl/s, particle exhaust rates as high as 2 x 10 22 atom/s -1 have been observed

  10. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    International Nuclear Information System (INIS)

    Litunovsky, Nikolay; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-01-01

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given

  11. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-10-15

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given.

  12. A two term model of the confinement in Elmy H-modes using the global confinement and pedestal databases

    International Nuclear Information System (INIS)

    2003-01-01

    Two different physical models of the H-mode pedestal are tested against the joint pedestal-core database. These models are then combined with models for the core and shown to give a good fit to the ELMy H-mode database. Predictions are made for the next step tokamaks ITER and FIRE. (author)

  13. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  14. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  15. Discriminant analysis to predict the occurrence of ELMs in H-mode discharges

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; Itoh, S.; Itoh, K.; Kardaun, J.W.P.F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELMs (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be (1) larger than some threshold value and (2) larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELMs or with giant ELMs). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks (a) using four instantaneous plasma parameters (injected power P inj , magnetic field B t , plasma current I p and line averaged electron density (n-bar e ) and (b) taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalised with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELMs and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELMs. A reliable production of H-mode with only small ELMs seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELMs occur still requires a training sample from the device under consideration. (author) 53 refs

  16. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    Science.gov (United States)

    Saibene, G.

    2012-11-01

    as to stimulate and lead the open discussion. Poster sessions were also organized to present specialist papers and provide a venue for continued discussion. The topics selected for this edition of the workshop were: 1. Integrated plasma scenarios for ITER and a reactor: experimental and theoretical studies, including the self-stabilizing transport approach. 2. Edge transport barrier control and plasma performance: physics of 3D stochastic magnetic fields for ELM suppression. 3. H-mode transition physics and H-mode pedestal structure: pedestal dynamics near transitions and requirements for high-confinement access and sustainment. 4. Energetic particle driven instabilities and related physics: H-mode and the transport barrier. 5. Role of and evidence for non-diffusive particle and toroidal momentum transport and impact of fuelling: experiments, theory and modelling. 6. Long-range correlation of plasma turbulence and interaction between edge and core transport. The choice of topics, and the amount of progress in the understanding of the complexity of transport barriers physics reflect the drive in the fusion community towards the preparation for the ITER tokamak operation. More than 100 scientists (including students) attended the three-day workshop, coming from all over the world to present their newest results, discuss with colleagues and enjoy the atmosphere of the beautiful Lady Margaret Hall. The preparation work of the International Advisory Committee (G. Saibene (EU - Chair), R. Groebner (US), T. S Hahm (KO), A. Hubbard (US), K. Ida (Japan), S. Lebedev (RF), N. Oyama (Japan), E Wolfrum (EU)) has been rewarded by the enthusiastic participation of scientists, experimentalist, modellers and theoreticians, and by the high level of the scientific discussion throughout the workshop, during lunch breaks and even at the conference dinner. The Committee is also grateful to EFDA for the support in the organization of the workshop and to the Local Organizing Committee (E

  17. Behaviour of impurities during the H-mode in JET

    International Nuclear Information System (INIS)

    Gianella, R.; Behringer, K.; Denne, B.; Gottardi, N.; Hellermann, M. von; Morgan, P.D.; Pasini, D.; Stamp, M.F.

    1989-01-01

    In additionally-heated tokamak discharges, the H-mode phases are reported to display, together with a better energy confinement, a longer global containment time for particles. In particular, steep gradients of electron density and temperature are sustained in the outer region of the plasma column. This enhanced performance is observed especially in discharges in which the activity of edge localized modes (ELMs) is low or absent. High confinement and accumulation of metallic impurities, which quickly give raise to terminal disruptions have been described under similar conditions. In JET H-modes very long impurity confinement times are also observed. However the experimental condition is somewhat more favourable since quiescent H-modes are obtained lasting much longer than the energy confinement times and the radiation from metals is generally negligible. The dominant impurities are normally carbon and oxygen, the latter generally accounting for half or more of the power radiated from the bulk plasma. During the X-point operation the effective influx of carbon into the discharge, which is normally in close correlation with that of deuterium, is substantially reduced while the influx of oxygen, whose production mechanisms is believed to be of a chemical nature, does not show significant variations. (author) 5 refs., 4 figs

  18. An emerging understanding of H-mode discharges in tokamaks

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the υ E → = (E x B)/B 2 flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in υE. The required υE flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the υE flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios

  19. Study of H-mode threshold conditions in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1996-10-01

    Studies have been conducted in DIII-D to determine the dependence of the power threshold P lh for the transition to the H-mode regime and the threshold P hl for the transition from H-mode to L-mode as functions of external parameters. There is a value of the line-averaged density n e at which P lh has a minimum and P lh tends to increase for lower and higher values of n e . Experiments conducted to separate the effect of the neutral density n 0 from the plasma density n e give evidence of a strong coupling between n 0 and n e . The separate effect of neutrals on the transition has not been determined. Coordinated experiments with JET made in the ITER shape show that P lh increases approximately as S 0.5 where S is the plasma surface area. For these discharges, the power threshold in DIII-D was high by normal standards, thus suggesting that effects other than plasma size may have affected the experiment. Studies of H-L transitions have been initiated and hysteresis of order 40% has been observed. Studies have also been done of the dependence of the L-H transition on local edge parameters. Characterization of the edge within a few ms prior to the transition shows that the range of edge temperatures at which the transition has been observed is more restrictive than the range of densities at which it occurs. These results suggest that some temperature function is important for controlling the transition

  20. Progress in Development of the ITER Plasma Control System Simulation Platform

    Science.gov (United States)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  1. Overview of H-mode studies in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R,; Allen, S.L.

    1994-01-01

    A major portion of the DIII-D program includes studies of the L-H transition, of the VH-mode, of particle transport and control and of the power-handling capability of a diverter. Significant progress has been made in all of these areas and the purpose of this paper is to summarize the major results obtained during the last two years. An increased understanding of the origin of improved confinement in H-mode and in VH-mode discharges has been obtained, good impurity control has been achieved in several operating scenarios, studies of helium transport provide encouraging results from the point of view of reactor design, an actively pumped diverter chamber has controlled the density in H-mode discharges and a radiative diverter is a promising technique for controlling the heat flux from the main plasma

  2. Simulation of an ITER-like dissipative divertor plasma with a combined edge plasma Navier-Stokes neutral model

    International Nuclear Information System (INIS)

    Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.

    1996-01-01

    A combined edge plasma/Navier-Stokes neutral transport model is used to simulate dissipative divertor plasmas in the collisional limit for neutrals on a simplified two-dimensional slab geometry with ITER-like plasma conditions and scale lengths. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion-neutral elastic collisions. The neutral transport coefficients are evaluated including both ion-neutral and neutral-neutral collisions. (orig.)

  3. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.

    2008-01-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  4. H-mode edge rotation in W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Grigull, P.; Maassberg, H.; McCormick, K.; Wagner, F.; Wobig, H.

    2005-01-01

    In W7-AS three regimes of improved confinement exist which base on negative radial electric fields at the plasma edge resulting there from ion-root conditions of the ambipolar radial fluxes. Experimental control besides the magnetic configuration is given via the edge density profile i.e. the recycling and fuelling conditions. However, the ordering element seems to be the radial electric field profile (respectively its shear) and its interplay with the gradients of ion temperature and density. At low to medium densities the so called optimum confinement regime occurs with maximum density gradients located well inside the plasma boundary and large negative values of E r extending deep in the bulk plasma. For a large inner fraction of the bulk the ion temperature can be sufficiently high that ion transport conditions already can be explained by neoclassics. This regime delivers maximum values of T i , τ e and n τ e T i . Density gradients located right inside the plasma boundary result in the classical H-mode phenomena reminiscent to other toroidal devices with the capability of an edge layer with nearly complete suppression of turbulence either quasi stationary (in a quiescent H-mode) or intermittently (in between ELMs). At even higher densities and highly collisional plasmas with the maximum of ∇n shifted to or even out of the plasma boundary the High Density H-mode (HDH) opens access to steady state conditions with no measurable impurity accumulation. These improved confinement regimes are accessed and left via significant transitions of the transport properties albeit these transitions occur on rather different timescales. A comprehensive picture of improved edge confinement regimes in W7-AS is drawn based on the assumption that a weak edge bounded transport barrier resulting from the ion root conditions (thus E r <0) is the ground state of the (turbulent) edge plasma and already behaves as a barrier for anomalous transport. On top of that the classical H-mode

  5. Joining technologies for the plasma facing components of ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Kalinin, G.; Matera, R.

    1998-01-01

    An extensive R and D program on the development of the joining technologies between armour (beryllium, tungsten and carbon fibre composites)/copper alloys heat sink and copper alloys/ stainless steel has been carried out by ITER Home Teams. A brief review of this R and D program is presented in this paper. Based on the results, reference technologies for use in ITER have been selected and recommended for further development. (author)

  6. Physics of the conceptual design of the ITER plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, J.A., E-mail: Joseph.Snipes@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bremond, S. [CEA-IRFM, 13108 St Paul-lez-Durance (France); Campbell, D.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Casper, T. [1166 Bordeaux St, Pleasanton, CA 94566 (United States); Douai, D. [CEA-IRFM, 13108 St Paul-lez-Durance (France); Gribov, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Humphreys, D. [General Atomics, San Diego, CA 92186 (United States); Lister, J. [Association EURATOM-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne (EPFL), CRPP, Lausanne CH-1015 (Switzerland); Loarte, A.; Pitts, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sugihara, M., E-mail: Sugihara_ma@yahoo.co.jp [Japan (Japan); Winter, A.; Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2014-05-15

    Highlights: • ITER plasma control system conceptual design has been finalized. • ITER's plasma control system will evolve with the ITER research plan. • A sophisticated actuator sharing scheme is being developed to apply multiple coupled control actions simultaneously with a limited set of actuators. - Abstract: The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints. In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma

  7. Physics of the conceptual design of the ITER plasma control system

    International Nuclear Information System (INIS)

    Snipes, J.A.; Bremond, S.; Campbell, D.J.; Casper, T.; Douai, D.; Gribov, Y.; Humphreys, D.; Lister, J.; Loarte, A.; Pitts, R.; Sugihara, M.; Winter, A.; Zabeo, L.

    2014-01-01

    Highlights: • ITER plasma control system conceptual design has been finalized. • ITER's plasma control system will evolve with the ITER research plan. • A sophisticated actuator sharing scheme is being developed to apply multiple coupled control actions simultaneously with a limited set of actuators. - Abstract: The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints. In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma

  8. A fatigue lifetime assessment of WEST ITER Like Plasma Facing Unit

    International Nuclear Information System (INIS)

    Languille, P.; Missirlian, M.; Guilhem, D.; Ferlay, F.; Batal, T.; Bucalossi, J.; Firdaouss, M.; Larroque, S.; Martinez, A.; Richou, M.

    2016-01-01

    Highlights: • ITER plasma facing component divertor technology is integrated in WEST. • ITER Like attachments in WEST has been optimised. • The ITER Like PFU is compatible with a wide range of plasma scenarios. - Abstract: Based on a monoblock concept (e.g. a tube-in-tile concept), each elementary tungsten plasma facing component (called Plasma-Facing Unit PFU) of the WEST lower divertor follows as closely as possible the same monoblock geometry, materials and bonding technology that is envisaged for ITER. A fatigue simulation of W PFU was used to validate its specific integration into WEST. The complex design, the material heterogeneities and the usage outside operational load design envelope are all possible causes of fatigue failure. This paper shows how the ITER like monoblocks and its U-shaped attachments technology are integrated into the WEST divertor by performing finite element analysis. The WEST lower divertor is designed to withstand 15 MW steady-state of injected power, with peaked heat fluxes up to 20 MW/m 2 . The integration and the design choices of a WEST ITER Like Plasma Facing Unit inside the WEST vacuum chamber is valid for an “expected life time” of repeated inter ELMs thermal steady state (>10 s) cycles and for 300 off-normal vertical displacement events.

  9. A fatigue lifetime assessment of WEST ITER Like Plasma Facing Unit

    Energy Technology Data Exchange (ETDEWEB)

    Languille, P., E-mail: pascal.languille@gmail.com; Missirlian, M.; Guilhem, D.; Ferlay, F.; Batal, T.; Bucalossi, J.; Firdaouss, M.; Larroque, S.; Martinez, A.; Richou, M.

    2016-11-01

    Highlights: • ITER plasma facing component divertor technology is integrated in WEST. • ITER Like attachments in WEST has been optimised. • The ITER Like PFU is compatible with a wide range of plasma scenarios. - Abstract: Based on a monoblock concept (e.g. a tube-in-tile concept), each elementary tungsten plasma facing component (called Plasma-Facing Unit PFU) of the WEST lower divertor follows as closely as possible the same monoblock geometry, materials and bonding technology that is envisaged for ITER. A fatigue simulation of W PFU was used to validate its specific integration into WEST. The complex design, the material heterogeneities and the usage outside operational load design envelope are all possible causes of fatigue failure. This paper shows how the ITER like monoblocks and its U-shaped attachments technology are integrated into the WEST divertor by performing finite element analysis. The WEST lower divertor is designed to withstand 15 MW steady-state of injected power, with peaked heat fluxes up to 20 MW/m{sup 2}. The integration and the design choices of a WEST ITER Like Plasma Facing Unit inside the WEST vacuum chamber is valid for an “expected life time” of repeated inter ELMs thermal steady state (>10 s) cycles and for 300 off-normal vertical displacement events.

  10. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  11. Plasma burn-through simulations using the DYON code and predictions for ITER

    International Nuclear Information System (INIS)

    Kim, Hyun-Tae; Sips, A C C; De Vries, P C

    2013-01-01

    This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) (Kim et al and EFDA-JET Contributors 2012 Nucl. Fusion 52 103016, Kim, Sips and EFDA-JET Contributors 2013 Nucl. Fusion 53 083024). The dynamic evolution of the plasma temperature and plasma densities including the impurity content is calculated in a self-consistent way using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation results of the plasma burn-through phase show a consistent good agreement against experiments at JET, and explain differences observed during plasma initiation with the old carbon plasma facing components. In the International Thermonuclear Experimental Reactor (ITER), the allowable toroidal electric field is restricted to 0.35 (V m −1 ), which is significantly lower compared to the typical value (∼1 (V m −1 )) used in the present devices. The limitation on toroidal electric field also reduces the range of other operation parameters during plasma formation in ITER. Thus, predictive simulations of plasma burn-through in ITER using validated model is of crucial importance. This paper provides an overview of the DYON code and the validation, together with new predictive simulations for ITER using the DYON code. (paper)

  12. Modeling of ELM Dynamics in ITER

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Kruger, S.

    2007-01-01

    Edge localized modes (ELMs) are large scale instabilities that alter the H-mode pedestal, reduce the total plasma stored energy, and can result in heat pulses to the divertor plates. These modes can be triggered by pressure driven ballooning modes or by current driven peeling instabilities. In this study, stability analyses are carried out for a series of ITER equilibria that are generated with the TEQ and TOQ equilibrium codes. The H-mode pedestal pressure and parallel component of plasma current density are varied in a systematic way in order to include the relevant parameter space for a specific ITER discharge. Ideal MHD stability codes, DCON, ELITE, and BALOO code, are employed to determine whether or not each ITER equilibrium profile is unstable to peeling or ballooning modes in the pedestal region. Several equilibria that are close to the marginal stability boundary for peeling and ballooning modes are tested with the NIMROD non-ideal MHD code. The effects of finite resistivity are studied in a series of linear NIMROD computations. It is found that the peeling-ballooning stability threshold is very sensitive to the resistivity and viscosity profiles, which vary dramatically over a wide range near the separatrix. Due to the effects of finite resistivity and viscosity, the peeling-ballooning stability threshold is shifted compared to the ideal threshold. A fundamental question in the integrated modeling of ELMy H-mode discharges concerning how much plasma and current density is removed during each ELM crash can be addressed with nonlinear non-ideal MHD simulations. In this study, the NIMROD computer simulations are continued into the nonlinear stage for several ITER equilibria that are marginally unstable to peeling or ballooning modes. The role of two-fluid and finite Larmor radius effects on the ELM dynamics in ITER geometry is examined. The formation of ELM filament structures, which are observed in many existing tokamak experiments, is demonstrated for ITER

  13. Radiation in plasma target interaction events typical for ITER tokamak disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Bazylev, B.; Landman, I.; Safronov, V.

    1996-01-01

    Plasma wall interactions under conditions simulating ITER hard disruptions and ELMs are studied at the plasma gun facilities 2MK-200 CUSP and MK-200 UG at Troitsk. The experimental data for carbon plasma shields are used for validation of the theoretical modeling of the plasma wall interaction. The important features of the non-LTE plasma shield such as temperature and density distribution, its evolution and the conversion efficiency of the energy of the plasma stream into total and soft x-ray radiation from highly ionized evaporated target material and the energy balance are reproduced quite well. Thus a realistic modelling of ITER disruptive plasma wall interaction using the validated models is now possible. 8 refs., 6 figs

  14. Formation of an internal transport barrier in the ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Zhubr, N.A.; Kornev, V.A.; Krikunov, S.V.; Lebedev, S.V.; Levin, L.S.; Razdobarin, G.T.; Rozhdestvensky, V.V.; Smirnov, A.I.; Tukachinsky, A.S.; Yaroshevich, S.P.

    2000-01-01

    In experiments on studying the ohmic H-mode in the TUMAN-3M tokamak, it is found that, in high-current (I p ∼ 120-170 kA) discharges, a region with high electron-temperature and density gradients is formed in the plasma core. In this case, the energy confinement time τ E attains 9-18 ms, which is nearly twice as large as that predicted by the ELM-free ITER-93H scaling. This is evidence that the internal transport barrier in a plasma can exist without auxiliary heating. Calculations of the effective thermal diffusivity by the ASTRA transport code demonstrate a strong suppression of heat transport in the region where the temperature and density gradients are high

  15. JET Radiative Mantle Experiments in ELMy H-Mode

    International Nuclear Information System (INIS)

    Budny, R.; Coffey, I.; Dumortier, P.; Grisolia, C.; Strachan, J.D.

    1999-01-01

    Radiative mantle experiments were performed on JET ELMy H-mode plasmas. The Septum configuration was used where the X-point is embedded into the top of the Septum. Argon radiated 50% of the input power from the bulk plasma while Z eff rose from an intrinsic level of 1.5 to about 1.7 due to the injected Argon. The total energy content and global energy confinement time decreased 15% when the impurities were introduced. In contrast, the effective thermal diffusivity in the core confinement region (r/a = .4--.8) decreased by 30%. Usually, JET ELMy H-mode plasmas have confinement that is correlated to the edge pedestal pressure. The radiation lowered the edge pedestal and consequently lowered the global confinement. Thus the confinement was changed by a competition between the edge pedestal reduction lowering the confinement and the weaker RI effect upon the core transport coefficients raising the confinement. The ELM frequency increased from 10 Hz Type I ELMs, to 200 Hz type III ELMs. The energy lost by each ELM reduced to 0.5% of the plasma energy content

  16. ELMs and the H-mode pedestal in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Sabbagh, S.A.; Bush, C.E.; Fredrickson, E.D.; Menard, J.E.; Stutman, D.; Tritz, K.; Bell, M.G.; Bell, R.E.; Boedo, J.A.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.; Stevenson, T.

    2005-01-01

    We report on the behavior of ELMs in NBI-heated H-mode plasmas in NSTX. It is observed that the size of Type I ELMs, characterized by the change in plasma energy, decreases with increasing line-average density, as observed at conventional aspect ratio. It is also observed that the Type I ELM size decreases as the plasma equilibrium is shifted from a symmetric double-null toward a lower single-null configuration. Type II/III ELMs have also been observed in NSTX, as well as a high-performance regime with small ELMs which we designate Type V. The Type V ELMs are characterized by an intermittent n 1 magnetic pre-cursor oscillation rotating counter to the plasma current; the mode vanishes between Type V ELMs crashes. Without active pumping, the density rises continuously through the Type V phase, albeit at a slower rate than ELM-free discharges

  17. Plasma flow to a surface using the iterative Monte Carlo method

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1994-01-01

    The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)

  18. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  19. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    discussed. Toroidal rotation of the ITER reference inductive Q = 10 H-mode is predicted to be rather low, of the order of ∼1/10 of the frequency of typical JET H-modes. Nonetheless, fast ion ripple losses in that scenario are also predicted to be negligible (∼<1%), and therefore plasma toroidal rotation slow-down or ripple-induced counter-rotation should not affect pedestal parameters and stability in ITER. Finally, the possible effect of ripple on thermal transport may deserve more attention in future experiments and modelling, since the ripple magnitude of ITER is intermediate between that of JET and JT-60U

  20. Linear MHD stability analysis of post-disruption plasmas in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany); Huijsmans, G. T. A. [ITER Organization (France); Aleynikov, P. [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  1. Plasma regimes and research goals of JT-60SA towards ITER and DEMO

    International Nuclear Information System (INIS)

    Kamada, Y.; Ide, S.; Fujita, T.; Suzuki, T.; Matsunaga, G.; Yoshida, M.; Shinohara, K.; Urano, H.; Nakano, T.; Sakurai, S.; Kawashima, H.; Barabaschi, P.; Lackner, K.; Ishida, S.; Bolzonella, T.

    2011-01-01

    The JT-60SA device has been designed as a highly shaped large superconducting tokamak with a variety of plasma actuators (heating, current drive, momentum input, stability control coils, resonant magnetic perturbation coils, W-shaped divertor, fuelling, pumping, etc) in order to satisfy the central research needs for ITER and DEMO. In the ITER- and DEMO-relevant plasma parameter regimes and with DEMO-equivalent plasma shapes, JT-60SA quantifies the operation limits, plasma responses and operational margins in terms of MHD stability, plasma transport and confinement, high-energy particle behaviour, pedestal structures, scrape-off layer and divertor characteristics. By integrating advanced studies in these research fields, the project proceeds 'simultaneous and steady-state sustainment of the key performances required for DEMO' with integrated control scenario development applicable to the highly self-regulating burning high-β high bootstrap current fraction plasmas.

  2. The next step in a development of negative ion beam plasma neutraliser for ITER NBI

    International Nuclear Information System (INIS)

    Kulygin, V.M.; Dlougach, E.D.; Gorbunov, E.P.

    2001-01-01

    Injectors of deuterium atom beams developing for ITER plasma heating and current drive are based on the negative ion acceleration and further neutralization with a gas target. The maximal efficiency of a gas stripping process is 60%. The replacement of the gas neutralizer by plasma one must increase the neutral yield to 80%. The experimental study overview of the microwave discharge in a multi-cusp magnetic system chosen as a base device for Plasma Neutralizer realization and the design development for ITER Neutral Beam Injectors are presented. The experimental results achieved at a plasma neutralizer model PNX-U is discussed. Plasma confinement, gas flows, ionization degree were investigated. The plasma in the volume 0.5m 3 with density n e ∼ 10 18 m -3 has been achieved at power density 80kW/m 3 in operation with Argon. (author)

  3. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  4. Long distance coupling of lower hybrid waves in ITER relevant edge conditions in jet reversed shear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Goniche, M.; Joffrin, E. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Granucci, G. [Associazione EURATOM-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Mailloux, J.; Baranov, Y.; Erents, K.; Lomas, P.J.; McDonald, D.; Stamp, M. [Euratom/UKAEA Fusion Association, Abingdon (United Kingdom). Culham Lab; Petrzilka, V.; Zacek, F. [Association Euratom-IPP.CR, Praha (Czech Republic); Rantamaki, K. [Assiciation Euratom-Tekes, VTT Processes (Finland); Mantsinen, M. [Helsinki Univ. of Technology, Association Euratom-Tekes (Finland); Noterdaeme, J.M. [Max-Planck-Institut fuer Plasmaphysik, Association Euratom, Garching (Germany); Gent University, EESA Dept. (Belgium); Pericoli, V.; Tuccillo, A.A. [Association Euratom-ENEA sulla Fusione, CR Frascati, Roma (Italy); Sartori, R. [EFDA Close Support Unit, Garching (Germany); Silva, C. [Associacao Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal)

    2003-07-01

    A significant step towards demonstrating the feasibility of coupling Lower Hybrid (LH) waves in ITER has been achieved in the latest LH current drive experiments in JET. The local electron density in front of the LH launcher was increased by injecting gas (D{sub 2} or CD{sub 4}) from a dedicated gas injection module magnetically connected to the launcher. P(LHCD) = 3 MW was coupled with an average reflection coefficient of 5%, at a distance between the last closed flux surface and the launcher of 10 cm, in plasmas with an internal transport barrier (ITB) and H-mode edge, with type 1 and type 3 ELMs (edge localized modes). Following a modification of the gas injection system, in order to optimise the gas localisation with respect to the LH launcher, injection of D{sub 2} proved to be more efficient than CD{sub 4}. A D{sub 2} flux of 5-8 x 10{sup 21} el/s was required at 9 cm. The plasma performance (neutron rate, H-factor, ion temperature) was similar with D{sub 2} and CD{sub 4}. An additional advantage with D{sub 2} injection was found, as it reduced the amplitude of the ELMs, which further facilitated the LH coupling. Furthermore, preliminary results of the study of the behaviour of electron density profile in the scrape-off layer during injection of C{sub 2}H{sub 6} and C{sub 3}H{sub 8} are reported. Finally, the appearance of hot spots, resulting from parasitic absorption of LHCD power in front of the launcher mouth, was studied in the long distance discharges with near gas injection. (authors)

  5. Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K. H.; Garofalo, A. M; Osborne, T. H.; Schaffer, M. J.; Snyder, P. B.; Solomon, W. M.; Park, J.-K.; Fenstermacher, M. E.

    2012-01-01

    Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-I p torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-I p to up to co-I p values of 1-1.3 Nm. This co-I p torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of ν ped * and β N ped . These discharges exhibited confinement quality H 98y2 =1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q 95 =3.4 have reached fusion gain values of G=β N H 89 /q 95 2 =0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-I p torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

  6. Analysis of the direction of plasma vertical movement during major disruptions in ITER

    International Nuclear Information System (INIS)

    Lukash, Victor; Sugihara, Masayoshi; Gribov, Yuri; Fujieda, Hirobumi

    2005-01-01

    The plasma movement in the upward direction (away from the X-point) after the thermal quench (TQ) of major disruptions in ITER is favourable for the machine design, since the downward movement causes larger electromagnetic (EM) load due to the induced eddy and halo currents. Vertical directions of plasma movement after the TQ in ITER are investigated using the predictive mode of the DINA code. Three dominant parameters in determining the direction of plasma movement are identified: (i) the rate of plasma current quench (plasma temperature after the TQ) (ii) the width of plasma current mixing area just after the TQ (change of the internal plasma inductance l i ) and (iii) the initial vertical position of plasma column before the TQ. It is shown that the reference ITER plasma moves upwards after the TQ, if the electron temperature after the TQ is less than 10 eV and the drop of l i does not exceed 0.2 for the present reference initial vertical position (55.5 cm above the centre of the machine). It is also shown that the operational domain leading to the upward movement is considerably large for disruptions with fast current quench, which could generate quite severe EM load due to the induced eddy current combined with the induced halo current if the movement is downwards

  7. Prospective performances in JT-60SA towards the ITER and DEMO relevant plasmas

    International Nuclear Information System (INIS)

    Tamai, H.; Fujita, T.; Kikuchi, M.

    2006-01-01

    JT-60SA, the former JT-60SC and NCT, a superconducting tokamak positioned as the satellite machine of ITER, collaborating with Japan and EU fusion community, aims at contribution to ITER and DEMO through the demonstration of advanced plasma operation scenario and the plasma applicability test with advanced materials. After the discussions in JA-EU Satellite Tokamak Working Group in 2005, the increased heating power, higher heat removal capacity for the plasma facing components, improvement of the radiation shielding, the remote handling system for the maintenance of in-vessel components, and related equipment are planed to be additionally installed. With such full equipment towards the increased heating power of 41 MW (34 MW-NBI and 7 MW-ECH) with 100 s, the prospective plasma performances, analysed by the equilibrium and transport analysis codes, are rather improved in the view point of the contribution to ITER and DEMO relevant research. Accessibility for higher heating power in a higher density region enables the lower normalized Larmor radius and normalized collision frequency close to the reactor relevant plasma with the ITER-similar configuration of single null divertor plasma with the aspect ratio of A = 3.1, elongation of k95 = 1.7, triangularity of d95 (q95) in the plasma current of I p = 3.5 MA, toroidal magnetic field of B T = 2.59 T and the major radius of Rp=3.16 m. The increases in the electron temperature, beam driven and bootstrap current fraction by the increase of the power of Negative ion based NBI (10 MW) reduce the loop voltage and contribute to increase the maximum plasma current of ITER similar shape. Full non-inductive current drive controllability is also extended into the high density and high plasma current operation towards high beta plasma. Flexibility in aspect ratio and shape parameter is kept the same as NCT, i.e. a double null divertor plasma with A = 2.6, k95 = 1.83, d95 = 0.57, I p = 5.5 MA, B T = 2.72 T, and R p = 3.01 m which

  8. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  9. Alfven Eigenmode Stability with Beams in ITER-like Plasma

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Berk, H.L.; Budny, R.V.

    2004-01-01

    Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV α-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles

  10. Impact of error fields on plasma identification in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martone, R., E-mail: Raffaele.Martone@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Chiariello, A.G.; Formisano, A.; Mattei, M. [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Pironti, A. [Ass. EURATOM/ENEA/CREATE, Università degli Studi di Napoli “Federico II”, Via Claudio 25, Napoli (Italy)

    2013-10-15

    Highlights: ► The paper deals with the effect on plasma identification of error fields generated by field coils manufacturing and assembly errors. ► EFIT++ is used to identify plasma gaps when poloidal field coils and central solenoid coils are deformed, and the gaps sensitivity with respect to such errors is analyzed. ► Some examples of reconstruction errors in the presence of deformations are reported. -- Abstract: The active control of plasma discharges in present Tokamak devices must be prompt and accurate to guarantee expected performance. As a consequence, the identification step, calculating plasma parameters from diagnostics, should provide in a very short time reliable estimates of the relevant quantities, such as plasma centroid position, plasma-wall distances at given points called gaps, and other geometrical parameters as elongation and triangularity. To achieve the desired response promptness, a number of simplifying assumptions are usually made in the identification algorithms. Among those clearly affecting the quality of the plasma parameters reconstruction, one of the most relevant is the precise knowledge of the magnetic field produced by active coils. Since uncertainties in their manufacturing and assembly process may cause misalignments between the actual and expected geometry and position of magnets, an analysis on the effect of possible wrong information about magnets on the plasma shape identification is documented in this paper.

  11. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  12. Magnum-psi, a plasma generator for plasma-surface interaction research in ITER-like conditions

    International Nuclear Information System (INIS)

    Groot, B. de; Rooij, G.J. van; Veremiyenko, V.; Hellermann, M.G. von; Eck, H.J.N. van; Barth, C.J.; Kruijtzer, G.L.; Wolff, J.C.; Goedheer, W.J.; Lopes Cardozo, N.J.; Kleyn, A.W.; Smeets, P.H.M.; Brezinsek, S.; Pospieszczyk, A.; Engeln, R.A.H.; Dahiya, R.P.

    2005-01-01

    The FOM Institute for Plasma Physics is preparing the construction of the linear plasma generator, Magnum-psi. A pilot experiment (Pilot-psi) has been constructed, which we have used to optimize the cascaded arc plasma source and to explore the effect of high magnetic fields on the source operation as well as the expanding plasma beam and the effectiveness of Ohmic heating for manipulating the electron temperature and plasma density after the plasma expansion. Results are presented that demonstrate increasing source efficiency for increasing magnetic fields (up to 1.6 T). Thomson scattering measurements demonstrate that ITER relevant plasma fluxes are presently achieved in Pilot-psi: ∼10 24 m -2 s -1 and that additional heating could elevate the plasma temperature from 1.0 to 1.7 eV

  13. The Physics Basis of ITER Confinement

    International Nuclear Information System (INIS)

    Wagner, F.

    2009-01-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  14. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Eldon, D., E-mail: deldon@princeton.edu [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0964 (United States); Princeton University, Princeton, New Jersey 08543 (United States); Boivin, R. L.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Turnbull, A. D.; Burrell, K. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tynan, G. R.; Boedo, J. A. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0964 (United States); Kolemen, E. [Princeton University, Princeton, New Jersey 08543 (United States); Schmitz, L. [University of California Los Angeles, Los Angeles, California 90095-7099 (United States); Wilson, H. R. [University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-05-15

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significant (up to ∼50%) reduction of pedestal height on short (∼1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.

  15. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.-M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied (κ = 1.3 - 1.9, δ 0.1 - 0.7) has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1 - 0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence of absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ∼ 1.6) in long H-modes (1.5 s). (Author)

  16. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied, has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1-0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence or absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ≅1.6) in long H-modes (1.5 s). (author) 9 figs., 9 refs

  17. Transport of impurities during H-mode pulses in JET

    International Nuclear Information System (INIS)

    Giannella, R.; Gottardi, N.; Mompean, F.; Mori, H.; Pasini, D.; Stork, D.; Barnsley, R.; Hawkes, N.C.; Lawson, K.

    1990-01-01

    The transport of impurities during the H-mode is very different from that observed in the other regimes. This is clearly evident in the quiescent discharges where the confinement time of impurities τ I are measured in all the quiescent H-mode discharges in spite of the variety of impurity behavior observed corresponding to different plasma parameters and operating scenarios. The condition of the machine has an influence on the role played by the various impurities, but this does not seem to affect the flow patterns of these ions substantially. In particular oxygen, which was often detected as the dominant radiator, can be reduced to a negligible fraction by He conditioning of the carbon X-point tiles or limiters or by evaporating beryllium in the vacuum vessel. Nevertheless the behaviour of the residual impurities in otherwise similar discharges remains substantially unchanged. The transport patterns appear in fact to be affected by the plasma parameters and their profiles. In particular, two extreme transport regimes are presented in the following. These discharges have been modelled with the aid of a recently developed fully time-dependent impurity transport code using heuristic profiles for the impurity diffusion D and the convection velocity v. (author) 4 refs., 5 figs

  18. Experimental Simulation of Beryllium Armour Damage Under ITER-like Intense Transient Plasma Loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.; Basaleev, E.; Nikolaev, G.; Kurbatova, L., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Material, Moscow (Russian Federation); Podkovyrov, V.; Zhitlukhin, A. [SRC RF TRINITI, Troitsk (Russian Federation); Khimchenko, L. L. [Project Centre of ITER, Moscow (Russian Federation)

    2012-09-15

    Full text: Beryllium will be used as a plasma facing material in the next generation of tokamaks such as ITER. During plasma operation in ITER, the plasma facing materials and components will be suffered by different kinds of loading which may affect their surface or their joint to the heat sink. In addition to quasi-stationary loadings which are caused by the normal cycling operation, the plasma facing components and materials may also be exposed to the intense short transient loads like disruptions, ELMs. All these events may lead to beryllium surface melting, cracking, evaporation and erosion. It is expected that the erosion of beryllium under transient plasma loads such as ELMs and disruptions will mainly determine a lifetime of ITER first wall. To obtain the experimental data for the evaluation of the beryllium armor lifetime and dust production under ITER-relevant transient loads, the advanced plasma gun QSPA-Be facility has been constructed in Bochvar Institute. This paper presents recent results of the experiments with Russian beryllium of TGP-56FW ITER grade. The mock-ups of a special design armored with two beryllium targets (80 x 80 x 10 mm{sup 3}) were tested by hydrogen plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat load of 0.5 and 1.0 MJ/m{sup 2}. Experiments were performed at RT temperature. The evolution of surface microstructure and profile, cracks morphology and mass loss/gain under erosion process on the beryllium surface exposed to up to 250 shots will be presented and discussed. (author)

  19. Toward a design for the ITER plasma shape and stability control system

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Leuer, J.A.; Kellman, A.G.; Haney, S.W.; Bulmer, R.H.; Pearlstein, L.D.; Portone, A.

    1994-07-01

    A design strategy for an integrated shaping and stability control algorithm for ITER is described. This strategy exploits the natural multivariable nature of the system so that all poloidal field coils are used to simultaneously control all regulated plasma shape and position parameters. A nonrigid, flux-conserving linearized plasma response model is derived using a variational procedure analogous to the ideal MHD Extended Energy Principle. Initial results are presented for the non-rigid plasma response model approach applied to an example DIII-D equilibrium. For this example, the nonrigid model is found to yield a higher passive growth rate than a rigid current-conserving plasma response model. Multivariable robust controller design methods are discussed and shown to be appropriate for the ITER shape control problem

  20. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  1. Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas

    Science.gov (United States)

    Garcia, J.; Görler, T.; Jenko, F.

    2018-05-01

    The impact of isotope effects and fast ions on microturbulence is analyzed by means of non-linear gyrokinetic simulations for an ITER hybrid scenario at high beta obtained from previous integrated modelling simulations with simplified assumptions. Simulations show that ITER might work very close to threshold, and in these conditions, significant turbulence suppression is found from DD to DT plasmas. Electromagnetic effects are shown to play an important role in the onset of this isotope effect. Additionally, even external ExB flow shear, which is expected to be low in ITER, has a stronger impact on DT than on DD. The fast ions generated by fusion reactions can additionally reduce turbulence even more although the impact in ITER seems weaker than in present-day tokamaks.

  2. Safety characteristics of options for plasma-facing components for ITER and beyond

    International Nuclear Information System (INIS)

    Piet, S.J.; McCarthy, K.A.; Holland, D.F.; Longhurst, G.R.; Merrill, B.J.

    1991-01-01

    Plasma-facing components (PFC) likely dominate the safety hazards of the International Thermonuclear Experimental Reactor (ITER) and post-ITER machines. To gain regulatory approval and for fusion energy to fulfill its ultimate attractive safety and environmental potential, safety must be considered when selecting among PFC options. This paper summarizes current PFC safety information. PFC safety issues fall into seven areas: disruption tolerance, disruption severity, tritium inventory and permeation, accidental energy release, activation/toxin hazards, cooling disturbances, and system issues. RFC options include current ITER mainline options (Be or W coating, C tiles), variants on current ITER options, and liquid metal (LM) divertors. No PFC option that we have examined is free of critical safety concerns. There are also innovative ideas that may improve any PFC's performance -- super-permeable vacuum ducts, helium self-pumping, and gaseous divertors. We conclude with recommendations and a future strategy. 17 refs., 1 fig., 3 tabs

  3. Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be

    Directory of Open Access Journals (Sweden)

    N.S. Klimov

    2017-08-01

    Full Text Available Material migration in ITER is expected to move beryllium (Be eroded from the first wall primarily to the tungsten (W divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI. The Be layers (1→50µm thick are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks and on tile edges. At 0.5MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER. Be layer of 10µm thick on Be target has higher resistance to plasma irradiation than 1 and 55µm, and retain their integrity up to the maximum pulse number at 0.2MJm−2. For 1µm and 55µm thick on Be target significant Be layer losses were observed at 0.2MJm−2.

  4. Design and first plasma measurements of the ITER-ECE prototype radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Austin, M. E.; Brookman, M. W.; Rowan, W. L. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Danani, S. [ITER-India/Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bryerton, E. W.; Dougherty, P. [Virginia Diodes, Inc., Charlottesville, Virginia 22902 (United States)

    2016-11-15

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T{sub e}). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T{sub e} plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  5. Temperature effect on hydrocarbon deposition on molybdenum mirrors under ITER-relevant long-term plasma operation

    NARCIS (Netherlands)

    Rapp, J.; van Rooij, G. J.; Litnovsky, A.; Marot, L.; De Temmerman, G.; Westerhout, J.; Zoethout, E.

    2009-01-01

    Optical diagnostics in ITER will rely on mirrors near the plasma and the deterioration of the reflectivity is a concern. The effect of temperature on the deposition efficiency of hydrocarbons under long-term operation conditions similar to ITER was investigated in the linear plasma generator

  6. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  7. Beryllium assessment and recommendation for application in ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  8. Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak

    Science.gov (United States)

    Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent

    2018-02-01

    First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.

  9. The influence of electric fields and neutral particles on the plasma sheath at ITER divertor conditions

    NARCIS (Netherlands)

    Shumack, A.E.

    2011-01-01

    The purpose of this thesis is to support the optimization of the ‘exhaust-pipe’, or so-called ‘divertor’, of the nuclear fusion experiment ITER, a large international fusion reactor now under construction in the south of France. We focus particularly on two ‘tools’ for optimization of the plasma

  10. Plasma cleaning of ITER First Mirrors in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  11. European development of carbon armoured plasma facing components for ITER

    International Nuclear Information System (INIS)

    Merola, M.; Vieider, G.; Wu, C.; Schedler, B.; Chappuis, P.; Escourbiac, F.; Schlosser, J.; Duwe, R.; Roedig, M.; Febvre, M.; Grattarola, M.; Tahtinen, S.; Vesprini, R.

    2001-01-01

    After a brief description of the rationale of the material and geometry selection for each carbon armoured plasma facing components, this paper describes the European development of the two basic geometries, namely the monoblock and the flat tile. An overview of the non-destructive inspection techniques specifically developed for these components is also presented. (orig.)

  12. Investigation of key parameters for the development of reliable ITER baseline operation scenarios using CORSICA

    Science.gov (United States)

    Kim, S. H.; Casper, T. A.; Snipes, J. A.

    2018-05-01

    ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0  ×  10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.

  13. Operational range and transport barrier of the H-mode in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Amadeo, P.; Anton, M.; Baldzuhn, J.; Brakel, R.; Bleuel, J.; Fiedler, S.; Geist, T.; Grigull, P.; Hartfuss, H.J.; Jaenicke, R.; Kick, M.; Kisslinger, J.; Koponen, J.; Wagner, F.; Weller, A.; Wobig, H.; Zoletnik, S.; Holzhauer, E.

    1998-01-01

    In W7-AS the H-mode is characterized by an edge transport barrier localized in the first 3-4 cm inside the separatrix. In the ELMy H-mode preceding the quiescent state ELMs appear as a sudden breakdown of the edge transport barrier in coincidence with bursts of fluctuations. Between ELMs fluctuations are identical to those of the quiescent H-mode. The operational range of the quiescent H-mode is determined by narrow windows of the edge rotational transform and a threshold edge electron density. In contrast, ELM-like events are observed for a variety of plasma conditions by far exceeding the narrow operational windows for the quiescent state. (author)

  14. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  15. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Neubauer, O.; Wolters, J. [Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  16. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H.; Knauff, R. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany); Neubauer, O.; Wolters, J.; Offermanns, G.; Biel, W. [Forschungszentrum Juelich GmbH (Germany)

    2011-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  17. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  18. H-mode pedestal characteristics on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Counsell, G F; Arends, E; Meyer, H; Taylor, D; Valovic, M; Walsh, M; Wilson, H

    2004-01-01

    The H-mode pedestal characteristics on the mega ampere spherical tokamak (MAST) are measured in a variety of disconnected double null discharges and the effect of edge localized modes (ELMs) on the pedestal is presented. The edge density pedestal width in spatial co-ordinates is similar on both the inboard and outboard sides. Neutral penetration may be able to explain the density pedestal width but it alone cannot explain the characteristics of the temperature pedestal. The data from MAST can be used to improve temperature pedestal width scalings by extending the ranges in pedestal collisionality, magnetic field, elongation and aspect ratio studied by other machines. Convective transport is found to dominate energy losses during ELMs and the fractional loss of pedestal energy during an ELM on MAST correlates better with SOL ion transit time than with pedestal collisionality

  19. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  20. MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width

    NARCIS (Netherlands)

    Loarte, A.; Liu, F.; Huijsmans, G.T.A.; Kukushkin, A.S.; Pitts, R.A.

    2015-01-01

    Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 MHD stability of ITER plasmas has been analyzed for QDT = 10 edge and SOL plasma conditions, showing that the SOL plasma is MHD stable down to pressure

  1. LIDAR TS for ITER core plasma. Part II: simultaneous two wavelength LIDAR TS

    Science.gov (United States)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2017-12-01

    We have shown recently, and in more detail at this conference (Salzmann et al) that the LIDAR approach to ITER core TS measurements requires only two mirrors in the inaccessible port plug area of the machine. This leads to simplified and robust alignment, lower risk of mirror damage by plasma contamination and much simpler calibration, compared with the awkward and vulnerable optical geometry of the conventional imaging TS approach, currently under development by ITER. In the present work we have extended the simulation code used previously to include the case of launching two laser pulses, of different wavelengths, simultaneously in LIDAR geometry. The aim of this approach is to broaden the choice of lasers available for the diagnostic. In the simulation code it is assumed that two short duration (300 ps) laser pulses of different wavelengths, from an Nd:YAG laser are launched through the plasma simultaneously. The temperature and density profiles are deduced in the usual way but from the resulting combined scattered signals in the different spectral channels of the single spectrometer. The spectral response and quantum efficiencies of the detectors used in the simulation are taken from catalogue data for commercially available Hamamatsu MCP-PMTs. The response times, gateability and tolerance to stray light levels of this type of photomultiplier have already been demonstrated in the JET LIDAR system and give sufficient spatial resolution to meet the ITER specification. Here we present the new simulation results from the code. They demonstrate that when the detectors are combined with this two laser, LIDAR approach, the full range of the specified ITER core plasma Te and ne can be measured with sufficient accuracy. So, with commercially available detectors and a simple modification of a Nd:YAG laser similar to that currently being used in the design of the conventional ITER core TS design mentioned above, the ITER requirements can be met.

  2. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  3. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

    International Nuclear Information System (INIS)

    Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

    1999-01-01

    This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

  4. ITER-FEAT magnetic configuration and plasma position/shape control in the nominal PF scenario

    International Nuclear Information System (INIS)

    Gribov, Y.V.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The capability of the ITER-FEAT poloidal field system to support the four 'design' scenarios and the high current 'assessed' scenario have been studied. To operate with highly elongated plasma, the system has segmentation of the central solenoid and a separate fast feedback loop for plasma vertical stabilisation. Within the limits imposed on the coil currents, voltages and power, the poloidal field system provides the required plasma scenario and control capabilities. The separatrix deviation from the required position, in scenarios with minor disruptions is within less than about 100 mm. (author)

  5. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  6. Status of R and D of the plasma facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Mazul, I.V.; Akiba, M.; Arkhipov, I.

    2001-01-01

    The paper reports the progress made by the ITER Home Teams in the development of robust carbon and tungsten armoured plasma facing components for the ITER divertor. The activities on the development and study of armour materials, joining technologies, non-destructive evaluation techniques, high heat flux testing of manufactured components and neutron irradiation resistance studies are presented. The results of these activities confirm the feasibility of the main divertor components. Examples of the fruitful collaboration between Parties and future R and D needs are also described. (author)

  7. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  8. Overview of the preliminary design of the ITER plasma control system

    Science.gov (United States)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  9. Progress in quantifying the edge physics of the H mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Burrell, K.H.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H mode regime. Several studies show that electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for elements of such parameters. They systematically increase during the L phases of discharges which make a transition to H mode, and these increases are typically larger than the increases in the underlying quantities. The quality of H mode confinement is strongly correlated with the height of the H mode pedestal for the pressure. The gradient of the pressure is limited by MHD modes, in particular by ideal kink ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier for electron pressure is well described by a relationship that is proportional to (β p ped ) 1/2 . A new regime of confinement, called the quiescent H mode, which provides steady state operation with no ELMs, low radiated power and normal H mode confinement, has been discovered. A coherent edge MHD mode provides adequate particle transport to control the plasma density while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  10. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  11. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    International Nuclear Information System (INIS)

    Visca, Eliseo; Roccella, S.; Candura, D.; Palermo, M.; Rossi, P.; Pizzuto, A.; Sanguinetti, G.P.; Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G.

    2015-01-01

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m 2 but the capability to remove up to 20 MW/m 2 during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  12. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  13. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  14. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  15. Energy confinement in Ohmic H-mode in TUMAN-3M

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Levin, L.S.; Tukachinsky, A.S.

    1997-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. In 1994 new vacuum vessel had been installed in TUMAN-3 tokamak. The vessel has the same sizes as old one (R 0 =0.55 m, a 1 =0.24 m). New vessel was designed to reduce mechanical stresses in the walls during B T ramp phase of a shot. Therefore modified device - TUMAN-3M is able to produce higher B T and I p , up to 2 T and 0.2 MA respectively. During first experimental run device was operated in Ohmic Regime. In these experiments the possibility to achieve Ohmic H-mode was studied. The study of the parametric dependencies of the energy confinement time in both OH and Ohmic H-mode was performed. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Energy confinement time in TUMAN-3/TUMAN-3M Ohmic H-mode has revealed good agreement with JET/DIII-D/ASDEX scaling for ELM-free H-mode, resulting in very long τ E at the high plasma current discharges. (author)

  16. Preliminary assessment of the tritium inventory and permeation in the plasma facing components of ITER

    International Nuclear Information System (INIS)

    Federici, G.; Holland, D.; Brooks, J.; Causey, R.; Dolan, T.J.; Longhurst, G.

    1995-01-01

    This paper discusses preliminary quantitative predictions for the tritium inventory in- and permeation through the first-wall and divertor PFC's of ITER. The primary plasma facing material under consideration is beryllium, with possible use of tungsten or carbon fiber composites (CFC's) on high-heat-flux surfaces. They use state-of-the-art tritium transport models, in conjunction with design parameters, and loading conditions anticipated for the first-wall, baffle, limiter and divertor. The analysis includes the synergistic effects of erosion on tritium implantation and trapping, which are expected to play a key role, particularly in the divertor regions where the interaction of the plasma with the surfaces will be most severe. The influence of several key parameters that strongly affect tritium build-up and release is assessed. Finally, they discuss the uncertainties in materials properties under ITER operating conditions and the R and D needed to resolve these uncertainties

  17. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  18. Towards the conceptual design of the ITER real-time plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Makijarvi, P.; Simrock, S.; Snipes, J.A.; Wallander, A.; Zabeo, L.

    2014-01-01

    Highlights: • We describe the main control areas and interfaces for the ITER real-time plasma control system and the current state of their design. • An overview is given for the implementation strategy for the plasma control system as part of the ITER control, data access and communication system. • Current efforts on the creation of simulation and development tools are presented. - Abstract: ITER will be the world's largest magnetic confinement tokamak fusion device and is currently under construction in southern France. The ITER Plasma Control System (PCS) is a fundamental component of the ITER Control, Data Access and Communication system (CODAC). It will control the evolution of all plasma parameters that are necessary to operate ITER throughout all phases of the discharge. The design and implementation of the PCS poses a number of unique challenges. The timescales of phenomena to be controlled spans three orders of magnitude, ranging from a few milliseconds to seconds. Novel control schemes, which have not been implemented at present-day machines need to be developed, and control schemes that are only done as demonstration experiments today will have to become routine. In addition, advances in computing technology and available physics models make the implementation of real-time or faster-than-real-time predictive calculations to forecast and subsequently to avoid disruptions or undesired plasma regimes feasible. This requires the PCS design to be adaptable in real-time to the results of these forecasting algorithms. A further novel feature is a sophisticated event handling system, which provides a means to deal with plasma related events (such as MHD instabilities or L-H transitions) or component failure. Finally, the schedule for design and implementation poses another challenge. The beginning of ITER operation will be in late 2020, but the conceptual design activity of the PCS has already commenced as required by the on-going development of

  19. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  20. Progress on radio frequency auxiliary heating system designs in ITER

    International Nuclear Information System (INIS)

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined

  1. Measurement of tokamak error fields using plasma response and its applicability to ITER

    International Nuclear Information System (INIS)

    Strait, E.J.; Buttery, R.J.; Chu, M.S.; Garofalo, A.M.; La Haye, R.J.; Schaffer, M.J.; Casper, T.A.; Gribov, Y.; Hanson, J.M.; Reimerdes, H.; Volpe, F.A.

    2014-01-01

    The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed ‘error fields’. Possible approaches are discussed for determination of error fields and the required current in non-axisymmetric correction coils, with an emphasis on two relatively new methods: measurement of the torque balance on a saturated magnetic island, and measurement of the braking of plasma rotation in the absence of an island. The former is well suited to ohmically heated discharges, while the latter is more appropriate for discharges with a modest amount of neutral beam heating to drive rotation. Both can potentially provide continuous measurements during a discharge, subject to the limitation of a minimum averaging time. The applicability of these methods to ITER is discussed, and an estimate is made of their uncertainties in light of the specifications of ITER's diagnostic systems. The use of plasma response-based techniques in normal ITER operational scenarios may allow identification of the error field contributions by individual central solenoid coils, but identification of the individual contributions by the outer poloidal field coils or other sources is less likely to be feasible. (paper)

  2. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    International Nuclear Information System (INIS)

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed

  3. Repetitive plasma loads typical for ITER Type-I ELMS; simulation in QSPA Kh-50

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tsarenko, A.V.; Landman, I.

    2005-01-01

    The power loads on current tokamaks associated with the Type I ELMs generally do not affect the lifetime of divertor elements. However, the ITER ELMs may lead to unacceptable lifetime; their loads are estimated as QELM(1-3) MJ/m 2 at t = 0.1-1 ms and the repetition frequency of an order of 1 Hz (∼ 400 ELMs during each ITER pulse). Such plasma energy loads expected for ITER ELMs are not achieved in existing tokamaks. Therefore powerful plasma accelerators are used at present for study of plasma-target interaction and for numerical models validation. Quasi-steady-state plasma accelerators (QSPA), which characterized by essentially longer duration of plasma stream generation in comparison with pulsed plasma guns, became especially attractive facilities for investigations of plasma-surface interaction in conditions of high heat loads simulating the ITER disruptions and ELMs. The paper presents experimental study of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and the main features of plasma interaction with material surfaces in dependence on plasma heat loads. The samples of pure sintered tungsten of EU trademark have been exposed to hydrogen plasma streams produced by the accelerator. To estimate the range of tolerable loads the effects of ELMs on the lifetime of plasma facing components have been experimentally simulated for large numbers of impacts with varying energy density. The experiments were performed with up to 450 pulses of the duration of 0.25 ms and the heat loads in the range of 0.5 - 1.2 MJ/m 2 . At this calorimetry (both at plasma stream and at the target surface), piezo-detectors as well as spectroscopy and interferometry measurements were applied to determine the impacting plasma parameters in different regimes of operation. A threshold character of morphological changes on the tungsten surface under the melting in respect to the pulses number is demonstrated. The number of initial

  4. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  5. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on H-mode characteristics and helium retention have also been assembled. (2) Divertors, heat removal and fuelling. A novel concept for heat removal - the radiative, baffled, partially detached divertor - has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except for internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should

  6. Remote-LIBS characterization of ITER-like plasma facing materials

    International Nuclear Information System (INIS)

    Almaviva, S.; Caneve, L.; Colao, F.; Fantoni, R.; Maddaluno, G.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Description of a LIBS set-up as remote diagnostics in new generation fusion machines. ► Identification of the atomic composition of samples simulating plasma facing components. ► Submicrometric resolution in depth profiling the elemental composition of the samples. ► Identification of elements present in traces or as impurities on the sample surface. ► Discussion on the applicability of the Calibration Free method for quantitative analysis. - Abstract: The occurrence of several plasma-wall interaction processes, eventually affecting the overall system performances, is expected in a working fusion device chamber. Monitoring the changes in the composition of the plasma facing component (PFC) surface layer, as a result of erosion and redeposition mechanisms, can provide useful information on the possible plasma pollution and fuel retention. To this aim, suitable diagnostic techniques able to perform depth profiling analysis of the superficial layers on the PFCs have been developed. Due to the constraints commonly found in fusion devices, the measuring apparatus must be non invasive, remote and sensitive to light elements. These requirements make LIBS (Laser Induced Breakdown Spectroscopy) an ideal candidate for on-line monitoring the walls of current and of next generation (as ITER) fusion devices. LIBS is a well established tool for qualitative, semi-quantitative and quantitative analysis of surfaces, with micro-destructive characteristics and some capabilities for stratigraphy. In this work, LIBS depth profiling capability has been verified for the determination of the composition of multilayer structures simulating plasma facing components covered with deposited impurity layers. A new experimental setup has been designed and realized in order to optimize the characteristics of a LIBS system working in vacuum conditions and remotely, two noticeable properties for an ITER-relevant diagnostics. A quantitative

  7. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  8. ITER safety studies: The effect of two simultaneous perturbations during a loss of plasma control transient

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.

    2014-01-01

    Highlights: •We have re-examined the methodology employed in the analysis of the “Loss of plasma transients in ITER” safety reference events. •We show the possible transient effects of a combined malfunction in external heating system and change in plasma confinement. •We show the possible transient effects of a combined malfunction in fuelling system and change in plasma confinement. •We have shown that new steady-states can be achieved that are potentially dangerous for the wall integrity. -- Abstract: The loss of plasma control events in ITER are safety cases investigated to give an upper bound of the worse effects foreseeable from a total failure of the plasma control function. Conservative analyses based on simple 0D models for plasma balance equations and 1D models for wall heat transfer are used to determine the effects of such transients on wall integrity from a thermal point of view. In this contribution, progress in a “two simultaneous perturbations over plasma” approach to the analysis of the loss of plasma control transients in ITER is presented. The effect of variation in confinement time is now considered, and the consequences of this variation are shown over a n–T diagram. The study has been done with the aid of AINA 3.0 code. This code implements the same 0D plasma-1D wall scheme used in previous LOPC studies. The rationale of this study is that, once the occurrence of a loss of plasma transient has been assumed, and due to the uncertainties in plasma physics, it does not seem so unlikely to assume the possibility of finding a new confinement mode during the transient. The cases selected are intended to answer to the question “what would happen if an unexpected change in plasma confinement conditions takes place during a loss of plasma control transient due to a simultaneous malfunction of heating, or fuelling systems?” Even taking into account the simple models used and the uncertainties in plasma physics and design data, the

  9. H-mode and confinement studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Suttrop, W.; Ryter, F.; Mertens, V.; Gruber, O.; Murmann, H.; Salzmann, H.; Schweinzer, J.

    2001-01-01

    H-mode operational boundaries and H-mode confinement are investigated on ASDEX Upgrade. The local edge parameter threshold for H-mode holds independent of divertor geometry and changes little with ion mass. The deviation of the H-mode power threshold at densities near the Greenwald limit can be understood as a consequence of a confinement deterioration, caused by 'stiff' temperature profiles and lack of core density gradients in gas puff fuelled discharges. Ion and electron temperature profiles can be described by a lower limit of gradient length L T =T/T'. (author)

  10. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    International Nuclear Information System (INIS)

    McKee, G.; Gohil, P.; Schlossberg, D.; Boedo, J.; Burrell, K.; deGrassie, J.; Groebner, R.; Makowski, M.; Moyer, R.; Petty, C.; Rhodes, T.; Schmitz, L.; Shafer, M.; Solomon, W.; Umansky, M.; Wang, G.; White, A.; Xu, X.

    2008-01-01

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion (del)B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion (del)B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER

  11. Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions

    International Nuclear Information System (INIS)

    Zhai, Y.; Feder, R.; Brooks, A.; Ulrickson, M.; Pitcher, C.S.; Loesser, G.D.

    2013-01-01

    Highlights: ► Disruption loads on ITER diagnostic equatorial port plugs are extracted. ► Upward major disruption produces the largest radial moment and radial force on diagnostic first walls and diagnostic shield modules. ► Large eddy currents on supporting rails, keys and water pipes are observed during disruption. -- Abstract: ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed

  12. Integrated core-SOL simulations of L-mode plasma in ITER and Indian demo

    International Nuclear Information System (INIS)

    Wisitsorasak, Apiwat; Onjun, Thawatchai; Kanjanaput, Wittawat

    2015-01-01

    Core-SOL simulations are carried out using 1.5D BALDUR integrated predictive modeling code to investigate tokamak plasma in ITER and Indian DEMO reactors operating in low confinement mode (L-Mode). In each simulation, the plasma current, temperature, and density profiles in both core and SOL region are evolved self-consistency. The SOL is simulated by integrating the fluid equations, including sources, along the field lines. The solutions in SOL subsequently provide as the boundary conditions of core plasma region on low-confinement mode. The core plasma transport model is described using a combination of anomalous transport by Multi-Mode-Model version 2001 (MMM2001) and neoclassical transport calculated by NCLASS module together with the toroidal velocity based on the torque due to Neoclassical Toroidal Viscosity (NTV). In addition, a sensitivity analysis is explored by varying plasma parameters, such as plasma density and auxiliary heating power. Furthermore, the ignition tests are conducted to observed plasma response in each design after shutting down an auxiliary heating. (author)

  13. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  14. Origin of the various beta dependences of ELMy H-mode confinement properties

    International Nuclear Information System (INIS)

    Takizuka, T; Urano, H; Takenaga, H; Oyama, N

    2006-01-01

    Dependence of the energy confinement in ELMy H-mode tokamak on the beta has been investigated for a long time, but a common conclusion has not been obtained so far. Recent non-dimensional transport experiments in JT-60U demonstrated clearly the beta degradation. A database for JT-60U ELMy H-mode confinement was assembled. Analysis of this database is carried out, and the strong beta degradation consistent with the above experiments is confirmed. Two subsets of ASDEX Upgrade and JET data in the ITPA H-mode confinement database are analysed to find the origin of the various beta dependences. The shaping of the plasma cross section, as well as the fuelling condition, affects the confinement performance. The beta dependence is not identical for different devices and conditions. The shaping effect, as well as the fuelling effect, is a possible candidate for causing the variation of beta dependence

  15. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    Science.gov (United States)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically LLC.

  16. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    International Nuclear Information System (INIS)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A; Constans, S; Merola, M; Riccardi, B

    2009-01-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  17. Studies related to plasma-wall interactions in ITER - Final scientific report 2009

    International Nuclear Information System (INIS)

    Marot, L.

    2009-09-01

    In this final scientific report made by the University of Basel, Switzerland, on-going work on plasma-wall interactions in the International Thermonuclear Experimental Reactor ITER is reported on. The growing interest concerning the use of rhodium (Rh) as a material for the first mirrors in ITER and the necessity of using it as a thin film deposited on a polished substrate has necessitated the development of a robust deposition technique for the preparation of high-reflectivity mirrors. The realisation and tests of high-quality rhodium coated mirrors using magnetron sputtering is reported on. Also, the exposure of the rhodium and molybdenum coated mirrors in the Tokamak fusion reactor system is reported on and the role of carbon and tungsten impurities in the optical degradation of metallic mirrors is looked at. Optical measurements made at the Joint European Torus (JET) are also reported on

  18. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Science.gov (United States)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  19. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  20. Numerical study of the ITER divertor plasma with the B2-EIRENE code package

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, V.; Reiter, D. [Forschungszentrum Juelich (DE). Inst. fuer Energieforschung (IEF), Plasmaphysik (IEF-4); Kukushkin, A.S. [ITER International Team, Cadarache (France)

    2007-11-15

    The problem of plasma-wall interaction and impurity control is one of the remaining critical issues for development of an industrial energy source based on nuclear fusion of light isotopes. In this field sophisticated integrated numerical tools are widely used both for the analysis of current experiments and for predictions guiding future device design. The present work is dedicated to the numerical modelling of the edge plasma region in divertor configurations of large-scale tokamak fusion devices. A well established software tool for this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively hot (>> 10 eV) ''high recycling divertor''. It did not take into account a number of physical effects which can be potentially important for ''detached conditions'' (cold, - several eV, - high density, - {approx} 10{sup 21} m{sup -3}, - plasma) typical for large tokamak devices. This is especially critical for the modelling of the divertor plasma of ITER: an international project of an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely used for ITER modelling, essentially with a significantly revised version of EIRENE: the Monte-Carlo neutral transport code. The main part of the thesis address three major groups of the new physical effects which have been added to the model in frame of this work: the neutral-neutral collisions, the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral gas and the radiation field) solution for the reference ITER case is analysed. The strongest effect is found to be due to the revised molecular collision kinetics, in particular due to hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added non

  1. Numerical study of the ITER divertor plasma with the B2-EIRENE code package

    International Nuclear Information System (INIS)

    Kotov, V.; Reiter, D.; Kukushkin, A.S.

    2007-11-01

    The problem of plasma-wall interaction and impurity control is one of the remaining critical issues for development of an industrial energy source based on nuclear fusion of light isotopes. In this field sophisticated integrated numerical tools are widely used both for the analysis of current experiments and for predictions guiding future device design. The present work is dedicated to the numerical modelling of the edge plasma region in divertor configurations of large-scale tokamak fusion devices. A well established software tool for this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively hot (>> 10 eV) ''high recycling divertor''. It did not take into account a number of physical effects which can be potentially important for ''detached conditions'' (cold, - several eV, - high density, - ∼ 10 21 m -3 , - plasma) typical for large tokamak devices. This is especially critical for the modelling of the divertor plasma of ITER: an international project of an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely used for ITER modelling, essentially with a significantly revised version of EIRENE: the Monte-Carlo neutral transport code. The main part of the thesis address three major groups of the new physical effects which have been added to the model in frame of this work: the neutral-neutral collisions, the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral gas and the radiation field) solution for the reference ITER case is analysed. The strongest effect is found to be due to the revised molecular collision kinetics, in particular due to hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added non-linear effects (neutral-neutral collisions, radiation opacity

  2. An operational non destructive examination for ITER divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Escourbiac, F.; Farjon, J.L.; Vignal, N.; Cismondi, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [ITER International Team, Cadarache, 13 - St Paul Lez Durance (France); Riccardi, B. [CEFDA CSU-Garching, Garching bei Munchen (Germany)

    2007-07-01

    Full text of publication follows: To meet the power exhaust - heat flux of 20 MW/m{sup 2} - requirements of Plasma Facing Components (PFCs) during plasma operation requires control of their thermal and mechanical integrity. As heat exhaust capability and lifetime of PFCs during in-situ operation are linked to the manufacturing quality, it is an absolute requirement to develop reliable nondestructive examination methods, in particular of the CFC-CuCrZr joint, throughout the manufacturing process. Within the framework of Tokamak Tore Supra upgrade, a pioneering activity has been developed to evaluate the capability of the PFC to be efficiently cooled. In 1998 a test bed - so called SATIR - based on the heat transient method was developed by the CEA and is used today as an inspection tool in order to guarantee the PFCs performances. The technical procurement plan of ITER Divertor targets stated that all Cu cast layers on CFC armour should be subjected to 100% thermographic examination. Each ITER Party should demonstrate its technical capability to carry out the PFC with the required cooling efficiently. The ITER Divertor PFCs pose new challenges especially for the mono-block CFC thickness, and the number of full scale units to be tested which is higher than on any existing or under construction fusion machine. The SATIR method as functional inspection has been identified as the basis test to decide upon the final acceptance of the Divertor PFCs. In order to increase the detection sensitivity of SATIR test bed, several possibilities have been assessed i) the increase of the convective heat transfer coefficient, which improved in a significant way the sensitivity of SATIR diagnostic on ITER components. ii) the installation of a digital infrared camera and the improvement of the thermal signal processing, has led to a considerable increase of performances iii) an innovative process based on spatial image autocorrelation will allow to localize the interlayer defect

  3. Parametric analysis and operational performance of EDA-ITER

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Tsunematsu, Toshihide; Fujieda, Hirobumi.

    1994-06-01

    Confinement capability of EDA-ITER is investigated by using a 0-D model based on CDA physics design guidelines. Confinement enhancement factor (H-factor) is evaluated and required fusion power (P FUS ) for the ignition is calculated. It is found that ignition is possible in H-mode plasma (H=2) when helium accumulation (He) is 10% and P FUS ≥ 1 GW. For Rebut-Lallia scaling law, L-mode (H=1) ignition is possible when P FUS ≥ 3 GW. The required fusion power is, however, more than 4 GW even in H-mode plasmas when the helium accumulation is 20%. Therefore, it is an important future work to study how much helium accumulates in a burning plasma. Capability of steady-state mode operation is also investigated. Required current-drive power for H-mode plasma is about 140 MW when He=10% and the fusion gain Q is more than 5. If the enhanced confinement (H∼3) in high safety factor region (q∼5) can be adoptable, steady-state operation with Q>10 is possible and the required current-drive power is about 60 MW. In spite of the larger fusion power, the divertor heat load of EDA-ITER calculated by scaling models is comparable or smaller than that of CDA-ITER due to the longer connection length. Thermal instability of EDA-ITER is also investigated. The growth time is about 15 s for ITER89 power scaling law. Fusion power excursion is investigated in very preliminary way. It is found that the power rises from 1.5 GW to 3 GW in about 100 s if there is no control. Although this instability could be stabilized by beta limit or helium accumulation effect, it is an important future work since it may cause severe problem. (author)

  4. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W

    International Nuclear Information System (INIS)

    Skinner, C.H.; Haasz, A.A.; Alimov, V.Kh.; Bekris, N.; Causey, R.A.; Clark, R.E.H.; Coad, J.P.; Davis, J.W.; Doerner, R.P.; Mayer, M.; Pisarev, A.; Roth, J.; Tanabe, T.

    2008-01-01

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described

  5. Plasma position and current control system enhancements for the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); Neto, A.C. [Ass. EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, IST, 1049-001 Lisboa (Portugal); Lomas, P.J.; McCullen, P.; Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2014-03-15

    Highlights: • JET plasma position and current control system enhanced for the JET ITER like wall. • Vertical stabilization system enhanced to speed up its response and to withstand larger perturbations. • Improved termination management system. • Implementation of the current limit avoidance system. • Implementation of PFX-on-early-task. - Abstract: The upgrade of Joint European Torus (JET) to a new all-metal wall, the so-called ITER-like wall (ILW), has posed a set of new challenges regarding both machine operation and protection. The plasma position and current control (PPCC) system plays a crucial role in minimizing the possibility that the plasma could permanently damage the ILW. The installation of the ILW has driven a number of upgrades of the two PPCC components, namely the Vertical Stabilization (VS) system and the Shape Controller (SC). The VS system has been enhanced in order to speed up its response and to withstand larger perturbations. The SC upgrade includes three new features: an improved termination management system, the current limit avoidance system, and the PFX-on-early-task. This paper describes the PPCC upgrades listed above, focusing on the implementation issues and on the experimental results achieved during the 2011–12 JET experimental campaigns.

  6. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C H; Alimov, Kh; Bekris, N; Causey, R A; Clark, R.E.H.; Coad, J P; Davis, J W; Doerner, R P; Mayer, M; Pisarev, A; Roth, J

    2008-03-29

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described.

  7. The role of electric field shear stabilization of turbulence in the H-mode to VH-mode transition in DIII-D

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Groebner, R.J.; Rettig, C.L.

    1993-01-01

    VH-mode plasma exhibit energy confinement times up to 2.4 times the DIII-D/JET H-mode scaling relation and up to 3.9 times the value given by ITER89-P L-mode scaling. If this confinement improvement can be exploited in reactor plasmas, smaller prototype reactors with significantly lower unit cost can be produced. Accordingly, understanding and optimizing the confinement improvement is of significant interest. One of the possible explanations for this bulk confinement improvement is stabilization of turbulence by shear in the radial electric field, similar to the present explanation for the confinement improvement at the extreme plasma edge at the L to H transition. Preliminary measurements have shown that the region of the plasma where the electric field gradient is steepest broadens when the plasma goes from H-mode to VH-mode. More recent measurements have confirmed this broadening and have shown that the change in the electric field gradient occurs prior to the change in the thermal transport. In addition, transport analysis shows that the electric field shear increases in the same region between magnetic flux coordinate p=0.6 and 0.9 where the local thermal transport decreases. Furthermore, far infra-red (FIR) scattering measurements have detected density fluctuations in the region around p=0.8 which could be responsible for enhanced transport and which disappear at the time that the electric shear increases. These fluctuations appear as bursts of density fluctuations in the 0.5 to 1.5 MHz range. The time between bursts increases as the electric field shear increases. Once these bursts disappear, the major change in confinement takes place in most discharges. When isolated bursts occur, the heat and angular momentum pulse connected with the burst are detectable on the plasma profile diagnostics. (author) 13 refs., 4 figs

  8. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.; Watson, R.D.; Slattery, K.T.

    1998-02-01

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report

  9. Modeling of ITER edge plasma in the presence of resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhansky, V.; Kaveeva, E.; Veselova, I.; Voskoboynikov, S. [Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Coster, D. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, Garching (Germany)

    2016-08-15

    The modeling of the ITER edge is performed with the use of the code B2SOLPS5.2 in the presence of the electron conductivity caused by RMPs as well as for the reference case with the same input parameters but without RMPs. The radial electric field close to the neoclassical one is obtained without RMPs. Even the modest level of RMPs changes the direction of the electric field and causes the toroidal spin-up of the edge plasma. At the same time the pump-out effect is small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. MAGNUM-PSI, a plasma generator for plasma-surface interaction research in ITER-like conditions

    International Nuclear Information System (INIS)

    Goedheer, W.J.; Rooij, G.J. van; Veremiyenko, V.; Ahmad, Z.; Barth, C.J.; Eck, H.J.N. van; Groot, B. de; Hellermann, M.G. von; Kruijtzer, G.L.; Wolff, J.C.; Brezinsek, S.; Philipps, V.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Dahiya, R.P.; Engeln, R.A.H.; Schram, D.C.; Fantz, U.; Kleyn, A.W.; Lopes Cardozo, N.J.

    2005-01-01

    The FOM-Institute for Plasma Physics - together with its TEC partners - is preparing the construction of Magnum-psi, a magnetized (3 T), steady-state, large area (100 cm 2 ), high-flux (up to 10 24 H + ions m -2 s -1 ) plasma generator. The research programme of Magnum-psi will address the questions for the ITER divertor: erosion, redeposition and hydrogen retention with carbon substrates, melting of metal surfaces, erosion and redeposition with mixed materials. In order to explore and develop the techniques to be applied in Magnum-psi, a pilot experiment (Pilot-psi), operating at a magnetic field up to 1.6 Tesla, has been constructed. Pilot-psi produces a hydrogen plasma beam with the required parameters (T e ≤ 1eV and flux ≥ 10 23 m -2 s -1 ) over an area of 1 cm 2 . In this paper the results of extensive diagnostic measurements on Pilot-psi (a.o., Thomson Scattering and high-resolution spectroscopy), combined with numerical studies of the source and the expansion of the plasma will be presented to demonstrate the feasibility of the large Magnum-psi plasma generator. (author)

  11. The H-mode power threshold in JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H.; Bhatnagar, V P; Campbell, D J; Cordey, J G; Esch, H P.L. de; Gormezano, C; Hawkes, N; Horton, L; Jones, T T.C.; Lomas, P J; Lowry, C; Righi, E; Rimini, F G; Saibene, G; Sartori, R; Sips, G; Stork, D; Thomas, P; Thomsen, K; Tubbing, B J.D.; Von Hellermann, M; Ward, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    New H-mode threshold data over a range of toroidal field and density values have been obtained from the present campaign. The scaling with n{sub e} B{sub t} is almost identical with that of the 91/92 period for the same discharge conditions. The scaling with toroidal field alone gives somewhat higher thresholds than the older data. The 1991/2 database shows a scaling of P{sub th} (power threshold) with n{sub e} B{sub t} which is approximately linear and agrees well with that observed on other tokamaks. For NBI and carbon target tiles the threshold power is a factor of two higher with the ion {Nu}B drift away from the target compared with the value found with the drift towards the target. The combination of ICRH and beryllium tiles appears to be beneficial for reducing P{sub th}. The power threshold is largely insensitive to plasma current, X-point height and distance between the last closed flux surface and the limiter, at least for values greater than 2 cm. (authors). 3 refs., 6 figs.

  12. Scaling studies of the H-mode pedestal

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T i and T e are comparable. Measurements of main ion and C 6+ profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier δ is best described by the dimensionless scaling δ/R ∝ (β pol ped ) 0.4 where (β pol ped ) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T i barrier is quite variable and is not a good measure of the width of the pressure barrier

  13. Comprehensive ab initio simulations of turbulence in ITER-relevant fusion plasmas

    International Nuclear Information System (INIS)

    Jenko, Frank

    2014-01-01

    The astonishing improvements achieved in supercomputing capabilities over the past two decades have allowed groundbreaking new insights into the physics of plasma turbulence. Even though much has been learned already, fundamental challenges related to predicting the performance of future fusion reactors still remain. In particular, today's fusion experiments routinely achieve a transition to a high-confinement mode (H-mode) with a strong transport barrier at the plasma boundary. Understanding the formation conditions of this barrier and its characteristic size and height are crucial to predicting the efficiency of future fusion reactors, but a fully consistent numerical treatment has still been lacking up to now. A main challenge in the treatment of such barriers is their extreme profile variation, implying their susceptibility to finite-size effects. Global simulation capabilities such as demonstrated within the framework of the present project are thus essential in order to understand the dynamics of the edge transport barrier. Both present and future projects employing the GENE code will build on the experience established within this SuperMUC project and tackle this challenging issue. Another increasingly important field relates to turbulence studies in stellarators, which represent an alternative machine design for future fusion applications. With its newly developed capability of studying turbulence in stellarator geometry (i.e. retaining magnetic geometry variations within a magnetic surface), the GENE code is uniquely suited for this problem. With the new German stellarator experiment Wendelstein 7-X nearing completion, existing predictions already made with GENE for stellarator turbulence will be put to the test, and possibilities for validation will emerge. Due to the complex magnetic geometry, stellarator turbulence simulations have extreme computational requirements and will thus continue to challenge the available supercomputing capabilities also in

  14. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Lang, P. [EURATOM / UKAEA, Abingdon, UK; Allen, S. L. [Lawrence Livermore National Laboratory (LLNL); Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Meitner, Steven J. [ORNL; Combs, Stephen Kirk [ORNL; Commaux, Nicolas JC [ORNL; Loarte, A. [ITER Organization, Cadarache, France; Jernigan, Thomas C. [ORNL

    2015-08-01

    The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components (PFCs). Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation.A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.

  15. Research status and issues of tungsten plasma facing materials for ITER and beyond

    International Nuclear Information System (INIS)

    Ueda, Y.; Coenen, J.W.; De Temmerman, G.; Doerner, R.P.; Linke, J.; Philipps, V.; Tsitrone, E.

    2014-01-01

    This review summarizes surface morphology changes of tungsten caused by heat and particle loadings from edge plasmas, and their effects on enhanced erosion and material lifetime in ITER and beyond. Pulsed heat loadings by transients (disruption and ELM) are the largest concerns due to surface melting, cracking, and dust formation. Hydrogen induced blistering is unlikely to be an issue of ITER. Helium bombardment would cause surface morphology changes such as W fuzz, He holes, and nanometric bubble layers, which could lead to enhanced erosion (e.g. unipolar arcing of W fuzz). Particle loadings could enhance pulsed heat effects (cracking and erosion) due to surface layer embrittlement by nanometric bubbles and solute atoms. But pulsed heat loadings alleviate surfaces morphology changes in some cases (He holes by ELM-like heat pulses). Effects of extremely high fluence (∼10 30 m −2 ), mixed materials, and neutron irradiation are important issues to be pursued for ITER and beyond. In addition, surface refurbishment to prolong material lifetime is also an important issue

  16. First Production of C60 Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER

    Science.gov (United States)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.

    2012-10-01

    Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (˜35 cm length, 96 kJ energy) using a solid state TiH2/C60 pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (>10^23 m-3), C60 plasma jet in ˜0.5 ms, with ˜1-2 ms overall response-delivery time. We present the TiH2/C60 cartridge injector output characterization (˜180 mg of sublimated C60 gas) and first production results of a high momentum C60 plasma jet (˜0.6 g.km/s).

  17. Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers

    Science.gov (United States)

    Green, David; Berry, Lee; RF-SciDAC Collaboration

    2017-10-01

    The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  18. The feasibility of beryllium as structural material for the ITER plasma-facing components (PFC)

    International Nuclear Information System (INIS)

    Vieider, G.; Cardella, A.; Gorenflo, H.

    1993-01-01

    Be as plasma-facing armour has attractive features including excellent plasma compatibility, no T-retention via co-deposition and the potential for in-situ repair via plasma spraying. In order to avoid the bonding of the Be-armour to a heatsink structure in e.g., Cu-alloys, the ITER Joint Central Team (JCT) proposed for the divertor tubular elements with monolithic Be, both as plasma-facing and structural material. The analysis of these Be-tubes with 5 mm wall thickness at a heat load of 5 MW/m 2 showed that even for the most favourable assumptions thermal stresses exceed by far the allowed values according to design codes. Damage by neutrons and disruptions would worsen further the case for Be as monolithic plasma-facing and structural material. For PFC at heat flux significantly above 1 MW/m 2 it appears evident that Be should be used merely as armour bonded to a suitable structural material as heatsink. (orig.)

  19. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  20. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  1. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  2. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  3. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    Science.gov (United States)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  4. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Czech Academy of Sciences Publication Activity Database

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  5. Operational limits of high density H-modes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mertens, V.; Borrass, K.; Kaufmann, M.; Lang, P.T.; Lang, R.; Mueller, H.W.; Neuhauser, J.; Schneider, R.; Schweinzer, J.; Suttrop, W.

    2001-01-01

    Systematic investigations of H-mode density limit (H→L-mode back transition) plasmas with gas fuelling and alternatively with additional pellet injection from the magnetic high-field-side HFS are being performed in the new closed divertor configuration DV-II. The resulting database covering a wide range of the externally controllable plasma parameters I p , B t and P heat confirms that the H-mode threshold power exceeds the generally accepted prediction P L→H heat ∝B-bar t dramatically when one approaches Greenwald densities. Additionally, in contrast to the Greenwald scaling a moderate B t -dependence of the H-mode density limit is found. The limit is observed to coincide with divertor detachment and a strong increase of the edge thermal transport, which has, however, no detrimental effect on global τ E . The pellet injection scheme from the magnetic high-field-side HFS, developed recently on ASDEX Upgrade, leads to fast particle drifts which are, contrary to the standard injection from the low-field-side, directed into the plasma core. This improves markedly the pellet particle fuelling efficiency. The responsible physical mechanism, the diamagnetic particle drift of the pellet ablatant was successfully verified recently. Other increased particle losses on respectively different time scales after the ablation process, however, still persist. Generally, a clear gain in achievable density and plasma stored energy is achieved with stationary HFS pellet injection compared to gas-puffing. (author)

  6. Evolution of transiently melt damaged tungsten under ITER-relevant divertor plasma heat loading

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, S., E-mail: s.bardin@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Glad, X. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-les-Nancy (France); Pitts, R.A. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    A high-repetition-rate ELM simulation system was used at both the Pilot-PSI and Magnum-PSI linear plasma devices to investigate the nature of W damage under multiple shallow melt events and the subsequent surface evolution under ITER relevant plasma fluence and high ELM number. First, repetitive shallow melting of two W monoblocks separated by a 0.5 mm gap was obtained by combined pulsed/steady-state hydrogen plasma loading at normal incidence in the Pilot-PSI device. Surface modifications including melting, cracking and strong net-reshaping of the surface are obtained. During the second step, the pre-damaged W sample was exposed to a high flux plasma regime in the Magnum-PSI device with a grazing angle of 35°. SEM analysis indicates no measurable change to the surface state after the exposure in Magnum-PSI. An increase in transient-induced temperature rise of 40% is however observed, indicating a degradation of thermal properties over time.

  7. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  8. IGNITOR, ITER and NIF in the Context of the World Effort on Fusion Burning Plasmas

    Science.gov (United States)

    Azizov, E.; Coppi, B.; Velikhov, E.

    2012-03-01

    As of last summer, the ITER program has been recognized as being directed at providing an ``International Platform for Fusion Technology.'' Then, the two experimental programs that have the explicit goal to approach ignition conditions with D-T plasmas are NIF and IGNITOR. NIF, the National Ignition Facility, is based on the inertial confinement principle using a laser system capable of delivering 1.6 MJ and is being operated in Livermore. IGNITOR will be operated by the Kurchatov Institute within the research center of Troitzk presently owned by Rosatom and involves a high level collaboration between Italy and Russia. For this, Ignitor has been defined as a Flagship Project by Italy and the construction of its core has been funded. The Ignitor design is based on the experimental results obtained by the high field line of experiments carried out at MIT, within the Alcator Program, and in Italy within the Frascati Torus Program. A wide set of experiments in Japan, on high density plasmas, in the US, Russia and Europe have produced plasma physics results and technology developments that have guided the evolution of the Ignitor design. The main theoretical plasma physics issues to be dealt with in connection with this program are discussed.

  9. H-mode regimes and observators of central toroidal rotation in Alcator C-Mod

    International Nuclear Information System (INIS)

    Greenwald, M.; Rice, J.; Boivin, R.

    1999-01-01

    The Enhanced D α or EDA H-mode regime in Alcator C-Mod has been investigated and compared in detail to ELM-free plasmas. (In this paper, ELM-free will refer to discharges with no type I ELMs and with no sign of EDA, though technically, most EDA plasmas are ELM-free as well.) EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. EDA plasmas are seen to be more likely at low plasma current (q > 3.7 - 4), for moderate plasma shaping (0.35 - 0.55), and for high neutral pressures. No obvious trends were observed with input power or pressure (β). In both H-mode regimes, and in ICRF heated L-modes, central impurity toroidal rotation has been deduced, from the Doppler shifts of argon x-ray lines. Rotation velocities up to 1.3 x 10 5 m/s in the co-current direction have been observed in H-mode discharges that had no direct momentum input. There is a strong correlation between the increase in the central impurity rotation velocity and the increase in the plasma stored energy, induced by ICRF heating. In otherwise similar discharges with the same stored energy increase, plasmas with lower current rotate faster. The ion pressure gradient is an unimportant contributor to the central impurity rotation and the presence of a substantial core radial electric field is inferred during the ICRF pulse. An inward shift of ions induced by ICRF waves could give rise to a non-ambipolar electric field in the plasma core. Comparisons with a neo-classical ion orbit shift model show good agreement with the observations, both in magnitude, and in the scaling with plasma current. (author)

  10. The role of MHD instabilities in the improved H-mode scenario

    International Nuclear Information System (INIS)

    Flaws, Asher

    2009-01-01

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced β N onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n ≥ 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current profile

  11. The role of MHD instabilities in the improved H-mode scenario

    Energy Technology Data Exchange (ETDEWEB)

    Flaws, Asher

    2009-02-16

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced {beta}{sub N} onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n {>=} 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current

  12. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  13. Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wan, B.N.; Li, J.G.

    2011-01-01

    The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ~ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before ...

  14. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T T.C.; Ali-Arshad, S; Bures, M; Christiansen, J P; Esch, H P.L. de; Fishpool, G; Jarvis, O N; Koenig, R; Lawson, K D; Lomas, P J; Marcus, F B; Sartori, R; Schunke, B; Smeulders, P; Stork, D; Taroni, A; Thomas, P R; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  15. Scaling of H-mode pedestal characteristics in DIII-D and C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.S.; Boivin, R.L.; Osborne, T.H.

    1999-01-01

    Since the H-mode edge pedestal effectively sets the boundary conditions for energy transport throughout the core, a better understanding of the pedestal region is necessary in order to fully predict H-mode performance. Pedestal characteristics in the DIII-D and Alcator C-Mod tokamaks are described, and scalings of the pedestal width with various plasma parameters are shown. The pedestal width in both tokamaks varies in an inverse sense with plasma current, and is independent of toroidal field. Other similarities, as well as differences, are discussed. It is also found that the pedestal widths of the various physical quantities involved (T e , T i , n e , n i ) may be different. (author)

  16. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    Science.gov (United States)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  17. Characteristics of edge localized mode in JFT-2M H-mode

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Funahashi, Akimasa; Goldston, R.J.

    1989-03-01

    Characteristics of edge localized mode (ELM/ERP) during H-mode plasma of JFT-2M were investigated. It was found that ELM/ERP is mainly a density fluctuation phenomena in the edge, and electron temperature in the edge except just near the separatrix is not very much perturbed. Several experimental conditions to controll ELM/ERP are, plasma density, plasma ion species, heating power, and plasma current ramping. ELM/ERPs found in low density deuterium discharge are suppressed by raising the density. ELM/ERPs are pronounced in hydrogen plasma compared with deuterium plasma. ELM/ERPs seen in hydrogen plasma or in near marginal H-mode conditions are suppressed by increasing the heating power. ELM/ERPs are found to be suppressed by plasma current ramp down, whereas they are enhanced by current ramp up. MHD aspect of ELM/ERP was investigated. No clear MHD features of ELM/ERP were found. However, reversal of mode rotation seen imediately after ELM/ERP suggests the temporal return to L-mode during the ELM/ERP event. (author)

  18. Progress in qualifying the edge physics of the H-mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Boedo, J.A.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H-mode regime. Electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for such parameters. The quality of H-mode confinement is strongly correlated with the height of the H-mode pedestal for the pressure. The gradient of the pressure appears to be controlled by MHD modes, in particular by kink-ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier is well described with a relationship that is proportional to (β p ped ) 1/2 . An attractive regime of confinement has been discovered which provides steady-state operation with no ELMs, low impurity content and normal H-mode confinement. A coherent edge MHD-mode evidently provides adequate particle transport to control the plasma density and impurity content while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  19. Influence of the wall material on the H-mode performance

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.

    1994-06-01

    Theory on the influence of the wall material on the level of the enhanced confinement in H-mode is discussed. When the high-Z material is employed as the wall, the reflection of the neutral particles causes the higher neutral particle density in the plasma. The increased neutral particles lead to the loss of the ion momentum, decrease the radial electric field and degrade the confinement improvement. (author)

  20. Progress in physics basis and its impact on ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Campbell, D.; Stambaugh, R.; Ide, S.; Kamada, Y.; Leonard, A.; Polevoi, A.; Mukhovatov, V.; Costley, A.E.; Gribov, Y.; Oikawa, T.; Sugihara, M.; Asakura, N.; Donne, A.J.H.; Doyle, E.J.; Federici, G.; Kukushkin, A.S.; Gormezano, C.; Gruber, O.; Houlberg, W.; Lipschultz, B.; Medvedev, S.

    2005-01-01

    This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors ∼ 4. Extrapolation to ITER suggests that at the reduced plasma current of ∼ 12MA, high Q > 10 and long pulse (>1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces. (author)

  1. Density fluctuation measurements via reflectometry on DIII-D during L- and H-mode operation

    International Nuclear Information System (INIS)

    Doyle, E.J.; Lehecka, T.; Luhmann, N.C. Jr.; Peebles, W.A.; Philipona, R.

    1990-01-01

    The unique ability of reflectometers to provide radial density fluctuation measurements with high spatial resolution (of the order of ≤ centimeters, is ideally suited to the study of the edge plasma modifications associated with H-mode operation. Consequently, attention has been focused on the study of these phenomena since an improved understanding of the physics of H-mode plasmas is essential if a predictive capability for machine performance is to be developed. In addition, DIII-D is ideally suited for such studies since it is a major device noted for its robust H-mode operation and excellent basic plasma profile diagnostic information. The reflectometer system normally used for fluctuation studies is an O-mode, homodyne, system utilizing 7 discrete channels spanning 15-75 GHz, with corresponding critical densities of 2.8x10 18 to 7x10 19 m -3 . The Gunn diode sources in this system are only narrowly tunable in frequency, so the critical densities are essentially fixed. An X-mode system, utilizing a frequency tunable BWO source, has also been used to obtain fluctuation data, and in particular, to 'fill in the gaps' between the discrete O-mode channels. (author) 12 refs., 5 figs

  2. Helium experiments on Alcator C-Mod in support of ITER early operations

    Science.gov (United States)

    Kessel, C. E.; Wolfe, S. M.; Reinke, M. L.; Hughes, J. W.; Lin, Y.; Wukitch, S. J.; Baek, S. G.; Bonoli, P. T.; Chilenski, M.; Diallo, A.; the Alcator C-Mod Team

    2018-05-01

    Helium majority experiments on Alcator C-Mod were performed to compare with deuterium discharges, and inform ITER early operations. ELMy H-modes were produced with a special plasma shape at B T  =  5.3 T, I P  =  0.9 MA, at q 95 ~ 3.8. The He fraction ranged over, n He,L/n L  =  0.2-0.4, with n D,L/n L  =  0.15-0.26, compared to D plasmas with n D,L/n L  =  0.85-0.97. The power to enter the H-mode in He was found to be greater than ~2 times that for D discharges, in the low density region  operation in ITER.

  3. Expected energy fluxes onto ITER Plasma Facing Components during disruption thermal quenches from multi-machine data comparisons

    International Nuclear Information System (INIS)

    Loarte, A.; Andrew, P.; Matthews, G.F.; Paley, J.; Riccardo, V.; Counsell, G.; Eich, T.; Fuchs, C.; Gruber, O.; Herrmann, A.; Pautasso, G.; Federici, G.; Finken, K.H.; Maddaluno, G.; Whyte, D.

    2005-01-01

    A comparison of the power flux characteristics during the thermal quench of plasma disruptions among various tokamak experiments has been carried out and conclusions for ITER have been drawn. It is generally observed that the energy of the plasma at the thermal quench is much smaller than that of a full performance plasma. The timescales for power fluxes onto PFCs during the thermal quench, as determined by IR measurements, are found to scale with device size but not to correlate with pre-disruptive plasma characteristics. The profiles of the thermal quench power fluxes are very broad for diverted discharges, typically a factor of 5-10 broader than that measured during 'normal' plasma operation, while for limiter discharges this broadening is absent. The combination of all the above factors is used to derive the expected range of power fluxes on the ITER divertor target during the thermal quench. The new extrapolation derived in this paper indicates that the average disruption in ITER will deposit an energy flux approximately one order of magnitude lower than previously thought. The evaluation of the ITER divertor lifetime with these revised specifications is carried out. (author)

  4. Simulation of tokamak armour erosion and plasma contamination at intense transient heat fluxes in ITER

    Science.gov (United States)

    Landman, I. S.; Bazylev, B. N.; Garkusha, I. E.; Loarte, A.; Pestchanyi, S. E.; Safronov, V. M.

    2005-03-01

    For ITER, the potential material damage of plasma facing tungsten-, CFC-, or beryllium components during transient processes such as ELMs or mitigated disruptions are simulated numerically using the MHD code FOREV-2D and the melt motion code MEMOS-1.5D for a heat deposition in the range of 0.5-3 MJ/m 2 on the time scale of 0.1-1 ms. Such loads can cause significant evaporation at the target surface and a contamination of the SOL by the ions of evaporated material. Results are presented on carbon plasma dynamics in toroidal geometry and on radiation fluxes from the SOL carbon ions obtained with FOREV-2D. The validation of MEMOS-1.5D against the plasma gun tokamak simulators MK-200UG and QSPA-Kh50, based on the tungsten melting threshold, is described. Simulations with MEMOS-1.5D for a beryllium first wall that provide important details about the melt motion dynamics and typical features of the damage are reported.

  5. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Science.gov (United States)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  6. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  7. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Putrik, A.B. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Pitts, R.A. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Zhitlukhin, A.M. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kuprianov, I.B. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Spitsyn, A.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow 123182 (Russian Federation); Ogorodnikova, O.V. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Ivanov, B.V.; Sergeecheva, Ya.V.; Lesina, I.G. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Kovalenko, D.V.; Barsuk, V.A.; Danilina, N.A. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Bazylev, B.N. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Giniyatulin, R.N. [Efremov Institute, Doroga na Metallostroy, 3 bld., Metallostroy, Saint-Petersburg 196641 (Russian Federation)

    2015-08-15

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  8. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  9. ICRF specific plasma wall interactions in JET with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, Vl., E-mail: bobkov@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Arnoux, G. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Brezinsek, S.; Coenen, J.W. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Colas, L. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Clever, M. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Czarnecka, A. [Association EURATOM-IPPLM, Hery 23, 01-497 Warsaw (Poland); Braun, F.; Dux, R. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Huber, A. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Jacquet, P. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Klepper, C. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Lerche, E. [LPP-ERM/KMS, Association Euratom-Belgian State, TEC Partners, Brussels (Belgium); Maggi, C. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Marcotte, F. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Maslov, M.; Matthews, G.; Mayoral, M.L. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); McCormick, K. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Meigs, A. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); and others

    2013-07-15

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q{sub 95}-scans, and intensification of those for the −90° phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  10. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  11. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  12. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  13. Characteristics of the First H-mode Discharges in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; Synakowski, E.J.

    2001-01-01

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as ∼150 ms. This confinement time is ∼1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) ∼ 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks

  14. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. II. Analysis of ITER plasma facing components

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.

    1997-01-01

    For pt.I see ibid., p.85-100, 1997. The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the various ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness. (orig.)

  15. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  16. Effect of gas injection during LH wave coupling at ITER-relevant plasma-wall distances in JET

    International Nuclear Information System (INIS)

    Ekedahl, A; Goniche, M; Basiuk, V; Delpech, L; Imbeaux, F; Joffrin, E; Loarer, T; Rantamaeki, K; Mailloux, J; Alper, B; Baranov, Y; Beaumont, P; Corrigan, G; Erents, K; Hawkes, N; McDonald, D; Petrzilka, V; Granucci, G; Hobirk, J; Kirov, K

    2009-01-01

    Good coupling of lower hybrid (LH) waves has been demonstrated in different H-mode scenarios in JET, at high triangularity (δ ∼ 0.4) and at large distance between the last closed flux surface and the LH launcher (up to 15 cm). Local gas injection of D 2 in the region magnetically connected to the LH launcher is used for increasing the local density in the scrape-off layer (SOL). Reciprocating Langmuir probe measurements magnetically connected to the LH launcher indicate that the electron density profile flattens in the far SOL during gas injection and LH power application. Some degradation in normalized H-mode confinement, as given by the H98(y,2)-factor, could be observed at high gas injection rates in these scenarios, but this was rather due to total gas injection and not specifically to the local gas puffing used for LH coupling. Furthermore, experiments carried out in L-mode plasmas in order to evaluate the effect on the LH current drive efficiency, when using local gas injection to improve the coupling, indicate only a small degradation (ΔI LH /I LH ∼ 15%). This effect is largely compensated by the improvement in coupling and thus increase in coupled power when using gas puffing.

  17. Ball-Pen Probe Measurements in L-Mode and H-Mode on ASDEX Upgrade

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Horáček, Jan; Müller, H. W.; Rohde, V.; Ionita, C.; Schrittwieser, R.; Mehlmann, F.; Kurzan, B.; Stöckel, Jan; Dejarnac, Renaud; Weinzettl, Vladimír; Seidl, Jakub; Peterka, M.

    2010-01-01

    Roč. 50, č. 9 (2010), s. 854-859 ISSN 0863-1042. [International Workshop on Electric Probes in Magnetized Plasmas/8th./. Innsbruck, 21.09.2009-24.09.2009] R&D Projects: GA AV ČR KJB100430901; GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * ball- pen probe * electron temperature * L-mode * H-mode * ELMs Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010145/pdf

  18. Papers presented at the 6th H-mode workshop (Seeon, Germany)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The 6th H-mode workshop was held at Kloster Seeon (Germany) during the period of September 22-24, 1997. Contribution to this workshop is reported. Reports include. 1. Role of Nonuniform Superthermal Ions for Internal Transport Barriers. 2. Electric Field Bifurcation and Transition in the Core Plasma of CHS. 3. Formation and Termination of High Ion Temperature Mode in Heliotron/torsatron Plasmas. 4. Transition to an Enhanced Internal Transport Barrier. 5. Physics of Collapses - Probabilistic Occurrence of ELMs and Crashes -. (J.P.N.)

  19. Status of the COMPASS tokamak and characterization of the first H-mode

    Czech Academy of Sciences Publication Activity Database

    Pánek, Radomír; Adámek, Jiří; Aftanas, Milan; Bílková, Petra; Böhm, Petr; Brochard, F.; Cahyna, Pavel; Cavalier, Jordan; Dejarnac, Renaud; Dimitrova, Miglena; Grover, O.; Harrison, J.; Háček, Pavel; Havlíček, Josef; Havránek, Aleš; Horáček, Jan; Hron, Martin; Imríšek, Martin; Janky, Filip; Kirk, A.; Komm, Michael; Kovařík, Karel; Krbec, Jaroslav; Kripner, Lukáš; Markovič, Tomáš; Mitošinková, Klára; Mlynář, Jan; Naydenkova, Diana; Peterka, Matěj; Seidl, Jakub; Stöckel, Jan; Štefániková, Estera; Tomeš, Matěj; Urban, Jakub; Vondráček, Petr; Varavin, Mykyta; Varju, Jozef; Weinzettl, Vladimír; Zajac, Jaromír

    2016-01-01

    Roč. 58, č. 1 (2016), č. článku 014015. ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LM2011021; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA15-10723S Institutional support: RVO:61389021 Keywords : COMPASS * ELM * tokamak * H-mode Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  20. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  1. The physics of transport barrier formation in the PBX-M H-mode

    International Nuclear Information System (INIS)

    Tynan, G.R.; Schmitz, L.; Blush, L.

    1994-01-01

    Measurements of edge profiles, turbulence, and turbulent-driven transport were made inside the last-closed flux surface (LCFS) and in the scrape-off layer (SOL) of PBX-M L-mode and H-mode plasmas using a fast reciprocating Langmuir probe diagnostic. Direct measurements of the potential profile confirm the generation of a strong inward radial electric field (E r ∼ -100 V/cm) just inside the LCFS in H-mode. Density and potential fluctuations levels are reduced at the L-H transition, resulting in significantly lower turbulent transport. The reduction in turbulent transport occurs across the LCFS and SOL regions and is not localized to the region of strong radial electric field. (author)

  2. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  3. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    International Nuclear Information System (INIS)

    Guillemaut, Christophe

    2013-01-01

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author) [fr

  4. Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Gunn, J. P.; Dejarnac, Renaud; Pánek, Radomír; Pitts, R.A.; Podolník, Aleš

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126047. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 Grant - others:Ga MŠk(CZ) LM2015070 Institutional support: RVO:61389021 Keywords : tokamak * plasma * ITER * particle-in-cell * heat loads * monoblock Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa8a9a/meta

  5. Progress of the KSTAR experiments and perspective for ITER scientific researches

    International Nuclear Information System (INIS)

    Oh, Yeong-Kook

    2013-01-01

    KSTAR is a superconducting tokamak aiming to explore the long-pulse high beta confinement. In the 2012 experimental campaign, the duration of the H-mode flattop has been extended up to 16 s at 0.6 MA and plasma current level in H-mode reached at 0.9 MA by adopting the real-time plasma shape control and 3.5 MW neutral beam injection. The equilibrium operating space could be extended surpassing the n=1 ideal no wall limit with betaN and betaN/li up to 2.9 and 4.1, respectively. The pedestal formation and characteristics were investigated according to L- and H-mode transition and during the edge localized mode (ELM). As one of the ITER high priority research topics, exploring the ELM mitigation or suppression by applying n=1 or n=2 resonance magnetic perturbation (RMP) field or by injecting the supersonic molecular beam. The toroidal rotation changes were inspected for the ohmic and H-mode plasma by applying the ECH or 3D magnetic field. Various experimental researches were conducted according to the proposals including the disruption mitigation by using massive gas injection, fast ion loss detection under the edge perturbation, plasma wall interaction and others. (author)

  6. A new boundary control scheme for simultaneous achievement of H-mode and radiative cooling (SHC boundary)

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1995-05-01

    We have proposed a new boundary control scheme (SHC boundary), which could allow simultaneous achievement of the H-mode type confinement improvement and radiative cooling with wide heat flux distribution. In our proposed configuration, a low m island layer sharply separates a plasma confining region from an open 'ergodic' boundary. The degree of openness in the ergodic boundary must be high enough to make the plasma pressure constant along the field line, which in turn separates low density plasma just outside the plasma confining region (the key external condition for achieving a good H-mode discharge) from very high density, cold radiative plasma near the wall (required for effective edge radiative cooling). Examples of such proposed SHC boundaries for Heliotron typed devices and tokamaks are presented. (author)

  7. Safety studies: Review of loss of plasma control transients in ITER with AINA 3.0 code

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.

    2013-01-01

    Highlights: ► We have examined the methodology employed in the analysis of the “Loss of plasma transients in ITER” safety reference events. ► We have developed a new methodology based on the study of the plasma operating window. ► We have concluded that the combined effect of different perturbations should be studied also to determine the most severe transients. -- Abstract: The loss of plasma control events in ITER are safety cases investigated to give an upper bound of the worse effects foreseeable from a total failure of the plasma control function. In the past, conservative analyses based on simple 0D models for plasma balance equations and 1D models for wall heat transfer showed that a hypothetical scenario of first wall coolant tubes melting and subsequent entering of water in the vacuum vessel could not be totally excluded. AINA (Analyses of IN vessel Accidents) code is a safety code developed at Fusion Energy Engineering Laboratory (FEEL) in Barcelona. It uses a 0D–1D architecture, similar to that used for previous analyses of ITER loss of plasma control events. The results of this study show the simultaneous effect of two perturbations (overfuelling and overheating) over a plasma transient, and compare it with the isolated effects of each perturbation. It is shown that the combined effect can be more severe, and a method is outlined to locate the most dangerous transients over a nT diagram

  8. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.; Bonoli, P.; Bourdelle, C.; Budny, R.; Dorland, W.D.; Ernst, D.; Hammett, G.; Mikkelsen, D.; Rice, J.; Wukitch, S.

    2002-01-01

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic

  9. Experimental study of the β-limit in ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Krikunov, S.V.; Levin, L.S.; Rozhdestvensky, V.V.; Tukachinsky, A.S.; Yaroshevich, S.P.

    1998-01-01

    Because of its high confinement properties, the H-mode provides good opportunities to achieve high beta values in a tokamak. In this paper the results of an experimental study of β T and β N limits in the H-mode, obtained in a circular cross section tokamak without auxiliary heating are presented. The experiments were performed in the TUMAN-3M tokamak. The device has the following parameters: R 0 =0.53m, a s =0.22m (limiter configuration), B T ≤1.2T, I p ≤175kA, n-bar e ≤6.2x10 19 m -3 . The stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with fast current ramp-down in ohmic H-mode. A maximum value of β T of 2.0% and β N of 2.0 were achieved. The β N limit achieved reveals itself as a 'soft' (non-disruptive) limit. The stored energy slowly decays after the current ramp-down. No correlation was found between beta restriction and MHD phenomena. Internal transport barrier (ITB) formation was observed in ohmic H-mode. An enhancement factor of 2.0 over ITER93H(ELM-free) was found in the ohmic H-mode with ITB. (author)

  10. Edge ion dynamics in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Gohil, P.; Kim, J.; Seraydarian, R.P.

    1992-05-01

    The goal of this paper is to present detailed measurements of T i and E r at the plasma edge in L- and H-mode with high spatial resolution in order the study the edge ion dynamics. Of primary interest is the relationship between T i and E r and the behavior of the edge T i profile in H-mode. The principle findings are: there appears to be a threshold temperature for T i required for the transition to occur with T i at the LCFS in the range of 0.2--0.3 keV at the transition; a correlation between the edge E r profile and the edge T i profile has been observed; and values of T i of 2--3 keV within a few cm of the LCFS and of dT i /dr of up to 1 keV/cm are observed in the transport barrier in H-mode, with the scale length for T i being of the order of a poloidal gyroradius

  11. Comparison of H-mode barrier width with a model of neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.; Osborne, T.H.; Brooks, N.S.; Wolf, N.S.; Porter, G.D.; Stangeby, P.C.; Colchin, R.J.; Owen, L.W.

    2004-01-01

    Pedestal studies in DIII-D find that the width of the region of steep gradient in the H-mode density is comparable with the neutral penetration length, as computed from a simple analytic model. This model has analytic solutions for the edge plasma and neutral density profiles, which are obtained from the coupled particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40 and 500 eV), the analytic model quantitatively predicts the observed decrease in the width as the pedestal density increases and the observed strong increase in the gradient of the density as the pedestal density increases. The model successfully predicts that L-mode and H-mode profiles with the same pedestal density have gradients that differ by less than a factor of 2. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fuelling is an important part of the physics that determines the structure of the H-mode transport barrier. (author)

  12. ECRH-assisted plasma start-up with toroidally inclined launch: multi-machine comparison and perspectives for ITER

    International Nuclear Information System (INIS)

    Stober, J.; Hobirk, J.; Lunt, T.; Jackson, G.L.; Hyatt, A.W.; Luce, T.; Ascasibar, E.; Cappa, A.; Bae, Y.-S.; Joung, M.; Bucalossi, J.; Casper, T.; Gribov, Y.; Cho, M.-H.; Jeong, J.-H.; Namkung, W.; Park, S.-I.; Granucci, G.; Hanada, K.; Ide, S.

    2011-01-01

    Electron cyclotron resonance heating (ECRH)-assisted plasma breakdown is foreseen with full and half magnetic field in ITER. As reported earlier, the corresponding O1- and X2-schemes have been successfully used to assist pre-ionization and breakdown in present-day devices. This contribution reports on common experiments studying the effect of toroidal inclination of the ECR beam, which is ≥20 0 in ITER. All devices could demonstrate successful breakdown assistance for this case also, although in some experiments the necessary power was almost a factor of 2 higher compared with perpendicular launch. Differences between the devices with regard to the required power and vertical field are discussed and analysed. In contrast to most of these experiments, ITER will build up loop voltage prior to the formation of the field null due to the strong shielding by the vessel. Possible consequences of this difference are discussed.

  13. The importance of the toroidal magnetic field for the feasibility of a tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2000-01-01

    The next step in the demonstration of the scientific feasibility of a tokamak fusion reactor is a DT burning plasma experiment for the study and control of self-heated plasmas. In this paper, the authors examine the role of the toroidal magnetic field on the confinement of a tokamak plasma in the ELMy H-mode regime--the operational regime foreseen for ITER

  14. DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS

    International Nuclear Information System (INIS)

    LUCE, T.C.; WADE, M.R.; FERRON, J.R.; HYATT, A.W.; KELLMAN, A.G.; KINSEY, J.E.; LAHAY, R.J.; LASNIER, C.J.; MURAKAMI, M.; POLITZER, P.A.; SCOVILLE, J.T.

    2002-01-01

    OAK A271 DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak in stationary conditions with relatively low plasma current (q 95 > 4). A figure of merit for fusion gain Β N H 89 /q 95 2 has been maintained at values corresponding to Q = 10 operation in a burning plasma for > 6 s or 36 τ E and 2 τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1, which allows stable operation up to the no-wall ideal β limit. These plasmas maintain particle balance by active pumping rather than transient wall conditions. The reduced current lessens significantly the potential for structural damage in the event of a major disruption

  15. Ultrasonic techniques for quality assessment of ITER Divertor plasma facing component

    International Nuclear Information System (INIS)

    Martinez-Ona, Rafael; Garcia, Monica; Medrano, Mercedes

    2009-01-01

    The divertor is one of the most challenging components of ITER machine. Its plasma facing components contain thousands of joints that should be assessed to demonstrate their integrity during the required lifetime. Ultrasonic (US) techniques have been developed to study the capability of defect detection and to control the quality and degradation of these interfaces after the manufacturing process. Three types of joints made of carbon fibre composite to copper alloy, tungsten to copper alloy, and copper-to-copper alloy with two types of configurations have been studied. More than 100 samples representing these configurations and containing implanted flaws of different sizes have been examined. US techniques developed are detailed and results of validation samples examination before and after high heat flux (HHF) tests are presented. The results show that for W monoblocks the US technique is able to detect, locate and size the degradations in the two sample joints; for CFC monoblocks, the US technique is also able to detect, locate and size the calibrated defects in the two joints before the HHF, however after the HHF test the technique is not able to reliably detect defects in the CFC/Cu joint; finally, for the W flat tiles the US technique is able to detect, locate and size the calibrated defects in the two joints before HHF test, nevertheless defect location and sizing are more difficult after the HHF test.

  16. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  17. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  18. Overview of JET results in support of the ITER physics basis

    International Nuclear Information System (INIS)

    Gormezano, C.

    2001-01-01

    The JET experimental campaign has focused on studies in support of the ITER physics basis. An overview of the results obtained is given both for the reference ITER scenario, the ELMy H-mode, and for advanced scenarios which in JET are based on Internal Transport Barriers. JET studies for the ELMy H-mode have been instrumental for the definition of ITER-FEAT. Positive elongation and current scaling in the ITER scaling law have been confirmed, but the observed density scaling fits better a two term (core and edge) model. Significant progress in neo-classical tearing mode limits has been made showing that ITER operation seems to be optimised. Effective helium pumping and divertor enrichment is found to be well within ITER requirements. Target asymmetries and H-isotope retention are well simulated by modelling codes taking into account drift flows in the scrape-off plasmas. Striking improvements in fuelling effectiveness have been found with the new high field pellet launch facility. Good progress has been made on scenarios for achieving good confinement at high densities, both with RI modes and with high field side pellets. Significant development of advanced scenarios in view of their application to ITER has been achieved. Integrated advanced scenarios are in good progress with edge pressure control (impurity radiation). An access domain has been explored showing in particular that the power threshold increases with magnetic field but can be significantly reduced when Lower Hybrid current drive is used to produce target plasma with negative shear. The role of ion pressure peaking on MHD has been well documented. Lack of sufficient additional heating power and interaction with the septum at high beta prevents assessment of beta limits (steady plasmas achieved with β N up to 2.6). Plasmas with non-inductive current (I NI /Ip=60%), well aligned with plasma current, high beta and good confinement have also been obtained. (author)

  19. Density profile analysis during an ELM event in ASDEX Upgrade H-modes

    International Nuclear Information System (INIS)

    Nunes, I.; Manso, M.; Serra, F.; Horton, L.D.; Conway, G.D.; Loarte, A.

    2005-01-01

    This paper reports results on measurements of the density profiles. Here we analyse the behaviour of the electron density for a set of experiments in type I ELMy H-mode discharges in ASDEX Upgrade where the plasma current, plasma density, triangularity and input power were varied. Detailed measurements of the radial extent of the perturbation on the density profiles caused by the edge localized mode (ELM) crash (ELM affected depth), the velocity of the radial propagation of the perturbation as well as the width and gradient of the density pedestal are determined. The effect of a type I ELM event on the density profiles affects the outermost 20-40% of the plasma minor radius. At the scrape-off layer (SOL) the density profile broadens while in the pedestal region the density decreases resulting in a smaller density gradient. This change in the density profile defines a pivot point around which the density profile changes. The average radial velocity at the SOL is in the range 125-150 ms -1 and approximately constant for all the density layers far from the pivot point. The width of the density pedestal is approximately constant for all the ELMy H-mode discharges analysed, with values between 2 and 3.5 cm. These results are then compared with an analytical model where the width of the density is predominantly set by ionization (neutral penetration model). The width of the density profiles for L-mode discharges is included, since L- and H-mode have different particle transport. No agreement between the experimental results and the model is found

  20. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  1. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  2. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  3. Determination of W-erosion through optical spectroscopy under ITER-relevant plasma conditions; Bestimmung der Wolframerosion mittels optischer Spektroskopie unter ITER-relevanten Plasmabedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Laengner, Marko

    2016-11-21

    Tungsten (W) is used in present fusion experiments and is as well a material choice for future reactors like ITER and DEMO. However, tungsten eroded from the wall leads to high radiation losses in the plasma and the transport to the plasma center to critical plasma cooling. Therefore a detailed investigation of the interaction between eroded tungsten and the plasma is necessary. The emission of tungsten line radiation in the plasma and thus the shape of the emission profiles is characterized by excitation and ionisation. Quantitatively the ionisation can be described in terms of the ionisation rate coefficients. This knowledge is necessary for the interpretation of spectroscopic data and especially to determine tungsten fluxes into the plasma that are caused by tungsten erosion. Up to now, ionisation rate coefficients for neutral tungsten were not determined except for the plasma temperature range below 20 eV. For higher temperatures only uncertain calculated data or semi-empirical data is available. Therefore, within this thesis for the first time ionisation and emission processes of tungsten originating from tungsten erosion were investigated in the temperature range between (41±8) eV and (81±8) eV at the tokamak TEXTOR and ionisation rate coefficients were determined experimentally. Measured emission profiles of the W I(400.88 nm)-line show a typical exponential decrease that is caused by the ionisation of the neutral tungsten atoms. But moreover, at a distance of 1 to 2 mm away from the sputtered surface the emission initially increases to a maximum. By introducing a relaxation time between 0.5 and 1 μs before reaching the equilibrium of the population of the emitting energy level of this line the increase of the emission profiles can be reproduced. Simulating the emissions profiles through a Monte-Carlo-simulation that was developed in the scope of this thesis results in ionisation rate coefficients that are identical with values calculated through using

  4. DEMONSTRATION OF THE ITER IGNITION FIGURE OF MERIT AT q95>4 IN STATIONARY PLASMAS IN DIII-D

    International Nuclear Information System (INIS)

    WADE, M.R.; LUCE, T.C.; POLITZER, P.A.; FERRON, J.R.; HYATT, A.W.; SCOVILLE, J.T.; La HAYE, R.J.; KINSEY, J.E.; LASNIER, C.J.; MURAKAMI, M.; PETY, C.C.

    2002-01-01

    In order to maximize the probability of achieving ignition, the present International Thermonuclear Experimental Reactor (ITER) [1] design (as well as many of its predecessors) is based on operation at high plasma current. This constraint poses many significant engineering challenges, primarily related to the possibility of a sudden termination of the plasma current. Currents induced in the vessel and associated systems in such an event can lead to large forces, and runaway electrons may cause damage to the interior of the vacuum vessel. Present design methods (including those used for ITER) assume that the probability of experiencing such a major disruption increases with plasma current at fixed magnetic field and size. Because fusion performance is assumed to scale in a similar manner, reactor designs tend to seek a compromise between increased fusion performance and reduced susceptibility to disruptions, generally resulting in a design with q 95 ∼ 3.0. Discharges recently developed in the DIII-D tokamak offer a way to obtain equivalent fusion performance with more margin against disruption consequences, having obtained an ignition figure of merit comparable to the ITER baseline scenario with q 95 = 4.5. These discharges have been shown to be stationary on the thermal, resistive, and wall time scales and involve feedback control only of global quantities rather than profiles

  5. Effect of misaligned edges and magnetic field orientation on plasma deposition into gaps during ELMs on ITER

    Czech Academy of Sciences Publication Activity Database

    Dejarnac, Renaud; Komm, Michael; Gunn, J. P.; Pekarek, Z.

    2011-01-01

    Roč. 415, č. 1 (2011), S977-S980 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion (PSI19)/19th./. San Diego, 24.05.2010-28.05.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge modeling * Plasma-wall interactions * ITER * Sheaths * ELMs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.052, year: 2011 http://www.sciencedirect.com/science/article/pii/S0022311510005520

  6. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  7. SOLPS-ITER Study of neutral leakage and drift effects on the alcator C-Mod divertor plasma

    Directory of Open Access Journals (Sweden)

    W. Dekeyser

    2017-08-01

    Full Text Available As part of an effort to validate the edge plasma model in the SOLPS-ITER code suite under ITER-relevant divertor plasma and neutral conditions, we report on progress in the modeling of the Alcator C-Mod divertor plasma with the new code. We perform simulations with a complete drifts model and kinetic neutrals, including effects of neutral viscosity, ion-molecule collisions and Lyα-opaque conditions, but assuming a pure deuterium plasma. Through a series of simulations with varying divertor geometries, we show the importance of including neutal leakage paths through the divertor substructure on the divertor plasma solution. Moreover, the impact of drifts on inner-outer target asymmetries is assessed. Including both effects, we achieve excellent agreement between simulations and upstream and outer target Langmuir Probe data. In absence of strong volumetric losses due to e.g. impurity radiation in our simulations, the strong inner target detachment observed experimentally remains elusive in our modeling at present.

  8. Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l`Energie Atomique, Saclay, Gif-sur-Yvette (France)

    1998-09-01

    The design of the ITER primary first wall incorporates a multi-layered structure consisting of a layer of beryllium bonded to a layer of copper alloy with embedded stainless steel tubes which in turn is bonded to a stainless steel structure. In this configuration, the stainless steel provides structural support, the copper alloy improved resistance to high heat loads, and the beryllium layer a low Z metal interface with plasma. Fabrication, testing and control of this multi-layered structure, and indeed the entire blanket shield module, calls for advanced methods. Several associations in the four home teams and their industrial partners have been involved in various fabrication and joining tasks now grouped under L4 blanket project. In this paper, an overview of the work done so far for joining stainless steel to stainless steel, stainless steel to copper alloy, copper alloy to copper alloy, and copper alloy to beryllium is presented. Specialised papers dealing with most of the topics treated here are scheduled in this symposium. The fabrication and joining methods presented here, other than the conventional welding and brazing, follow four main routes. Two of them make extensive use of hot-isostatic pressing (HIP); (a) solid to solid; (b) solid or powder to powder, with or without a prior cold or hot isostatic pressing of one of the products. The third combines advantages of casting and HIPping for fabricating large and complex parts. The fourth investigates the possibility of using explosive welding for joining copper alloys to stainless steel. Other methods, including friction welding, are investigated for specific parts. (orig.) 34 refs.

  9. Revisiting the analysis of passive plasma shutdown during an ex-vessel loss of coolant accident in ITER blanket

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.; Fajarnés, X.

    2015-01-01

    Highlights: • We have repeated the safety analysis for the hypothesis of passive plasma shutdown for beryllium evaporation during an ex-vessel LOCA of ITER first wall, with AINA code. • We have performed a sensitivity analysis over some key parameters that represents uncertainties in physics and engineering, to identify cliff edge effects. • The obtained results for the 500 MW inductive scenario, with an ex-vessel LOCA affecting a third of first wall surface are similar to those of previous studies and point to the possibility of a passive plasma shutdown during this safety case, before a serious damage is inflicted to the ITER wall. • The sensitivity analysis revealed a new scenario potentially damaging for the first wall if we increase fusion power and time delay for impurity transport, and decrease fraction of affected first wall area and initial beryllium fraction in plasma. • After studying the 700 MW inductive scenario, with an ex-vessel LOCA affecting 10% of first wall surface, with 0.5% of Be in plasma and a time delay twice the energy confinement time, it was found that affected area of first wall would melt before a passive plasma shutdown occurs. - Abstract: In this contribution, the analysis of passive safety during an ex-vessel loss of coolant accident (LOCA) in the first wall/shield blanket of ITER has been studied with AINA safety code. In the past, this case has been studied using robust safety arguments, based on simple 0D models for plasma balance equations and 1D models for wall heat transfer. The conclusion was that, after first wall heating up due to the loss of all coolant, the beryllium evaporation in the wall surface would induce a growing impurity flux into core plasma that finally would end in a passive shut down of the discharge. The analysis of plasma-wall transients in this work is based in results from AINA code simulations. AINA (Analyses of IN vessel Accidents) code is a safety code developed at Fusion Energy Engineering

  10. H-mode transition physics close to double null on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.; Carolan, P.G.; Cunningham, G.; Kirk, A.; Lloyd, B.; Saarelma, S.; Wilson, H.R.; Conway, G.D.; Horton, L.D.; Ryter, F.; Schirmer, J.; Suttrop, W.; Maingi, R.

    2005-01-01

    By accessing extreme parameter regimes combined with well diagnosed edge MAST data contribute towards the understanding of H-mode physics. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. In L-mode, the negative radial electric field close to the separatrix was found to be more negative in C-DN than in single null (SN), whilst most of the other edge parameters are similar. Pedestal temperatures in MAST are lower than in ASDEX Upgrade in MAST-equivalent discharges, whereas the pedestal densities can be similar, although in long inter ELM periods the MAST density pedestal is higher than on ASDEX Upgrade. In order to test four leading H-mode theories MAST data are compared statistically to their H-mode access criteria. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are absent, despite input powers close to the H-mode threshold power. In this respect, the stability of measured plasma edge profiles in SN and DN against ideal peeling-ballooning modes will be discussed. (author)

  11. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  12. Benchmarking ICRF Full-wave Solvers for ITER

    International Nuclear Information System (INIS)

    Budny, R.V.; Berry, L.; Bilato, R.; Bonoli, P.; Brambilla, M.; Dumont, R.J.; Fukuyama, A.; Harvey, R.; Jaeger, E.F.; Indireshkumar, K.; Lerche, E.; McCune, D.; Phillips, C.K.; Vdovin, V.; Wright, J.

    2011-01-01

    Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  13. Modelling of radiation impact on ITER Beryllium wall

    Science.gov (United States)

    Landman, I. S.; Janeschitz, G.

    2009-04-01

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  14. Modelling of radiation impact on ITER Beryllium wall

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: igor.landman@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-04-30

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  15. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Loarte, A.; Polevoi, A. R.; Hosokawa, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Reinke, M. L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Köchl, F. [Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Pütterich, T.; Dux, R. [Max-Planck-Institut für Plasmaphysik, Boltzmanstraße 2, D-85748 Garching (Germany); Zhogolev, V. E. [NRC “Kurchatov Institute,” Kurchatov Square 1, 123098 Moscow (Russian Federation)

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  16. Correlation of H-mode density barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.

    2002-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode particle barrier width(ne) and the neutral penetration length. These results are obtained by comparing experimental n e profiles to the predictions of an analytic model for the density profile, obtained from a solution of the particle continuity equations for electrons and deuterium atoms. Initial bench-marking shows that the model is consistent with the fluid neutrals model of the UEDGE code. In its range of validity (edge temperature between 0.02-0.3 keV), the model quantitatively predicts the observed values of width(ne), the observed decrease of width(ne) as the pedestal density n e,ped increases, the observed increase of the gradient of n e with the square of n e,ped , and the observation that L-mode and H-mode profiles with the same n e,ped have very similar widths. In the model, width(ne) depends on the fuelling source and on the plasma transport. Thus, these results provide evidence that the width of the particle barrier depends on both plasma physics and atomic physics. (author)

  17. Simulation of MGI efficiency for plasma energy conversion into Ar radiation in JET and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Serguei, E-mail: serguei.pestchanyi@kit.edu [Association EURATOM-KIT, Karlsruhe (Germany); Koslowski, Rudi; Reux, Cedric [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lehnen, Michael [Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We simulated disruption mitigation using massive gas injection with the TOKES code. • Cross-reference analysis of JET experiments on MGI and their simulations have been done. • The analysis allows suggesting the mechanism for saturation of radiated energy fraction at 70–80%. • Rough extrapolation of the result on ITER conditions has been done. - Abstract: Effectiveness of massive gas injection (MGI) for mitigation of disruptive wall damage has been investigated. Cross-reference analysis of the available JET experiments on MGI and their simulations with the TOKES code allow suggesting that in JET conditions one can convert into radiation the electron thermal energy and the plasma current energy, but the ion thermal energy does not convert into radiation because of very ineffective excitation of injected noble gas (NG) ions by D ions and long equipartition time between D ions and electrons. The model assumes rather high electron temperature during current quench (CQ), which contradicts with its time duration. Rough extrapolation of the result on ITER conditions shows that one can expect irradiation of total plasma energy if CQ duration in ITER is not shorter as in JET.

  18. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  19. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  20. Repetitive 'snakes' and their damping effect on core toroidal rotation in EAST plasmas with multiple H-L-H transitions

    International Nuclear Information System (INIS)

    Xu Liqing; Hu Liqun

    2015-01-01

    Repetitive impurity snake-modes have been observed after H-L mode transitions (high to low confinement modes) in EAST plasmas exhibiting multiple H-L-H transitions. Such snake-modes have been observed to lower the core plasma toroidal rotation. A critical impurity strength factor associated with snake-mode formation has been estimated to be as high as α_Z_,_c =n_Z_,_cZ"2 / n_e ∼0.75. These observations have implications for ITER H-mode sustainability when the heating power is only slightly above the H-mode power threshold. (author)

  1. Bifurcation to Enhanced Performance H-mode on NSTX

    Science.gov (United States)

    Battaglia, D. J.; Chang, C. S.; Gerhardt, S. P.; Kaye, S. M.; Maingi, R.; Smith, D. R.

    2015-11-01

    The bifurcation from H-mode (H98 Performance (EP)H-mode (H98 = 1.2 - 2.0) on NSTX is found to occur when the ion thermal (χi) and momentum transport become decoupled from particle transport, such that the ion temperature (Ti) and rotation pedestals increase independent of the density pedestal. The onset of the EPH-mode transition is found to correlate with decreased pedestal collisionality (ν*ped) and an increased broadening of the density fluctuation (dn/n) spectrum in the pedestal as measured with beam emission spectroscopy. The spectrum broadening at decreased ν*ped is consistent with GEM simulations that indicate the toroidal mode number of the most unstable instability increases as ν*ped decreases. The lowest ν*ped, and thus largest spectrum broadening, is achieved with low pedestal density via lithium wall conditioning and when Zeff in the pedestal is significantly reduced via large edge rotation shear from external 3D fields or a large ELM. Kinetic neoclassical transport calculations (XGC0) confirm that Zeff is reduced when edge rotation braking leads to a more negative Er that shifts the impurity density profiles inward relative to the main ion density. These calculations also describe the role kinetic neoclassical and anomalous transport effects play in the decoupling of energy, momentum and particle transport at the bifurcation to EPH-mode. This work was sponsored by the U.S. Department of Energy.

  2. Experimental validation of an analytical kinetic model for edge-localized modes in JET-ITER-like wall

    Science.gov (United States)

    Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET

    2018-06-01

    The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.

  3. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji; Escourbiac, Frederic; Hirai, Takeshi

    2016-01-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m 2 for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  4. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, Koichiro, E-mail: ezato.koichiro@jaea.go.jp [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Escourbiac, Frederic; Hirai, Takeshi [ITER Organization, route de vinon sur Verdon, 13067 St Paul lez Durance (France)

    2016-11-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2} for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  5. Effect of high flux plasma exposure on the micro-structural and -mechanical properties of ITER specification tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, A., E-mail: adubinko@sckcen.be [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Terentyev, D. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Bakaeva, A. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain‐la‐Neuve (Belgium); Zibrov, M. [Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Physik-Department E28, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2017-02-15

    Highlights: • Plasma exposure induces dislocation-dominated microstructure. • The exposure-induced changes in microstructure vanish beyond a depth of 12–15 μm. • Surface hardness after the plasma exposure increases significantly in the sub-surface region of 1.5–3 μm. - Abstract: We have performed a combined study using transmission electron microscopy (TEM), nuclear reaction analysis (NRA) and nano-indentation (NI) techniques to reveal the impact of high flux plasma exposure on the properties of a sub-surface region of the commercially available pure tungsten fabricated following the ITER specification. TEM examination revealed the formation of a dense dislocation network and dislocation tangles, resulting in a strong increase in the dislocation density by at least one order of magnitude as compared to the bulk density. The plasma-induced dislocation microstructure vanishes within a depth of about 10–15 μm from the top of the exposed surface. Surface hardness after the plasma exposure was characterized by NI and was found to increase significantly in the sub-surface region of 1.5–3 μm. That was attributed to the resistance of the plasma-induced dislocation networks and deuterium-induced defects, whose presence within a depth of ∼1 μm was unambiguously detected by the NRA measurements as well.

  6. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  7. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  8. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    Science.gov (United States)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  9. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  10. Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    Czech Academy of Sciences Publication Activity Database

    Parail, V.; Albanese, R.; Ambrosino, R.; Artaud, J.F.; Besseghir, K.; Cavinato, M.; Corrigan, G.; Garcia, J.; Garzotti, L.; Gribov, Y.; Imbeaux, F.; Koechl, F.; Labate, C.V.; Lister, J.; Litaudon, X.; Loarte, A.; Maget, P.; Mattei, M.; McDonald, D.; Nardon, E.; Saibene, G.; Sartori, R.; Urban, Jakub

    2013-01-01

    Roč. 53, č. 11 (2013), s. 113002-113002 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : operation * regimes * model * JET * ITER * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.243, year: 2013 http://iopscience.iop.org/0029-5515/53/11/113002/

  11. Fuel ion rotation measurement and its implications on H-mode theories

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Hinton, F.L.; Kim, Y.B.; Seraydarian, R.; Mandl, W.

    1993-10-01

    Poloidal and toroidal rotation of the fuel ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been investigated in the DIII-D tokamak by means of charge exchange recombination spectroscopy, resulting in the discovery that the fuel ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction. The radial electric field obtained from radial force balance analysis of the measured pressure gradients and rotation velocities is shown to be the same regardless of which ion species is used and therefore is a more fundamental parameter than the rotation flows in studying H-mode phenomena. It is shown that the three contributions to the radial electric field (diamagnetic, poloidal rotation, and toroidal rotation terms) are comparable and consequently the poloidal flow does not solely represent the E x B flow. In the high-shear edge region, the density scale length is comparable to the ion poloidal gyroradius, and thus neoclassical theory is not valid there. In view of this new discovery that the fuel and impurity ions rotate in opposite sense, L-H transition theories based on the poloidal rotation may require improvement

  12. Behavior of divertor and first wall armour materials at plasma heat fluxes relevant to ITER ELMs and disruptions

    Directory of Open Access Journals (Sweden)

    D.V. Kovalenko

    2017-08-01

    Full Text Available The paper presents the main results of numerous experiments carried out over the past 10 years at QSPA-T and QSPA-Be plasma guns in support of ITER. Special targets made of pure W, W-1%La2O3 and two types of Be (TGP-56FW and S65-C were tested under the series of repeated plasma stream and photonic flux impact. Maximum heat load on the target surface was up to 2.5MJ/m2 in the case of plasma testing and was equal to 0.5MJ/m2 in the case of photonic flux testing. Pulse waveform was rectangular with tpulse= 0.5ms. It was found that the main erosion mechanisms of W and Be under plasma stream impact are the melt layer movement, the ejection of droplets and the cracks formation. As a result of repeated photonic fluxes a regular, “corrugated” structure are eventually formed on the Be target surface. Study of erosion products of W formed under plasma stream impact on the W target has shown that the D/W atomic ratio in the deposited W films during pulsed events may be the same or even higher than that for stationary processes.

  13. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    Science.gov (United States)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  14. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    Science.gov (United States)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i

  15. Experimental Study of Plasma-Surface Interaction and Material Damage Relevant to ITER Type I Elms

    International Nuclear Information System (INIS)

    Makhlai, V.A.; Bandura, A.N.; Byrka, O.V. and others; Landman, I.; Neklyudov, I.M.

    2006-01-01

    The paper presents experimental investigations of main features of plasma surface interaction and energy transfer to the material surface in dependence on plasma heat loads. The experiments were performed with QSPA repetitive plasma pulses of the duration of 0.25 ms and the energy density up to 2.5 MJ/m 2 . Surface morphology of the targets exposed to QSPA plasma screams is analyzed. Relative contribution of the Lorentz force and plasma pressure gradient to the resulting surface profile is discussed. development of cracking on the tungsten surface and swelling of the surface are found to be in strong dependence on initial temperature of the target

  16. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  17. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K., E-mail: kaw@ipr.res.in [Institute for Plasma Research, Bhat (India); Singh, R. [Institute for Plasma Research, Bhat (India); ITER Organization, Saint Paul-lez-Durance [France; Nordman, H. [Chamlers Institute of Technology, Goteborg (Sweden); Garbet, X.; Bourdelle, C. [CEA, Saint Paul-lez-Durance (France); Campbell, D.; Loarte, A.; Bora, D. [ITER Organization, Saint Paul-lez-Durance (France)

    2012-09-15

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  18. FAST Plasma Scenarios and Equilibrium Configurations

    International Nuclear Information System (INIS)

    Calabro, G.; Crisanti, F.; Ramogida, G.; Cardinali, A.; Cucchiaro, A.; Maddaluno, G.; Pizzuto, A.; Pericoli Ridolfini, V.; Tuccillo, A.A.; Zonca, F.; Albanese, R.; Granucci, G.; Nowak, S.

    2008-01-01

    In this paper we present the Fusion Advanced Studies Torus (FAST) plasma scenarios and equilibrium configurations, designed to reproduce the ITER ones (with scaled plasma current) and suitable to fulfil plasma conditions for integrated studies of burning plasma physics, Plasma Wall interaction, ITER relevant operation problems and Steady State scenarios. The attention is focused on FAST flexibility in terms of both performance and physics that can be investigated: operations are foreseen at a wide range of parameters from high performance H-Mode (toroidal field, B T , up to 8.5 T; plasma current, I P , up to 8 MA) to advanced tokamak (AT) operation (I P =3 MA) as well as full non inductive current scenario (I P =2 MA). The coupled heating power is provided with 30MW delivered by an Ion Cyclotron Resonance Heating (ICRH) system (30-90MHz), 6 MW by a Lower Hybrid (LH) system (3.7 or 5 GHz) for the long pulse AT scenario, 4 MW by an Electron Cyclotron Resonant Heating (ECRH) system (170 GHz-B T =6T) for MHD and electron heating localized control and, eventually, with 10 MW by a Negative Ion Beam (NNBI), which the ports are designed to accommodate. In the reference H-mode scenario FAST preserves (with respect to ITER) fast ions induced as well as turbulence fluctuation spectra, thus, addressing the cross-scale couplings issue of micro- to meso-scale physics. The noninductive scenario at I P =2MA is obtained with 60-70 % of bootstrap and the remaining by LHCD. Predictive simulations of the H-mode scenarios described above have been performed by means of JETTO code, using a semi-empirical mixed Bohm/gyro-Bohm transport model. Plasma position and Shape Control studies are also presented for the reference scenario

  19. Numerical modeling and experimental simulation of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhin, V.P.; Goel, B.; Hoebel, W.; Konkashbaev, I.; Landman, I.; Piazza, G.; Safronov, V.M.; Sherbakov, A.R.; Toporkov, D.A.; Zhitlukhin, A.M.

    1994-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and experimentally investigated at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. In the optical wavelength range C II, C III, C IV emission lines for graphite, Cu I, Cu II lines for copper and continuum radiation for tungsten samples are observed in the target plasma. The plasma expands along the magnetic field lines with velocities of (4±1)x10 6 cm/s for graphite and 10 5 cm/s for copper. Modeling was done with a radiation hydrodynamics code in one-dimensional planar geometry. The multifrequency radiation transport is treated in flux limited diffusion and in forward reverse transport approximation. In these first modeling studies the overall shielding efficiency for carbon and tungsten defined as ratio of the incident energy and the vaporization energy for power densities of 10 MW/cm 2 exceeds a factor of 30. The vapor shield is established within 2 μs, the power fraction to the target after 10 μs is below 3% and reaches in the stationary state after about 20 μs a value of around 1.5%. ((orig.))

  20. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.

    1995-01-01

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC's) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m 2 ) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM's) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC's clad with different PFM's are discussed

  1. Design advances of the Core Plasma Thomson Scattering diagnostic for ITER.

    Czech Academy of Sciences Publication Activity Database

    Scannell, R.; Maslov, M.; Naylor, G.; O’Gorman, T.; Kempenaars, M.; Carr, M.; Bílková, Petra; Böhm, Petr; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.

    2017-01-01

    Roč. 12, November (2017), č. článku C11010. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics (LAPD2017) /18./. Prague, 24.09.2017-28.09.2017] Institutional support: RVO:61389021 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/11/C11010/pdf

  2. Assessment of database for interaction of tritium with ITER plasma facing materials

    International Nuclear Information System (INIS)

    Dolan, T.J.; Anderl, R.A.

    1994-09-01

    The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community

  3. Physics of the L-mode to H-mode transition in tokamaks

    International Nuclear Information System (INIS)

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D.; Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L.; Finkenthal, D.; Hillis, D.L.; Wade, M.R.; Matsumoto, H.; Watkins, J.G.

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E x B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories

  4. Dependence of H-mode power threshold on global and local edge parameters

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1995-12-01

    Measurements of local electron density n e , electron temperature T e , and ion temperature T i have been made at the very edge of the plasma just prior to the transition into H-mode for four different single parameter scans in the DIII-D tokamak. The means and standard derivations of n e , T e , and T i under these conditions for a value of the normalized toroidal flux of 0.98 are respectively, 1.5 ± 0.7 x 10 19 m -3 , 0.051 ± 0.016 keV, and 0.14 ± 0.03 keV. The threshold condition for the transition is more sensitive to temperature than to density. The data indicate that the dependence is not as simple as a requirement for a fixed value of the ion collisionality

  5. SOLPS5 modelling of the type III ELMing H-mode on TCV

    International Nuclear Information System (INIS)

    Gulejova, B.; Pitts, R.A.; Wischmeier, M.; Behn, R.; Coster, D.; Horacek, J.; Marki, J.

    2007-01-01

    Although ohmic H-modes have long been produced on TCV and the effects of ELMs at the divertor target studied in some detail, no attempt has yet been made to model the scrape-off layer (SOL) in these plasmas. This paper describes details of the first such efforts in which simulations of the inter-ELM phases using the coupled fluid-Monte Carlo SOLPS5 code (without drifts) are constrained by careful upstream Thomson scattering and Langmuir probe profiles. Simulated divertor profiles are compared with Langmuir probes and fast IR camera measurements at the targets. To account for the very differing transport rates in the edge pedestal and main SOL regions, radial variation of edge transport coefficients has been introduced in the simulations. Similarly, it is found that transport in the main chamber and divertor regions must be separately adjusted to provide an acceptable code-experiment match

  6. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    NARCIS (Netherlands)

    Baylor, L.R.; Lang, P.T.; Allen, S.L.; Combs, S.K.; Commaux, N.; Evans, T.E.; Fenstermacher, M.E.; Huijsmans, G.T.A.; Jernigan, T.C.; Lasnier, C.J.; Leonard, A.W.; Loarte, A.; Maingi, R.; Maruyama, S.; Meitner, S.J.; Moyer, R.A.; Osborne, T.H.

    2015-01-01

    PLASMA-SURFACE INTERACTIONS 21 — Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to

  7. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  8. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  9. Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER

    International Nuclear Information System (INIS)

    La Haye, R.J.; Ferron, J.R.; Humphreys, D.A.; Luce, T.C.; Petty, C.C.; Prater, R.; Strait, E.J.; Welander, A.S.

    2008-01-01

    ITER will rely on electron cyclotron stabilization of neoclassical tearing mode islands. The large size and low torque applied in ITER imply slow plasma rotation and susceptibility to island locking by the resistive wall; locking is likely to lead to a loss of the high confinement H-mode, a beta collapse and possibly disruption. 'Front' steering of the launcher, with narrower electron cyclotron current drive (ECCD), has resolved the issue in 'remote' steering of the driven current being too broad and relatively ineffective. However, narrower current drive places demands on alignment of the current drive on the rational surface that is being stabilized. DIII-D alignment techniques with and without (preemptive) an island are reviewed. The results are used to check models for the effect of misalignment and are then applied to ITER. Criteria for accuracy of alignment as a function of injected power and for the necessary time response of the controller are presented

  10. Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution

    International Nuclear Information System (INIS)

    Dongen, J van; Hogeweij, G M D; Felici, F; Geelen, P; Maljaars, E

    2014-01-01

    Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L–H transition. (paper)

  11. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ∼ 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  12. Scrape-off layer properties of ITER-like limiter start-up plasmas in JET

    Czech Academy of Sciences Publication Activity Database

    Arnoux, G.; Farley, T.; Silva, C.; Devaux, S.; Firdaouss, M.; Frigione, D.; Goldston, R.J.; Gunn, J.; Horáček, Jan; Jachmich, S.; Lomas, P. J.; Marsen, S.; Matthews, G. F.; Pitts, R.A.; Stamp, M.; Stangeby, P.C.

    2013-01-01

    Roč. 53, č. 7 (2013), 073016-073016 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : Plasma-material interactions * boundary layer effect * power exhaust * divertors * electric and magnetic measurements * tokamaks * spherical tokamaks Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.243, year: 2013 http://iopscience.iop.org/0029-5515/53/7/073016/pdf/0029-5515_53_7_073016.pdf

  13. Plasma-materials interaction issues for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Cohen, S.A.; Werley, K.A.

    1992-02-01

    Analysis of proposed operating scenarios for the International Thermonuclear Experimental Reactor has yielded predictions for the power and particle fluxes onto the material surfaces facing the plasma. The particles, mostly deuterium, tritium, and helium ions, would have energies in the range of 50--2000 eV and fluxes up to 5 x 10 23 /m 2 s. Lower fluxes of multi-MeV electrons and alpha particles may also strike the plasma-facing surfaces, primarily during transient events. The peak power fluxes onto the plasma-facing surfaces during normal operation are expected to be 5--100 MW/m 2 , but much higher during transient events. At the extreme conditions expected for steady-state operation, commonly used heat-removal structures are unable to withstand either the high sputter erosion rates or power loads. To reduce the time-averaged power flux, active control of the plasma position is specified to sweep the plasma heat load across larger areas of plasma-facing components. However, the cyclic heat load creates fatigue lifetime problems. Solutions to these lifetime and reliability problems by (1) changes in machine design and operation, (2) redeposition mechanisms, and (3) changes in materials, will be discussed. A proposed accelerated-life test facility for prototype divertor plate development is described

  14. Evaluation of electromagnetic loads on various design options of the ITER diagnostic upper port plug during plasma disruptions

    International Nuclear Information System (INIS)

    Pak, Sunil; Ku, Duck Young; Oh, Dong-Keun; Jhang, Hogun; Kim, Duck-Hoi; Cheon, Mun-Seong; Seon, Chang Rae; Lee, Hyeon Gon; Pitcher, Spencer

    2011-01-01

    Electromagnetic (EM) loads due to eddy current and halo current during plasma disruptions are evaluated for the ITER diagnostic upper port plug. To reduce strong EM loads acting on the port plug fixed to the vacuum vessel like a cantilever beam, three design options have been considered: removal of the diagnostic first wall, slitting of the diagnostic shield module and recess of the port plug. The main focus of the present study is to examine the efficacy of these options in terms of EM loads on the upper port plug. It is found that making slits is more effective than removing the first wall. It is also shown that the upper port plug needs to be recessed to reduce the EM load induced by halo current.

  15. Effect of ripple-induced transport on H-mode performance in tokamaks

    International Nuclear Information System (INIS)

    Parail, V.; Vries, P. de; Lonnroth, J.; Kiviniemi, T.; Johnson, T.; Loarte, A.; Saibene, G.; Hatae, T.; Kamada, Y.; Konovalov, S.; Oyama, N.; Shinohara, K.; Tobita, K.; Urano, H.

    2005-01-01

    A number of experiments have shown that ripple-induced transport influences performance of ELMy H-modes in the tokamak. A noticeable difference in confinement, ELM frequency and amplitude was found between JET (with ripple amplitude δ∼0.1%) and JT-60U (with δ∼1%) in otherwise identical discharges. It was previously shown in JET experiments with enhanced ripple that a gradual increase in the ripple amplitude first leads to a modest improvement in plasma confinement, which is followed by the degradation of edge pedestal and further transition to the L-mode regime if δ increases further. The DIII-D team recently reported a marginal increase in confinement in experiments with an edge transport enhanced by the externally driven resonant magnetic perturbation. Numerical predictive modelling of the dynamics of ELMy H-mode JET plasma relevant to a JET/JT-60U similarity experiment has been conducted taking into account ripple-induced ion transport, which was computed using the orbit following code ASCOT. This predictive modelling reveals that, depending on plasma parameters, ripple amplitude and localisation (the latter depending on the toroidal coil design), this additional transport can either improve global plasma confinement or reduce it. These controlled ripple losses might be used as an effective tool for ELM mitigation and may provide an explanation for the difference between JET and JT-60U observed in the similarity experiments. A detailed comparison between ripple- induced transport and the alternative method of ELM mitigation by an externally driven edge magnetic perturbation is discussed. The fact that ripple losses mainly increase ion transport, while a stochastic magnetic layer increases electron transport indicates that it might be beneficial to use a combination of both methods in future experiments. This work was funded partly by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of

  16. The trace ion module for the Monte Carlo code Eirene, a unified approach to plasma chemistry in the ITER divertor

    International Nuclear Information System (INIS)

    Seebacher, J.; Reiter, D.; Borner, P.

    2007-01-01

    Modelling of kinetic transport effects in magnetic fusion devices is of great importance for understanding the physical processes in both the core and and the scrape off layer (SOL) plasma. For SOL simulation the EIRENE code is a well established tool for modelling of neutral, impurities and radiation transport. Recently a new trace ion transport module (tim), has been developed and incorporated into EIRENE. The tim essentially consists of two parts: 1) A trajectory integrator tracing the deterministic motion of a guiding centre particle in general 3D electric and magnetic fields. 2) A stochastic representation of the Fokker Planck collision operator in suitable guiding centre coordinates treating Coulomb collisions with the plasma background species. The TIM enables integrated SOL simulation packages such as B2-EIRENE, EDGE2D-EIRENE (2D) or EMC3-EIRENE (3D) to treat the physical and chemical processes near the divertor targets and in the bulk of the SOL in greater detail than before, and in particular on a kinetic rather than a fluid level. One of the physics applications is the formation and transport of hydrocarbon molecules and ions in the divertor in tokamaks, where the tritium co deposition via hydrocarbons remains a serious issue for next generation fusion devices like ITER. Real tokamak modelling scenarios will be discussed with the code packages B2-EIRENE (2D) and EMC3-EIRENE (3D). A brief overview of the theoretical basis of the tim will be given including code verification studies of the basic physics properties. Applications to hydrocarbon transport studies in TEXTOR and ITER, comparing present (fluid) approximations in edge modelling with the new extended kinetic model, will be presented. (Author)

  17. Ignition analysis for burn control and diagnostic developments in ITER

    International Nuclear Information System (INIS)

    Mitarai, O.; Muraoka, K.

    1997-01-01

    The temporal evolutions of the operating point during the ignition access and ignited operation phases are analysed on the basis of zero dimensional (0-D) equations in order to clarify the requirements for safe control of ignited operation and for the development of diagnostic systems in ITER. A stable and safe method of reaching the ignited operating point is identified as the 'higher temperature access' method, being compatible with the H mode power threshold constraints. It is found that the ignition boundary can be experimentally determined by a 'thermonuclear oscillation' of the operating point without knowing the power balance equation. On the other hand, the ignition boundary determined by the power balance equation has a larger error bar depending on the accuracy of the diagnostic system. The plasma waveform response to sudden changes in the various plasma parameters during ignited operation is also calculated, and fusion power regulation is demonstrated by feedback control of the fuelling and auxiliary heating power. (author)

  18. ITER CTA newsletter. No. 6

    International Nuclear Information System (INIS)

    2002-01-01

    This ITER CTA Newsletter issue comprises information about the following ITER Meetings: The second negotiation meeting on the joint implementation of ITER, held in Tokyo(Japan) on 22-23 January 2002, and an international ITER symposium on burning plasma science and technology, held the day later after the second negotiation meeting at the same place

  19. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.W., E-mail: t.w.morgan@differ.nl; Bekerom, D.C.M. van den; De Temmerman, G.

    2015-08-15

    Sn filled capillary porous structures were exposed to high flux low temperature plasma conditions at the Pilot-PSI linear device. Enhanced erosion above that expected classically was investigated via spectroscopic observation of Sn{sup 0} emission from the plasma in front of the target surface while the surface temperature was monitored by both thermography and pyrometry. An anomalous erosion flux was observed as temperature increases, with onset for this occurrence varying strongly between different ion species. The results appear incompatible with existing ‘adatom’ models for the anomalous erosion flux. Further targets were exposed in turn to increasing heat fluxes and the heat removed determined from cooling water calorimetry, which was then compared to a solid Mo reference target. At high powers the total energy of the cooling water is reduced, indicating a shielding of the surface from the plasma heat flux by the vapour cloud in front.

  20. Observation of precursor magnetic oscillations to the H-mode transition of ASDEX

    International Nuclear Information System (INIS)

    Toi, K.; Gernhardt, J.; Klueber, O.; Kornherr, M.

    1988-05-01

    Precursor oscillations to the H-mode transition are identified in magnetic fluctuations of the ASDEX H-mode discharges initiated without a sawtooth. This precursor is m=4/n=1 mode, rotating with f ≅ 10 kHz in the opposite direction to co-injected neutral beams. Time behaviour of the amplitude suggests that the H-mode transition is caused, not by the edge electron temperature, but by the edge current density. (orig.)

  1. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  2. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  3. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  4. Comparison of edge plasma perturbation during ELM control using one vs. two toroidal rows of RMP coils in ITER similar shaped plasmas on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E., E-mail: fenstermacher@fusion.gat.co [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Evans, T.E.; Osborne, T.H.; Schaffer, M.J.; DeGrassie, J.S.; Gohil, P.; Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Moyer, R.A. [University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States)

    2009-06-15

    Large Type-I edge localized modes (ELMs) were suppressed by n = 3 resonant magnetic perturbations (RMPs) from a set of internal coils in plasmas with an ITER similar shape at the ITER pedestal collisionality, nu{sub e}*approx0.1 and low edge safety factor (q{sub 95} approx 3.6), with either a single toroidal row of the internal RMP coils or two poloidally separated rows of coils. ELM suppression with a single row of internal coils was achieved at approximately the same q{sub 95} surface-averaged perturbation field as with two rows of coils, but required higher current per coil. Maintaining complete suppression of ELMs using n = 3 RMPs from a single toroidal row of internal coils was less robust to variations in input neutral beam injection torque than previous ELM suppression cases using both rows of internal coils. With either configuration of RMP coils, maximum ELM size is correlated with the width of the edge region having good overlap of the magnetic islands from vacuum field calculations.

  5. The influence of gas fuelling location on H-mode access in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Field, A R; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Helander, P; Meyer, H; Taylor, D; Tournianski, M R; Walsh, M J

    2004-01-01

    The observation that high-field side (HFS) gas puff refuelling facilitates access to the improved confinement (H-mode) regime on the COMPASS-D and MAST tokamaks prompted a theoretical investigation of the role of the neutral gas dynamics in controlling the edge plasma rotation and radial E-field, E r . Within the framework of neo-classical theory, higher edge plasma flow, and hence E r , are predicted when fuelling from the HFS-rather than from the more usual low-field side (LFS)-provided neutral viscosity dominates the transport of toroidal angular momentum. Here, these predictions are compared with experiments on MAST, where the influence of the gas-puff location on the edge E r profile is measured spectroscopically. An increase in E r is indeed observed with HFS refuelling in the region where the edge transport barrier forms, provided the neutral density at the LFS is sufficiently low so as not to damp the toroidal flow

  6. H-mode threshold power scaling and the ∇B drift effect

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Staebler, G.M.

    1997-06-01

    One of the largest influences on the H-mode power threshold (P TH ) is the direction of the ion ∇B drift relative to the X-point location, where factors of 2--3 increase in P TH are observed for the ion ∇B drift away from the X-point. It is proposed that the threshold power scaling observed in single-null configurations with the ion ∇B drift toward the X-point location (P TH ∼ nB, where n is the plasma density, and B is the toroidal field) is due to the scaling of the magnitude of the ∇B drift effect. Hinton and later Hinton and Stebler have modeled this effect as neoclassical cross field fluxes of both heat and particles driven by poloidal temperature gradients on the open field lines in the scrape-off layer (SOL). The ∇B drift effect influences the power threshold by affecting the edge conditions needed for the L-H transition. It is not essential for the L-H transition itself since transitions are observed with either direction of B. Predictions of this model include saturation of the B scaling of P TH at high field, 1/B scaling of P TH with reverse B, and no B scaling of P TH in balanced double-null configurations. This last prediction is consistent with the observed scaling of p TH in double-null plasma sin DIII-D

  7. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  8. D324-1 ITER design task on plasma control. 1995 - 1996

    International Nuclear Information System (INIS)

    Lister, J.B.; Ward, D.J.; Llobet, X.; Martin, Y.; Bosshard, P.

    1996-07-01

    The report deals with the following topics: - work carried out under phase I and proposition for work which could be carried out under phase II, -linearity of the plasma response of the TSC code, - shape control considering voltage and current saturation, - non-linear simulations without feedback, -model of errors on the estimators of the control parameters, - protective and corrective strategy control modes. (author) figs., tabs., refs

  9. Ion-surface interaction: simulation of plasma-wall interaction (ITER)

    International Nuclear Information System (INIS)

    Salou, Pierre

    2013-01-01

    The wall materials of magnetic confinement in fusion machines are exposed to an aggressive environment; the reactor blanket is bombarded with a high flux of particles extracted from the plasma, leading to the sputtering of surface material. This sputtering causes wall erosion as well as plasma contamination problems. In order to control fusion reactions in complex reactors, it is thus imperative to well understand the plasma-wall interactions. This work proposes the study of the sputtering of fusion relevant materials. We propose to simulate the charged particles influx by few keV single-charged ion beams. This study is based on the catcher method; to avoid any problem of pollution (especially in the case of carbon) we designed a new setup allowing an in situ Auger electron spectroscopy analysis. The results provide the evolution of the angular distribution of the sputtering yield as a function of the ion mass (from helium to xenon) and its energy (from 3 keV to 9 keV). (author) [fr

  10. Ohmic H-mode and confinement in TCV

    Czech Academy of Sciences Publication Activity Database

    Moret, J. M.; Anton, M.; Barry, S.; Behn, R.; Besson, G.; Buhlmann, F.; Burri, A.; Chavan, R.; Corboz, M.; Deschenaux, C.; Dutch, M. J.; Duval, B. P.; Fasel, A.; Favre, A.; Franke, S.; Hirt, A.; Hofmann, F.; Hollenstein, C.; Isoz, P. F.; Joye, B.; Lister, J. B.; Llobet, X.; Magnin, J. C.; Mandrin, P.; Marletaz, B.; Marmillod, P.; Martin, Y.; Mayor, J. M.; Moravec, Jaroslav; Nieswand, C.; Paris, P. J.; Perez, A.; Pietrzyk, Z. A.; Piffl, Vojtěch; Pitts, R. A.; Pochelon, A.; Sauter, O.; Toledo van, W.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Ward, D. J.; Weisen, H.

    1995-01-01

    Roč. 37, 11A (1995), s. A215-A226 ISSN 0741-3335. [EPS Conference on Controlled Fusion and Plasma Physics /22./. Bournemouth, 03.07.1995-07.07.1995] R&D Projects: GA AV ČR IAA1043501 Impact factor: 2.020, year: 1995

  11. Development of an original active thermography method adapted to ITER plasma facing components control

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Vignal, N.; Escourbiac, F.; Farjon, J.L.; Schlosser, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Cismondi, F. [Toulon Univ., 83 - La Garde (France)

    2004-07-01

    Among all Non-Destructive Examinations (NDE), active infrared thermography is becoming recognised as a technique available today for improving quality control of many materials and structures involved in heat transfer. The infrared thermography allows to characterise the bond between two materials having different thermal physical properties. In order to increase the defect detection limit of the SATIR test bed, several possibilities have been evaluated to improve the infrared thermography inspection. The implementation in 2003 of a micro-bolometer camera and the improving of the thermo-signal process allowed to increase considerably the detection sensitivity of the SATIR facility. The quality, the spatial stability of infrared image and the detection of edge defect have been also improved. The coupling on the same test bed of SATIR method with a lock-in thermography will be evaluated in this paper. An improvement of the g