WorldWideScience

Sample records for isotropic quasi-incompressible media

  1. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    Science.gov (United States)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  2. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    Science.gov (United States)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  3. On PDE analysis of flows of quasi-incompressible fluids

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Lu, Y.; Málek, J.

    2016-01-01

    Roč. 96, č. 4 (2016), s. 491-508 ISSN 0044-2267 Keywords : quasi-incompressible fluids * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400229

  4. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    Science.gov (United States)

    Zhu, Minjie; Scott, Michael H.

    2017-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  5. Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method

    KAUST Repository

    Wu, Zedong

    2018-04-12

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  6. Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method

    KAUST Repository

    Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq Ali

    2018-01-01

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  7. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    Science.gov (United States)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  8. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    Science.gov (United States)

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  9. Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity

    International Nuclear Information System (INIS)

    Franca, L.P.; Stenberg, R.

    1989-06-01

    Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt

  10. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2013-01-01

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  11. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  12. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  13. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  14. Frictionless contact of two parallel congruent rigid cylindrical surfaces coated with thin elastic transversely isotropic incompressible layers: an analytic solution

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2006-01-01

    Roč. 25, č. 3 (2006), s. 497-508 ISSN 0997-7538 R&D Projects: GA ČR(CZ) GA103/04/0150 Institutional research plan: CEZ:AV0Z20710524 Keywords : contact of coated cylinders * elastic transversely isotropic incompressible coating * human ankle joint Subject RIV: JJ - Other Materials Impact factor: 0.897, year: 2006

  15. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  16. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  17. Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media

    KAUST Repository

    Cheng, Jiubing

    2014-08-05

    In elastic imaging, the extrapolated vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, which characterize reflectivity of different reflection types. Conventionally, wavefield decomposition in anisotropic media is costly as the operators involved is dependent on the velocity, and thus not stationary. In this abstract, we propose an efficient approach to directly extrapolate the decomposed elastic waves using lowrank approximate mixed space/wavenumber domain integral operators for heterogeneous transverse isotropic (TI) media. The low-rank approximation is, thus, applied to the pseudospectral extrapolation and decomposition at the same time. The pseudo-spectral implementation also allows for relatively large time steps in which the low-rank approximation is applied. Synthetic examples show that it can yield dispersionfree extrapolation of the decomposed quasi-P (qP) and quasi- SV (qSV) modes, which can be used for imaging, as well as the total elastic wavefields.

  18. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...

  19. Transformation optics, isotropic chiral media and non-Riemannian geometry

    International Nuclear Information System (INIS)

    Horsley, S A R

    2011-01-01

    The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.

  20. A model to analyse the flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium

    International Nuclear Information System (INIS)

    Gama, R.M.S. da; Sampaio, R.

    1985-01-01

    The flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium which has a given inicial distribuition of the mentioned fluid, is analyzed. It is proposed a model that assumes that the motion is caused by concentration gradient, but it does not consider the friction between the porous medium and the fluid. We solve an onedimensional case where the mathematical problem is reduced to the solution of a non-linear hyperbolic system of differential equations, subjected to an inicial condition given by a step function, called 'Riemann Problem'. (Author) [pt

  1. Depth migration in transversely isotropic media with explicit operators

    Energy Technology Data Exchange (ETDEWEB)

    Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)

    1994-12-01

    The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.

  2. Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: a prerequisite to compare metrics

    International Nuclear Information System (INIS)

    Pappas, G; Apostolatos, T A

    2008-01-01

    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)

  3. Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: a prerequisite to compare metrics

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G; Apostolatos, T A [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2008-11-21

    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)

  4. The suite of analytical benchmarks for neutral particle transport in infinite isotropically scattering media

    International Nuclear Information System (INIS)

    Kornreich, D.E.; Ganapol, B.D.

    1997-01-01

    The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating benchmark-quality evaluations of solutions for homogeneous infinite media. In all cases, the problems are stationary, of one energy group, and the scattering is isotropic. The solutions are generally obtained through the use of Fourier transform methods with the numerical inversions constructed from standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, and convergence acceleration. Consideration of the suite of benchmarks in infinite homogeneous media begins with the standard one-dimensional problems: an isotropic point source, an isotropic planar source, and an isotropic infinite line source. The physical and mathematical relationships between these source configurations are investigated. The progression of complexity then leads to multidimensional problems with source configurations that also emit particles isotropically: the finite line source, the disk source, and the rectangular source. The scalar flux from the finite isotropic line and disk sources will have a two-dimensional spatial variation, whereas a finite rectangular source will have a three-dimensional variation in the scalar flux. Next, sources emitting particles anisotropically are considered. The most basic such source is the point beam giving rise to the Green's function, which is physically the most fundamental transport problem, yet may be constructed from the isotropic point source solution. Finally, the anisotropic plane and anisotropically emitting infinite line sources are considered. Thus, a firm theoretical and numerical base is established for the most fundamental neutral particle benchmarks in infinite homogeneous media

  5. Isotropic-nematic transition of long, thin, hard spherocylinders confined in a quasi-two-dimensional planar geometry

    NARCIS (Netherlands)

    Lagomarsino, M.C.; Dogterom, M.; Dijkstra, Marjolein

    2003-01-01

    We present computer simulations of long, thin, hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is intrinsically two-dimensional and of

  6. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  7. The isotropic local Wigner-Seitz model: An accurate theoretical model for the quasi-free electron energy in fluids

    Science.gov (United States)

    Evans, Cherice; Findley, Gary L.

    The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.

  8. On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media

    KAUST Repository

    Girault, V.; Kanschat, G.; Riviè re, B.

    2012-01-01

    In this chapter, we present the theoretical analysis of coupled incompressible Navier-Stokes (or Stokes) flows and Darcy flows with the Beavers-Joseph-Saffman interface condition. We discuss alternative interface and porous media models. We review

  9. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  10. Negative refraction of inhomogeneous waves in lossy isotropic media

    International Nuclear Information System (INIS)

    Fedorov, V Yu; Nakajima, T

    2014-01-01

    We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)

  11. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  12. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  13. On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media

    KAUST Repository

    Girault, V.

    2012-11-03

    In this chapter, we present the theoretical analysis of coupled incompressible Navier-Stokes (or Stokes) flows and Darcy flows with the Beavers-Joseph-Saffman interface condition. We discuss alternative interface and porous media models. We review some finite element methods used by several authors in this coupling and present numerical experiments.

  14. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  15. Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.; Savina, L.S.

    2003-09-01

    A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)

  16. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  17. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2010-01-01

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  18. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  19. A program to calculate pulse transmission responses through transversely isotropic media

    Science.gov (United States)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  20. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  1. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    Science.gov (United States)

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.

  2. Wave propagation in isotropic- or composite-material piping conveying swirling liquid

    International Nuclear Information System (INIS)

    Chen, T.L.C.; Bert, C.W.

    1977-01-01

    An analysis is presented for the propagation of free harmonic waves in a thin-walled, circular cylindrical shell of orthotropic or isotropic material conveying a swirling flow. The shell motion is modeled by using the dynamic orthotropic version of the Sanders improved first-approximation linear shell theory and the fluid forces are described by using inviscid incompressible flow theory. Frequency spectra are presented for pipes made of isotropic material and composite materials of current engineering interest. (Auth.)

  3. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  4. Convergence of Discontinuous Galerkin Methods for Incompressible Two-Phase Flow in Heterogeneous Media

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2013-01-01

    A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.

  5. Shock and rarefaction waves in a hyperbolic model of incompressible materials

    Directory of Open Access Journals (Sweden)

    Tommaso Ruggeri

    2013-01-01

    Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.

  6. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  7. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin; Psencik, Ivan; Cerveny, Vlastislav; Iversen, Einar; Alkhalifah, Tariq Ali

    2013-01-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S' and R' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  8. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  9. Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation

    International Nuclear Information System (INIS)

    Devooght, J.; Smidts, O.F.

    1996-01-01

    A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)

  10. Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media

    Science.gov (United States)

    Grassberger, Peter

    2018-05-01

    Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).

  11. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  12. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi; Alkhalifah, Tariq Ali

    2016-01-01

    in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity

  13. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  14. Research Note: The sensitivity of surface seismic P-wave data in transversely isotropic media to reflector depth

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-12-17

    The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface cannot constrain the long-wavelength attribute of the medium along the orthogonal-to-the-surface direction, as anisotropy introduces an independent parameter controlling wave propagation in the orthogonal direction. Since travel times measured on the Earth\\'s surface in transversely isotropic media with a vertical symmetry axis are mainly insensitive to the absolute value of the anisotropic parameter responsible for relating these observations to depth δ, the travel time was perturbed laterally to investigate the traveltime sensitivity to lateral variations in δ. This formulation can be used to develop inversion strategies for lateral variations in δ in acoustic transversely isotropic media, as the surface-recorded data are sensitive to it even if the model is described by the normal moveout velocity and horizontal velocity, or the anellipticity parameter η. Numerical tests demonstrate the enhanced sensitivity of our data when the model is parameterised with a lateral change in δ.

  15. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials

    Science.gov (United States)

    Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.

    2017-12-01

    A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.

  16. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  17. On physical complementarity of Galileo and Lorentz groups in the electrodynamics of isotropic inertial moving media

    International Nuclear Information System (INIS)

    Barykin, V.N.

    1989-01-01

    A physical interpretation of the early detected ambiguity of the electrodynamic material equations of isotropic, inertially moving media which mathematically manifests itself through complementarity of the equations invariant under the Galileo group in some cases and in other ones - under the Lorentz group that can be experimentally discovered in the aberration phenomenon and Doppler effect

  18. Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.

    1997-01-01

    We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...

  19. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2013-01-01

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng

    2013-06-20

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  1. The Space-Time Continuum as a Transversely Isotropic Material and the Meaning of the Temporal Coordinate

    International Nuclear Information System (INIS)

    Christov, C. I.

    2010-01-01

    A transversely isotropic elastic continuum is considered in four dimensions, three of which are isotropic, and the properties of the material change only related to the fourth dimension. The model employs two dilational and three shear Lame coefficients. The isotropic dilational coefficient is assumed to be much larger than the second dilational coefficient, and the three shear coefficients. This amounts to a material that is virtually incompressible in the three isotropic dimensions. The first and third shear coefficients are positive, while the second shear coefficient is assumed to be negative. As a result, in the equations of elastic equilibrium, the second derivatives of the displacement with respect to the fourth coordinate enter with negative sign. This makes the equations hyperbolic, with a fourth dimension opposing to the other three. The hyperbolic nature of the fourth dimension allows to be interpreted as time.

  2. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  3. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-05-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  4. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-01-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor's series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor's series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  5. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    OpenAIRE

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...

  6. Effects of stacking sequence on fracture mechanisms in quasi-isotropic Carbon/epoxy laminates under tensile loading

    International Nuclear Information System (INIS)

    Hessabi, Z. R.; Majidi, B.; Aghazadeh, J.

    2006-01-01

    The progress of damage in quasi-isotropic carbon/epoxy laminates under tensile loading has been Investigated microscopically. One significant mode of failure in laminated composites is delamination initiating at free edges. The interlaminar stress in the boundary ply along the free edges of a laminated composite is the main factor to cause delamination. The laminate stacking sequence affects the interlaminar stress distribution and consequently may change the mode of failure. It is of design importance to determine a suitable criterion based on stress analysis to obtain the best stacking sequence. In the present work, tensile properties of six samples with different stacking sequences have been examined. Results showed that stress analysis at distance very close to the free edges is a suitable criterion to predict the initiation of delamination and the stacking sequence of [90/45/0/-45] s , has the highest strength among the others. Furthermore finite element analysis showed that the adjacent ±45 plies cause premature delamination during tensile loading

  7. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  8. Isotropic gates and large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate

  9. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.

    Science.gov (United States)

    Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins

    2018-04-01

    Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach

    Science.gov (United States)

    Moraleda, Joaquín; Segurado, Javier; LLorca, Javier

    2009-09-01

    The in-plane finite deformation of incompressible fiber-reinforced elastomers was studied using computational micromechanics. Composite microstructure was made up of a random and homogeneous dispersion of aligned rigid fibers within a hyperelastic matrix. Different matrices (Neo-Hookean and Gent), fibers (monodisperse or polydisperse, circular or elliptical section) and reinforcement volume fractions (10-40%) were analyzed through the finite element simulation of a representative volume element of the microstructure. A successive remeshing strategy was employed when necessary to reach the large deformation regime in which the evolution of the microstructure influences the effective properties. The simulations provided for the first time "quasi-exact" results of the in-plane finite deformation for this class of composites, which were used to assess the accuracy of the available homogenization estimates for incompressible hyperelastic composites.

  11. Equivalence between short-time biphasic and incompressible elastic material responses.

    Science.gov (United States)

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.

  12. Regularized inversion of controlled source audio-frequency magnetotelluric data in horizontally layered transversely isotropic media

    International Nuclear Information System (INIS)

    Zhou, Jianmei; Shang, Qinglong; Wang, Hongnian; Wang, Jianxun; Yin, Changchun

    2014-01-01

    We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value. (paper)

  13. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  14. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  15. Canonical Quantization of Crystal Dislocation and Electron-Dislocation Scattering in an Isotropic Media

    Science.gov (United States)

    Li, Mingda; Cui, Wenping; Dresselhaus, M. S.; Chen, Gang; MIT Team; Boston College Team

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and decent quantum-mechanical theory of dislocation remains undiscovered for decades. Here we present an exact and manageable Hamiltonian theory for both edge and screw dislocation line in an isotropic media, where the effective Hamiltonian of a single dislocation line can be written in a harmonic-oscillator-like form, with closed-form quantized 1D phonon-like excitation. Moreover a closed-form, position dependent electron-dislocation coupling strength is obtained, from which we obtained good agreement of relaxation time when comparing with classical results. This Hamiltonian provides a platform to study the effect of dislocation to materials' non-mechanical properties from a fundamental Hamiltonian level.

  16. Unidirectional transmission realized by two nonparallel gratings made of isotropic media.

    Science.gov (United States)

    Ye, Wei-Min; Yuan, Xiao-Dong; Zeng, Chun

    2011-08-01

    We realize a unidirectional transmission by cascading two nonparallel gratings (NPGs) made of isotropic, lossless, and linear media. For a pair of orthogonal linear polarizations, one of the gratings is designed as a polarizer, which is a reflector for one polarization and a transmitter for the other; another grating is designed as a polarization converter, which converts most of one polarized incident wave into another polarized transmitted wave. It is demonstrated by numerical calculation that more than 85% of the incident light energy can be transmitted with less than 1% transmission in the opposite direction for linearly polarized light at normal incidence, and the relative bandwidth of the unidirectional transmission is nearly 9%. The maximum transmission contrast ratio between the two directions is 62 dB. Unlike one-way diffraction grating, the transmitted light of the NPGs is collinear with the incident light, but their polarizations are orthogonal. © 2011 Optical Society of America

  17. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous

  18. Isotropic gates in large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)

  19. Superfluid H3e in globally isotropic random media

    Science.gov (United States)

    Ikeda, Ryusuke; Aoyama, Kazushi

    2009-02-01

    Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.

  20. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements

    KAUST Repository

    Duddu, Ravindra

    2011-10-05

    We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.

  1. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng

    2014-03-22

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  2. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  3. Classical radiation theory of charged particles moving in electromagnetic fields in nonabsorbable isotropic media

    International Nuclear Information System (INIS)

    Konstantinovich, A.V.; Melnychuk, S.V.; Konstantinovich, I.A.

    2002-01-01

    The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)

  4. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  5. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)

    2009-08-10

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  6. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    International Nuclear Information System (INIS)

    Kravtsov, Yu.A.; Berczynski, P.; Bieg, B.

    2009-01-01

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  7. Examination of the PCICE method in the nearly incompressible, as well as strictly incompressible, limits

    International Nuclear Information System (INIS)

    Berry, Ray A.; Martineau, Richard C.

    2007-01-01

    The conservative-form, pressure-based PCICE numerical method (Martineau and Berry, 2004) (Berry, 2006), recently developed for computing transient fluid flows of all speeds from very low to very high (with strong shocks), is simplified and generalized. Though the method automatically treats a continuous transition of compressibility, three distinct, limiting compressibility regimes are formally defined for purposes of discussion and comparison with traditional methods - the strictly incompressible limit, the nearly incompressible limit, and the fully compressible limit. The PCICE method's behavior is examined in each limiting regime. In the strictly incompressible limit the PCICE algorithm reduces to the traditional MAC-type method with velocity divergence driving the pressure Poisson equation. In the nearly incompressible limit the PCICE algorithm is found to reduce to a generalization of traditional incompressible methods, i.e. to one in which not only the velocity divergence effect, but also the density gradient effect is included as a driving function in the pressure Poisson equation. This nearly incompressible regime has received little attention, and it appears that in the past, strictly incompressible methods may have been conveniently applied to flows in this regime at the expense of ignoring a potentially important coupling mechanism. This could be significant in many important flows; for example, in natural convection flows resulting from high heat flux. In the fully compressible limit or regime, the algorithm is found to reduce to an expression equivalent to density-based methods for high-speed flow. (author)

  8. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    Science.gov (United States)

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  9. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  10. Seeing is believing : communication performance under isotropic teleconferencing conditions

    NARCIS (Netherlands)

    Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.

    2001-01-01

    The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic

  11. Microstructural effects on the overall poroelastic properties of saturated porous media

    International Nuclear Information System (INIS)

    Bouhlel, M; Jamei, M; Geindreau, C

    2010-01-01

    At the macroscopic scale, the quasi-static deformation of an elastic porous medium saturated by an incompressible Newtonian fluid is described by the well-known Biot's model, which involves four effective parameters. In this work, the three effective poroelastic properties and the permeability of two periodic microstructures of saturated cohesive granular media, i.e. simple cubic (SC) and body-centered cubic (BCC) arrays of overlapping spheres, are computed by solving, over the representative elementary volume, boundary-value problems arising from the homogenization process. The influence of microstructure properties, i.e. solid volume fraction, arrangement of spheres, number of contacts as well as the intrinsic properties of the solid phase on the overall properties, is highlighted. Numerical results are then compared with rigorous bounds, self-consistent estimations, exact expansions and experimental results on ceramics and metals available in the literature. Finally, the capability of the obtained results on such periodic microstructures to describe the poroelastic properties of real porous media is discussed

  12. On the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable. II. Some cases of special interest (Poynting-Thomson, Jeffreys, Maxwell, Kelvin-Voigt, Hooke and Newton media)

    NARCIS (Netherlands)

    Ciancio, V.; Turrisi, E.; Kluitenberg, G.A.

    1986-01-01

    In a previous paper the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable was considered and the expressions for the velocity and attenuation of the waves were obtained. In the present paper we investigate the

  13. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi

    2014-08-05

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.

  14. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    Science.gov (United States)

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  15. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  16. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  17. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  18. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    Science.gov (United States)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  19. On the propagation of linear transverse acoustic waves in isotropic media with mechanical relaxation phenomena due to viscosity and a tensorial internal variable. II. Some cases of special interest (Poynting-Thomson, Jeffreys, Maxwell, Kelvin-Voigt, Hooke and Newton media)

    NARCIS (Netherlands)

    Turrisi, E.; Ciancio, V.; Kluitenberg, G.A.

    1982-01-01

    The propagation of linear transverse acoustic waves in isotropic media in which mechanical relaxation phenomena occur was considered in a previous paper. In particular expressions for the velocity and attenuation of the waves were obtained and the limiting cases of waves with high and low

  20. The influence of transverse diffusion/dispersion on the migration of radionuclides in porous media

    International Nuclear Information System (INIS)

    Schmocker, U.

    1980-07-01

    Repositories in geological formations are planned for the final disposal of radioactive wastes produced by nuclear power. Generally, water entry leading to leaching of the waste matrix is considered as the critical process which can result in release of radionuclides from a waste repository. Consequently, radionuclide transport through the geosphere is of crucial importance, because the geological medium acts as the last barrier to the biosphere. The influence of the transverse diffusion/dispersion effect on the migration of radionuclides through the geosphere is dealt with. Migration in porous media only is considered which is the standard approach of most existing transport models. The present study shows that it is only for homogeneous-isotropic media that the three-dimensional time-dependent transport equation can be solved analytically - provided that only simple source geometries and leach processes are taken into account. For heterogeneous layered media only the two-dimensional quasi-stationary transport equation can be solved; the only time dependent process which can be handled is simple radioactive decay excluding extended decay chains. The study shows moreover that only for an idealized three-layer geology can analytical solutions be found. In particular the solutions for multi-layered media cannot be derived from single-layer solutions; each problem with special source and boundary conditions has to be solved directly. The numerical results from the present study show a relatively strong influence of the transverse dispersion effect in the case of homogeneous-isotropic media. (Auth.)

  1. Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

    International Nuclear Information System (INIS)

    Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi

    2011-01-01

    We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  3. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  4. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  5. Second Noether theorem for quasi-Noether systems

    International Nuclear Information System (INIS)

    Rosenhaus, V; Shankar, R

    2016-01-01

    Quasi-Noether differential systems are more general than variational systems and are quite common in mathematical physics. They include practically all differential systems of interest, at least those that have conservation laws. In this paper, we discuss quasi-Noether systems that possess infinite-dimensional (infinite) symmetries involving arbitrary functions of independent variables. For quasi-Noether systems admitting infinite symmetries with arbitrary functions of all independent variables, we state and prove an extension of the second Noether theorem. In addition, we prove that infinite sets of conservation laws involving arbitrary functions of all independent variables are trivial and that the associated differential system is under-determined. We discuss infinite symmetries and infinite conservation laws of two important examples of non-variational quasi-Noether systems: the incompressible Euler equations and the Navier–Stokes equations in vorticity formulation, and we show that the infinite sets of conservation laws involving arbitrary functions of all independent variables are trivial. We also analyze infinite symmetries involving arbitrary functions of not all independent variables, prove that the fluxes of conservation laws in these cases are total divergences on solutions, and demonstrate examples of this situation. (paper)

  6. The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media

    CERN Document Server

    Heubrandtner, T

    2002-01-01

    In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.

  7. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  8. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  9. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-08-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  10. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2014-01-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  11. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  12. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  13. Implementation of the quasi-static method for neutron transport

    International Nuclear Information System (INIS)

    Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero; Le Tellier, Romain; Suteau, Christophe

    2011-01-01

    The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)

  14. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  15. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Prum, Richard O.; Dufresne, Eric R.; Cao, Hui (Yale)

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures. Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.

  16. Scalar properties of transversely isotropic tuff from images of orthogonal cross sections

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.

    1997-01-01

    Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross

  17. Finite amplitude, horizontal motion of a load symmetrically supported between isotropic hyperelastic springs.

    Science.gov (United States)

    Beatty, Millard F; Young, Todd R

    2012-03-01

    The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.

  18. Comparison of numerical dispersion for finite-difference algorithms in transversely isotropic media with a vertical symmetry axis

    International Nuclear Information System (INIS)

    Liang, Wen-Quan; Wang, Yan-Fei; Yang, Chang-Chun

    2015-01-01

    Numerical simulation of the wave equation is widely used to synthesize seismograms theoretically and is also the basis of the reverse time migration and full waveform inversion. For the finite difference methods, grid dispersion often exists because of the discretization of the time and the spatial derivatives in the wave equation. How to suppress the grid dispersion is therefore a key problem for finite difference (FD) approaches. The FD operators for the space derivatives are usually obtained in the space domain. However, the wave equations are discretized in the time and space directions simultaneously. So it would be better to design the FD operators in the time–space domain. We improved the time–space domain method for obtaining the FD operators in an acoustic vertically transversely isotropic (VTI) media so as to cover a much wider range of frequencies. Dispersion analysis and seismic numerical simulation demonstrate the effectiveness of the proposed method. (paper)

  19. Wavelets for the stimulation of turbulent incompressible flows

    International Nuclear Information System (INIS)

    Deriaz, E.

    2006-02-01

    This PhD thesis presents original wavelet methods aimed at simulating incompressible fluids. In order to construct 2D and 3D wavelets designed for incompressible flows, we resume P-G Lemarie-Rieussets and K. Urbans works on divergence free wavelets. We show the existence of associated fast algorithms. In the following, we use divergence-free wavelet construction to define the Helmholtz decomposition of 2D and 3D vector fields. All these algorithms provide a new method for the numerical resolution of the incompressible Navier-Stokes equations. (author)

  20. Digital Media-based Health Intervention on the promotion of Women's physical activity: a quasi-experimental study.

    Science.gov (United States)

    Peyman, Nooshin; Rezai-Rad, Majid; Tehrani, Hadi; Gholian-Aval, Mahdi; Vahedian-Shahroodi, Mohammad; Heidarian Miri, Hamid

    2018-01-15

    Technological advances have caused poor mobility and lower physical activity among humankind. This study was conducted to assess the impact of a digital media-based (multi-media, internet, and mobile phone) health intervention on promotion of women's physical activity. In this quasi-experimental study, 360 women were divided into case and control groups. The digital media-based educational intervention was conducted in two months in the case group electronically, using mail and Internet and telephone platforms. Physical activity was measured using International Physical Activity Questionnaire (IPAQ) that estimated women's physical activity rate in the previous week. Data was analyzed using descriptive and analytical statistics (ANOVA, chi-square, paired and independent t-tests) using SPSS 20. The mean score of knowledge, attitude and level of physical activity in the control group were not significantly different before and after the intervention. While in the case group, this difference before and after the intervention was significant (p digital media-based health education can be effective in improving health-based behavior such as physical activity. Therefore, it seems necessary to develop user-based strategies and strengthen the behavioral change theories and hypotheses based on digital media for effective influence on behavior. Iranian Registry of Clinical Trials (IRCT), IRCT20160619028529N5 . Registered December 24, 2017 [retrospectively registered].

  1. An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

    KAUST Repository

    Cockburn, Bernardo

    2008-12-20

    We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element post-processing procedure is used to provide globally divergence-free velocity approximations. For small data, we prove the existence and uniqueness of discrete solutions and carry out an error analysis of the method. A series of numerical results are presented that validate our theoretical findings. © 2008 Springer Science+Business Media, LLC.

  2. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2015-01-01

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken's extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  3. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin

    2015-03-30

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  4. Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization

    International Nuclear Information System (INIS)

    Pavlov, Yu.V.

    2001-01-01

    One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru

  5. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.

    Science.gov (United States)

    Crevillén-García, D; Power, H

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  6. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media

    Science.gov (United States)

    Crevillén-García, D.; Power, H.

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  7. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  8. Settling velocity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Gama, Sílvio M. A.

    2018-02-01

    We investigate the sedimentation properties of quasi-neutrally buoyant inertial particles carried by incompressible zero-mean fluid flows. We obtain generic formulae for the terminal velocity in generic space-and-time periodic (or steady) flows, along with further information for flows endowed with some degree of spatial symmetry such as odd parity in the vertical direction. These expressions consist in space-time integrals of auxiliary quantities that satisfy partial differential equations of the advection-diffusion-reaction type, which can be solved at least numerically, since our scheme implies a huge reduction of the problem dimensionality from the full phase space to the classical physical space. xml:lang="fr"

  9. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao

    2015-04-17

    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  10. Active isotropic slabs: conditions for amplified reflection

    Science.gov (United States)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  11. Active isotropic slabs: conditions for amplified reflection

    International Nuclear Information System (INIS)

    Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier

    2012-01-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)

  12. Simulation of Stress Concentration Problems in Laminated Plates by Quasi-Trefftz Finite Element Models

    Directory of Open Access Journals (Sweden)

    Flávio Luiz de Silva Bussamra

    Full Text Available Abstract Hybrid quasi-Trefftz finite elements have been applied with success to the analysis of laminated plates. Two independent fields are approximated by linearly independent, hierarchical polynomials: the stress basis in the domain, adapted from Papkovitch-Neuber solution of Navier equations, and the displacement basis, defined on element surface. The stress field that satisfies the Trefftz constraint a priori for isotropic material is adapted for orthotropic materials, which leads to the term "quasi". In this work, the hexahedral hybrid quasi-Trefftz stress element is applied to the modeling of nonsymmetric laminates and laminated composite plates with geometric discontinuities. The hierarchical p-refinement is exploited.

  13. Deriving the equations of motion of porous isotropic media

    International Nuclear Information System (INIS)

    Pride, S.R.; Gangi, A.F.; Morgan, F.D.

    1992-01-01

    The equations of motion and stress/strain relations for the linear dynamics of a two-phase, fluid/solid, isotropic, porous material have been derived by a direct volume averaging of the equations of motion and stress-strain relations known to apply in each phase. The equations thus obtained are shown to be consistent with Biot's equations of motion and stress/strain relations; however, the effective fluid density in the equation of relative flow has an unambiguous definition in terms of the tractions acting on the pore walls. The stress/strain relations of the theory correspond to 'quasistatic' stressing (i.e., inertial effects are ignored). It is demonstrated that using such quasistatic stress/strain relations in the equations of motion is justified whenever the wavelengths are greater than a length characteristic of the averaging volume size. 37 refs., 2 figs

  14. Separate P‐ and SV‐wave equations for VTI media

    KAUST Repository

    Pestana, Reynam C.; Ursin, Bjø rn; Stoffa, Paul L.

    2011-01-01

    In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.

  15. Real-Time Incompressible Fluid Simulation on the GPU

    Directory of Open Access Journals (Sweden)

    Xiao Nie

    2015-01-01

    Full Text Available We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible smoothed particle hydrodynamics (PCISPH on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search is the major performance obstacle because this process is performed several times at each time step. To eliminate this bottleneck, an efficient parallel sorting method for this time-consuming step is introduced. Moreover, we discuss several optimization techniques including using fast on-chip shared memory to avoid global memory bandwidth limitations and thus further improve performance on modern GPU hardware. With our framework, the realism of real-time fluid simulation is significantly improved since our method enforces incompressibility constraint which is typically ignored due to efficiency reason in previous GPU-based SPH methods. The performance results illustrate that our approach can efficiently simulate realistic incompressible fluid in real time and results in a speed-up factor of up to 23 on a high-end NVIDIA GPU in comparison to single-threaded CPU-based implementation.

  16. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  17. Quasi-elastic neutron scattering study of a re-entrant side-chain liquid-crystal polyacrylate

    Science.gov (United States)

    Benguigui, L.; Noirez, L.; Kahn, R.; Keller, P.; Lambert, M.; Cohen de Lara, E.

    1991-04-01

    We present a first investigation of the dynamics of a side chain liquid crystal polyacrylate in the isotropic (I), nematic (N), smectic A (SA), and re-entrant nematic (NRe) phases by means of quasi-elastic neutron scattering. The motion or/and the mobility of the mesogen protons decreases as soon as the temperature decreases after the isotropic-nematic transition. The I-N and SA-NRe transitions corrspond to a jump in the curve of the Elastic Incoherent Structure Factor (ratio: elastic scattering/ total scattering) versus temperature, on the other hand the transition N-SA occurs without any change of slope. We conclude that the local order is very similar in the nematic and the smectic A phases. Nous présentons une première étude dynamique par diffusion quasi-élastique des neutrons, d'un échantillon de polyacrylate mésomorphe en peigne dans chacune des phases : isotrope, nématique, smectique et nématique rentrante. On montre que le mouvement et/ou la mobilité des protons du mésogène se restreint à mesure que la température diminue après la transition isotrope-nématique. Contrairement à la transition N-SA, les transitions I-N et SA-NRe correspondent à une discontinuité dans la courbe du Facteur de Structure Incohérent Elastique (rapport : intensité élastique/intensité totale) en fonction de la température ; l'ordre local semble donc très proche pour les phases nématique et smectique.

  18. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  19. Nonspecular reflection of light at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.

    2015-01-01

    We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range from 450 to 1000 nm

  20. Multi-component pre-stack time-imaging and migration-based velocity analysis in transversely isotropic media; Imagerie sismique multicomposante et analyse de vitesse de migration en milieu transverse isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Gerea, C.V.

    2001-06-01

    Complementary to the recording of compressional (P-) waves, the observation of P-S converted waves has recently been receiving specific attention. This is mainly due to their tremendous potential as a tool for fracture and lithology characterization, imaging sediments in gas saturated rocks, and imaging shallow sediments with higher resolution than conventional P-P data. In a conventional marine seismic survey, we cannot record P-to-S converted-wave energy since the fluids cannot support shear-wave strain. Thus, to capture the converted-wave energy, we need to record it at the water-bottom casing an ocean-bottom cable (OBC). The S-waves recorded at the seabed are mainly converted from P to S (i.e., PS-waves or C-waves) at the subsurface reflectors. The most accurate way to image seismic data is pre-stack depth migration. In this thesis, I develop a numerically efficient 2.5-D true-amplitude elastic Kirchhoff pre-stack migration algorithm designed to handle OBC data gathered along a single line. All the kinematic and dynamic elastic Green's functions required in the computation of true-amplitude weight term of Kirchhoff summation, are based on the non-hyperbolic explicit approximations of P- and SV-wave travel-times in layered transversely isotropic (VTI) media. Hence, this elastic imaging algorithm is very well-suited for migration-based velocity analysis techniques, for which fast, robust and iterative pre-stack migration is desired. In this thesis, I approach also the topic of anisotropic velocity model building for elastic pre-stack time-imaging. and propose an original methodology for joint PP-PS migration-based velocity analysis (MVA) in layered VTI anisotropic media. Tests on elastic synthetic and real OBC seismic data ascertain the validity of the pre-stack migration algorithm and velocity analysis methodology. (author)

  1. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  2. Nearly incompressible MHD turbulence in the solar wind

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Zhou, Y.

    1989-01-01

    Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs

  3. The incompressibility assumption in computational simulations of nasal airflow.

    Science.gov (United States)

    Cal, Ismael R; Cercos-Pita, Jose Luis; Duque, Daniel

    2017-06-01

    Most of the computational works on nasal airflow up to date have assumed incompressibility, given the low Mach number of these flows. However, for high temperature gradients, the incompressibility assumption could lead to a loss of accuracy, due to the temperature dependence of air density and viscosity. In this article we aim to shed some light on the influence of this assumption in a model of calm breathing in an Asian nasal cavity, by solving the fluid flow equations in compressible and incompressible formulation for different ambient air temperatures using the OpenFOAM package. At low flow rates and warm climatological conditions, similar results were obtained from both approaches, showing that density variations need not be taken into account to obtain a good prediction of all flow features, at least for usual breathing conditions. This agrees with most of the simulations previously reported, at least as far as the incompressibility assumption is concerned. However, parameters like nasal resistance and wall shear stress distribution differ for air temperatures below [Formula: see text]C approximately. Therefore, density variations should be considered for simulations at such low temperatures.

  4. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    Science.gov (United States)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  5. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Computation of Viscous Incompressible Flows

    CERN Document Server

    Kwak, Dochan

    2011-01-01

    This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...

  8. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  9. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  10. Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties

    International Nuclear Information System (INIS)

    Tanigawa, Y.; Ootao, Y.

    1987-01-01

    If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)

  11. A physical model study of the travel times and reflection points of SH-waves reflected from transversely isotropic media with tilted symmetry axes

    Science.gov (United States)

    Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung

    2012-05-01

    In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.

  12. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  13. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  14. Parallel simulation of two-phase incompressible and immiscible flows in porous media using a finite volume formulation and a modified IMPES approach

    International Nuclear Information System (INIS)

    Da Silva, R S; De Carvalho, D K E; Antunes, A R E; Lyra, P R M; Willmersdorf, R B

    2010-01-01

    In this paper a finite volume method with a 'Modified Implicit Pressure, Explicit Saturation' (MIMPES) approach is used to model the 3-D incompressible and immiscible two-phase flow of water and oil in heterogeneous and anisotropic porous media. A vertex centered finite volume method with an edge-based data structure is adopted to discretize both the elliptic pressure and the hyperbolic saturation equations using parallel computers with distributed memory. Due to the explicit solution of the saturation equation in the IMPES method, severe time step restrictions are imposed on the simulation. In order to circumvent this problem, an edge-based implementation of the MIMPES method was used. In this method, the pressure equation is solved and the velocity field is computed much less frequently than the saturation field. Following the work of Hurtado, a mean relative variation of the velocity field throughout the simulation is used to automatically control the updating process, allowing for much larger time-steps in a very simple way. In order to run large scale problems, we have developed a parallel implementation using clusters of PC's. The simulator uses open source parallel libraries like FMDB, ParMetis and PETSc. Results of speed-up and efficiency are presented to validate the performance of the parallel simulator.

  15. Analysis of Thomsen parameters for finely layered VTI media

    International Nuclear Information System (INIS)

    Berryman, J.G.; Berge, P.A.

    1997-01-01

    The range of Thomsen's anisotropy parameters ε and δ for vertical transversely isotropic (VTI) media when the anisotropy is due to fine layering of isotropic elas-tic materials is considered. We show that ε lies in the range -3/8 ≤ ε ≤ 1/2 v p 2 > p-2 >-1 for finely layered media having constant density; smaller positive and all negative values of ε occur for media with large fluctuations in the Lamacute e parameter λ We show that sign(δ) = sign ( p -2 > - s -2 > s 2 /v p 2 >) for constant density media, so δ can be either positive or negative. Among all theoretically possible random media, posi-tive and negative δ are equally likely in finely layered media limited to two types of constituent layers. Lay-ered media having large fluctuations in Lamacute e λ are the ones most likely to have positive δ. Since Gassmann's results for fluid-saturated porous media show that the effects of fluids influence only the λ Lamacute e constant, not the shear modulus μ, these results suggest that positive δ occurring together with positive but small ε may be indicative of changing fluid content in layered earth

  16. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  17. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  18. Fully-developed conjugate heat transfer in porous media with uniform heating

    NARCIS (Netherlands)

    Lopez Penha, D.J.; Stolz, S.; Kuerten, Johannes G.M.; Nordlund, M.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2012-01-01

    We propose a computational method for approximating the heat transfer coefficient of fully-developed flow in porous media. For a representative elementary volume of the porous medium we develop a transport model subject to periodic boundary conditions that describes incompressible fluid flow through

  19. Macroscopic simulation of isotropic permanent magnets

    International Nuclear Information System (INIS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.

  20. On compressible and piezo-viscous flow in thin porous media.

    Science.gov (United States)

    Pérez-Ràfols, F; Wall, P; Almqvist, A

    2018-01-01

    In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.

  1. Incompressibility of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan

    2010-01-01

    Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)

  2. I-Love relations for incompressible stars and realistic stars

    Science.gov (United States)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  3. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  4. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  5. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  6. A blended pressure/density based method for the computation of incompressible and compressible flows

    International Nuclear Information System (INIS)

    Rossow, C.-C.

    2003-01-01

    An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining 'compressible' contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation

  7. Review of the modified finite particle method and application to incompressible solids

    Directory of Open Access Journals (Sweden)

    D Asprone

    2016-10-01

    Full Text Available This paper focuses on the application of the Modified Finite Particle Method (MFPM on incompressibile elasticity problems. MFPM belongs to the class of meshless methods, nowadays widely investigated due to their characteristics of being totally free of any kind of grid or mesh. This characteristic makes meshless methods potentially useful for the study of large deformations problems and fluid dynamics. In particular, the aim of the work is to compare the results obtained with a simple displacement-based formulation, in the limit of incompressibility, and some formulations proposed in the literature for full incompressibility, where the typical divergence-free constraint is replaced by a different equation, the so-called Pressure Poisson Equation. The obtained results show that the MFPM achieves the expected second-order accuracy on formulation where the equations imposed as constraint satisfies also the original incompressibility equation. Other formulations, differently, do not satisfy the incompressibility constraint, and thus, they are not successfully applicable with the Modified Finite Particle Method.

  8. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    Science.gov (United States)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  9. Accurate solution algorithms for incompressible multiphase flows

    International Nuclear Information System (INIS)

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  10. Existence Results for Incompressible Magnetoelasticity

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Stefanelli, U.; Zeman, J.

    2015-01-01

    Roč. 35, č. 6 (2015), s. 2615-2623 ISSN 1078-0947 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : magnetoelasticity * magnetostrictive solids * incompressibility * existence of minimizers * quasistatic evolution * energetic solution Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik-0443017.pdf

  11. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  12. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin

    2015-08-19

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  13. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  14. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  15. Thermalization vs. isotropization and azimuthal fluctuations

    International Nuclear Information System (INIS)

    Mrowczynski, Stanislaw

    2005-01-01

    Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage

  16. Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions

    International Nuclear Information System (INIS)

    Lin, Hongxia; Du, Lili

    2013-01-01

    In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)

  17. Error estimation and adaptivity for incompressible hyperelasticity

    KAUST Repository

    Whiteley, J.P.; Tavener, S.J.

    2014-01-01

    SUMMARY: A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined

  18. Improvement of the efficiency of two-dimensional multigroup transport calculations assuming isotropic reflection with multilevel spatial discretisation

    International Nuclear Information System (INIS)

    Stankovski, Z.; Zmijarevic, I.

    1987-06-01

    This paper presents two approximations used in multigroup two-dimensional transport calculations in large, very homogeneous media: isotropic reflection together with recently proposed group-dependent spatial representations. These approximations are implemented as standard options in APOLLO 2 assembly transport code. Presented example calculations show that significant savings in computational costs are obtained while preserving the overall accuracy

  19. The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description

    Science.gov (United States)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.

    2017-09-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar

  20. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  1. On preconditioning incompressible non-Newtonian flow problems

    NARCIS (Netherlands)

    He, X.; Neytcheva, M.; Vuik, C.

    2013-01-01

    This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space

  2. Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems

    International Nuclear Information System (INIS)

    Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.

    1991-05-01

    Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs

  3. Inviscid incompressible limits on expanding domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Nečasová, Šárka; Sun, Y.

    2014-01-01

    Roč. 27, č. 10 (2014), s. 2465-2477 ISSN 0951-7715 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * large domain * inviscid limit * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 1.208, year: 2014 http://iopscience.iop.org/0951-7715/27/10/2465/

  4. Nuclear incompressibility: from finite nuclei to nuclear matter

    International Nuclear Information System (INIS)

    Treiner, J.; Krivine, H.; Bohigas, O.

    1981-01-01

    The recent increase of experimental data concerning the Giant Monopole Resonance Energy Esub(M) gives information on the incompressibility modulus of nuclear matter, provided one can extrapolate the incompressibility of a nucleus Ksub(A) defined by Esub(M)=[h 2 /m KA/ 2 >]sup(1/2), to the infinite medium. We discuss the theoretical interpretation of the coefficients of an Asup(-1/3) - expansion of Ksub(A) by studying the asymptotic behaviour of two RPA sum rules (corresponding to the scaling and the constrained model), evaluated using self-consistent Thomas-Fermi calculations. We show that the scaling model is the most suitable one as it leads to a rapidly converging Asup(-1/3)-expansion of the corresponding incompressibility Ksub(A)sup(S), whereas this is not the case with the constrained model. Some semi-empirical relations between the coefficients of the expansion of Ksub(A)sup(S) are established, which reduce to one the number of free-parameters in a best fit analysis of the experimental data. This reduction is essential due to the still limited number and accuracy of experimental data. We then show the compatibility of the data given by the various experimental groups with this parametrization and obtain a value of Ksub(nm)=220+-20 MeV, in good agreement with more microscopic analysis

  5. Compression modes and the nuclear matter incompressibility ...

    Indian Academy of Sciences (India)

    We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefficient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conflicting ...

  6. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi; Alkhalifah, Tariq Ali

    2016-01-01

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex

  7. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  8. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. T. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  9. Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)

    2017-02-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.

  10. Leptodermous expansion of finite-nucleus incompressibility

    International Nuclear Information System (INIS)

    Nayak, R.C.

    1990-01-01

    We consider the influence of higher-order terms in the leptodermous expansion used to extract the incompressibility K v of infinite nuclear matter from data on the breathing mode of finite nuclei. The terms we calculate are the curvature term K cv A -2/3 , the surface-symmetry term K ss I 2 A -1/3 , the quartic volume-symmetry term K 4 I 4 , and a Coulomb-exchange term. Working within the framework of the scaling model we derive expressions for their coefficients in terms of quantities that are defined for infinite and semi-infinite nuclear matter. We calculate these coefficients for four different Skyrme-type forces, using the extended Thomas-Fermi (ETF) approximation. With the same forces we also calculate the incompressibility K (A, I) for a number of finite nuclei, fit the results to the leptodermous expansion, and thereby extract new results for the same coefficients. The comparison of the two calculations shows that the leptodermous expansion is converging rapidly. Of the new terms, the term K 4 I 4 is quite negligible, the curvature term should be included, and we discuss to what extent the other higher-order terms are significant. (orig.)

  11. Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-based Algebraic Multigrid (AMGe) Approach

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    2017-01-01

    associated with non-planar interfaces between agglomerates, the coarse velocity space has guaranteed approximation properties. The employed AMGe technique provides coarse spaces with desirable local mass conservation and stability properties analogous to the original pair of Raviart-Thomas and piecewise......We study the application of a finite element numerical upscaling technique to the incompressible two-phase porous media total velocity formulation. Specifically, an element agglomeration based Algebraic Multigrid (AMGe) technique with improved approximation proper ties [37] is used, for the first...... discontinuous polynomial spaces, resulting in strong mass conservation for the upscaled systems. Due to the guaranteed approximation properties and the generic nature of the AMGe method, recursive multilevel upscaling is automatically obtained. Furthermore, this technique works for both structured...

  12. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

    International Nuclear Information System (INIS)

    Tao Ganqiang; Yu Qing; Xiao Xiao

    2011-01-01

    Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

  13. Inviscid incompressible limits for rotating fluids

    Czech Academy of Sciences Publication Activity Database

    Caggio, Matteo; Nečasová, Šárka

    2017-01-01

    Roč. 163, November (2017), s. 1-18 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : compressible Navier -Stokces system * rotating fluids * incompressible limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X17301815?via%3Dihub

  14. Inviscid incompressible limits for rotating fluids

    Czech Academy of Sciences Publication Activity Database

    Caggio, Matteo; Nečasová, Šárka

    2017-01-01

    Roč. 163, November (2017), s. 1-18 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokces system * rotating fluids * incompressible limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X17301815?via%3Dihub

  15. Prestack exploding reflector modeling and migration in TI media

    KAUST Repository

    Wang, H.

    2014-01-01

    Prestack depth migration in anisotropic media, especially those that exhibit tilt, can be costly using reverse time migration (RTM). We present two-way spectral extrapolation of prestack exploding reflector modeling and migration (PERM) in acoustic transversely isotropic (TI) media. We construct systematic ways to evaluate phase angles and phase velocities in dip oriented TI (DTI), vertical TI (VTI) and tilted TI (TTI) media. Migration results from the Marmousi VTI model and the BP2007 TTI model show the feasibility of our approach.

  16. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  17. Efficient Parallel Algorithms for Unsteady Incompressible Flows

    KAUST Repository

    Guermond, Jean-Luc; Minev, Peter D.

    2013-01-01

    The objective of this paper is to give an overview of recent developments on splitting schemes for solving the time-dependent incompressible Navier–Stokes equations and to discuss possible extensions to the variable density/viscosity case. A particular attention is given to algorithms that can be implemented efficiently on large parallel clusters.

  18. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong

    2016-09-06

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.

  19. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  20. Self-similarity in incompressible Navier-Stokes equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2015-12-01

    The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space.

  1. Calculation of incompressible fluid flow through cambered blades

    Science.gov (United States)

    Hsu, C. C.

    1970-01-01

    Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.

  2. On an incompressible model in radiation hydrodynamics

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2015-01-01

    Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract

  3. An assessment of first-order stochastic dispersion theories in porous media

    Science.gov (United States)

    Chin, David A.

    1997-12-01

    Random realizations of three-dimensional exponentially correlated hydraulic conductivity fields are used in a finite-difference numerical flow model to calculate the mean and covariance of the corresponding Lagrangian-velocity fields. The dispersivity of the porous medium is then determined from the Lagrangian-velocity statistics using the Taylor definition. This estimation procedure is exact, except for numerical errors, and the results are used to assess the accuracy of various first-order dispersion theories in both isotropic and anisotropic porous media. The results show that the Dagan theory is by far the most robust in both isotropic and anisotropic media, producing accurate values of the principal dispersivity components for σy as high as 1.0, In the case of anisotropic media where the flow is at an angle to the principal axis of hydraulic conductivity, it is shown that the dispersivity tensor is rotated away from the flow direction in the non-Fickian phase, but eventually coincides with the flow direction in the Fickian phase.

  4. Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

    International Nuclear Information System (INIS)

    Guney, Durdu; Koschny, Thomas; Soukoulis, Costas

    2010-01-01

    Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

  5. Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.

    1997-01-01

    We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...

  6. Complex three dimensional modelling of porous media using high performance computing and multi-scale incompressible approach

    Science.gov (United States)

    Martin, R.; Orgogozo, L.; Noiriel, C. N.; Guibert, R.; Golfier, F.; Debenest, G.; Quintard, M.

    2013-05-01

    In the context of biofilm growth in porous media, we developed high performance computing tools to study the impact of biofilms on the fluid transport through pores of a solid matrix. Indeed, biofilms are consortia of micro-organisms that are developing in polymeric extracellular substances that are generally located at a fluid-solid interfaces like pore interfaces in a water-saturated porous medium. Several applications of biofilms in porous media are encountered for instance in bio-remediation methods by allowing the dissolution of organic pollutants. Many theoretical studies have been done on the resulting effective properties of these modified media ([1],[2], [3]) but the bio-colonized porous media under consideration are mainly described following simplified theoretical media (stratified media, cubic networks of spheres ...). Therefore, recent experimental advances have provided tomography images of bio-colonized porous media which allow us to observe realistic biofilm micro-structures inside the porous media [4]. To solve closure system of equations related to upscaling procedures in realistic porous media, we solve the velocity field of fluids through pores on complex geometries that are described with a huge number of cells (up to billions). Calculations are made on a realistic 3D sample geometry obtained by X micro-tomography. Cell volumes are coming from a percolation experiment performed to estimate the impact of precipitation processes on the properties of a fluid transport phenomena in porous media [5]. Average permeabilities of the sample are obtained from velocities by using MPI-based high performance computing on up to 1000 processors. Steady state Stokes equations are solved using finite volume approach. Relaxation pre-conditioning is introduced to accelerate the code further. Good weak or strong scaling are reached with results obtained in hours instead of weeks. Factors of accelerations of 20 up to 40 can be reached. Tens of geometries can now be

  7. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  8. Qualitative behaviour of incompressible two-phase flows with phase ...

    Indian Academy of Sciences (India)

    Jan Prüss

    2017-11-07

    Nov 7, 2017 ... Qualitative behaviour of incompressible two-phase flows with phase ... Germany. 2Graduate School of Human and Environmental Studies, Kyoto University, ... Note that j is a dummy variable as it can be eliminated from the ...

  9. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  10. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Xu Hui; Tao Wenquan; Zhang Yan

    2009-01-01

    We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM

  11. Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium

    International Nuclear Information System (INIS)

    Sans, J A; Manjón, F J; Popescu, C; Muñoz, A; Rodríguez-Hernández, P; Jordá, J L; Rey, F

    2016-01-01

    This study reports the experimental characterization of the hydrostatic properties of arsenolite (As 4 O 6 ), a molecular solid which is one of the softest minerals in the absence of hydrogen bonding. The high compressibility of arsenolite and its stability up to 15 GPa have been proved by x-ray diffraction measurements, and the progressive loss of hydrostaticity with increasing pressure up to 20 GPa has been monitored by ruby photoluminescence. Arsenolite has been found to exhibit hydrostatic behavior up to 2.5 GPa and a quasi-hydrostatic behavior up to 10 GPa at room temperature. This result opens the way to explore other molecular solids as possible quasi-hydrostatic pressure-transmitting media. The validity of arsenolite as an insulating, stable, non-penetrating and quasi-hydrostatic medium is explored by the study of the x-ray diffraction of zeolite ITQ-29 at high pressure. (paper)

  12. Azimuth and angle gathers from wave equation imaging in VTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2009-01-01

    Angles in common-image angle domain gathers refer to the scattering angle at the reflector and provide a natural access to analyzing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-space-frequency planes into angle-space planes simultaneously with applying the imaging condition in a transversely isotropic (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case anisotropic media differs from its isotropic counterpart, difference depending mainly on the strength of anisotropy.

  13. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  14. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali; Sava, Paul C.

    2010-01-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  15. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    Science.gov (United States)

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  16. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  17. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  18. Point force singularities outside a drop covered with an incompressible surfactant: Image systems and their applications

    Science.gov (United States)

    Shaik, Vaseem A.; Ardekani, Arezoo M.

    2017-11-01

    In this work we derive the image flow fields for point force singularities placed outside a stationary drop covered with an insoluble, nondiffusing, and incompressible surfactant. We assume the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial stress tensor. We use this analytical solution to investigate two different problems. First, we derive the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes dipole) outside a drop covered with an incompressible surfactant.

  19. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid

    International Nuclear Information System (INIS)

    Bae, Hyeong-Ohk; Choi, Young-Pil; Ha, Seung-Yeal; Kang, Moon-Jin

    2012-01-01

    We present a new coupled kinetic-fluid model for the interactions between Cucker–Smale (C–S) flocking particles and incompressible fluid on the periodic spatial domain T d . Our coupled system consists of the kinetic C–S equation and the incompressible Navier–Stokes equations, and these two systems are coupled through the drag force. For the proposed model, we provide a global existence of weak solutions and a priori time-asymptotic exponential flocking estimates for any smooth flow, when the kinematic viscosity of the fluid is sufficiently large. The velocity of individual C–S particles and fluid velocity tend to the averaged time-dependent particle velocities exponentially fast

  20. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  1. Diffusion-limited mixing by incompressible flows

    Science.gov (United States)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  2. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo

    2015-01-01

    -dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  3. Untitled

    Indian Academy of Sciences (India)

    angular container which is filled with a quasi-incompressible liquid with the upper surface free (see figure 1). Quasi-incompressible means that the liquid density is taken to be constant except in the body force term which can then be written as a buoyancy force. The surface-tension variation is considered to be induced by a ...

  4. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Oz, Yaron

    2008-01-01

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them

  5. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    Science.gov (United States)

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  6. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  7. Anisotropic to Isotropic Phase Transitions in the Early Universe

    Directory of Open Access Journals (Sweden)

    Ajaib M. A.

    2012-04-01

    Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.

  8. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  9. Process for the preparation of isotropic petroleum coke

    International Nuclear Information System (INIS)

    Kegler, W.H.; Huyser, M.E.

    1975-01-01

    A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr

  10. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  11. Texture of low temperature isotropic pyrocarbons

    International Nuclear Information System (INIS)

    Pelissier, Joseph; Lombard, Louis.

    1976-01-01

    Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr

  12. Frequency Domain Multi-parameter Full Waveform Inversion for Acoustic VTI Media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2017-01-01

    Multi-parameter full waveform inversion (FWI) for transversely isotropic (TI) media with vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter's update into the other

  13. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  14. On singularity formation of a 3D model for incompressible Navier–Stokes equations

    OpenAIRE

    Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu

    2012-01-01

    We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...

  15. Incompressible Navier-Stokes equations. Theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, T.

    1996-12-31

    This paper contains notes from a seminar presented at the Dept. of Mathematics in the University of Bergen, Norway, Oct. 1996. It first introduces the theory of existence and uniqueness of solutions to the incompressible Navier-Stokes equation and defines a well-posed initial-boundary value problem. It then discusses different methods for solving numerically the Navier-Stokes equations in velocity-pressure formulation. The emphasis is on pressure correction methods. 19 refs.

  16. Optical Frequency Mixing in Periodically-Patterned and in Quasi-Periodically-Patterned Nonlinear media

    International Nuclear Information System (INIS)

    Arie, A.

    1999-01-01

    Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys

  17. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  18. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  19. Isotropic compression of cohesive-frictional particles with rolling resistance

    NARCIS (Netherlands)

    Luding, Stefan; Benz, Thomas; Nordal, Steinar

    2010-01-01

    Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according

  20. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant; Tsvankin, Ilya

    2014-01-01

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  1. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  2. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wind turbine aerodynamics using an incompressible overset grid method

    DEFF Research Database (Denmark)

    Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    In this paper 3D Navier-Stokes simulations of the unsteady flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations...

  4. On the solvability of asymmetric quasilinear finite element approximate problems in nonlinear incompressible elasticity

    International Nuclear Information System (INIS)

    Ruas, V.

    1982-09-01

    A class of simplicial finite elements for solving incompressible elasticity problems in n-dimensional space, n=2 or 3, is presented. An asymmetric structure of the shape functions with respect to the centroid of the simplex, renders them particularly stable in the large strain case, in which the incompressibility condition is nonlinear. It is proved that under certain assembling conditions of the elements, there exists a solution to the corresponding discrete problems. Numerical examples illustrate the efficiency of the method. (Author) [pt

  5. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  6. Interactively variable isotropic resolution in computed tomography

    International Nuclear Information System (INIS)

    Lapp, Robert M; Kyriakou, Yiannis; Kachelriess, Marc; Wilharm, Sylvia; Kalender, Willi A

    2008-01-01

    An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame

  7. Incompressible limit of the degenerate quantum compressible Navier-Stokes equations with general initial data

    Science.gov (United States)

    Kwon, Young-Sam; Li, Fucai

    2018-03-01

    In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.

  8. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  9. Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.

    2005-01-01

    The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled

  10. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  11. Numerical methods for incompressible viscous flows with engineering applications

    Science.gov (United States)

    Rose, M. E.; Ash, R. L.

    1988-01-01

    A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.

  12. A mathematical model for turbulent incompressible flows through mixing grids

    International Nuclear Information System (INIS)

    Allaire, G.

    1989-01-01

    A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing

  13. Quasi-Stationary Temperature Field of Two-Layer Half-Space with Moving Boundary

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2015-01-01

    Full Text Available Due to intensive introduction of mathematical modeling methods into engineering practice, analytical methods for solving problems of heat conduction theory along with computational methods become increasingly important. Despite the well-known limitations of the analytical method applicability, this trend is caused by many reasons. In particular, solutions of the appropriate problems presented in analytically closed form can be used to test the new efficient computational algorithms, to carry out a parametric study of the temperature field of the analyzed system and to explore specific features of its formation, to formulate and solve optimization problems. In addition, these solutions allow us to explore the possibility for simplifying mathematical model with retaining its adequacy to the studied process.The main goal of the conducted research is to provide an analytically closed-form solution to the problem of finding the quasi-stationary temperature field of the system, which is simulated by isotropic half-space with isotropic coating of constant thickness. The outer boundary of this system is exposed to the Gaussian-type heat flux and uniformly moves in parallel with itself.A two-dimensional mathematical model that takes into account the axial symmetry of the studied process has been used. After the transition to a moving coordinate system rigidly associated with a moving boundary the Hankel integral transform of zero order (with respect to the radial variable and the Laplace transform (with respect to the temporal variable were used. Next, the image of the Hankel transform for the stationary temperature field of the system with respect to the moving coordinate system was found using a limit theorem of operational calculus. This allowed representing the required quasi-stationary field in the form of an improper integral of the first kind, which depends on the parameters. This result obtained can be used to conduct a parametric study and solve

  14. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    Science.gov (United States)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  15. Unique encoding for streamline topologies of incompressible and inviscid flows in multiply connected domains

    Energy Technology Data Exchange (ETDEWEB)

    Sakajo, T [Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Sawamura, Y; Yokoyama, T, E-mail: sakajo@math.kyoto-u.ac.jp [JST CREST, Kawaguchi, Saitama 332-0012 (Japan)

    2014-06-01

    This study considers the flow of incompressible and inviscid fluid in two-dimensional multiply connected domains. For such flows, encoding algorithms to assign a unique sequence of words to any structurally stable streamline topology based on the theory presented by Yokoyama and Sakajo (2013 Proc. R. Soc. A 469 20120558) are proposed. As an application, we utilize the algorithms to characterize the evolution of an incompressible and viscid flow around a flat plate inclined to the uniform flow in terms of the change of the word representations for their instantaneous streamline topologies. (papers)

  16. An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

    KAUST Repository

    Cockburn, Bernardo; Kanschat, Guido; Schö tzau, Dominik

    2008-01-01

    We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability

  17. Five-dimensional truncation of the plane incompressible navier-stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Boldrighini, C [Camerino Univ. (Italy). Istituto di Matematica; Franceschini, V [Modena Univ. (Italy). Istituto Matematico

    1979-01-01

    A five-modes truncation of the Navier-Stokes equations for a two dimensional incompressible fluid on a torus is considered. A computer analysis shows that for a certain range of the Reynolds number the system exhibits a stochastic behaviour, approached through an involved sequence of bifurcations.

  18. Oberbeck-Bousinesq approximation for the motion of two incompressible fluids

    Czech Academy of Sciences Publication Activity Database

    Denisova, I.V.; Nečasová, Šárka

    2009-01-01

    Roč. 159, č. 4 (2009), s. 436-451 ISSN 1072-3374 R&D Projects: GA AV ČR IAA100190804; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : surface tension * Oberbeck -Bousinesq approximation * incompressible fluids Subject RIV: BA - General Mathematics

  19. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C

    2012-04-24

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  20. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C; Ursin, Bjø rn; Stoffa, Paul L

    2012-01-01

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  1. On three-dimensional incompressible Navier-Stokes fluid on cantor sets in spherical Cantor type co-ordinate system

    Directory of Open Access Journals (Sweden)

    Meng Zhi-Jun

    2016-01-01

    Full Text Available This paper addresses the systems of the incompressible Navier-Stokes equations on Cantor sets without the external force involving the fractal heat-conduction problem vial local fractional derivative. The spherical Cantor type co-ordinate method is used to transfer the incompressible Navier-Stokes equation from the Cantorian co-ordinate system into the spherical Cantor type co-ordinate system.

  2. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Science.gov (United States)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  3. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2018-01-01

    Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  4. Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.

    Science.gov (United States)

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

  5. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    Directory of Open Access Journals (Sweden)

    Cornel Velescu

    2014-01-01

    Full Text Available We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc., for the laminar and permanent motion regime.

  6. Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows

    Directory of Open Access Journals (Sweden)

    S.M. Moawad

    Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices

  7. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  8. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  9. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  10. INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.

    2010-01-01

    The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.

  11. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence

    Science.gov (United States)

    Meldi, Marcello; Sagaut, Pierre

    2018-05-01

    The emergence of anomalous fast decay regimes in homogeneous isotropic turbulence (HIT) decay is investigated via both theoretical analysis and eddy-damped quasi-normal Markovian simulations. The work provides new insight about a fundamental issue playing a role in HIT decay, namely the influence of non-standard shapes of the energy spectrum, in particular in the large energetic scale region. A detailed analysis of the kinetic energy spectrum E(k) and the non-linear energy transfer T(k) shows that anomalous decay regimes are associated with the relaxation of initial energy spectra which exhibit a bump at energetic scales. This feature induces an increase in the energy cascade rate, toward solutions with a smooth shape at the spectrum peak. Present results match observations reported in wind-tunnel experiments dealing with turbulence decay in the wake of grids and bluff bodies, including scaling laws for the dissipation parameter Cɛ. They also indicate that the ratio between the initial eddy turnover time and the advection time determines of how fast anomalous regimes relax toward classical turbulence free-decay. This parameter should be used for consistent data comparison and it opens perspectives for the control of multiscale effects in industrial applications.

  12. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...

  13. The energy deposition of slowing down particles in heterogeneous media

    International Nuclear Information System (INIS)

    Prinja, A.K.; Williams, M.M.R.

    1980-01-01

    Energy deposition by atomic particles in adjacent semi-infinite, amorphous media is described using the forward form of the Boltzmann transport equation. A transport approximation to the scattering kernel, developed elsewhere, incorporating realistic energy transfer is employed to assess the validity of the commonly used isotropic-scattering and straight-ahead approximations. Results are presented for integral energy deposition rates due to a plane, isotropic and monoenergetic source in one half-space for a range of mass ratios between 0.1 and 5.0. Integral profiles for infinite and semi-infinite media are considered and the influence of reflection for different mass ratios is evaluated. The dissimilar scattering properties of the two media induce a discontinuity at the interface in the energy deposition rate the magnitude of which is sensitive to the source position relative to the interface. A comprehensive evaluation of the total energy deposited in the source free medium is presented for a range of mass ratios and source positions. An interesting minimum occurs for off-interface source locations as a function of the source-medium mass ratio, the position of which varies with the source position but is insensitive to the other mass ratio. As a special case, energy reflection and escape coefficients for semi-infinite media are obtained which demonstrates that the effect of a vacuum interface is insignificant for deep source locations except for large mass ratios when reflection becomes dominant. (author)

  14. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  15. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  16. Incompressible LFR MHD. A fluid model for stability analysis of a fusion plasma

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1986-10-01

    A fluid model including FLR effects, named Incompressible Finite Larmor Radius MagnetoHydroDynamics, is presented and derived in this paper. It is an extension of ordinary, incompressible MHD to include the Larmor radius effects due to ion gyroviscosity, Hall current and electron diamagnetism. It is intended to use the model for stability analysis, on the Alfven wave time scale, of a fusion plasma and it is consequently based on transport coefficients in the collisionless limit. It will be demonstrated that for a fairly dense and cool plasma, such as for the EXTRAP z-pinch, all three Larmor radius effects may become important, that for a JET-type plasma no FLR effect is pronounced, and that in a reactor plasma the Hall and electron diamagnetism term may play a role. For scaling lengths signigicantly smaller than the plasma radius the effect of the FLR terms becomes enhanced. To study the importance of the choice of equations of state for the model the m=1 and k 2 r 2 towards infinity instability in cylindrical geometry is given special attention for zero Larmor radius. The full stability criterion of the double adiabatic model, including pressure anisotropy, is presented for what we believe to be the first time. It is found that when perpendicular p > parallel p stability can be reached for very high plasma perpendicular β-values. We demonstrate that no less complicated energy conserving fluid model, which takes into account pressure anisotropy, other than the double adiabativ model can be obtained. Since pressure anisotropy generally only weakly affects stability, we can assume isotropy in the Incompressible FLR MHD model. Also, the energy equation is replaced by the incompressibility condition, making FLR terms appearing in the energy equation irrelevant. (authors)

  17. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  18. Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium

    Directory of Open Access Journals (Sweden)

    S. Dastgeer

    2005-01-01

    Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.

  19. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Burmasheva

    2017-12-01

    Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified

  20. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  1. Mathematical problems of the dynamics of incompressible fluid on a rotating sphere

    CERN Document Server

    Skiba, Yuri N

    2017-01-01

    This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

  2. Experimental and Modelling Investigations of the Coupled Elastoplastic Damage of a Quasi-brittle Rock

    Science.gov (United States)

    Zhang, Jiu-Chang

    2018-02-01

    Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.

  3. Multi-parameters scanning in HTI media

    KAUST Repository

    Masmoudi, Nabil

    2014-08-05

    Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.

  4. Multi-parameters scanning in HTI media

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2014-01-01

    Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.

  5. On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution

    International Nuclear Information System (INIS)

    Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.

    2015-01-01

    In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)

  6. Inviscid incompressible limits of the full Navier-Stokes-Fourier system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Novotný, A.

    2013-01-01

    Roč. 321, č. 3 (2013), s. 605-628 ISSN 0010-3616 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * inviscid limit * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 1.901, year: 2013 http://link.springer.com/article/10.1007%2Fs00220-013-1691-4

  7. Equilibrium states for a plane incompressible perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Boldrighini, C; Frigio, S [Camerino Univ. (Italy). Istituto di Matematica

    1980-01-01

    We associate to the plane incompressible Euler equation with periodic conditions the corresponding Hopf equation, as an equation for measures on the space of solenoidal distributions. We define equilibrium states as the solutions of the stationary Hopf equation. We find a class of equilibrium states which corresponds to a class of infinitely divisible distributions, and investigate the properties of gaussian and poissonian states. Equilibrium dynamics for a class of poissonian states is constructed by means of the Onsager vortex equations.

  8. Spatial Angular Compounding for Elastography without the Incompressibility Assumption

    OpenAIRE

    Rao, Min; Varghese, Tomy

    2005-01-01

    Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in...

  9. Author Details

    African Journals Online (AJOL)

    ) - Articles Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces ... Propagation of S-waves in a non-homogeneous anisotropic incompressible and initially stressed medium

  10. REDUCED ISOTROPIC CRYSTAL MODEL WITH RESPECT TO THE FOURTH-ORDER ELASTIC MODULI

    Directory of Open Access Journals (Sweden)

    O. Burlayenko

    2018-04-01

    Full Text Available Using a reduced isotropic crystal model the relationship between the fourth-order elastic moduli of an isotropic medium and the independent components of the fourth-order elastic moduli tensor of real crystals of various crystal systems is found. To calculate the coefficients of these relations, computer algebra systems Redberry and Mathematica for working with high order tensors in the symbolic and explicit form were used, in light of the overly complex computation. In an isotropic medium, there are four independent fourth order elastic moduli. This is due to the presence of four invariants for an eighth-rank tensor in the three-dimensional space, that has symmetries over the pairs of indices. As an example, the moduli of elasticity of an isotropic medium corresponding to certain crystals of cubic system are given (LiF, NaCl, MgO, CaF2. From the obtained results it can be seen that the reduced isotropic crystal model can be most effectively applied to high-symmetry crystal systems.

  11. Acquisition Challenge: The Importance of Incompressibility in Comparing Learning Curve Models

    Science.gov (United States)

    2015-10-01

    primary platform for analysis based on production history and availability of relevant airframe costs. F-15 airframe costs were acquired from two databases...assembly line at Ford or Toyota . Given this dynamic, assuming the real incompress- ibility factor is somewhere between 0.0 and 0.1 is not implausible

  12. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  13. On full-tensor permeabilities of porous media from numerical solutions of the Navier-Stokes equation

    KAUST Repository

    Wang, Y.; Sun, S.; Yu, B.

    2013-01-01

    A numerical method is proposed to compute full-tensor permeability of porous media without artificial simplification. Navier-Stokes (N-S) equation and Darcy's law are combined to design these numerical experiments. This method can successfully detect the permeability values in principle directions of the porous media and the anisotropic degrees. It is found that the same configuration of porous media may possess isotropic features at lower Reynolds numbers while manifesting anisotropic features at higher Reynolds numbers due to the nonlinearity from convection. Anisotropy becomes pronounced especially when convection is dominant. 2013 Yi Wang et al.

  14. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  15. Comparison of three-dimensional isotropic and conventional MR arthrography with respect to the diagnosis of rotator cuff and labral lesions: Focus on isotropic fat-suppressed proton density and VIBE sequences

    International Nuclear Information System (INIS)

    Park, S.Y.; Lee, I.S.; Park, S.K.; Cheon, S.J.; Ahn, J.M.; Song, J.W.

    2014-01-01

    Aim: To compare the diagnostic accuracies of three-dimensional (3D) isotropic magnetic resonance arthrography (MRA) using fat-suppressed proton density (PD) or volume interpolated breath-hold examination (VIBE) sequences with that of conventional MRA for the diagnosis of rotator cuff and labral lesions. Materials and methods: Eighty-six patients who underwent arthroscopic surgery were included. 3D isotropic sequences were performed in the axial plane using fat-suppressed PD (group A) in 53 patients and using VIBE (group B) in 33 patients. Reformatted images were obtained corresponding to conventional images, and evaluated for the presence of labral and rotator cuff lesions using conventional and 3D isotropic sequences. The diagnostic performances of each sequence were determined using arthroscopic findings as the standard. Results: Good to excellent interobserver agreements were obtained for both 3D isotropic sequences for the evaluation of rotator cuff and labral lesions. Excellent agreement was found between two-dimensional (2D) and 3D isotropic MRA, except for supraspinatus tendon (SST) tears by both readers and for subscapularis tendon (SCT) tears by reader 2 in group B. 2D MRA and 3D isotropic sequences had high diagnostic performances for rotator and labral tears, and the difference between the two imaging methods was insignificant. Conclusions: The diagnostic performances of 3D isotropic VIBE and PD sequences were similar to those of 2D MRA

  16. A physical model study of the travel times and conversion point locations of P-SV converted waves in vertical transversely isotropic media

    Science.gov (United States)

    Tseng, C.

    2013-12-01

    In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.

  17. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  18. Wind turbine rotor-tower interaction using an incompressible overset grid method

    DEFF Research Database (Denmark)

    Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    In this paper 3D Navier-Stokes simulations of the flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations are pres...

  19. New criteria for isotropic and textured metals

    Science.gov (United States)

    Cazacu, Oana

    2018-05-01

    In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.

  20. Meshless Solution of Incompressible Flow Over Backward-Facing Step

    Directory of Open Access Journals (Sweden)

    Mužík Juraj

    2016-05-01

    Full Text Available Article presents the use of the meshless method for numerical simulation of incompressible fluid flow. The article presents the implementation of the meshless local Petrov-Galerkin method (MLPG, with Navier-Stokes equation formulated using the local weighted residual principle. The trial function construction process is the most important part of the meshless method implementation. In this article the radial basis functions (RBF are used for the process of the trial functions construction.

  1. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    Science.gov (United States)

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  2. Application of distributed point source method (DPSM) to wave propagation in anisotropic media

    Science.gov (United States)

    Fooladi, Samaneh; Kundu, Tribikram

    2017-04-01

    Distributed Point Source Method (DPSM) was developed by Placko and Kundu1, as a technique for modeling electromagnetic and elastic wave propagation problems. DPSM has been used for modeling ultrasonic, electrostatic and electromagnetic fields scattered by defects and anomalies in a structure. The modeling of such scattered field helps to extract valuable information about the location and type of defects. Therefore, DPSM can be used as an effective tool for Non-Destructive Testing (NDT). Anisotropy adds to the complexity of the problem, both mathematically and computationally. Computation of the Green's function which is used as the fundamental solution in DPSM is considerably more challenging for anisotropic media, and it cannot be reduced to a closed-form solution as is done for isotropic materials. The purpose of this study is to investigate and implement DPSM for an anisotropic medium. While the mathematical formulation and the numerical algorithm will be considered for general anisotropic media, more emphasis will be placed on transversely isotropic materials in the numerical example presented in this paper. The unidirectional fiber-reinforced composites which are widely used in today's industry are good examples of transversely isotropic materials. Development of an effective and accurate NDT method based on these modeling results can be of paramount importance for in-service monitoring of damage in composite structures.

  3. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  4. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  5. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  6. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Science.gov (United States)

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces

    International Nuclear Information System (INIS)

    Oyewumi, K.A.; Bangudu, E.A.

    2003-01-01

    Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)

  8. Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics

    Science.gov (United States)

    Ma, Ruiyuan; Lukes, Jennifer R.

    2018-02-01

    Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.

  9. NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1992-01-01

    1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers

  10. 'It's The Sun Wot Won It': Evidence of media influence on political attitudes and voting from a UK quasi-natural experiment.

    Science.gov (United States)

    Reeves, Aaron; McKee, Martin; Stuckler, David

    2016-03-01

    Do print media significantly impact political attitudes and party identification? To examine this question, we draw on a rare quasi-natural experiment that occurred when The Sun, a right-leaning UK tabloid, shifted its support to the Labour party in 1997 and back to the Conservative party in 2010. We compared changes in party identification and political attitudes among Sun readers with non-readers and other newspaper readerships. We find that The Sun's endorsements were associated with a significant increase in readers' support for Labour in 1997, approximately 525,000 votes, and its switch back was associated with about 550,000 extra votes for the Conservatives in 2010. Although we observed changes in readers' party preference, there was no effect on underlying political preferences. The magnitude of these changes, about 2% of the popular vote, would have been unable to alter the outcome of the 1997 General Election, but may have affected the 2010 Election. Copyright © 2015. Published by Elsevier Inc.

  11. Mass of polaritons in different dielectric media

    International Nuclear Information System (INIS)

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  12. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...

  13. Surface incompressibility from semiclassical relativistic mean field calculations

    International Nuclear Information System (INIS)

    Patra, S.K.; Centelles, M.; Vinas, X.; Estal, M. del

    2002-01-01

    By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility K A has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent results of K A for some currently used nonlinear σ-ω parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely, the curvature and surface-symmetry terms, is made

  14. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  15. Incompressible limit of compressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Bessaih, H.

    1994-01-01

    In this paper we study the system which describes the motion of compressible viscous fluid in a bounded domain Ω of R 3 . When we introduce a parameter λ, that is the inverse of the Mach number, we prove, under small initial data and external force (for barotropic flows), that the solution of Navier-Stokes equations is the incompressible limit of the solution of compressible Navier-Stokes equations, as the Mach number becomes small. For this, we show the existence of a solution verifying estimates independent of λ. Compactness argument allow us to pass to the limit on λ in the nonlinear terms. (author). 17 refs

  16. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    International Nuclear Information System (INIS)

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-01-01

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  17. Modeling and inversion of PS-wave moveout asymmetry for tilted TI media: Part 2: Dipping TTI layer

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Tsvankin, I.

    Dipping transversely isotropic layers with a tilted symmetry axis (TTI media) cause serious imaging problems in fold-and-thrust belts and near salt domes. The modified PP + PS = SS method introduced in Part 1 is applied to the inversion...

  18. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    OpenAIRE

    AZZEDINE NAHOUI; LAKHDAR BAHI

    2013-01-01

    A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has de...

  19. Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid

    International Nuclear Information System (INIS)

    Ruderman, M.S.

    1993-01-01

    Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically. (Author)

  20. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  1. A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications

    CSIR Research Space (South Africa)

    Oxtoby, Oliver F

    2012-05-01

    Full Text Available In this paper we detail a fast, fully-coupled, partitioned fluid–structure interaction (FSI) scheme. For the incompressible fluid, new fractional-step algorithms are proposed which make possible the fully implicit, but matrixfree, parallel solution...

  2. Testing the mutually enhanced magicity effect in nuclear incompressibility via the giant monopole resonance in the {sup 204,206,208}Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Adachi, T. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Cean (France); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Long, A.; Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sault, K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Talwar, R. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); and others

    2013-10-07

    Using inelastic α-scattering at extremely forward angles, including 0°, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the {sup 204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the “softness” of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.

  3. Three dimensional simulation of compressible and incompressible flows through the finite element method

    International Nuclear Information System (INIS)

    Costa, Gustavo Koury

    2004-11-01

    Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)

  4. On full-tensor permeabilities of porous media from numerical solutions of the Navier-Stokes equation

    KAUST Repository

    Wang, Y.

    2013-01-01

    A numerical method is proposed to compute full-tensor permeability of porous media without artificial simplification. Navier-Stokes (N-S) equation and Darcy\\'s law are combined to design these numerical experiments. This method can successfully detect the permeability values in principle directions of the porous media and the anisotropic degrees. It is found that the same configuration of porous media may possess isotropic features at lower Reynolds numbers while manifesting anisotropic features at higher Reynolds numbers due to the nonlinearity from convection. Anisotropy becomes pronounced especially when convection is dominant. 2013 Yi Wang et al.

  5. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method

    KAUST Repository

    Bourantas, Georgios; Loukopoulos, Vassilios C.

    2013-01-01

    A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a

  6. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    Science.gov (United States)

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  7. Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2011-01-01

    Roč. 40, č. 4 (2011), s. 1077-1097 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * shape gradient * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.300, year: 2010

  8. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    Science.gov (United States)

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  9. A new approach to determine geomechanical parameters of Vertical Transverse Isotropic media using VSP data

    Science.gov (United States)

    Gholami, Raoof; Moradzadeh, Ali; Rasouli, Vamegh; Hanachi, Javid

    2014-12-01

    Conventionally, high frequency Dipole Shear sonic Imager (DSI) logs are used for anisotropic modeling where fast and slow shear wave's velocities are required. However, the results obtained from a DSI log are restricted to a specific and possibly short interval of the wellbore. The aims of this paper are to use Vertical Seismic Profile (VSP) data and show its application in geomechanical analysis of subsurface layers under anisotropic condition. After processing and separating upgoing and downgoing P- and S-waves, a methodology based Vertical Transverse Isotropic (VTI) condition was presented to determine elastic stiffness parameters. Having stiffness parameters determined, elastic modulus, strength and in-situ stress parameters were estimated and calibrated against the field and core sample data. Although the VSP based geomechanical parameters were calibrated against the real field data, the accuracy of the method cannot be as much as that of the well logs. However, the method presented in this paper may become a very good asset for geomechanical evaluation of the intervals where well log data are not available.

  10. Theory of quasi-Chaplygin unstable media and evolutionary principle for selecting spontaneous solutions

    International Nuclear Information System (INIS)

    Zhdanov, S.K.; Trubnikov, B.A.; Institut Atomnoi Energii, Moscow, USSR)

    1986-01-01

    A one-dimensional ideal gas with negative compressibility described by quasi-Chaplygin equations is discussed. Its reduction to a Laplace equation is shown, and an evolutionary principle for selecting spontaneous solutions is summarized. Three extremely simple spontaneous solutions are obtained along with multidimensional self-similar solutions. The Buneman instability in a plasma is considered as an example. 17 references

  11. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...

  12. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2013-01-01

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  13. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  14. Extending the robustness and efficiency of artificial compressibility for partitioned fluid-structure interactions

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2015-01-01

    Full Text Available In this paper we introduce the idea of combining artificial compressibility (AC) with quasi-Newton (QN) methods to solve strongly coupled, fully/quasi-enclosed fluid-structure interaction (FSI) problems. Partitioned, incompressible, FSI based...

  15. Global Well-Posedness of the Incompressible Magnetohydrodynamics

    Science.gov (United States)

    Cai, Yuan; Lei, Zhen

    2018-06-01

    This paper studies the Cauchy problem of the incompressible magnetohydro dynamic systems with or without viscosity ν. Under the assumption that the initial velocity field and the displacement of the initialmagnetic field froma non-zero constant are sufficiently small in certain weighted Sobolev spaces, the Cauchy problem is shown to be globally well-posed for all ν ≧ 0 and all spaces with dimension n ≧ 2. Such a result holds true uniformly in nonnegative viscosity parameters. The proof is based on the inherent strong null structure of the systems introduced by Lei (Commun Pure Appl Math 69(11):2072-2106, 2016) and the ghost weight technique introduced by Alinhac (Invent Math 145(3):597-618, 2001).

  16. CONVEC: a computer program for transient incompressible fluid flow based on quadratic finite elements. Part 1: theoretical aspects

    International Nuclear Information System (INIS)

    Laval, H.

    1981-01-01

    This report describes the theoretical and numerical aspects of the finite element computer code CONVEC designed for the transient analysis of two-dimensional plane or three-dimensional axisymmetric incompressible flows including the effects of heat transfer. The governing equations for the above class of problems are the time-dependent incompressible Navier-Stokes equations and the thermal energy equation. The general class of flow problems analysed by CONVEC is discussed and the equations for the initial-boundary value problem are represented. A brief description of the finite element method and the weighted residual formulation is presented. The numerical solution of the incompressible equations is achieved by using a fractional step method. The mass lumping process associated with an explicit time integration scheme is described. The time integration is analysed and the stability conditions are derived. Numerical applications are presented. Standard problems of natural and forced convection are solved and the solutions obtained are compared with other numerical solutions published in the literature

  17. A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains

    Science.gov (United States)

    Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.

    2012-08-01

    We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.

  18. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  19. Disformal invariance of continuous media with linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)

    2017-02-01

    We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

  20. Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Novotný, A.; Petzeltová, Hana

    2013-01-01

    Roč. 356, č. 2 (2013), s. 683-702 ISSN 0025-5831 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : relative entropy * incompressible limit * inviscid limit Subject RIV: BA - General Mathematics Impact factor: 1.201, year: 2013 http://link.springer.com/article/10.1007%2Fs00208-012-0862-5

  1. Invading Public Spaces: Exploring the Effects of Media Type and Social Prompts on Learning Outcomes in an Interactive Environment

    Science.gov (United States)

    Downs, Edward; Erickson, Sarah; Borrett, Jacqueline

    2017-01-01

    A 2 × 2, fully-crossed, quasi-experimental design was employed to determine if type of media (rich media vs. lean media) and social prompting (presence of prompts vs. absence of prompts) would differentially impact learning outcomes for patrons interacting with an aquatic invasive species exhibit. Results indicated that the lean-media condition…

  2. Recording performances in perpendicular magnetic patterned media

    International Nuclear Information System (INIS)

    Asbahi, M; Moritz, J; Dieny, B; Gourgon, C; Perret, C; Van de Veerdonk, R J M

    2010-01-01

    We report on the recording performances and signal-to-noise ratio (SNR) analyses of perpendicular magnetic bit-patterned media. Two different types of magnetic samples are investigated. They differ by the way that they were patterned (nano-imprint versus e-beam lithography) as well as their magnetic properties (Co/Pt multilayers and CoCrPt alloy are the recording layers).Using a contact read/write quasi-static tester, we were able to characterize the write windows, the bit error rates and measure the SNR. The influence of magnetic properties and media microstructure on the writing processes is studied. We show also that the lithographical method used to replicate the media induces more or less noise due to structural distributions.

  3. Numerical Study on Several Stabilized Finite Element Methods for the Steady Incompressible Flow Problem with Damping

    Directory of Open Access Journals (Sweden)

    Jilian Wu

    2013-01-01

    Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.

  4. Pseudo-communication vs Quasi-communication

    Directory of Open Access Journals (Sweden)

    Елена Константиновна Черничкина

    2016-12-01

    Full Text Available The article is devoted to the analysis of such specific forms of human interaction as quasi- and pseudo-communication. The authors specify the terms which sometimes are used interchangeably. The aim of the conducted research is to find out and demonstrate existing differences and similarities of these communicative phenomena on the basis of theoretical and empirical analysis of the research material in the Russian and English languages. The authors describe communicative features of these phenomena and consider the reasons for such forms of communication and their increased use at present. The research material is represented fiction extracts, film scripts, jokes, print media, a collection of oral speech records both in Russian and English. The authors make use of the following research methods: definitional analysis (to define the terminology of the research, the method of linguistic observation and introspection (to select the communicative situations, the descriptive-analytical method and the method of comparative analysis (to identify similarities and differences of the target phenomena, and the conversational analysis method (to view productivity and effectiveness of a dialogue, etc. The classification of possible forms of their existence in different discourses is suggested. The authors assume that both pseudo- and quasi-communication are characterized as fictitious forms of human interaction with some noticeable violation of the basic communicative model. Pseudo-communication suffers from the discrepancy of the meaning of a coded and decoded message. The authors put forward the main parameters of scientific classification of it as follows: adequate understanding, intentionality, and the stage of communicative action where the failure takes place. At the same time they stress the necessity to distinguish the cases of pseudo talks from phatic and indirect communication. Quasi-communcation is marked by the lack of a real partner and hence

  5. The isotropic Universe

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)

  6. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    Science.gov (United States)

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  7. Methodology and optimization in the design and analysis of the efficiency of incompressible fluid turbomachines; Methodologie et optimisation dans la conception et l'analyse des performances des turbomachines a fluide incompressible

    Energy Technology Data Exchange (ETDEWEB)

    Asuaje, M.

    2003-07-15

    Faced with the problem of design in the pump industry, the main difficulty of manufacturers is to have fast, reliable and accurate methods. This research work involving, both theory and experiments deals, with this topic. We have developed a complete procedure for design, performance analysis and optimization of centrifugal and mixed incompressible flow turbomachinery. First of all, the definition of the pump geometry as well as the analysis of its global performance are carried out starting from the mean streamline method (1D), based on both ideal models and experimental correlations. A second stage of optimization is achieved from a quasi 3D method, by studying the meridional flow and blade to blade flow, using REMIX software developed by LEMFI. Finally, a three-dimensional flow study is performed by CFD tools from AEA-Technology group (CFX). The three-dimensional study provides the means to complete and validate the established procedure. To illustrate this procedure, a centrifugal machine with a volute was studied used. First, the analysis of the existing impeller was carried out to develop the various steps of the procedure. Then, the whole impeller-volute pump, was studied and compared with the previous trial runs. Special attention was paid to unsteady effects, resulting from impeller volute interaction. The results obtained are satisfactory. Finally, the integral method was applied to optimize a mixed flow pump equipped with a de-swirl. As it is a badly dimensioned pump, it is a good example of what this method can do. (author)

  8. Digital media in Serbia: Uses and risks

    Directory of Open Access Journals (Sweden)

    Radojković Miroljub

    2017-01-01

    Full Text Available This article presents the overview of the distribution and consequences of the use of digital media in Serbia based on the systematization of the answers to four research questions. By the opinion of the author, when we say digital media, we should consider at least five types of institutions. These are: all mass media that have done convergence with digital, information-communication technology; electronic media that have switched to program diffusion through 'Internet protocol'; web sites and portals which fulfill the legal norms to become mass media; public announcements via blogs and posts by the individuals on social networks; and cultural institutions which improve interactions with their audience through Internet. The article lists the numerous advantages of digital media that are inevitably multiplied. On the other hand, the risks and menaces caused by this trend are also listed. In conclusion, it is ascertained that media and cultural institutions cannot just archive huge production of information and cultural and/or quasi cultural, artistic products, and that the burden of selection and responsibility falls on the shoulder of the users.

  9. An Isotropic Light Sensor for Measurements of Visible Actinic Flux in Clouds

    NARCIS (Netherlands)

    Hage, J.C.H. van der; Roode, S.R. de

    1999-01-01

    A low-cost isotropic light sensor is described consisting of a spherical diffuser connected to a single photodiode by a light conductor. The directional response to light is isotropic to a high degree. The small, lightweight, and rugged construction makes this instrument suitable not only for

  10. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  11. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  12. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    Science.gov (United States)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  13. Isotropic quantum walks on lattices and the Weyl equation

    Science.gov (United States)

    D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo

    2017-12-01

    We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.

  14. Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories

    International Nuclear Information System (INIS)

    Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi

    2012-01-01

    The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.

  15. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    Science.gov (United States)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  16. Comment to “qS-waves in a vicinity of the axis of symmetry of homogeneous transversely isotropic media”, by M. Popov, G.F. Passos, and M.A. Botelho [Wave Motion 42 (2005) 191–201

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2006-01-01

    Roč. 44, č. 2 (2006), s. 128-136 ISSN 0165-2125 R&D Projects: GA AV ČR IAA3012309 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic waves * transversely isotropic media * ray theory Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.178, year: 2006

  17. Mathematical aspects of finite element methods for incompressible viscous flows

    Science.gov (United States)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  18. Inflation including collapse of the wave function: the quasi-de Sitter case

    International Nuclear Information System (INIS)

    Leon, Gabriel; Landau, Susana J.; Piccirilli, Maria Pia

    2015-01-01

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  19. Inflation including collapse of the wave function: the quasi-de Sitter case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)

    2015-08-15

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  20. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  1. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  2. Dissipation of Alfven waves in compressible inhomogeneous media

    International Nuclear Information System (INIS)

    Malara, F.; Primavera, L.; Veltri, P.

    1997-01-01

    In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona

  3. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  4. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  5. Taylor Instability of Incompressible Liquids

    Science.gov (United States)

    Fermi, E.; von Neumann, J.

    1955-11-01

    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  6. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    Science.gov (United States)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  7. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  8. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  9. Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non-compact settings and minimization problems

    Directory of Open Access Journals (Sweden)

    Chowdhury Molhammad SR

    2000-01-01

    Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.

  10. On A Quasi-local Mass

    OpenAIRE

    Zhang, Xiao

    2009-01-01

    We modify previous quasi-local mass definition. The new definition provides expressions of the quasi-local energy, the quasi-local linear momentum and the quasi-local mass. And they are equal to the ADM expressions at spatial infinity. Moreover, the new quasi-local energy has the positivity property.

  11. Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier-Stokes equations

    NARCIS (Netherlands)

    Sanderse, B.; Verstappen, R.W.C.P.; Koren, B.

    2014-01-01

    A discretization method for the incompressible Navier–Stokes equations conserving the secondary quantities kinetic energy and vorticity was introduced, besides the primary quantities mass and momentum. This method was extended to fourth order accuracy. In this paper we propose a new consistent

  12. Solutions to three-dimensional Navier-Stokes equations for incompressible fluids

    Directory of Open Access Journals (Sweden)

    Jorma Jormakka

    2010-07-01

    Full Text Available This article gives explicit solutions to the space-periodic Navier-Stokes problem with non-periodic pressure. These type of solutions are not unique and by using such solutions one can construct a periodic, smooth, divergence-free initial vector field allowing a space-periodic and time-bounded external force such that there exists a smooth solution to the 3-dimensional Navier-Stokes equations for incompressible fluid with those initial conditions, but the solution cannot be continued to the whole space.

  13. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  14. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  15. Mathematical models of incompressible fluids as singular limits of complete fluid systems

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2010-01-01

    Roč. 78, č. 2 (2010), s. 523-560 ISSN 1424-9286 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : scale analysis * Navier-Stokes-Fourier system * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2010 http://link.springer.com/article/10.1007%2Fs00032-010-0128-1

  16. Viscous potential flow analysis of magnetohydrodynamic interfacial stability through porous media

    International Nuclear Information System (INIS)

    Obied Allah, M.H.

    2013-01-01

    In the view of viscous potential flow theory, the hydromagnetic stability of the interface between two infinitely conducting, incompressible plasmas, streaming parallel to the interface and subjected to a constant magnetic field parallel to the streaming direction will be considered. The plasmas are flowing through porous media between two rigid planes and surface tension is taken into account. A general dispersion relation is obtained analytically and solved numerically. For Kelvin-Helmholtz instability problem, the stability criterion is given by a critical value of the relative velocity. On the other hand, a comparison between inviscid and viscous potential flow solutions has been made and it has noticed that viscosity plays a dual role, destabilizing for Rayleigh-Taylor problem and stabilizing for Kelvin-Helmholtz. For Rayleigh-Taylor instability, a new dispersion relation has been obtained in terms of a critical wave number. It has been found that magnetic field, surface tension, and rigid planes have stabilizing effects, whereas critical wave number and porous media have destabilizing effects. (author)

  17. Edge instability in incompressible planar active fluids

    Science.gov (United States)

    Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan

    2017-12-01

    Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.

  18. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    International Nuclear Information System (INIS)

    Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing

    2016-01-01

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  19. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shi-Rong [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruo-Yang [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Ma, Yi-Rong; Jia, Wei [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-29

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  20. An effective dead oil model for two-phase flow in inhomogeneous porous media

    International Nuclear Information System (INIS)

    Bourgeat, A.

    1988-01-01

    The authors are investigating displacement process of incompressible two phase flow miscible or immiscible in heterogeneous porous media, including capillary and gravity effects. The authors' aim is to derive rigorously a Global or Effective Model which then allow, in Numerical Simulations, to disconnect the numerical mesh size from the heterogeneities size inside the reservoir itself. The reservoir is assumed to be made of uniformly (or non uniformly) periodically repeated cells. Each cell being made with different types of porous media. Then, calling ε the ratio of the cell size to the Reservoir size, we get equations depending on the parameter ε because the Porosity and Permeabilities, say Phi/sup ε/ and Κ/sup ε/ are themselves rapidly oscillating. From these ε-parametrized equations the authors derive simpler ''Effective Equations'' no more dependant on ε, called ''Homongenized Equations by the mathematical technique of Homogenization. In these new equations, which are describing Global Displacement process throughout a Globally Equivallent homogenous media where now //Phi and Κ are no more depending on the space variable or ε

  1. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  2. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.L.

    1997-07-21

    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  3. Isotropic transmission of magnon spin information without a magnetic field.

    Science.gov (United States)

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  4. Traveltime approximations for inhomogeneous HTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.

  5. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  6. Determining Effect of Digital And Media Activities On Media And Science Literacy Of Middle-School Students And Parents

    Directory of Open Access Journals (Sweden)

    Bilge CAN

    2018-01-01

    Full Text Available This research aims determining effect of digital and media activities on media and science literacy of middle-school students and parents and identifying the relationship between them. Quasi- experimental model has been used by which pretest-posttest studies have been held on one group by using quantitative data during research. The sample of the research consists of 60 students and 119 parents who attend a school in the province of Bursa in the academic year of 2013-2014. According to data analysis obtained in the research, there is a significant relation between pretests and posttests about scientific literacy of middle-school students and parents relating to Digital and Media Activities. There is a relation between media and scientific literacy of students and mothers as parents. There is a difference between the applied PISA and TIMSS exams and the students' science literacy. In the light of these results, some suggestion has been offered with regard to focusing on the importance of 21st century skills and literacy, developing scientific and media literacy level and obtaining more comprehensive results.

  7. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    Science.gov (United States)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  8. Convergence acceleration of quasi-periodic and quasi-periodic-rational interpolations by polynomial corrections

    OpenAIRE

    Lusine Poghosyan

    2014-01-01

    The paper considers convergence acceleration of the quasi-periodic and the quasi-periodic-rational interpolations by application of polynomial corrections. We investigate convergence of the resultant quasi-periodic-polynomial and quasi-periodic-rational-polynomial interpolations and derive exact constants of the main terms of asymptotic errors in the regions away from the endpoints. Results of numerical experiments clarify behavior of the corresponding interpolations for moderate number of in...

  9. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  10. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  11. Birds, magnets, soap, and sandblasting: surprising connections in the theory of incompressible flocks

    Science.gov (United States)

    Toner, John

    In this talk I'll describe the hydrodynamic theory of the motion of incompressible flocks: that is, collections of self-propelled entities (birds\\x9D) that are packed so tightly together that their density cannot change as they move. In two dimensions, this problem can be mapped onto an equilibrium magnet with a peculiar constraint. This problem, in turn, can be shown to be equivalent to a 2d smectic (soap\\x9D), with the flow lines of the flock playing the role of the smectic layers. Finally, this smectic problem can be mapped onto the 1+1 dimensional KPZ equation, which describes the growth or corrosion (sandblasting\\x9D) of a one dimensional interface. The scaling properties of this last system, which have been known exactly for a long time, can thereby be used to determine those of incompressible 2d flocks. One important implication of the resulting scaling laws is that such flocks can exhibit long-ranged order in two dimensions, unlike their equilibrium counterparts.

  12. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed

    2017-11-23

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  13. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  14. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  15. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2014-01-01

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  16. Magnetic hysteresis measurements of thin films under isotropic stress.

    Science.gov (United States)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  17. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  18. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  19. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  20. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it's kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  1. Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, S.; Nečasová, Šárka

    2013-01-01

    Roč. 255, č. 7 (2013), s. 1576-1606 ISSN 0022-0396 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : stationary incompressible Navier-Stokes system * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039613002106

  2. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    Science.gov (United States)

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  3. A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li

    2009-01-01

    A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))

  4. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  5. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  6. Two compressible and immiscible flow in porous media: mathematical and numerical analysis

    International Nuclear Information System (INIS)

    Khalil, Z.

    2010-01-01

    The aim of this thesis is the study of Cauchy problem (existence of weak solutions) for three degenerate highly coupled parabolic systems modeling compressible immiscible flow in porous media. The motivation of this work is a benchmark of the GNR MoMaS, to study the impact of the gas flow due to the corrosion of ferrous materials in a radioactive waste storage site. This thesis is divided into three independent chapters. Firstly, we look at a problem modeling the flow of two immiscible phases and considering one phase is compressible and the other is incompressible (water/gas). Secondly, we consider the problem modeling two-compressible immiscible flow in porous media. An existence results for both problems established by a semi-discretization method. Finally, The fourth chapter is devoted to the construction and convergence of a multi-dimensional finite volume method (upwind scheme) for the gas-water model under the assumption that the gas density is a function of a global pressure. (author)

  7. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  8. Quasi-three-dimensional analysis of ground water flow and dissolved multicomponent solute transport in saturated porous media

    International Nuclear Information System (INIS)

    Tang, Yi.

    1991-01-01

    A computational procedure was developed in this study to provide flexibility needed in the application of three-dimensional groundwater flow and dissolved multicomponent solute transport simulations. In the first part of this study, analytical solutions were proposed for the dissolved single-component solute transport problem. These closed form solutions were developed for homogeneous but stratified porous media. This analytical model took into account two-dimensional diffusion-advection in the main aquifer layer and one-dimensional diffusion-advection in the adjacent aquitards, as well as first order radioactive decay and linear adsorption isotherm in both aquifer and aquitards. The associated analytical solutions for solute concentration distributions in the aquifer and aquitards were obtained using Laplace Transformation and Method of Separation of Variables techniques. Next, in order to analyze the problem numerically, a quasi-three-dimensional finite element algorithm was developed based on the multilayer aquifer concept. In this phase, advection, dispersion, adsorption and first order multi-species chemical reaction terms were included to the analysis. Employing this model, without restriction on groundwater flow pattern in the multilayer aquifer system, one may analyze the complex behavior of the groundwater flow and solute movement pattern in the system. These numerical models may be utilized as calibration tools in site characterization studies, or as predictive models during the initial stages of a typical site investigation study. Through application to several test and field problems, the usefulness, accuracy and efficiency of the proposed models were demonstrated. Comparison of results with analytical solution, experimental data and other numerical methods were also discussed

  9. Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids

    Science.gov (United States)

    Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao

    2018-04-01

    We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.

  10. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    Science.gov (United States)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  11. Formal solution of the Navier-Stokes initial- and boundary-value problem for incompressible fluids

    International Nuclear Information System (INIS)

    Alankus, T.

    1984-01-01

    A general formal solution of the integral equivalent of Navier-Stokes equation for incompressible viscous fluids is presented through a linear operator acting on the functionals of solenoidal vector fields. This solution operator is completely determined by the Green functions of Laplace and diffusion equations corresponding to the flow region

  12. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  13. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    Directory of Open Access Journals (Sweden)

    AZZEDINE NAHOUI

    2013-12-01

    Full Text Available A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has demonstrated its positive effect on the transition point and the friction coefficient. Both control procedures are compared for different lengths, speeds and angles of blowing and suction.

  14. Quasi-particles at finite temperatures

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.; Requardt, M.

    1983-01-01

    We study the consequences of the KMS-condition on the properties of quasi-particles, assuming their existence. We establish: (i) If the correlation functions decay sufficiently, we can create them by quasi-free field operators. (ii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the; (iii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the number of quasi-particles and its time-monotonicity describes how the quasi-particles travel to infinity. (orig.)

  15. Characterization of quasi-phase-matching gratings in quadratic media through double-pass second-harmonic power measurements

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Baldi, Pascal

    2004-01-01

    A new scheme for nondestructive characterization of quasi-phase-matching grating structures and temperature gradients through inverse Fourier theory using second-harmonic-generation experiments is proposed. By inserting a mirror to reflect the signals back through the sample, we show how...

  16. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  17. Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    2007-01-01

    Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

  18. Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass

    Science.gov (United States)

    Liu, Jian-Liang; Yu, Chengjie

    2017-10-01

    In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.

  19. Trust, but verify: social media models for disaster management.

    Science.gov (United States)

    Mehta, Amisha M; Bruns, Axel; Newton, Judith

    2017-07-01

    A lack of trust in the information exchanged via social media may significantly hinder decisionmaking by community members and emergency services during disasters. The need for timely information at such times, though, challenges traditional ways of establishing trust. This paper, building on a multi-year research project that combined social media data analysis and participant observation within an emergency management organisation and in-depth engagement with stakeholders across the sector, pinpoints and examines assumptions governing trust and trusting relationships in social media disaster management. It assesses three models for using social media in disaster management-information gathering, quasi-journalistic verification, and crowdsourcing-in relation to the guardianship of trust to highlight the verification process for content and source and to identify the role of power and responsibilities. The conclusions contain important implications for emergency management organisations seeking to enhance their mechanisms for incorporating user-generated information from social media sources in their disaster response efforts. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  20. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  1. A Method of Function Space for Vertical Impedance Function of a Circular Rigid Foundation on a Transversely Isotropic Ground

    Directory of Open Access Journals (Sweden)

    Morteza Eskandari-Ghadi

    2014-06-01

    Full Text Available This paper is concerned with investigation of vertical impedance function of a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. To this end, the equations of motion in cylindrical coordinate system, which because of axissymmetry are two coupled equations, are converted into one partial differential equation using a method of potential function. The governing partial differential equation for the potential function is solved via implementing Hankel integral transforms in radial direction. The vertical and radial components of displacement vector are determined with the use of transformed displacement-potential function relationships. The mixed boundary conditions at the surface are satisfied by specifying the traction between the rigid foundation and the underneath alluvium in a special function space introduced in this paper, where the vertical displacements are forced to satisfy the rigid boundary condition. Through exercising these restraints, the normal traction and then the vertical impedance function are obtained. The results are then compared with the existing results in the literature for the simpler case of isotropic half-space, which shows an excellent agreement. Eventually, the impedance functions are presented in terms of dimensionless frequency for different materials. The method presented here may be used to obtain the impedance function in any other direction as well as in buried footing in layered media.

  2. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    NARCIS (Netherlands)

    Pesch, L.; van der Vegt, Jacobus J.W.

    2008-01-01

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The

  3. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Thor

    1997-12-31

    This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

  4. Parallel iterative solution of the incompressible Navier-Stokes equations with application to rotating wings

    Czech Academy of Sciences Publication Activity Database

    Šístek, Jakub; Cirak, F.

    2015-01-01

    Roč. 122, 20 November (2015), s. 165-183 ISSN 0045-7930 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : Navier-Stokes * incompressible flow * Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 1.891, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045793015003023

  5. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  6. A 3D printed dual GSM band near isotropic on-package antenna

    KAUST Repository

    Zhen, Su

    2017-10-25

    In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.

  7. Multimode Coupling Theory for Kelvin–Helmholtz Instability in Incompressible Fluid

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Ying-Jun, Li; Wen-Hua, Ye; Zheng-Feng, Fan

    2009-01-01

    A weakly nonlinear model is proposed for multimode Kelvin–Helmholtz instability. The second-order mode coupling formula for Kelvin–Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not

  8. Prestack traveltimes for dip-constrained TI media

    KAUST Repository

    Golikov, Pavel; Alkhalifah, Tariq Ali; Stovas, Alexey

    2012-01-01

    The double-square-root (DSR) formula is an integral part of many wavefield based imaging tools. A transversely isotropic medium with a titled symmetry axis (TI) version of the DSR formula is nearly impossible to obtain analytically. As a result, we develop an approximate version of the DSR formula valid for media with the symmetry axis normal to the dip of the reflector (DTI). The accuracy of this approximate solution is enhanced using Shanks transform to a point where the errors are extremely small for practical anisotropic values. Under this assumption, we also do not need to compute the symmetry axis field as it is inherently included in the formulation.

  9. Prestack traveltimes for dip-constrained TI media

    KAUST Repository

    Golikov, Pavel

    2012-11-04

    The double-square-root (DSR) formula is an integral part of many wavefield based imaging tools. A transversely isotropic medium with a titled symmetry axis (TI) version of the DSR formula is nearly impossible to obtain analytically. As a result, we develop an approximate version of the DSR formula valid for media with the symmetry axis normal to the dip of the reflector (DTI). The accuracy of this approximate solution is enhanced using Shanks transform to a point where the errors are extremely small for practical anisotropic values. Under this assumption, we also do not need to compute the symmetry axis field as it is inherently included in the formulation.

  10. Étalement d'une goutte stratifiée incompressible

    Science.gov (United States)

    de Gennes, Pierre-Gilles; Cazabat, Anne-Marie

    L'étalement de films ultraminces de liquides simples sur une surface lisse horizontale conduit souvent à des gouttes à gradins d'une épaisseur moléculaire ([1]-[3]). Nous construisons ici un modèle pour la dynamique de l'étalement, en supposant que : (a) chaque gradin est un liquide bidimensionnel incompressible; (b) les molécules de la n-ième couche sont soumises à un potentiel (Wn) qui exprime leurs interactions à longue portée avec le solide; (c) on a un écoulement parallèle de cisaillement, et un écoulement normal de perméation. La perméation intervient seulement dans un certain « ruban » de largeur ξ sur le bord de chaque gradin. Dans le cas usuel, où le rayon du n-ième gradin Rn est trs supérieur à ξ, la dissipation est dominée par le cisaillement, et on arrive à des lois simples pour la vitesse de dilatation (ou de contraction) dotR_n. Very thin films of simple liquids often spread with well defined steps of molecular thickness ([1]-[3]). We construct a model for the dynamics of spreading assuming that: (a) each layer is an incompressible, 2 dimensional fluid; (b) the molecules in the (nth) layer experience a long range potential (e.g. Van der Waals) from the solid; (c) two types of flow occur: shear between layers and permeation normal to the layers. We find that permeation is important only in an annulus of small size ξ near each step. Between steps, the viscous effects in simple shear dominate, and this leads to simple laws for the dilation (or contraction) of the various layers.

  11. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  12. Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities

    Science.gov (United States)

    Li, Yinghua; Huang, Mingxia

    2018-06-01

    In this paper, we investigate a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω \\subset R^N(N=2,3). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function ρ _0 has a positive lower bound.

  13. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    Singh, Ram Chandra

    2007-01-01

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  14. TEACHING VOCABULARY BY USING REALIA (REAL-OBJECT MEDIA

    Directory of Open Access Journals (Sweden)

    Dodi Irawan

    2017-03-01

    Full Text Available English is one of scary subject for some students of Indonesia. The students feel afraid to speak in English because of their less word of vocabulary. Realia media is the one simple interesting media that may bring motivation for the student who afraid to study English. Teacher of English can use realia media and bring it in the class to get more attention, and participation of students. In this research, the writer try to focuses on how realia media make significant difference ability of vocabulary to the students. The reserach of this study used a quasi-experimental method the population of this research was taken from the seventh grade Students of SMP Negeri 23 Palembang in the academic of year 2015/2016. Based on the research, it found that there was a significance difference using Realia media in teaching vocabulary. From the result on this research, it was found that there is a significant difference in achievement before and after the treatment in experimental group.

  15. Pengaruh Penerapan Metode Socratic Circles Disertai Media Gambar Terhadap Kemampuan Berpikir Kreatif Siswa

    OpenAIRE

    Afidah, Ihda Nuria; Santosa, Slamet; Indrowati, Meti

    2012-01-01

    - This research aims to ascertain whether or not the application Socratic Circles method with images media affects the student's creative thinking skill.This research is considered quasi-experiment research. The research was designed using Posttest-Only Control Group Design by applying Socratic Circles method with images media in experimental group and lectures methods, discussions, and presentations in control group. The population of this research were all strudents in X grade of SMA Nege...

  16. Parallel iterative solution of the incompressible Navier-Stokes equations with application to rotating wings

    Czech Academy of Sciences Publication Activity Database

    Šístek, Jakub; Cirak, F.

    2015-01-01

    Roč. 122, 20 November (2015), s. 165-183 ISSN 0045-7930 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : Navier-Stokes * incompressible flow * Krylov subspace method s Subject RIV: BA - General Mathematics Impact factor: 1.891, year: 2015 http://www. science direct.com/ science /article/pii/S0045793015003023

  17. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  18. Quasi-Lie algebras and Lie groups

    International Nuclear Information System (INIS)

    Momo Bangoura

    2006-07-01

    In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr

  19. Bell inequalities stronger than the Clauser-Horne-Shimony-Holt inequality for three-level isotropic states

    International Nuclear Information System (INIS)

    Ito, Tsuyoshi; Imai, Hiroshi; Avis, David

    2006-01-01

    We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I 3322 Bell inequality for 3x3 isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination

  20. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  1. Depression of nonlinearity in decaying isotropic turbulence

    International Nuclear Information System (INIS)

    Kraichnan, R.H.; Panda, R.

    1988-01-01

    Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity

  2. Computations of Quasiconvex Hulls of Isotropic Sets

    Czech Academy of Sciences Publication Activity Database

    Heinz, S.; Kružík, Martin

    2017-01-01

    Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf

  3. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    Science.gov (United States)

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  4. Boundary layers and the vanishing viscosity limit for incompressible 2D flow

    OpenAIRE

    Filho, Milton C. Lopes

    2007-01-01

    This manuscript is a survey on results related to boundary layers and the vanishing viscosity limit for incompressible flow. It is the lecture notes for a 10 hour minicourse given at the Morningside Center, Academia Sinica, Beijing, PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of Prandtl's boundary layer equation; an outline of the rigorous theory of Prandtl's equation, without proofs; Kato's criterion for the vanishing viscosity limit; the vanishing viscosity limi...

  5. Projection methods for the calculation of incompressible or dilatable flows; Methodes de projection pour le calcul d'ecoulements incompressibles ou dilatables

    Energy Technology Data Exchange (ETDEWEB)

    Jobelin, M

    2006-10-15

    This thesis treats of time resolution methods for the Navier-Stokes equations. Based on the well-known projection method of Chorin and Temam, an original pressure correction method, named 'projection-penalty' is developed. Its specificity concerns the addition of a penalty term in the prediction step, which constrains the predicted velocity to fit with the mass balance. The precision improvements added by this method are demonstrated by some analysis results and by some numerical experiments of incompressible or dilatable flows. Finally, the potentialities offered by the use of the joint finite elements method in this type of fractionary step scheme is studied. Two applications are presented, one for local refinement purpose, the other for the resolution of a multi-physics problem. (J.S.)

  6. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  7. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-23

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  8. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

    KAUST Repository

    Chen, Huangxin; Sun, Shuyu; Zhang, Tao

    2017-01-01

    In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i

  9. Hermitian self-dual quasi-abelian codes

    Directory of Open Access Journals (Sweden)

    Herbert S. Palines

    2017-12-01

    Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

  10. Polarization ray tracing in anisotropic optically active media. II. Theory and physics

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials

  11. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    Science.gov (United States)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  12. Error estimation and adaptivity for incompressible hyperelasticity

    KAUST Repository

    Whiteley, J.P.

    2014-04-30

    SUMMARY: A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and linear functionals of the stress on a boundary, where Dirichlet boundary conditions are applied. A second, higher order method for calculating a linear functional of the stress on a Dirichlet boundary is also presented together with an a posteriori error estimator for this approach. An implementation for a 2D model problem with known solution, where the entries of the strain tensor exhibit large, rapid variations, demonstrates the accuracy and sharpness of the error estimators. Finally, using a selection of model problems, the a posteriori error estimate is shown to provide a basis for effective mesh adaptivity. © 2014 John Wiley & Sons, Ltd.

  13. The quasi-equilibrium response of MOS structures: Quasi-static factor

    Science.gov (United States)

    Okeke, M.; Balland, B.

    1984-07-01

    The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.

  14. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  15. Tobacco control policies and perinatal health: a national quasi-experimental study.

    Science.gov (United States)

    Peelen, Myrthe J; Sheikh, Aziz; Kok, Marjolein; Hajenius, Petra; Zimmermann, Luc J; Kramer, Boris W; Hukkelhoven, Chantal W; Reiss, Irwin K; Mol, Ben W; Been, Jasper V

    2016-04-22

    We investigated whether changes in perinatal outcomes occurred following introduction of key tobacco control policies in the Netherlands: smoke-free legislation in workplaces plus a tobacco tax increase and mass media campaign (January-February 2004); and extension of the smoke-free law to the hospitality industry, accompanied by another tax increase and mass media campaign (July 2008). This was a national quasi-experimental study using Netherlands Perinatal Registry data (2000-2011; registration: ClinicalTrials.gov NCT02189265). Primary outcome measures were: perinatal mortality, preterm birth, and being small-for-gestational age (SGA). The association with timing of the tobacco control policies was investigated using interrupted time series logistic regression analyses with adjustment for confounders. Among 2,069,695 singleton births, there were 13,027 (0.6%) perinatal deaths, 116,043 (5.6%) preterm live-births and 187,966 (9.1%) SGA live-births. The 2004 policies were not associated with significant changes in the odds of developing any of the primary outcomes. After the 2008 policy change, a -4.4% (95% CI -2.4; -6.4, p law to bars and restaurants in conjunction with a tax increase and mass media campaign.

  16. Fermat's principle of least time in the presence of uniformly moving boundaries and media

    International Nuclear Information System (INIS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2007-01-01

    The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium is moving at a constant velocity. Two cases of motion are considered: (a) the material half-space is moving parallel to the interface; (b) the material half-space is moving perpendicular to the interface. In each case, a detailed analysis of the obtained refraction formula is provided, and in the latter case, an intriguing backward refraction of light is noticed and thoroughly discussed. The results confirm the validity of Fermat's principle when the optical media and the boundaries between them are moving at relativistic speeds

  17. Laser-assisted molecular orientation in gaseous media: new possibilities and applications

    International Nuclear Information System (INIS)

    Zhdanov, Dmitry V; Zadkov, Victor N

    2009-01-01

    It was shown recently by us that an isotropic distribution of molecules in gaseous media can be drastically effected via their orientation-dependent selective excitation by a strong femtosecond multicomponent laser pulse. In the present paper, we analyze the specific effects accompanying the dynamical orientation of molecules driven this way. It is demonstrated that the peculiarities of the post-pulse transient angular distribution of molecules allow original proposals for the generation of pulsed terahertz radiation and also for the determination of the molecular rotational constants.

  18. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  19. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  20. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  1. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  2. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  3. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  4. Numerical solution of compressible and incompressible unsteady flows in channel inspired by vocal tract

    Czech Academy of Sciences Publication Activity Database

    Pořízková, P.; Kozel, Karel; Horáček, Jaromír

    2014-01-01

    Roč. 270, November (2014), s. 323-329 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GAP101/11/0207; GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : compressible * incompressible * unsteady * CFD * acoustic * vocal tract Subject RIV: BI - Acoustics Impact factor: 1.266, year: 2014 http://www.sciencedirect.com/science/article/pii/S0377042713007188#

  5. Non-dissipative electromagnetic media with two Lorentz null cones

    International Nuclear Information System (INIS)

    Dahl, Matias F.

    2013-01-01

    We study Maxwell’s equations on a 4-manifold where the electromagnetic medium is modeled by an antisymmetric (2/2 )-tensor with 21 real coefficients. In this setting the Fresnel surface is a fourth-order polynomial surface that describes the dynamical response of the medium in the geometric optics limit. For example, in an isotropic medium the Fresnel surface is a Lorentz null cone. The contribution of this paper is the pointwise description of all electromagnetic medium tensors κ with real coefficients that satisfy the following three conditions: (i)medium κ is invertible, (ii)medium κ is skewon-free, or non-dissipative, (iii)the Fresnel surface of κ is the union of two distinct Lorentz null cones. We show that there are only three classes of media with these properties and give explicit expressions in local coordinates for each class. - Highlights: ► We find two new electromagnetic media classes for which the Fresnel surface decomposes into two light cones. ► In a suitable setting we classify all electromagnetic media where this is the case. ► We find an electromagnetic medium tensor with three different signal speeds in one direction. ► The work is related to [5], which classifies all media with one light cone (in a suitable setting).

  6. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  7. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235

  8. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235

  9. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1978-01-01

    The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)

  10. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  11. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  12. Research Note: The sensitivity of surface seismic P-wave data in transversely isotropic media to reflector depth

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-01-01

    The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface

  13. Self-confinement of finite dust clusters in isotropic plasmas.

    Science.gov (United States)

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  14. An energy-stable method for solving the incompressible Navier-Stokes equations with non-slip boundary condition

    Science.gov (United States)

    Lee, Byungjoon; Min, Chohong

    2018-05-01

    We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.

  15. Diffraction traveltime approximation for TI media with an inhomogeneous background

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali; Stovas, A.

    2013-01-01

    Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.

  16. Diffraction traveltime approximation for TI media with an inhomogeneous background

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.

  17. Kinematics of the quasi-p wave in anisotropic media. Application to tomography; Cinematique de l'onde quasi p en milieux anisotropes. Application a la tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Mensch, Th.

    2000-01-12

    The seismic anisotropy causes in the Earth are known. The anisotropy characterization can provide valuable informations on the structure, lithology or eventual deformation processes in geological media. The orthorhombic symmetry allows a more complete description and representation of the anisotropy than the transversely isotropy symmetry usually assumed. Moreover this symmetry is potentially common in sedimentary basins, and particularly in fractured reservoir. In anisotropic media of arbitrary symmetry (triclinic), there is no simple analytic expressions on the phase slowness surface. The weak anisotropy assumption, often reasonable in geological media, makes perturbation techniques relevant. An approximate first order analytical expression of the qP-wave slowness surface is obtained. Using an adequate parameterization, the forward problem is solved by the ray theory. The Hamiltonian formulation introduces by a simple way ray equations in anisotropic media. The rays, travel time and its Fruchet derivatives expressions, valid to first order, are given for orthorhombic inhomogeneous media. Perturbation method applied to the ray theory allows the development of fast ray tracing in these media. Synthetic examples illustrate the accuracy and efficiency of the proposed approach. A tomographic method is developed. The travel time are inverted by minimizing, in term of least-square, the misfit between the observed and calculated travel times. The solution is approached iteratively by using a singular value decomposition algorithm. The inversion stability is assured by introducing a priori constraints. Synthetics examples show the need of an acquisition geometry well conceived to take account of anisotropy. (author)

  18. Stress-induced birefringence in the isotropic phases of lyotropic mixtures

    Science.gov (United States)

    Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.

    2018-02-01

    In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.

  19. Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Novotný, A.; Sun, Y.

    2014-01-01

    Roč. 34, č. 1 (2014), s. 121-143 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : compressible MHD system * inviscid limit * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8717

  20. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  1. Effects of a peer-led media literacy curriculum on adolescents' knowledge and attitudes toward sexual behavior and media portrayals of sex.

    Science.gov (United States)

    Pinkleton, Bruce E; Austin, Erica Weintraub; Cohen, Marilyn; Chen, Yi-Chun Yvonnes; Fitzgerald, Erin

    2008-09-01

    The United States has the highest rates of teenage pregnancy and birth in the Western industrialized world, and research indicates that television and other mass media are important sources of sexual information for young people. The purpose of this study was to determine if a teen-led, media literacy curriculum focused on sexual portrayals in the media would increase adolescents' awareness of media myths concerning sex, decrease the allure of sexualized portrayals, and decrease positive expectancies for sexual activity. A posttest-only quasi-experiment with control groups was conducted at 22 school and community sites in Washington state (N = 532). The intervention, a 5-lesson media literacy curriculum targeted primarily to middle school students, encouraged sexual abstinence because of federal government funding requirements. Adolescents evaluated the program positively, with 85% rating it as better than other sex education programs. Compared to control-group participants, students were less likely to overestimate sexual activity among teens, more likely to think they could delay sexual activity, less likely to expect social benefits from sexual activity, more aware of myths about sex, and less likely to consider sexual media imagery desirable. The results showed that media literacy has promise as part of a sex education program by providing adolescents with a cognitive framework necessary to understand and resist the influence of media on their decision making concerning sex.

  2. Isotropic cosmic expansion and the Rubin-Ford effect

    International Nuclear Information System (INIS)

    Fall, S.M.; Jones, B.J.T.

    1976-01-01

    It is shown that the Rubin-Ford data (Astrophys. J. Lett. 183:L111 (1973)), often taken as evidence for large scale anisotropic cosmic expansion, probably only reflect the inhomogeneous distribution of galaxies in the region of the sample. The data presented are consistent with isotropic expansion, an unperturbed galaxy velocity field, and hence a low density Universe. (author)

  3. Numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow

    KAUST Repository

    Zhu, Guangpu

    2018-04-17

    In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.

  4. Numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow

    KAUST Repository

    Zhu, Guangpu; Kou, Jisheng; Sun, Shuyu; Yao, Jun; Li, Aifen

    2018-01-01

    In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.

  5. A simple mechanical model for the isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Nita, Gelu M

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.

  6. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  7. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  8. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  9. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  10. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  11. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    Science.gov (United States)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  12. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0A GeV

    Directory of Open Access Journals (Sweden)

    Yongjia Wang

    2018-03-01

    Full Text Available Background: The nuclear incompressibility (K0 plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0=201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au+Au collisions at beam energies 0.4A–1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2=v20+v22⋅y02. It is found that the quantity v2n defined by v2n=|v20|+|v22| is quite sensitive to the incompressibility K0 and the in-medium nucleon–nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon–nucleon cross section, an averaged K0=220±40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon–nucleon cross sections, are of the same magnitude (±40 MeV. Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.

  13. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV

    Science.gov (United States)

    Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Le Fèvre, Arnaud; Leifels, Yvonne; Trautmann, Wolfgang

    2018-03-01

    Background: The nuclear incompressibility (K0) plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence) partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0 = 201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au + Au collisions at beam energies 0.4A-1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2 =v20 +v22 ṡ y02 . It is found that the quantity v2n defined by v2n = |v20 | + |v22 | is quite sensitive to the incompressibility K0 and the in-medium nucleon-nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon-nucleon cross section, an averaged K0 = 220 ± 40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon-nucleon cross sections, are of the same magnitude (± 40 MeV). Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.

  14. Quasi-experimental study designs series-paper 13: realizing the full potential of quasi-experiments for health research.

    Science.gov (United States)

    Rockers, Peter C; Tugwell, Peter; Røttingen, John-Arne; Bärnighausen, Till

    2017-09-01

    Although the number of quasi-experiments conducted by health researchers has increased in recent years, there clearly remains unrealized potential for using these methods for causal evaluation of health policies and programs globally. This article proposes five prescriptions for capturing the full value of quasi-experiments for health research. First, new funding opportunities targeting proposals that use quasi-experimental methods should be made available to a broad pool of health researchers. Second, administrative data from health programs, often amenable to quasi-experimental analysis, should be made more accessible to researchers. Third, training in quasi-experimental methods should be integrated into existing health science graduate programs to increase global capacity to use these methods. Fourth, clear guidelines for primary research and synthesis of evidence from quasi-experiments should be developed. Fifth, strategic investments should be made to continue to develop new innovations in quasi-experimental methodologies. Tremendous opportunities exist to expand the use of quasi-experimental methods to increase our understanding of which health programs and policies work and which do not. Health researchers should continue to expand their commitment to rigorous causal evaluation with quasi-experimental methods, and international institutions should increase their support for these efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  16. Weak convergence to isotropic complex [Formula: see text] random measure.

    Science.gov (United States)

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  17. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  18. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  19. Guided Note Taking and Student Achievement in a Media Law Course

    Science.gov (United States)

    Blom, Robin

    2017-01-01

    In a quasi-experimental setting, a group of U.S. college students in an introductory media law course had higher test scores when the instructor provided access to guided worksheets than a group of students without access to guided worksheets. It also allows educators in journalism and mass communication to cover more materials during courses…

  20. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    Science.gov (United States)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been