WorldWideScience

Sample records for isotopically mixed vapor

  1. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  2. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  3. Mixed filling for the successive isotopic exchange in the phase sequence water - water vapors - hydrogen

    International Nuclear Information System (INIS)

    Stefanescu, D.; Peculea, M.; Hirean, I.; Croitoru, C.

    1995-01-01

    The paper deals with the process of the isotopic exchange implied in heavy water production. Details concerning the structural arrangement of the process contact elements inside the exchange columns are presented. A hydrophilic filling, based on phosphorous bronze, and the platinum catalyst structure , resulted from this work, are to be implemented in the column equipment of the heavy water distillation pilot operating in connection with the CANDU type reactors. The performances of the mixed catalyst components were derived from experimental data by means of the three fluids model equations

  4. Using Stable Isotopes in Water Vapor to Diagnose Relationships Between Lower-Tropospheric Stability, Mixing, and Low-Cloud Cover Near the Island of Hawaii

    Science.gov (United States)

    Galewsky, Joseph

    2018-01-01

    In situ measurements of water vapor isotopic composition from Mauna Loa, Hawaii, are merged with soundings from Hilo to show an inverse relationship between the estimated inversion strength (EIS) and isotopically derived measures of lower-tropospheric mixing. Remote sensing estimates of cloud fraction, cloud liquid water path, and cloud top pressure were all found to be higher (lower) under low (high) EIS. Inverse modeling of the isotopic data corresponding to terciles of EIS conditions provide quantitative constraints on the last-saturation temperatures and mixing fractions that govern the humidity above the trade inversion. The mixing fraction of water vapor transported from the boundary layer to Mauna Loa decreases with respect to EIS at a rate of about 3% K-1, corresponding to a mixing ratio decrease of 0.6 g kg-1 K-1. A last-saturation temperature of 240 K can match all observations. This approach can be applied in other settings and may be used to test models of low-cloud climate feedbacks.

  5. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  6. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  7. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  8. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  9. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  10. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  11. The Atomic Vapor Laser Isotope Separation Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted

  12. [Atomic Vapor Laser Isotope Separation (AVLIS) program

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given

  13. Apparatus for isotopic alteration of mercury vapor

    International Nuclear Information System (INIS)

    Grossman, M.W.; George, W.A.; Marcucci, R.V.

    1988-01-01

    This patent describes an apparatus for enriching the isotopic content of mercury. It comprises: a low pressure electric discharge lamp, the lamp comprising an envelope transparent to ultraviolet radiation and containing a fill comprising mercury and an inert gas; a filter concentrically arranged around the low pressure electric discharge lamp, the filter being transparent to ultraviolet radiation and containing mercury including 196 Hg isotope; means for controlling mercury pressure in the filter; and a reactor arranged around the filter such that radiation passes from the low pressure electric discharge lamp through the filter and into Said reactor, the reactor being transparent to ultraviolet light

  14. Bibliography on vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Jancso, G.

    1980-04-01

    The first Bibliography on Vapour Pressure Isotope and covered the literature of the period from 1919 through December 1975. The present Supplement reviews the literature from January 1976 through December 1979. The bibliography is arranged in chronological order; within each year the references are listed alphabetically according to the name of the first author of each work. (author)

  15. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  16. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  17. Apparatus for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  18. Atomic vapor laser isotope separation in France

    International Nuclear Information System (INIS)

    Camarcat, N.; Lafon, A.; Perves, J.P.; Rosengard, A.

    1992-01-01

    The main effort in the field of Isotopic Separation Research and Development in France is devoted since 1985 to the 'SILVA' process. A structured organization has been set up, including the following elements: Specific Research and Development for all the functions and components of the process: this work is supported by numerous benches located in Saclay and Pierrelatte. Each bench is mainly devoted to one process function; regarding process and operating performances are optimized. Integrated Experiences in a Pilot facility. Qualified components are integrated in a pilot facility located in Saclay, the capacity of which is steadily increased. At each stage, complete separative experiments demonstrate the improvements attained. Focused Basic Research for each field, often linked with various and relatively original phenomenas. Models have been built up, supported by specific experiments and values attained for intrinsical parameters. An aggregated process performance computing code integrates all the models, possibly under simplified form. Technical, operating and economical data are gradually added. A general assessment will take place in the middle of the nineties with several technical demonstrations and a complete evaluation of the French AVLIS process

  19. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  20. Mixed total screening for sulfur isotope

    International Nuclear Information System (INIS)

    Cui Bin; Zhao Lei; Zhan Zhaoyang; He Zhijun

    2003-01-01

    The research on modern economic geology indicates that most ore deposits formed with characters of multi-origin, multi-stage and multi-genesis. Quantificational research of Sulfur isotope origin is a difficult problem that puzzles Geochemists all along. So the formation process of an ore deposit can be taken as the mix or the superposition of multi totals, which can be described by the mathematics model of mixed total screening. In the study of mid-down Yangtze River and Dongpo ore field in Hunan province, the authors successfully applied the mathematics model of mixed total screening, quantificationally resolved the problem of Sulfur isotope origin and mineralizing matter origin, and found out the mineralizing mechanism. This is very valuable. (authors)

  1. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  2. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  3. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C J [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M J [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  4. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  5. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  6. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  7. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  8. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    Science.gov (United States)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  9. Uranium isotope fractionation resulting from UF6 vapor distillation from containers

    International Nuclear Information System (INIS)

    Hedge, W.D.; Turner, C.M.

    1985-01-01

    This empirical study for possible isotopic fractionation due to UF 6 vapor distillation from valved containers was performed to determine the effects of repeated vapor sampling. Four different experiments were performed, each of which varied by the method of measuring the isotopic contents and/or by the difference in temperature gradients as follows: The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature and homogenized was measured by sampling the containers. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature and homogenized was measured by direct comparison to each other without subsampling. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen and ice-water temperatures and homogenized was measured by indirect comparison to a common UF 6 reference material without subsampling. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature without homogenizing was measured by indirect comparison to a common UF 6 reference. Gas-phase, relative mass spectrometry was used for all isotopic measurements. Results of the study indicate that fractionation does occur. The U-235 isotope becomes more enriched in the parent container as the UF 6 is vaporized from it and desublimed into the receiving cylinder; i.e., the vaporized fraction is enriched in the U-238 isotope. The degree of fractionation indicates that the separation is due to the U-238 isotope of UF 6 having a higher vapor pressure than the U-235 isotope of UF 6 . 3 refs., 4 figs., 4 tabs

  10. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  11. Method and apparatus for suppressing electron generation in a vapor source for isotope separation

    International Nuclear Information System (INIS)

    Janes, G.S.

    1979-01-01

    A system for applying accelerating forces to ionized particles of a vapor in a manner to suppress the flow of electron current from the vapor source. The accelerating forces are applied as an electric field in a configuration orthogonal to a magnetic field. The electric field is applied between one or more anodes in the plasma and one or more cathodes operated as electron emitting surfaces. The circuit for applying the electric field floats the cathodes with respect to the vapor source, thereby removing the vapor source from the circuit of electron flow through the plasma and suppressing the flow of electrons from the vapor source. The potential of other conducting structures contacting the plasma is controlled at or permitted to seek a level which further suppresses the flow of electron currents from the vapor source. Reducing the flow of electrons from the vapor source is particularly useful where the vapor is ionized with isotopic selectivity because it avoids superenergization of the vapor by the electron current

  12. Isotopic mixing in carbon monoxide catalyzed by zinc oxide

    International Nuclear Information System (INIS)

    Carnisio, G.; Garbassi, F.; Petrini, G.; Parravano, G.

    1978-01-01

    The rate of the isotopic mixing in CO has been studied at 300 0 C, for CO partial pressures from 6 to 100 Torr and a total pressure of 250 Torr on ZnO catalysts. Significant deviations from a first-order rate in p/sub co/ were found. The rate of oxygen exchange between ZnO and gas-phase CO was also measured and the results were employed to calculate the fraction of surface sites active for the CO isotopic mixing. Values on the order of 0.001 were found. The turnover rate and surface collision efficiency varied between 0.7 and 107 min -1 and 0.13 and 2.24 x 10 -8 , respectively. H 2 additions to CO increased the rate of isotopic mixing, whereas the rate of H 2 + D 2 was decreased by the presence of CO. The H 2 + D 2 rate was faster than that of isotopic mixing in CO, but as the ratio p/sub H 2 //p/sub co/ decreased the rates became about equal. It is argued that on ZnO samples, in which the rate of CO isotopic mixing and the rate of ZnO--CO oxygen exchange were influenced in a similar manner by the CO pressure, the isotopic mixing in CO took place via the ZnO oxygen, while oxide oxygen participation was not kinetically significant for ZnO samples in which the two reactions had different kinetics. The crucial factor controlling the path followed by the isotopic mixing in CO seems to be the surface Zn/O ratio, since a close correlation was found between the former and the reaction kinetics of the CO isotopic mixing reaction. Solid-state conditions which may vary the Zn/O surface ratio (foreign additions) are indicated. The implications of these findings to the problem of product selectivity from CO-H 2 mixtures reacting on metal oxide surfaces are discussed

  13. Cooling by mixing of helium isotopes

    International Nuclear Information System (INIS)

    Hansen, O.P.; Olsen, M.; Rasmussen, F.B.

    1975-01-01

    The principles of the helium dilution refrigerator are outlined. The lowest temperature attained with a continuously operated dilution refrigerator was about 10 mK, and 5 mK for a limited period when the supply of concentrated 3 He to the mixing chamber was interrupted. (R.S.)

  14. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  15. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  16. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    Science.gov (United States)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  17. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    Science.gov (United States)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate

  18. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    International Nuclear Information System (INIS)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations

  19. Stable isotope tracers of water vapor sources in the Atacama Desert, Northern Chile: a pilot study on the Chajnantor Plateau

    Science.gov (United States)

    Samuels, K. E.; Galewsky, J.; Sharp, Z. D.; Rella, C.; Ward, D.

    2010-12-01

    Subtropical deserts form in response to the interaction of large-scale processes, including atmospheric circulation and oceanic currents, with local features like topography. The degree to which each of these factors controls desert formation and the anticipated impacts of variations in each as climate changes, however, are poorly understood. Stable isotope compositions of water vapor in desert air can help to distinguish between moisture sources and processes that control aridity. The Atacama Desert, located in northern Chile between latitudes 23S and 27S, provides a natural laboratory in which to test the degree to which water vapor isotopologues enable the distinction between processes that control humidity, including the Hadley Circulation, the cold Humboldt Current off the coast of Chile, and the orographic effect of the Andes, in this subtropical desert. Water vapor isotopologues and concentrations were measured in real time using a cavity-ringdown spectrometer deployed on the Chajnantor Plateau over a three-week period from mid-July early August 2010. The elevation of the Plateau, 5000 m amsl (~550 hPa), places it above the boundary layer, allowing the evaluation of the Rayleigh fractionation model from the coast inland. Values reported by the instrument were verified with air samples taken at the coast and the Plateau, which were analyzed on an MAT-252 mass spectrometer. Water vapor concentrations and δD values varied spatially and temporally. Water vapor concentrations on the Plateau ranged from 200 to 3664 ppmv with a mean value of 536 ppmv. In contrast, water vapor concentrations at the coast were approximately 10000 ppmv, and at Yungay, 60 km inland, water vapor concentrations ranged from 1300 to 2000 ppmv from morning to evening. δD values on the Plateau ranged from -526‰ to -100‰ with a mean value of 290‰ with enriched values correlated to periods with higher water vapor concentrations. There are no strong diurnal variations in water vapor

  20. Isotopic shifts and configuration mixing in the dysprosium II spectrum

    International Nuclear Information System (INIS)

    Aufmuth, P.

    1977-01-01

    Using a photoelectric Fabry-Perot spectrometer with digital data acquisition, the isotopic shifts of all stable dysprosium isotopes (Z = 66, A = 156, 158, 160, 161, 162, 163, 164) have been measured in transitions from the groundstate configuration 4f 10 6s to the excited configurations 4f 9 5d6s, 4f 9 5d 2 , and 4f 10 6p of the spark spectrum. Mass and volume effects have been seperated; the results are compared with arc spectrum measurements. From the volume effect of a pure s-p transition the change of the mean electric quadratic nuclear radius delta 2 > has been calculated. In order to test fine structure calculations of the Dy II spectrum, the isotopic shifts of 29 lines of the isotopes 162 Dy and 164 Dy have been measured. Based on the sharing rule, the reported configuration mixing could be confirmed in principle; for one energy level (E = 22908 K) the asignement has been proved to be false, in the case of three other levels (E = 22467, 22672, and 28885 K) the asignement is doubtfull. For the ground state levels 4f 10 6s 6 I the influence of relativistic effects could be proved; these effects can be interpreted in the framework of a parametric representation of the isotopic shift. The order of magnitude of the crossed second order effects has been estimated. (orig.) [de

  1. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  2. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  3. Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium

    International Nuclear Information System (INIS)

    Vieira, Mariana Antunes; Ribeiro, Anderson Schwingel; Dias, Lucia Felicidade; Curtius, Adilson Jose

    2005-01-01

    A method for the determination of Cd, Hg, Pb and Se in sediments reference materials by slurry sampling chemical vapor generation (CVG) using isotopic dilution (ID) calibration and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. Two different systems were used for the investigation: an on-line flow injection system (FI-CVG-ICP-MS) and an off-line system with in situ trapping electrothermal vaporization (CVG-ETV-ICP-MS). About 100 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions (aqua regia, HF and HCl) in an ultrasonic bath. The enriched isotopes 111 Cd, 198 Hg, 206 Pb and 77 Se were then added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. For the on-line system, a standing time for the slurry of 12 h before measurement was required, while for the batch system, no standing time is needed to obtain accurate results. The conditions for the formation of the analyte vapor were optimized for the evaluated systems. The following altered isotope ratios were measured: 111 Cd/ 114 Cd, 198 Hg/ 199 Hg, 206 Pb/ 208 Pb e 77 Se/ 82 Se. The obtained detection limits in the on-line system, in μg g -1 , were: Cd: 0.15; Hg: 0.09; Pb: 6.0 and Se: 0.03. Similar detection limits were obtained with the system that uses the ETV: 0.21 for Hg, 6.0 for Pb and 0.06 μg g -1 for Se. No signal for Cd was obtained in this system. One estuarine, two marine and two river certified sediments were analyzed to check the accuracy. The obtained values by both systems were generally in agreement with the certified concentrations, according to the t-test for a confidence level of 95%, demonstrating that isotope equilibration was attained in the slurries submitted to a chemical vapor generation procedure and detection by ICP-MS. The relative standard deviations were lower than 10%, adequate for slurry analysis. The almost quantitative analytes extractions to the aqueous phase

  4. TRACER-II: a complete computational model for mixing and propagation of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H. [School of Mechanical Engineering, Korea Maritime Univ., Pusan (Korea, Republic of); Park, I.G.; Park, G.C.

    1998-01-01

    A vapor explosion is a physical process in which very rapid energy transfer occurs between a hot liquid and a volatile, colder liquid when the two liquids come into a sudden contact. For the analyses of potential impacts from such explosive events, a computer program, TRACER-II, has been developed, which contains a complete description of mixing and propagation phases of vapor explosions. The model consists of fuel, fragmented fuel (debris), coolant liquid, and coolant vapor in two-dimensional Eulerian coordinates. The set of governing equations are solved numerically using finite difference method. The results of this numerical simulation of vapor explosions are discussed in comparison with the recent experimental data of FARO and KROTOS tests. When compared to some selected FARO and KROTOS data, the fuel-coolant mixing and explosion propagation behavior agree reasonably with the data, although the results are yet sensitive primarily to the melt breakup and fragmentation modeling. (author)

  5. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field

    Science.gov (United States)

    Yao, Junming; Mathur, Ryan; Sun, Weidong; Song, Weile; Chen, Huayong; Mutti, Laurence; Xiang, Xinkui; Luo, Xiaohong

    2016-05-01

    The study presents δ65Cu and δ97Mo isotope values from cogenetic chalcopyrite and molybdenite found in veins and breccias of the Dahutang W-Cu-Mo ore field in China. The samples span a 3-4 km range. Both isotopes show a significant degree of fractionation. Cu isotope values in the chalcopyrite range from -0.31‰ to +1.48‰, and Mo isotope values in the molybdenite range from -0.03‰ to +1.06‰. For the cogenetic sulfide veined samples, a negative slope relationship exists between δ65Cu and δ97Mo values, which suggest a similar fluid history. Rayleigh distillation models the vein samples' change in isotope values. The breccia samples do not fall on the trend, thus indicating a different source mineralization event. Measured fluid inclusion and δD and δ18O data from cogenetic quartz indicate changes in temperature, and mixing of fluids do not appear to cause the isotopic shifts measure. Related equilibrium processes associated with the partitioning of metal between the vapor-fluid in the hydrothermal system could be the probable cause for the relationship seen between the two isotope systems.

  6. Continuous and simultaneous measurements of precipitation and vapor isotopes over two monsoon seasons during 2016-2017 in Singapore

    Science.gov (United States)

    Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.

    2017-12-01

    Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.

  7. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  8. Liquid-Vapor Argon Isotope Fractionation from the Triple Point to the Critical Point

    DEFF Research Database (Denmark)

    Phillips, J. T.; Linderstrøm-Lang, C. U.; Bigeleisen, J.

    1972-01-01

    are compared at the same molar volume. The isotope fractionation factor α for 36Ar∕40Ar between liquid and vapor has been measured from the triple point to the critical temperature. The results are compared with previous vapor pressure data, which cover the range 84–102°K. Although the agreement is within....... The fractionation factor approaches zero at the critical temperature with a nonclassical critical index equal to 0.42±0.02.〈∇2Uc〉/ρc in liquid argon is derived from the experimental fractionation data and calculations of 〈∇2Ug〉/ρg for a number of potential functions for gaseous argon....

  9. Mixed-mode chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  10. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of ∼ 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry

  11. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  12. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  13. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  14. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  15. High-temperature vaporization of thorium-uranium mixed monocarbide (Th1-y, Uy)C

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Yamawaki, Michio

    1989-01-01

    Vaporization thermodynamics of thorium-uranium mixed monocarbide phase (Th 1-y , U y )C was studied by mass spectrometric Knudsen effusion method for the compositions of (Th 0.9 , U 0.1 )C 0.855 , (Th 0.8 , U 0.2 )C 0.973 and (Th 0.6 , U 0.4 )C 0.973 . The partial vapor pressures of Th(g) and U(g) and activities of Th and U of these mixed monocarbides were determined at temperatures ranging from about 2000 to 2200 K. Further, the partial pressures of Th(g) and U(g) and activities of Th and U of the stoichiometric mixed monocarbides (Th 1-y , U y )C 1.00 were evaluated by compensating for the effect of carbon content. The Gibbs energies of formation of stoichiometric (Th 1-y , U y )C 1.00 were also evaluated. (orig.)

  16. Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration

    International Nuclear Information System (INIS)

    Dias, Lucia Felicidade; Miranda, Gilson R.; Saint'Pierre, Tatiana D.; Maia, Sandra M.; Frescura, Vera L.A.; Curtius, Adilson J.

    2005-01-01

    A procedure for the determination of Cd, Cu, Pb, Se and Tl by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with calibration by isotopic dilution is proposed. The slurry is prepared by mixing the sample with diluted nitric and hydrofluoric acids in an ultrasonic bath and then in a water bath at 60 deg C for 120 min. The slurries were let to stand at least for 12 h, manually shaken before poured into the autosampler cups and homogenized by passing through an argon flow, just before pipetting it into the furnace. The analytes were determined in two groups, according to their thermal behaviors. The furnace temperature program was optimized and the selected compromised pyrolysis temperatures were: 400 deg C for Cd, Se and Tl and 700 deg C for Cu and Pb. The vaporization temperature was 2300 deg C. The analyses were carried out without modifier as no significant effect was observed for different tested modifiers. Different sample particle sizes did not affect the sensitivity significantly, then a particle size ≤50 μm was adopted. The accuracy was checked by analyzing five certified reference sediments, with analytes concentrations from sub-μg g -1 to a few hundreds μg g -1 . The great majority of the obtained concentrations were in agreement with the certified values. The detection limits, determined for the MESS-2 certified sediment, were, in μg g -1 : 0.01 for Cd; 0.8 for Cu; 0.4 for Pb; 0.4 for Se and 0.06 for Tl. The precision was adequate with relative standard deviations lower than 12%. Isotopic dilution showed to be an efficient calibration technique for slurry, as the extraction of the analyte to the liquid phase of the slurry and the reactions in the vaporizer must help the equilibration between the added isotope and the isotope in the sample

  17. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  18. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J.

    1990-01-01

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  19. Isotopic exchange in mixed valence compounds in the solid state

    International Nuclear Information System (INIS)

    Fernandez Valverde, S.M.

    1986-01-01

    This work aims at the determination of isotopic exchange kinetics and mechanism in two mixed valence compounds: Cs 10 (Sbsup(V)Cl 6 ) (Sbsup(III)Cl 6 ) 3 and Tl 3 sup(I)(Tlsup(III)Cl 6 ). The synthesis of the first compound is very difficult because in most of the cases mixtures of chloroantimoniates are obtained. Exchange in Tl 4 Cl 6 labelled on Tlsup(III) is studied in detail by radiochemical analysis and physical techniques: ionic conductivity and positon annihilation. Cation vacancies are easily created in the lattice with formation enthalpy of 0.35 eV and migration enthalpy of 0.52 eV. Isochronic and isothermal exchange curves are described by a kinetic based on species diffusion. Models are given. Exchange is increased by grinding probably because extrinseque defects are introduced [fr

  20. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-01-01

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes

  1. Vapor pressure isotope effect in 13CClF3/12CClF3 by cryogenic distillation kinetics

    International Nuclear Information System (INIS)

    Wieck, H.J.; Ishida, T.

    1975-08-01

    The vapor pressure of 13 CClF 3 relative to the vapor pressure of 12 CClF 3 was measured as a function of temperature between 169 0 and 206 0 K by using a modified Bigeleisen distillation column. The transient build-up of the isotopic concentration gradient along the length of the packed column during the start-up period was monitored by taking samples from the condenser section as a function of time. The gaseous samples were completely oxidized to carbon dioxide in the presence of a platinum catalyst and a large excess of oxygen at temperatures between 1050 and 1100 0 C. The combustion products were purified by means of gas chromatography, and the purified carbon dioxide samples were analyzed in a Nier-type isotope-ratio mass spectrometer. The data of each distillation run were reduced in the light of Cohen's theory of the kinetics of square cascade of close-separation stages. The vapor pressure isotope effect for the carbon substitution in CClF 3 at temperatures between 169 0 and 206 0 K was found to be an inverse effect and to be rather insensitive to changes in temperature. The relative vapor pressure may be expressed 1n(P'/P) = [(1.5 +- 14.1)/T 2 ] - [(0.159 +- 0.076)/T], or 1n(P'/P) = [(0.173 +- 0.098)/T] - [(0.11 +- 0.53) x 10 -3 ], where P' and P are the vapor pressures of 12 CClF 3 and 13 CClF 3 , respectively. To the first-order, the presence of chlorine isotopes would not affect the fractionation of carbon isotopes by the distillation of CClF 3

  2. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  3. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  4. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  5. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  6. Shape coexistence in the neutron-deficient Pt isotopes in a configuration mixing IBM

    International Nuclear Information System (INIS)

    Morales, Irving O.; Vargas, Carlos E.; Frank, Alejandro

    2004-01-01

    The recently proposed matrix-coherent state approach for configuration mixing IBM is used to describe the evolving geometry of the neutron deficient Pt isotopes. It is found that the Potential Energy Surface (PES) of the Platinum isotopes evolves, when the number of neutrons decreases, from spherical to oblate and then to prolate shapes, in agreement with experimental measurements. Oblate-Prolate shape coexistence is observed in 194,192Pt isotopes

  7. [Atomic Vapor Laser Isotope Separation (AVLIS) program]. Final report, [January--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-04

    This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given.

  8. l modeling of r—diogeni™ isotopes in twoE™omponent mixing

    Indian Academy of Sciences (India)

    The mixing other by a mathematical operation, such as summa- equation for the isotopic ratio is as follows (e.g., Faure ..... physical sciences (New York: McGraw Hill) 336 p. ... Faure G 1986 Principles of isotope geology (New York: John.

  9. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    Science.gov (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  11. Flow Characterization of Vapor Phase of Geothermal Fluid in Pipe Using Isotope 85Kr and Residence Time Distribution Modeling

    Directory of Open Access Journals (Sweden)

    S. Sugiharto

    2014-08-01

    Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.

  12. Best practices for use of stable isotope mixing models in food-web studies

    Science.gov (United States)

    Stable isotope mixing models are increasingly used to quantify contributions of resources to consumers. While potentially powerful tools, these mixing models have the potential to be misused, abused, and misinterpreted. Here we draw on our collective experiences to address the qu...

  13. Observation of correlated anti-Stokes emissions by multiwave mixing in sodium vapor

    International Nuclear Information System (INIS)

    Motomura, Koji; Tsukamoto, Mayumi; Wakiyama, Akira; Harada, Ken-ichi; Mitsunaga, Masaharu

    2005-01-01

    We study experimentally nonlinear optical processes in which Stokes and anti-Stokes fields build up under strong, resonant, counterpropagating pump laser excitation in atomic sodium vapor. We find that, at some pump frequency, two off-axis anti-Stokes emissions propagating along reflection-symmetric directions are strongly temporally correlated, with a correlation time of 0.5 μs and a correlation range of 1 mrad. It is shown by the numerical analysis based on six-wave mixing process involving pump, Stokes, and anti-Stokes waves in the forward and the backward directions that such correlated anti-Stokes emissions are possible when the medium is opaque for the Stokes field and transparent for the anti-Stokes field. Possibilities of quantum correlation for entangled photon generation using this system are discussed

  14. Investigation on a system to collect water vapor from the air, for the analysis of natural isotopic variation

    International Nuclear Information System (INIS)

    Foloni, L.L.

    1975-01-01

    The development of a system to collect water vapor from air for isotopic composition analysis and its natural variation is studied. The system consists of a molecular sieve type 4A, without cooling agent and permits the choice of a sampling time varying from a few minutes to many hours through the control of the admission vapor flux. The system has been compared with other existing systems, having shown excellent performance for the collection of samples for D/H ratio analysis, with errors of the order of +- -+ 3.0 0 /oo and +- -+ 0.6 0 /oo in the delta sub(D) 0 /oo and delta 18 0 0 /oo ratios, respectively [pt

  15. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  17. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  18. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  19. Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.E.; Kelly, W.R.

    2002-04-01

    A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a Hg-201 isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin chloride. Measurements of Hg-201/Hg-202 isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is similar to 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is similar to 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils.

  20. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China

    International Nuclear Information System (INIS)

    Li Siliang; Liu Congqiang; Patra, Sivaji; Wang Fushun; Wang Baoli; Yue Fujun

    2011-01-01

    Highlights: → Changjiang Estuary plays an important role in transportation of the water and solute. → The dual isotopic method could be used to understand sulfate biogeochemistry in estuaries. → Mixing processes should be a major factor involved in the distribution of water and sulphate. → Sulphate in the Changjiang River mainly derived from atmospheric deposition, evaporite dissolution and sulphide oxidation. - Abstract: The dual isotopic compositions of dissolved SO 4 2- in aquatic systems are commonly used to ascertain SO 4 2- sources and possible biogeochemical processes. In this study, the physical parameters, major anions and isotopic compositions of SO 4 2- in water samples from Changjiang River (Nanjin) to the East Sea in Changjiang Estuary were determined. The salinity ranged from 0 per mille to 32.3 per mille in the estuary water samples. The Cl - ,SO 4 2- concentrations and δ 18 O-H 2 O values followed the salinity variations from freshwater to seawater, which indicated that mixing processes might be a major factor involved in the distribution of water and solutes. The contents and isotopic compositions of SO 4 2- suggested that atmospheric deposition, evaporite dissolution and sulphide oxidation were the major sources of dissolved SO 4 2- in the freshwater of Changjiang River. In addition, the mixing model calculated by contents and isotopic compositions of SO 4 2- indicated that the mixing of freshwater and sea water was the major factor involved in SO 4 2- distribution in Changjiang Estuary. However, slightly elevated δ 18 O-SO 4 values were observed in the turbidity maximum zone, which suggested that biological processes might affect the O isotopic compositions of SO 4 2- there.

  1. Detecting Non-Gaussian and Lognormal Characteristics of Temperature and Water Vapor Mixing Ratio

    Science.gov (United States)

    Kliewer, A.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.

    2017-12-01

    Many operational data assimilation and retrieval systems assume that the errors and variables come from a Gaussian distribution. This study builds upon previous results that shows that positive definite variables, specifically water vapor mixing ratio and temperature, can follow a non-Gaussian distribution and moreover a lognormal distribution. Previously, statistical testing procedures which included the Jarque-Bera test, the Shapiro-Wilk test, the Chi-squared goodness-of-fit test, and a composite test which incorporated the results of the former tests were employed to determine locations and time spans where atmospheric variables assume a non-Gaussian distribution. These tests are now investigated in a "sliding window" fashion in order to extend the testing procedure to near real-time. The analyzed 1-degree resolution data comes from the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) six hour forecast from the 0Z analysis. These results indicate the necessity of a Data Assimilation (DA) system to be able to properly use the lognormally-distributed variables in an appropriate Bayesian analysis that does not assume the variables are Gaussian.

  2. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  3. Evolving shape coexistence in the lead isotopes: The geometry of configuration mixing in nuclei

    International Nuclear Information System (INIS)

    Frank, Alejandro; Isacker, Piet van; Vargas, Carlos E.

    2004-01-01

    A matrix coherent-state approach is applied to the interacting boson model (IBM) with configuration mixing to describe the evolving geometry of neutron-deficient Pb isotopes. It is found that for small mixing with parameters determined previously, the potential energy surface of 186 Pb has three minima, which correspond to spherical, oblate, and prolate shapes, in agreement with recent measurements and mean-field calculations. Away from midshell, in the heavier Pb isotopes, no deformed minima occur. Our analysis suggests that the configuration-mixing IBM, used in conjunction with a matrix coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  4. Enthalpy of mixing and heat of vaporization of ethyl acetate with benzene and toluene at 298.15 k and 308.15 k

    OpenAIRE

    K. L. Shivabasappa; P. Nirguna Babu; Y. Jagannadha Rao

    2008-01-01

    The present work was carried out in two phases. First, enthalpy of mixing was measured and then the heat of vaporization for the same mixtures was obtained. The data are useful in the design of separation equipments. From the various designs available for the experimental determination of enthalpy of mixing, and heat of vaporization, the apparatus was selected, modified and constructed. The apparatus of enthalpy of mixing was tested with a known system Benzene - i-Butyl Alcohol and the data o...

  5. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  6. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.; Erbert, G.; Paisner, J.; Chen, H.; Chiba, Z.; Beeler, R.; Combs, R.; Mostek, S.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of $450 million dollars in the corresponding reduction of electrical power consumption. We discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts

  7. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  8. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  9. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    Science.gov (United States)

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  10. Atomic vapor laser isotope separation at Lawrence Livermore National Laboratory: a status report

    International Nuclear Information System (INIS)

    Davis, J.I.

    1980-01-01

    The field of laser induced chemistry began in earnest early in the 1970's with the initiation of major efforts in laser isotope separation (LIS) of uranium. Though many specialized, small-scale photochemical and diagnostic applications have been identified and evaluated experimentally, and continue to show promise, currently the only high payoff, large-scale applications remain LIS of special elements. Aspects of the physical scaling, technology status and economic basis of uranium LIS are examined with special emphasis on the effort at LLNL

  11. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  12. 大气水汽同位素组成的短期变异特征%Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes

    Institute of Scientific and Technical Information of China (English)

    张世春; 孙晓敏; 王建林; 于贵瑞; 温学发

    2011-01-01

    Stable isotopes of atmospheric water vapor reveal rich information on water movement and phase changes in the atmosphere. Here we presented two nearly continuous time-series of δD and δ18O of atmospheric water vapor (δv) measured at hourly intervals in surface air in Beijing and above a winter wheat canopy in Shijiazhuang using in-situ measurement technique. During the precipitation events, the δv values in both Beijing and Shijiazhuang were in the state of equilibrium with precipitation water, revealing the influence of precipitation processes. However, the δv departures from the equilibrium state were positively correlated with local relative humidity. Note that the δv tended to enrich in Beijing, but deplete in Shijiazhuang during the precipitation events, which mainly resulted from the influence of transpiration processes that enriched the δv in Shijiazhuang. On seasonal time-scale, the δvvalues were log-linear functions of water vapor mixing ratios in both Beijing and Shijiazhuang. The water vapor mixing ratio was an excellent predictor of the δv by the Rayleigh distillation mechanisms, indicating that air mass advection could also play an important role in determining the δv. On a diurnal time-scale, the δv reached the minimum in the early afternoon hours in Beijing which was closely related to the atmospheric processes of boundary layer entrainment. During the peak of growing season of winter wheat, however, the δv reached the minimum in the early morning, and increased gradually through the daytime, and reached the maximum in the late afternoon, which was responsible by the interaction between boundary layer entrainment and the local atmospheric processes, such as transpiration and dew formation. This study has the implications for the important role of vegetation in determining the surface δv and highlights the need to conduct δv measurement on short-term (e.g. diurnal) time scales.

  13. Searching for the true diet of marine predators: incorporating Bayesian priors into stable isotope mixing models.

    Directory of Open Access Journals (Sweden)

    André Chiaradia

    Full Text Available Reconstructing the diet of top marine predators is of great significance in several key areas of applied ecology, requiring accurate estimation of their true diet. However, from conventional stomach content analysis to recent stable isotope and DNA analyses, no one method is bias or error free. Here, we evaluated the accuracy of recent methods to estimate the actual proportion of a controlled diet fed to a top-predator seabird, the Little penguin (Eudyptula minor. We combined published DNA data of penguins scats with blood plasma δ(15N and δ(13C values to reconstruct the diet of individual penguins fed experimentally. Mismatch between controlled (true ingested diet and dietary estimates obtained through the separately use of stable isotope and DNA data suggested some degree of differences in prey assimilation (stable isotope and digestion rates (DNA analysis. In contrast, combined posterior isotope mixing model with DNA Bayesian priors provided the closest match to the true diet. We provided the first evidence suggesting that the combined use of these complementary techniques may provide better estimates of the actual diet of top marine predators- a powerful tool in applied ecology in the search for the true consumed diet.

  14. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes

    DEFF Research Database (Denmark)

    Ellehøj, Mads Dam; Steen-Larsen, Hans Christian; Johnsen, Sigfus Johann

    2013-01-01

    RATIONALE: The equilibrium fractionation factors govern the relative change in the isotopic composition during phase transitions of water. The commonly used results, which were published more than 40 years ago, are limited to a minimum temperature of -33 degrees C. This limits the reliability...... values, with a temperature dependency in accordance with theory for equilibrium fractionation. We obtain the following expressions for the temperature dependency of the fractionation coefficients: ln(alpha(delta 2H)) = 0.2133 - 203.10/T + 48888/T-2 ln(alpha(delta 18O)) = 0.0831 - 49.192/T + 8312.5/T2...... Compared with previous experimental work, a significantly larger for H-2 is obtained while, for O-18, is larger for temperatures below -20 degrees C and slightly lower for temperatures above this. CONCLUSIONS: Using the new values for alpha, a Rayleigh distillation model shows significant changes in both...

  15. SEAMIST trademark in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Lowry, W.E.; Dunn, S.D.; Cremer, S.C.; Williams, C.

    1994-01-01

    The SEAMIST trademark inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST trademark lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST trademark system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST trademark vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented

  16. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    Science.gov (United States)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  17. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  18. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  19. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mixed-symmetry states and shape coexistence in N=52-56 Mo isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Werner, V. [IKP, TU Darmstadt (Germany); WNSL, Yale Univ. (United States); Thomas, T. [WNSL, Yale Univ. (United States); IKP, Univ. Koeln (Germany); Jolie, J.; Duckwitz, H.; Fitzler, A.; Fransen, C.; Linnemann, A. [IKP, Univ. Koeln (Germany); Nomura, K. [GANIL (France); Univ. Zagreb (Croatia); Ahn, T. [WNSL, Yale Univ. (United States); Univ. Notre Dame (United States); Cooper, N.; Hinton, M.; Ilie, G. [WNSL, Yale Univ. (United States); Gade, A. [IKP, Univ. Koeln (Germany); NSCL, Michigan State Univ. (United States); Jessen, K. [IKP, Univ. Koeln (Germany); LMU Muenchen (Germany); Petkov, P. [IKP, Univ. Koeln (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Pietralla, N. [IKP, TU Darmstadt (Germany); Radeck, D. [IKP, Univ. Koeln (Germany); PTB Braunschweig (Germany)

    2016-07-01

    Angular correlation experiments have been performed on {sup 96}Mo and {sup 98}Mo at the IKP, Universitaet zu Koeln, and at WNSL, Yale University. Lifetimes of excited states have been determined from line shape analyses. The extensive data set, compared to IBM-2 configuration mixing calculations based on microscopic EDFs, reveals the occurrence of coexistence of near-spherical and deformed configurations in both Mo isotopes. Furthermore, the main fragments of one-phonon mixed-symmetry 2{sup +} states have been identified. The systematic of their decay behavior in the Mo chain from N=52 to 56, namely the crossing of the strongest M1 decay branch to the first and second 2{sup +} states as a function of neutron number, suggests a new signature for shape coexistence.

  1. Strontium isotopes and the reconstruction of the Chaco regional system: evaluating uncertainty with Bayesian mixing models.

    Directory of Open Access Journals (Sweden)

    Brandon Lee Drake

    Full Text Available Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts.In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studiesusing these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the West [corrected]. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated and Bayesian methods (to address uncertainty in geochemical source attribution. It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous.

  2. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  3. Enthalpy of mixing and heat of vaporization of ethyl acetate with benzene and toluene at 298.15 k and 308.15 k

    Directory of Open Access Journals (Sweden)

    K. L. Shivabasappa

    2008-03-01

    Full Text Available The present work was carried out in two phases. First, enthalpy of mixing was measured and then the heat of vaporization for the same mixtures was obtained. The data are useful in the design of separation equipments. From the various designs available for the experimental determination of enthalpy of mixing, and heat of vaporization, the apparatus was selected, modified and constructed. The apparatus of enthalpy of mixing was tested with a known system Benzene - i-Butyl Alcohol and the data obtained was in very good agreement with literature values. Experiments were then conducted for mixtures of Ethyl Acetate with Benzene and Toluene. The experimental data was fitted to the standard correlations and the constants were evaluated. Heat of vaporization data were obtained from a static apparatus and tested for accuracy by conducting experiments with a known system Benzene - n-Hexane and the data obtained were found to be in agreement with literature values. Experiments were then conducted to measure heat of vaporization for the mixtures of Ethyl Acetate with Benzene and Toluene. Using experimental data of enthalpy of mixing from the first phase, and heat capacity data, the heat of vaporization were calculated.

  4. Measurement of liquid mixing characteristics in large-sized ion exchange column for isotope separation by stepwise response method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Iwamoto, Kazumi; Itoi, Toshiaki.

    1981-07-01

    Liquid mixing in a large-sized ion exchange column for isotope separation was measured by the step-wise response method, using NaCl solution as tracer. A 50 cm diameter column was packed with an ion exchange resin of 200 μm in mean diameter. Experiments were carried out for several types of distributor and collector, which were attached to each end of the column. The smallest mixing was observed for the perforated plate type of the collector, coupled with a minimum stagnant volume above the ion exchange resin bed. The 50 cm diameter column exhibited the better characteristics of liquid mixing than the 2 cm diameter column for which the good performance of lithium isotope separation had already been confirmed. These results indicate that a large increment of throughput is attainable by the scale-up of column diameter with the same performance of isotope separation as for the 2 cm diameter column. (author)

  5. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    Directory of Open Access Journals (Sweden)

    Ali A. Rostami

    2016-08-01

    Full Text Available Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate, device specifications (aerosol mass delivery, e-liquid composition, and use behavior (number of users and usage frequency. Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.

  6. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  7. Assessment of condensation of water vapor in the mixing chamber by CFD method

    Directory of Open Access Journals (Sweden)

    Vojkůvková Petra

    2015-01-01

    Full Text Available The analyzed topic belongs to the field of design and operation of HVAC systems, focusing mainly on mixing chambers. The paper deals with problems of condensation and freezing of water vapour on walls of mixing chambers in a special case, when the partial pressure of the final resulting state of the mixture of warm moist air and colder air is located above the saturation limit. Experimental in situ methods and computer computational fluid dynamics (CFD modelling method were used for processing. The main contribution of this work is the finding that partial condensation and freezing of water vapour may occur in local parts of the mixing chamber. It causes problems in terms of hygienic safety and service life of these devices. In particular it has been found that condensation and freezing of water vapour may occur even if relative humidity of the resulting mixture is about 70 %.

  8. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs

  10. Real gas effects in mixing-limited diesel spray vaporization models

    NARCIS (Netherlands)

    Luijten, C.C.M.; Kurvers, C.

    2010-01-01

    The maximum penetration length of the liquid phase in diesel sprays is of paramount importance in reducing diesel engine emissions. Quasi-steady liquid length values have been successfully correlated in the literature, assuming that mixing of fuel and air is the limiting step in the evaporation

  11. Tunable and rapid self-assembly of block copolymers using mixed solvent vapors.

    Science.gov (United States)

    Park, Woon Ik; Tong, Sheng; Liu, Yuzi; Jung, Il Woong; Roelofs, Andreas; Hong, Seungbum

    2014-12-21

    Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.

  12. Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He

    International Nuclear Information System (INIS)

    Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay

    2003-01-01

    This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems

  13. TITANIUM ISOTOPE SOURCE RELATIONS AND THE EXTENT OF MIXING IN THE PROTO-SOLAR NEBULA EXAMINED BY INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Robert C. J.; Boehnke, Patrick [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2015-04-01

    The Ti isotope variations observed in hibonites represent some of the largest isotope anomalies observed in the solar system. Titanium isotope compositions have previously been reported for a wide variety of different early solar system materials, including calcium, aluminum rich inclusions (CAIs) and CM hibonite grains, some of the earliest materials to form in the solar system, and bulk meteorites which formed later. These data have the potential to allow mixing of material to be traced between many different regions of the early solar system. We have used independent component analysis to examine the mixing end-members required to produce the compositions observed in the different data sets. The independent component analysis yields results identical to a linear regression for the bulk meteorites. The components identified for hibonite suggest that most of the grains are consistent with binary mixing from one of three highly anomalous nucleosynthetic sources. Comparison of these end-members show that the sources which dominate the variation of compositions in the meteorite parent body forming regions was not present in the region in which the hibonites formed. This suggests that the source which dominates variation in Ti isotope anomalies between the bulk meteorites was not present when the hibonite grains were forming. One explanation is that the bulk meteorite source may not be a primary nucleosynthetic source but was created by mixing two or more of the hibonite sources. Alternatively, the hibonite sources may have been diluted during subsequent nebula processing and are not a dominant solar system signatures.

  14. Mixing rules for and effects of other hydrogen isotopes and of isotopic swamping on tritium recovery and loss to biosphere from fusion reactors

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Efficient recovery of bred and unburnt tritium from fusion reactors, and control of its migration within reactors and of its escape into the biosphere are essential for self-sufficient fuel cycles and for public, plant personnel, and environmental protection. Tritium in fusion reactors will be mixed with unburnt deuterium and protium introduced by (n,p) reactions and diffusion into coolant loops from steam cycles. Rational design for tritium recovery and escape prevention must acknowledge this fact. Consequences of isotopic admixture are explored, mixing rules for projected fusion reactor dilute-solution conditions are developed, and a rule of thumb regarding their effects on tritium recovery methods is formulated

  15. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  16. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  17. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  18. A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe

    Science.gov (United States)

    Hausmann, Petra; Sussmann, Ralf; Trickl, Thomas; Schneider, Matthias

    2017-06-01

    We present vertical soundings (2005-2015) of tropospheric water vapor (H2O) and its D / H isotope ratio (δD) derived from ground-based solar Fourier transform infrared (FTIR) measurements at Zugspitze (47° N, 11° E, 2964 m a.s.l.). Beside water vapor profiles with optimized vertical resolution (degrees of freedom for signal, DOFS, = 2.8), {H2O, δD} pairs with consistent vertical resolution (DOFS = 1.6 for H2O and δD) applied in this study. The integrated water vapor (IWV) trend of 2.4 [-5.8, 10.6] % decade-1 is statistically insignificant (95 % confidence interval). Under this caveat, the IWV trend estimate is conditionally consistent with the 2005-2015 temperature increase at Zugspitze (1.3 [0.5, 2.1] K decade-1), assuming constant relative humidity. Seasonal variations in free-tropospheric H2O and δD exhibit amplitudes of 140 and 50 % of the respective overall means. The minima (maxima) in January (July) are in agreement with changing sea surface temperature of the Atlantic Ocean. Using extensive backward-trajectory analysis, distinct moisture pathways are identified depending on observed δD levels: low column-based δD values (δDcol 95th percentile: 46° N, 4.6 km). Backward-trajectory classification indicates that {H2O, δD} observations are influenced by three long-range-transport patterns towards Zugspitze assessed in previous studies: (i) intercontinental transport from North America (TUS; source region: 25-45° N, 70-110° W, 0-2 km altitude), (ii) intercontinental transport from northern Africa (TNA; source region: 15-30° N, 15° W-35° E, 0-2 km altitude), and (iii) stratospheric air intrusions (STIs; source region: > 20° N, above zonal mean tropopause). The FTIR data exhibit significantly differing signatures in free-tropospheric {H2O, δD} pairs (5 km a.s.l.) - given as the mean with uncertainty of ±2 standard error (SE) - for TUS (VMRH2O = 2.4 [2.3, 2.6] × 103 ppmv, δD = -315 [-326, -303] ‰), TNA (2.8 [2.6, 2.9] × 103 ppmv, -251 [-257

  19. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    Science.gov (United States)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  20. Predictions and Verification of an Isotope Marine Boundary Layer Model

    Science.gov (United States)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  1. U Isotope Systematics on Groundwaters from Southwestern France : Mixing Processes and Residence Times

    Science.gov (United States)

    Innocent, C.; Malcuit, E.; Négrel, P.

    2011-12-01

    200 ppt). Such a uranium activity is similar to that measured for the groundwater EMZM 7, recovered previously. In contrast, waters collected at the lowest rate (80 m3/h) tell another story. After one hour, the water displays an activity ratio of 4.3, and of 5.3 after 8 hours, whereas the ratio of 6.5 is attained after 16 hours. The two waters having a lower activity ratio display also higher U contents. This could result from a mixing with a contaminant water, for which mixing diagrams would indicate an activity ratio of about 4.1 with a U content in the range of 350-400 ppt. The origin of this contaminant water is discussed. References André, 2002. PhD thesis, University of Bordeaux III, 320 p. André et al., 2005. Journal of Hydrology 305, 40-62. Innocent and Négrel. Mineralogical Magazine 72, 321-324. Innocent and Négrel, submitted to Applied Geochemistry Négrel et al., 2007. Abstract International Symposium on Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management, IAEA

  2. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    Science.gov (United States)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    display a range from -0.94 to -1.22 and the carbonate bedrock ranged from -1.04 to -1.39‰. Comparing Sr isotope ratios and Ca/Na ratios evidenced the role of anhydrites/halides weathering for some tributaries (Guadalope, Matarrana, Aragon, Ega), the role of carbonates/halides weathering for the others (Gallego, Cinca, Segre); the Ebro being a mix of both. Weathering of rock masks the seasalt signal, if any. As there is no Ca in halides, the comparison of the δ44Ca and 87Sr/86Sr ratios further evidenced the role of anhydrites and carbonates for the Ebro and tributaries, highlight geochemical processes like carbonate oversaturation (Guadalope and Matarrana tributaries) and imprints the seasalt signal.

  3. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  4. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  5. Water isotope composition as a tracer for study of mixing processes in rivers. Part II. Determination of mixing degrees in the tributary-main river systems

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Wierzchnicki, R.; Zimnicki, R.; Ptaszek, S.; Palige, J.; Dobrowolski, A.

    2006-01-01

    Two river-tributary systems have been chosen for the investigation of mixing processes: the Narew River-the Bug River-Zegrzynski Reservoir and the Bugo-Narew River-the Vistula River. In both river systems, several profiles for the water sampling have been selected down to the tributary confluent line. Each sample position has been precisely determined by means of GPS. Then, the δDi have been measured in IRMS (isotope ratio mass spectroscopy). The δD distributions in selected profiles have been presented for both investigated river systems. Presented results will be applied for the verification of the mathematical model for transport and mixing in river systems

  6. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water

    International Nuclear Information System (INIS)

    Xue Dongmei; De Baets, Bernard; Van Cleemput, Oswald; Hennessy, Carmel; Berglund, Michael; Boeckx, Pascal

    2012-01-01

    To identify different NO 3 − sources in surface water and to estimate their proportional contribution to the nitrate mixture in surface water, a dual isotope and a Bayesian isotope mixing model have been applied for six different surface waters affected by agriculture, greenhouses in an agricultural area, and households. Annual mean δ 15 N–NO 3 − were between 8.0 and 19.4‰, while annual mean δ 18 O–NO 3 − were given by 4.5–30.7‰. SIAR was used to estimate the proportional contribution of five potential NO 3 − sources (NO 3 − in precipitation, NO 3 − fertilizer, NH 4 + in fertilizer and rain, soil N, and manure and sewage). SIAR showed that “manure and sewage” contributed highest, “soil N”, “NO 3 − fertilizer” and “NH 4 + in fertilizer and rain” contributed middle, and “NO 3 − in precipitation” contributed least. The SIAR output can be considered as a “fingerprint” for the NO 3 − source contributions. However, the wide range of isotope values observed in surface water and of the NO 3 − sources limit its applicability. - Highlights: ► The dual isotope approach (δ 15 N- and δ 18 O–NO 3 − ) identify dominant nitrate sources in 6 surface waters. ► The SIAR model estimate proportional contributions for 5 nitrate sources. ► SIAR is a reliable approach to assess temporal and spatial variations of different NO 3 − sources. ► The wide range of isotope values observed in surface water and of the nitrate sources limit its applicability. - This paper successfully applied a dual isotope approach and Bayesian isotopic mixing model to identify and quantify 5 potential nitrate sources in surface water.

  7. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    Energy Technology Data Exchange (ETDEWEB)

    Enkovich, P. V., E-mail: enkovich@hppi.troitsk.ru; Brazhkin, V. V.; Lyapin, S. G.; Novikov, A. P. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation); Kanda, H. [National Institute for Materials Science (Japan); Stishov, S. M. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation)

    2016-09-15

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

  8. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    Science.gov (United States)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large

  9. Determination of mixing characteristics of the river Kabul and the river Indus using physico-chemical and stable isotope parameters

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hussain, Q.M.; Sajjad, M.I.; Hussain, S.D.; Latif, Z.

    1990-11-01

    This report presents a comparative study on the usefulness of stable isotope parameters (hydrogen and oxygen) versus the physico-chemical parameters (electrical conductivity, temperature, pH value) of water to determine the extent of mixing of the river Kabul with the river Indus near Attock. In view of the sampling techniques employed in the present investigations, electrical conductivity and temperature are found to be the best field parameters for a quick estimate of mixing path length. However, the stable isotopes of the water molecule, due to their greater sensitivity and measuring accuracy, provide a better scenario of mixing characteristics as compared to the physico-chemical parameters. It appears that under normal flow condition, it takes about 5 km channel distance for complete mixing of the Kabul river water in the Indus river channel. A computer code MIXABC is developed to determine the percentage contribution of one river water along a mixing channel in the other river. Details of the source programs are presented. The code can be used on any IBM-compatible microsystem. (author)

  10. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H2 and D2) at pressure up to 200 MPa using Raman spectroscopy

    International Nuclear Information System (INIS)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I.

    2015-01-01

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency

  11. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H{sub 2} and D{sub 2}) at pressure up to 200 MPa using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I. [Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Sarov (Russian Federation)

    2015-03-15

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency.

  12. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    Science.gov (United States)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  13. Comparison of hydrogen isotope exchange reactions between HTO vapor and the sodium salts of o-, m-, and p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Okada, Minoru; Imaizumi, Hiroshi; Itoh, Tomoko

    1991-01-01

    Hydrogen isotope exchange reaction between HTO vapor and one of the sodium salts of o-, m-, and p-aminobenzoic acid (solid) was observed at 50 ∼ 80 degC. The acidity (acidity based on kinetic logic) for the materials at each temperature has been obtained with the A''-McKay plots based on the respective data obtained. The followings have been clarified by comparing these acidities (and the acidities obtained previously). 1) The acidity of aromatic amines can be expressed in terms of the acidity based on kinetic logic. 2) The reactivity of aromatic amine is strongly affected by both I-effect and R-effect. 3) It can be deduced that aromatic amines are more reactive than aliphatic amines. (author)

  14. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  15. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  16. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Directory of Open Access Journals (Sweden)

    John B Hopkins

    Full Text Available Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE. In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10% and other plant foods (56±10% were more important than meat (9±8% to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout, as such information could be useful in predicting how the population will adapt to future environmental change.

  17. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

  18. The correct use of Sr isotopes in river-groundwater mixing models: A ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Stable isotopes are used extensively in hydrology as a means of establishing the contribution of different reservoirs and sources to the water budget. If the information contained in stable isotope data is to be used in a quantitative sense, appro- priate mass balance equations have to be used. Specifically ...

  19. Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Fang, W.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbáč, Martin; Dubey, M.; Palacios, T.; Dresselhaus, M. S.; Araujo, P. T.; Kong, J.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 1541-1548 ISSN 1530-6984 R&D Projects: GA ČR(CZ) GAP208/12/1062; GA MŠk LH13022 Institutional support: RVO:61388955 Keywords : AB-stacked bilayer graphene * carbon isotope * fluorination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.940, year: 2013

  20. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  1. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  2. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    International Nuclear Information System (INIS)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs

  3. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report Development Plan entitled ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (CRWMS M and O 1999a). As stated in this Development Plan, the purpose of the work is to provide an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. The analysis of hydrochemical and isotopic data is intended to provide a basis for evaluating the hydrologic system at Yucca Mountain independently of analyses based purely on hydraulic arguments. Where more than one conceptual model for flow is possible, based on existing hydraulic data, hydrochemical and isotopic data may be useful in eliminating some of these conceptual models. This report documents the use of geochemical and isotopic data to constrain rates and directions of groundwater flow near Yucca Mountain and the timing and magnitude of recharge in the Yucca Mountain vicinity. The geochemical and isotopic data are also examined with regard to the possible dilution of groundwater recharge from Yucca Mountain by mixing with groundwater downgradient from the potential repository site. Specifically, the primary tasks of this report, as listed in the AMR Development Plan (CRWMS M and O 1999a), consist of the following: (1) Compare geochemical and isotopic data for perched and pore water in the unsaturated zone with similar data from the saturated zone to determine if local recharge is present in the regional groundwater system; (2) Determine the timing of the recharge from stable isotopes such as deuterium ( 2 H) and oxygen-18 ( 18 O), which are known to vary over time as a function of climate, and from radioisotopes such as carbon-14 ( 14 C) and chlorine-36 ( 36 Cl); (3) Determine the magnitude of recharge from relatively

  4. A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    Vapor pressures above aqueous solutions of glucose and maltose at both 298.06 K and 317.99 K and vapor pressures above aqueous solutions of cellobiose, maltotriose, maltotetraose, and maltopentaose at 317.99 K have been measured. The excess enthalpies have been recorded for all of the above-menti...... in aqueous solution. This so-called transference principle is found to be of interest in furthering the discussion concerning the applicability of lattice-based models for solution theory....

  5. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br.

    Science.gov (United States)

    Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai

    2016-09-06

    This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.

  6. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  7. Mixing of fluids in hydrothermal ore-forming (Sn,W) systems: stable isotope and rare earth elements data

    Science.gov (United States)

    Sushchevskaya, T. M.; Popova, J. A.; Velivetskaya, T. A.; Ignatiev, A. V.; Matveeva, S. S.; Limantseva, O. A.

    2012-04-01

    Experimental and physico-chemical modeling data witness to important role of mixing of different type of fluids during tin and tungsten ore formation in hydrothermal systems. Mixing of magmatogeneous fluids, exsolved from granite melts, with exogenic, initially meteoric waters in hydrothermal ore-forming systems may change chemical composition of ore-forming fluid, causing cassiterite and/or wolframite precipitation (Heinrich, 1990; Sushchevskaya, Ryzhenko, 2002). We studied the process of genetically different fluids mixing for two economic Sn-W deposits, situated in the Iultin ore region (North-East of Russia, Chukotka Penninsula). The Iultin and Svetloe deposits are located in the apical parts of close situated leucogranite stocks, formed at the final stage of the Iultin complex emplacement. Both deposits are composed of a series of quartz veins among the flyschoid rocks (T 1-2), cut by the dikes (K1) of lamprophyre, granodiorite porphyre and alpite. The veins of the deposits are dominated by the productive quartz-wolframite-cassiterite-arsenopyrite-muscovite mineral assemblage. Topaz, beryl, fluorite, and albite occur sporadically. The later sulfide (loellingite-stannite-chalcopyrite) and quartz-fluorite-calcite assemblages show insignificant development. The preore quartz veinlets in host hornfels contain disseminated iron sulfides, chalcopyrite, muscovite. Isotopic (H, O, Ar) study of minerals, supplemented by oxygen isotope data of host granites and metamorphic rocks gave us possibility to conclude, that at the Iultin and the Svetloye deposits fluid mixing was fixed on the early stages of deposit formation and could be regarded as probable cause of metal (W, Sn) precipitation. During postore time the intensive involvement of isotopically light exogenic waters have changed: a) the initial character of oxygen isotope zonality; b) the initial hydrogen isotope composition of muscovites, up to meteoric calculated values for productive fluid (while the δ18O

  8. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    sulphate-reducing bacteria (SRB) and groundwater mixing from shallow marine and deeper, older groundwater sources during tunnel construction. These isotope changes were likely induced by the up-coning of deeper saline water and the inflow of Baltic Sea water to an intermediate depth (e.g., 200-400 m) at Aspo. The increase in δ 34 S isotope values of dissolved SO 4 2- , peaking at +28 per mille CDT (probably due to position of the tunnel below the Baltic Sea), was accompanied by a decrease in sulphate concentration in many places and, in some samples, also by changes in bicarbonate concentration, all of which are evidence of microbial sulphate reduction

  9. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  10. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3

  11. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  12. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  13. Isotope Mixes, Corresponding Nuclear Properties and Reactor Design Implications of Naturally Occurring Lead Sources

    Science.gov (United States)

    2013-06-01

    than LBE 14,3 W/(m*K)) (data at 500 °C) + Slag formation First tests do not show slag formation in Pb + Dust formation Strongly reduced + Corrosion...12] R. S. Cannon, Jr. and A. P. Pierce, “Lead Isotope Guides For Mississippi Valley Lead- Zinc Exploration,” U.S. department of the Interior

  14. Deformation and mixing of co-existing shapes in the neutron-deficient polonium isotopes

    CERN Document Server

    AUTHOR|(CDS)2078559; Huyse, Mark

    The neutron-deficient polonium isotopes, with only 2 protons outside the Z = 82 shell closure, are situated in an interesting region of the nuclear chart. In the neighboring lead (Z = 82) and mercury (Z = 80) isotopes, experimental and theoretical efforts identified evidence of shape coexistence. Shape coexistence is the remarkable phenomenon in which two or more distinct types of deformation occur in states of the same angular momentum and similar excitation energy in a nucleus. The neutron-deficient polonium isotopes have also been studied intensively, experimentally as well as theoretically. The closed neutron-shell nucleus 210Po (N = 126) manifests itself as a two-particle nucleus where most of the excited states can be explained by considering the degrees of freedom of the two valence protons outside of 208Pb. The near-constant behavior of the yrast 2+1 and 4+1 states in the isotopes with mass 200 ≤ A ≤ 208 can be explained by coupling the two valence protons to a vibrating lead core. 200Po seems to ...

  15. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    Science.gov (United States)

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl−-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  16. Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinization or mixing with brine?

    International Nuclear Information System (INIS)

    Boschetti, Tiziano; Etiope, Giuseppe; Pennisi, Maddalena; Romain, Millot; Toscani, Lorenzo

    2013-01-01

    Highlights: ► First data on boron and lithium isotope on waters from ophiolites are described. ► High boron and lithium isotope composition may be related to terrestrial serpentinization. ► Methane isotope data show unusual biotic signature. - Abstract: Spring waters issuing from serpentinized ultramafic rocks of the Taro-Ceno Valleys (Northern Apennine, Emilia-Romagna region, Italy) were analyzed for major element, trace element and dissolved gas concentrations and δ 11 B, δ 7 Li, δ 18 O(H 2 O), δ 2 H(H 2 O), δ 13 C(CH 4 ) and δ 2 H(CH 4 ) isotope compositions. Similar to other springs worldwide that issue from serpentinites, the chemical composition of the waters evolves with water–rock interaction from Ca-HCO 3 , through Mg-HCO 3 and ultimately to a hyperalkaline Na-(Ca)-OH composition. Most of the Ca- and Mg-HCO 3 springs have δ 11 B ranging between +16.3‰ and +23.7‰, consistent with the range of low P–T serpentinites. Very high δ 11 B in two springs from Mt. Prinzera (PR10: +39‰; PR01: +43‰) can be related to isotopic fractionation during secondary phase precipitation, as also inferred from δ 7 Li values. In contrast to typical abiogenic isotope signatures of CH 4 from serpentinized rocks, dissolved CH 4 from the Taro-Ceno hyperalkaline springs has an apparent biotic (thermogenic and/or mixed thermogenic-microbial) signature with δ 13 C(CH 4 ) ranging from −57.5‰ to −40.8‰, which is similar to that of hydrocarbons from production wells and natural seeps in adjacent hydrocarbon systems. The data suggest that CH 4 in the hyperalkaline springs investigated in this study may derive from organic matter of the sedimentary (flysch and arenaceous) formations underlying the ophiolite unit. However, small amounts of H 2 were detected in one hyperalkaline spring (PR10), but for two springs with very low CH 4 concentrations (PR01 and UM15) the δ 2 H value could not be measured, so the occurrence of some abiotic CH 4 cannot be excluded

  17. Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Simone; Burkhardt, Christoph; Budde, Gerrit; Metzler, Knut; Kleine, Thorsten, E-mail: burkhardt@uni-muenster.de [Institut für Planetologie, University of Münster, Wilhelm Klemm-Straße 10, D-48149 Münster (Germany)

    2017-05-20

    Chondrules formed by the melting of dust aggregates in the solar protoplanetary disk and as such provide unique insights into how solid material was transported and mixed within the disk. Here, we show that chondrules from enstatite and ordinary chondrites show only small {sup 50}Ti variations and scatter closely around the {sup 50}Ti composition of their host chondrites. By contrast, chondrules from carbonaceous chondrites have highly variable {sup 50}Ti compositions, which, relative to the terrestrial standard, range from the small {sup 50}Ti deficits measured for enstatite and ordinary chondrite chondrules to the large {sup 50}Ti excesses known from Ca–Al-rich inclusions (CAIs). These {sup 50}Ti variations can be attributed to the addition of isotopically heterogeneous CAI-like material to enstatite and ordinary chondrite-like chondrule precursors. The new Ti isotopic data demonstrate that isotopic variations among carbonaceous chondrite chondrules do not require formation over a wide range of orbital distances, but can instead be fully accounted for by the incorporation of isotopically anomalous “nuggets” into chondrule precursors. As such, these data obviate the need for disk-wide transport of chondrules prior to chondrite parent body accretion and are consistent with formation of chondrules from a given chondrite group in localized regions of the disk. Finally, the ubiquitous presence of {sup 50}Ti-enriched material in carbonaceous chondrites and the lack of this material in the non-carbonaceous chondrites support the idea that these two meteorite groups derive from areas of the disk that remained isolated from each other, probably through the formation of Jupiter.

  18. Lithium isotope effects in cation exchange chromatography of lithium lactate in water-dimethyl sulfoxide and water-acetone mixed solvent media

    International Nuclear Information System (INIS)

    Oi, Takao; Kondoh, Akiko; Ohno, Etsuko; Hosoe, Morikazu

    1993-01-01

    Lithium isotope separation by ion exchange displacement chromatography of lithium lactate in water-dimethyl sulfoxide (DMSO) and water-acetone mixed solvent media at 25 C was explored. In both the water-DMSO and water-acetone system, the single stage isotope separation factor (S) was a convex function of the mixing ratio of the solvents in the external solution phase; S had its maximum value of 1.00254 at water: DMSO=25:75 v/v and 1.00182 at water: acetone=75:25 v/v. Strong correlations of S with solvent partitions between the solution and the exchanger phases were found in both systems, which was qualitatively explainable by considering the lithium isotope distributions between the two phases based on the fundamental lithium isotope effects and the relative affinities of water, DMSO and acetone towards the lithium ion. (orig.)

  19. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  20. Wide angle isotope separator

    International Nuclear Information System (INIS)

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  1. Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine

    Science.gov (United States)

    Stelten, Mark E.; Cooper, Kari M.; Vazquez, Jorge A.; Reid, Mary R.; Barfod, Gry H.; Wimpenny, Josh; Yin, Qing-Zhu

    2013-01-01

    The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.

  2. s-Processing from MHD-induced mixing and isotopic abundances in presolar SiC grains

    Science.gov (United States)

    Palmerini, S.; Trippella, O.; Busso, M.; Vescovi, D.; Petrelli, M.; Zucchini, A.; Frondini, F.

    2018-01-01

    In the past years the observational evidence that s-process elements from Sr to Pb are produced by stars ascending the so-called Asymptotic Giant Branch (or "AGB") could not be explained by self-consistent models, forcing researchers to extensive parameterizations. The crucial point is to understand how protons can be injected from the envelope into the He-rich layers, yielding the formation of 13C and then the activation of the 13C (α,n)16O reaction. Only recently, attempts to solve this problem started to consider quantitatively physically-based mixing mechanisms. Among them, MHD processes in the plasma were suggested to yield mass transport through magnetic buoyancy. In this framework, we compare results of nucleosynthesis models for Low Mass AGB Stars (M≲ 3M⊙), developed from the MHD scenario, with the record of isotopic abundance ratios of s-elements in presolar SiC grains, which were shown to offer precise constraints on the 13C reservoir. We find that n-captures driven by magnetically-induced mixing can indeed account for the SiC data quite well and that this is due to the fact that our 13C distribution fulfils the above constraints rather accurately. We suggest that similar tests should be now performed using different physical models for mixing. Such comparisons would indeed improve decisively our understanding of the formation of the neutron source.

  3. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  4. Isotopic disequilibrium among commingled hybrid magmas: Evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona

    International Nuclear Information System (INIS)

    Metcalf, R.V.; Smith, E.I.; Reed, R.C.

    1995-01-01

    The syn-extensional Miocene Mt. Perkins pluton, northwestern Arizona, cooled rapidly due to its small size (6 km 2 ) and shallow emplacement (7.5 km) and allows examination of commingled rocks that experienced little isotopic exchange. Within the pluton, quartz dioritic to granodioritic host rocks (58-68 wt% SiO 2 ) enclose dioritic enclaves (50-55 wt% SiO 2 ) and a portion contains enclave-free granodiorite (70-74 wt% SiO 2 ). Fine-grained, crenulate enclave margins and a lack of advanced mixing structures (e.g., schlieren, flow fabrics, etc.) indicate an incipient stage of commingling. Isotopic variation between enclaves and enclosing host rocks is large (6.8 to 10.6 ε Nd units; 0.0036 to 0.0046 87 Sr/ 86 Sr units), suggesting isotopic disequilibrium. Comparison of an enclave core and rim suggests that isotopic exchange with the host magma was limited to the enclave rim. Enclaves and hosts collectively form a calc-alkaline suite exhibiting a large range of ε Nd (+1.2 to -12.5) and initial 87 Sr/ 86 Sr (0.705 to 0.71267) with a correlation among ε Nd , initial 87 Sr/ 86 Sr, and major and trace element compositions. Modeling suggests that the suite formed by magma hybridization involving magma mixing accompanied by fractional crystallization. The magma mixing must have predated commingling at the present exposure level and indicates a larger mixing chamber at depth. Isotopic and trace element data suggests mixing end-members were asthenospheric mantle-derived mafic and crustal-derived felsic magmas. Fractional crystallization facilitated mixing by reducing the rheological contrasts between the mafic and felsic mixing end-members. 58 refs., 11 figs., 3 tabs

  5. Point processes statistics of stable isotopes: analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak

    Directory of Open Access Journals (Sweden)

    Carles Comas

    2015-04-01

    Full Text Available Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H as hydrological marker. Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2. We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other. Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern. Main results: Values for Q. ilex (δ18O = –5.3 ± 0.2‰, δ2H = –54.3 ± 0.7‰ were significantly lower than for P. halepensis (δ18O = –1.2 ± 0.2‰, δ2H = –25.1 ± 0.8‰, pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.

  6. Quantitative Reconstruction of Sulfur Deposition Using a Mixing Model Based on Sulfur Isotope Ratios in Tree Rings.

    Science.gov (United States)

    Ishida, Takuya; Tayasu, Ichiro; Takenaka, Chisato

    2015-11-01

    Quantification of sulfur (S) deposition is critical to deciphering the environmental archive of S in terrestrial ecosystems. Here we propose a mixing model that quantifies S deposition based on the S isotope ratio (δS) in tree rings. We collected samples from Japanese cedar ( D. Don) stumps from two sites: one near Yokkaichi City (YOK), which is well known for having the heaviest S air pollution in the world, and one at Inabu-cho (INA) in central Japan, which has been much less affected by air pollution. The δS profiles at both sites are consistent with S air pollution and contributions of anthropogenic S. The minimum value in YOK is lower than the δS values of anthropogenic S or any other possible source. Because the δS in the tree rings is affected by fractionation in the forest ecosystems, we used a mixing model to account for the isotope effects and to distinguish the sources of S. Based on the model results, we infer that the peak of S emissions at YOK occurred sometime between the late 1960s and early 1970s (489 mmol m yr). This estimated value is comparable with the highest reported values in Europe. This is the first quantitative estimate of anthropogenic input of S in forest systems based on δS in tree rings. Our results suggest that tree ring data can be used when monitoring stations of atmospheric S are lacking and that estimates of S deposition using δS in tree rings will advance our understanding of the local-scale S dynamics and the effect of human activities on it. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    International Nuclear Information System (INIS)

    Pal, Sandip

    2016-01-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars

  8. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  9. Spectroscopy of heavy nuclei by configuration mixing of symmetry restored mean-field states: shape coexistence in neutron-deficient Pb isotopes

    International Nuclear Information System (INIS)

    Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.

    2003-01-01

    We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)

  10. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oleron Estuary, France

    Science.gov (United States)

    We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...

  11. Stable carbon isotopes to monitor the CO2 source mix in the urban environment

    Science.gov (United States)

    Vogel, F. R.; Wu, L.; Ramonet, M.; Broquet, G.; Worthy, D. E. J.

    2014-12-01

    Urban areas are said to be responsible for approximately 71% of fossil fuel CO2 emissions while comprising only two percent of the land area [IEA, 2008]. This limited spatial expansion could facility a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first establish techniques to validate their reported emission statistics. A pilot study which includes continues 13CO2 data from calibrated cavity ring-down spectrometers [Vogel et al. 2013] of two "sister sites" in the vicinity of Toronto, Canada is contrasted to recent observations of 13CO2 observations in Paris during significant pollution events. Using Miller-Tans plots [Miller and Tans, 2003] for our multi-season observations reveals significant changes of the source signatures of night time CO2 emissions which reflect the importance of natural gas burning in Megacities (up to 80% of fossil fuel sources) and show-case the potential of future isotope studies to determine source sectors. Especially the winter data this approach seems suitable to determine the source contribution of different fuel types (natural gas, liquid fuels and coal) which can inform the interpretation of other Greenhouse Gases and air pollution levels.

  12. Addition of Sb as a surfactant for the growth of nonpolar a-plane GaN by using mixed-source hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ok, Jin Eun; Jo, Dong Wan; Yun, Wy Il; Han, Young Hun; Jeon, Hun Soo; Lee, Gang Suok; Jung, Se Gyo; Bae, Seon Min; Ahn, Hyung Soo; Yang, Min

    2011-01-01

    The influence of Sb as a surfactant on the morphology and on the structural and the optical characteristics of a-plane GaN grown on r-plane sapphire by using mixed-source hydride vapor phase epitaxy was investigated. The a-plane GaN:Sb layers were grown at various temperatures ranging from 1000 .deg. C to 1100 .deg. C, and the reactor pressure was maintained at 1 atm. The atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence(PL) results indicated that the surface morphologies and the structural and the optical characteristics of a-plane GaN were markedly improved, compared to the a-plane GaN layers grown without Sb, by using Sb as a surfactant. The addition of Sb was found to alter epitaxial lateral overgrowth (ELO) facet formation. The Sb was not detected from the a-plane-GaN epilayers within the detection limit of the energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) measurements, suggesting that Sb act as a surfactant during the growth of a-plane GaN by using mixed-source HVPE method.

  13. Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model

    International Nuclear Information System (INIS)

    Wilson, A. N.; Szigeti, S. S.; Rogers, J. I.; Davidson, P. M.; Cardamone, D. M.

    2009-01-01

    A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in 192 Pb, 194 Pb, and 196 Pb. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of γ decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed

  14. Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. D. Thornberry

    2013-06-01

    Full Text Available A chemical ionization mass spectrometer (CIMS instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS. A low-pressure flow of sample air passes through an ionization volume containing an α-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+ from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10−6 mol mol−1 generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm−1 at 3 ppm with a signal to noise ratio (2 σ, 1 s greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

  15. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance

    International Nuclear Information System (INIS)

    Yanes, Yurena; Yapp, Crayton J.

    2010-01-01

    Research highlights: → 13 C of indoor CO 2 indicates proportion of C 4 -derived carbon in occupants' diet. → Flux balance model for ventilated rooms shows rapid approach to CO 2 steady-state. → From extant indoor CO 2 data more dietary C 4 carbon in American than European diets. → Local outdoor urban CO 2 increase of 17 ppm in ten years, no change in average 13 C. - Abstract: From July to November 2009, concentrations of CO 2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ 13 C values varied from -8.9 per mille to -19.4 per mille. The CO 2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ 13 C values varied from -10.1 per mille to -8.4 per mille (avg.=-9.0 per mille). In contrast to ambient indoor and outdoor air, the concentrations of CO 2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ 13 C values ranged from -24.8 per mille to -17.7 per mille (avg. = -21.8 per mille). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO 2 gas. Collectively, the δ 13 C values of the indoor CO 2 samples were linearly correlated with the reciprocal of CO 2 concentration, exhibiting an intercept of -21.8 per mille, with r 2 = 0.99 and p 2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (-21.8 per mille) with the average δ 13 C value for human-exhaled CO 2 demonstrates simple mixing between two inputs: (1) outdoor CO 2 introduced to the interior spaces by ventilation systems, and (2) CO 2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it

  16. Aircraft profile measurements of 18O/16O and D/H isotope ratios of cloud condensate and water vapor constrain precipitation efficiency and entrainment rates in tropical clouds

    Science.gov (United States)

    Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.

    2011-12-01

    Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes

  17. Observations of molecular hydrogen mixing ratio and stable isotopic composition at the Cabauw tall tower in the Netherlands

    Science.gov (United States)

    Batenburg, A. M.; Popa, M. E.; Vermeulen, A. T.; van den Bulk, W. C. M.; Jongejan, P. A. C.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Röckmann, T.

    2016-12-01

    Measurements of the stable isotopic composition (δD(H2) or δD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (χ(H2)) measurements for understanding the atmospheric H2 cycle. δD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by χ(H2) values that reach up to ≈1 ppm and low δD values. An isotopic source signature analysis yields an apparent source signature below -400‰, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (≈-340‰), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in χ(H2) at lower sampling levels (20 and 60 m) with respect to higher sampling levels (120 and 200 m). There was a significant shift to lower median δD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising

  18. Mixed plasma-facing materials research at INEEL

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.

    2001-01-01

    Mixed-materials research at the Idaho National Engineering and Environmental Laboratory (INEEL) has focused on Be-C and W-C systems. The purpose of this work was to investigate hydrogen isotope retention in these systems. Plasma-mixed material layers using carbon coated Be and W specimens that were heat-treated and tungsten carbide specimens prepared by chemical vapor deposition (CVD) were simulated. Hydrogen isotope retention was investigated by means of thermal desorption spectroscopy (TDS) measurements on deuterium implanted samples

  19. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  1. Quantifying sediment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream. - Pb isotopic evidence used to quantify sediment-associated metal delivery within a mining-affected river catchment.

  2. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  3. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  4. Radium isotopes as a tool for the study of water mixing in the Paraiba do Sul River Estuary

    International Nuclear Information System (INIS)

    Souza, Thaisa Abreu de; Moreira, Isabel M.N.S.; Rezende, Carlos E. de

    2008-01-01

    Four isotopes of radium with different half-lives exist in nature. In aquatic systems, radium isotopes present distinct characteristics in salt water and fresh water environments. In fresh waters, radium appears adsorbed to particulate material while in sea water radium presents a conservative behavior, being the concentration of different isotopes of radium governed by the processes of dilution, advection and diffusion, as well as radioactive decay. The four natural isotopes of radium are tracers extensively used to determine ratios of water mixture and to calculate the period since the radium was added to the water column. The short-lived isotopes, 223 Ra (half-life = 11.4 days) and 224 Ra (half-life = 3.66 days), are continually regenerated from decay of their thorium parents, which are perpetually bound to particles surfaces. On the other hand, the long-lived isotopes, 226 Ra (half-life = 1600 yrs) and 228 Ra (half-life = 5.7 yrs), require considerable time for regeneration. These fluxes must be sustained by input water from rivers, sediments, SGD, or other sources. In the present work, developed at the estuary of the Paraiba do Sul River, the short half-lived radium isotopes ( 224 Ra and 223 Ra) were determined using the technique of coincidence delayed developed. The isotopes of long half-lifed ( 22 26Ra and 22 28Ra) were determined by the technique of total alpha and beta counting, after the dissolution of the MnO 2 fiber used to pre-concentrate radium. (author)

  5. Decay-out from low-lying superdeformed bands in Pb isotopes: Tunneling widths in a two-level mixing model

    International Nuclear Information System (INIS)

    Wilson, A.N.; Davidson, P.M.

    2004-01-01

    A recently developed two-level mixing model of superdeformed decay is applied to evaluate the tunneling width between the superdeformed and normally deformed potential wells in 192 Pb and 194 Pb. Estimates are made of level densities and γ decay widths for levels in the normally deformed well, which are required for evaluation of the model. Experimental quasicontinuum results are used to suggest a spin-dependent reduction of the energy gap in the level spectrum, resulting in approximately constant level densities and decay widths in the normal well over the decay-out region for each isotope. However, it transpires that the model's prediction of the tunneling width is nearly independent of the normally deformed state widths for both isotopes. This observation is used to extract potential barrier heights for the two nuclei that depend mainly on experimentally determined values

  6. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  7. Hydrochemical and isotopic tracing of mixing dynamics and water quality evolution under pumping conditions in the mine shaft of the abandoned Frances Colliery, Scotland

    International Nuclear Information System (INIS)

    Elliot, Trevor; Younger, Paul L.

    2007-01-01

    Since 1995, when pumps were withdrawn from deep mines in East Fife (Scotland), mine waters have been rebounding throughout the coalfield. Recently, it has become necessary to pump and treat these waters to prevent their uncontrolled emergence at the surface. However, even relatively shallow pumping to surface treatment lagoons of the initially chemically-stratified mine water from a shaft in the coastal Frances Colliery during two dynamic step-drawdown tests to establish the hydraulic characteristics of the system resulted in rapid breakdown of the stratification within 24 h and a poor pumped water quality with high dissolved Fe loading. Further, data are presented here of hydrochemical and isotopic sampling of the extended pump testing lasting up to several weeks. The use in particular of the environmental isotopes δ 18 O, δ 2 H, δ 34 S, 3 H, 13 C and 14 C alongside hydrochemical and hydraulic pump test data allowed characterisation of the Frances system dynamics, mixing patterns and water quality sources feeding into this mineshaft under continuously pumped conditions. The pumped water quality reflects three significant components of mixing: shallow freshwater, seawater, and leakage from the surface treatment lagoons. In spite of the early impact of recirculating lagoon waters on the hydrochemistries, the highest Fe loadings in the longer-term pumped waters are identified with a mixed freshwater-seawater component affected by pyrite oxidation/melanterite dissolution in the subsurface system

  8. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  9. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  10. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  11. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in $^{184,186}$Hg and two-state mixing calculations

    CERN Document Server

    Gaffney, L P; Page, R.D.; Grahn, T.; Scheck, M.; Butler, P.A.; Bertone, P.F.; Bree, N.; Carroll, R.J.; Carpenter, M.P.; Chiara, C.J.; Dewald, A.; Filmer, F.; Fransen, C.; Huyse, M.; Janssens, R.V.F.; Joss, D.T.; Julin, R.; Kondev, F.G.; Nieminen, P.; Pakarinen, J.; Rigby, S.V.; Rother, W.; Van Duppen, P.; Watkins, H.V.; Wrzosek-Lipska, K.; Zhu, S.

    2014-01-01

    The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the K\\"oln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.

  13. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) are shown in Figure 1-2

  14. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic Bayesian mixing models in Galapagos pinnipeds.

    Science.gov (United States)

    Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie

    2014-12-15

    The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy.

    Science.gov (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin

    2018-03-15

    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Foucher, Delphine; Hintelmann, Holger

    2006-01-01

    An on-line Hg reduction technique using stannous chloride as the reductant was applied for accurate and precise mercury isotope ratio determinations by multi-collector (MC)-ICP/MS. Special attention has been paid to ensure optimal conditions (such as acquisition time and mercury concentration) allowing precision measurements good enough to be able to significantly detect the anticipated small differences in Hg isotope ratios in nature. Typically, internal precision was better than 0.002% (1 RSE) on all Hg ratios investigated as long as approximately 20 ng of Hg was measured with a 10-min acquisition time. Introducing higher amounts of mercury (50 ng Hg) improved the internal precision to 205 Tl/ 203 Tl correction coupled to a standard-sample bracketing approach. The large number of data acquired allowed us to validate the consistency of our measurements over a one-year period. On average, the short-term uncertainty determined by repeated runs of NIST SRM 1641d Hg standard during a single day was 202 Hg/ 198 Hg, 202 Hg/ 199 Hg, 202 Hg/ 200 Hg, and 202 Hg/ 201 Hg). The precision fell to 202 Hg/ 198 Hg expressed as δ values (per mil deviations relative to NIST SRM 1641d Hg standard solution) displayed differences from +0.74 to -4.00 permille. The magnitude of the Hg fractionation per amu was constant within one type of sample and did not exceed 1.00 permille. Considering all results (the reproducibility of Hg standard solutions, reference sediment samples, and the examination of natural samples), the analytical error of our δ values for the overall method was within ±0.28 permille (1 SD), which was an order of magnitude lower than the extent of fractionation (4.74 permille) observed in sediments. This study confirmed that analytical techniques have reached a level of long-term precision and accuracy that is sufficiently sensitive to detect even small differences in Hg isotope ratios that occur within one type of samples (e.g., between different sediments) and so

  17. The Effect of the Interannual Variability of the OH Sink on the Interannual Variability of the Atmospheric Methane Mixing Ratio and Carbon Stable Isotope Composition

    Science.gov (United States)

    Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin

    2013-04-01

    The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and

  18. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  19. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    Science.gov (United States)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  20. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  1. Isotopic exchange in a neutron-irradiated mixed-valence compound: Tl3(I) Tl(III)Cl6

    International Nuclear Information System (INIS)

    Fernandez Valverde, S.; Duplatre, G.

    1977-01-01

    The initial distribution of Tl(I) and Tl(III) species, and its change on heating, have been investigated in solid thermal neutron-irradiated Th 4 Cl 6 . An initial ratio of 5/1 for 204 Tl(I)/ 204 Tl(III) is found and this remains constant for integral gamma-doses of 3 to 12 MRad. The variation of the 204 Tl(III) fraction with temperature is found identical to that observed in labelled Tl 4 Cl 6 for which a genuine isotopic exchange has previously been described. It is concluded that the recoil species are rapidly converted, after the recoil processes, into stable ions

  2. Mixed oceanic and freshwater depositional conditions for beach rocks of NE Brazil: Evidence from C and O isotopes

    International Nuclear Information System (INIS)

    Chaves, Nubia S.; Kiang, Chang H.

    1998-01-01

    Full text: Beach rocks, a common feature of northeastern coastline of Brazil are formed in the inter tidal zone, considered as ancient coastal line, cemented by CaCO 3 which have variable extension. They occur parallel to the coastline as linear ridges. Beach rocks are sub horizontally disposed and surfaces are irregular, displacing potholes due to differential erosion, perforations by organisms, diaclasis, cross stratification and rare laminations. The dominant detrital components are quartz and minor fractions of feldspars and rock fragments. Zircon, epi dote, hornblende, garnet, muscovite, rutile, opaque and sillimanite are present in trace quantity. Bivalves, mollusks, gastropods, halimeda, corals, pelecipods and equinoids, constitute the biotic components. Beach rocks cement vary from aragonite to Mg-calcite. The dominant micro facies, consists of isopach crystals of aragonite, enclosing bioclastic and/or clastic grains forming uniform fringe formed in the marine phreatic zone. The second is represented by cryptocrystalline inter-granulate cement like micritic envelop formed in meteoric phreatic environment (Moore 1971). The third is formed by inter granulate cryptocrystalline cement, filling the pores. Beach rock samples locate in the coastal zone show an interval with depleted C and O ratios (average δ 13 C = -1.3%0, δ 18 O = -2.1%0) and an interval of enriched isotopic ratios (average δ 13 C = +3.5%0, δ 18 O +1.2%0). Depleted oxygen isotope values considered to be indicative of meteoric diagenesis with minor freshwater influx (Allan and Mattew 1982). (author)

  3. Application of tritium content isotopic measurements to the investigation of underground water circulations and mixing in different porous media

    International Nuclear Information System (INIS)

    Leguy, C.

    1979-06-01

    This research thesis aims at investigating actual and potential mixing of underground waters in different soil types, and more particularly different porous media. Tritium content measurements of these waters have been performed by liquid scintillation after enrichment. The first part of this report addresses the physical aspect of these measurements. The second one deals with the interpretation of the acquired data, of circulation or mixing schemes which can be deduced with respect to the concerned soils. It highlights the importance of geo-morphological factors for the studied flows

  4. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  5. Magma Mixing, Mingling and Its Accompanying Isotopic and Elemental Partitioning: Records from Titanites in Guojialing-type Granodiorites and Dioritic Enclaves, Jiaodong, North China

    Science.gov (United States)

    Jiang, P.; Yang, K. F.; Fan, H. R.; Liu, X.

    2016-12-01

    The grain-scale textural and in-situ compositional analyses on accessory minerals (such as titanite, rutile, apatite, monazite, etc.) have recently been a hot topic for geologists, through which a detailed information on magmatic, metamorphic or hydrothermal process can be extracted. As an attempt to unravel the petrogenesis of Early Cretaceous Guojialing-type granodiorites and their bearing dioritic enclaves, we accomplished an integrated geochronological and geochemical study on titanites within these rocks. Three types of titanites, with distinguishable textural and geochemical features, are identified. G-type titanites (from granodiorites) and E-type-I titanites (from plagioclase-rich dioritic enclaves) yield identical U-Pb age of 130 Ma, but reveal distinct back-scattered electron (BSE) zonings. G-type titanites are characterized by oscillatory zonings whereas E-type-I titanites are marked by core-mantle-rim zonings, exhibiting drastic but contrary variation trends for several key elements (such as LREEs, Zr, Hf and F) among their transition BSE zones. These two types of titanites are interpreted to crystallize coevally, and record a notable temperature and compositional change of two corresponding melts, as a response to magma mixing. E-type-II titanites (from plagioclase-poor dioritic enclaves) yield a relatively younger U-Pb age at 128 Ma, and show typical interstitial growth with narrower and lower range of Zr, total REEs contents, but higher F content and Nb/Ta ratios. Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Unlike the dramatic elemental changes in these differentiated titanites, in-situ Nd isotopic compositions are relatively homogeneous, which in our view is a good sign of showing that isotopic equilibrium among two magma systems was more easily reached compared to

  6. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    International Nuclear Information System (INIS)

    Mironenko, V.R.; Kuritsyn, Yu.A.; Bolshov, M.A.; Liger, V.V.

    2017-01-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm"−"1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected – (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  7. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  8. Characteristic and Mixing Mechanisms of Thermal Fluid at the Tampomas Volcano, West Java, Using Hydrogeochemistry, Stable Isotope and 222Rn Analyses

    Directory of Open Access Journals (Sweden)

    Irwan Iskandar

    2018-03-01

    Full Text Available The Tampomas Volcano is a Quaternary volcano located on Java Island and controlled by a west-northwest–east-southeast (WNW-ESE regional fault trend. This regional structure acts as conduits for the hydrothermal fluids to ascend from a deeper system toward the surface and, in the end, mix with groundwater. In this research, water geochemistry, gas chemistry and isotopes 2H, 18O and 13C were used to explore the subsurface fluid characteristics and mixing mechanisms of the hydrothermal fluids with groundwater. In addition to those geochemical methods, soil-gas and dissolved 222Rn observations were performed to understand the geological control of fluid chemistry. Based on the analytical results, the hydrothermal system of Tampomas is only developed at the northeastern flank of the volcano, which is mainly controlled by NE-SW structures as deep fluid conduits, while the Cimalaka Caldera Rim around Sekarwangi act as the boundary flow of the system. This system is also categorized as an “intermediate temperature system” wherein fluid is derived from the interaction between the volcanic host-rock at 170 ± 10 °C mixed with trace organic gas input from sedimentary formation; afterwards, the fluid flows laterally and is diluted with groundwater near the surface. Soil-gas and dissolved 222Rn confirm that these permeable zones are effective conduits for the ascending thermal fluids. It is found that NE faults carry higher trace elements from the deeper system, while the circular feature of the Caldera Rim acts as the boundary of the hydrothermal system.

  9. Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models

    Science.gov (United States)

    Richards, Laura A.; Magnone, Daniel; Boyce, Adrian J.; Casanueva-Marenco, Maria J.; van Dongen, Bart E.; Ballentine, Christopher J.; Polya, David A.

    2018-02-01

    Chronic exposure to arsenic (As) through the consumption of contaminated groundwaters is a major threat to public health in South and Southeast Asia. The source of As-affected groundwaters is important to the fundamental understanding of the controls on As mobilization and subsequent transport throughout shallow aquifers. Using the stable isotopes of hydrogen and oxygen, the source of groundwater and the interactions between various water bodies were investigated in Cambodia's Kandal Province, an area which is heavily affected by As and typical of many circum-Himalayan shallow aquifers. Two-point mixing models based on δD and δ18O allowed the relative extent of evaporation of groundwater sources to be estimated and allowed various water bodies to be broadly distinguished within the aquifer system. Model limitations are discussed, including the spatial and temporal variation in end member compositions. The conservative tracer Cl/Br is used to further discriminate between groundwater bodies. The stable isotopic signatures of groundwaters containing high As and/or high dissolved organic carbon plot both near the local meteoric water line and near more evaporative lines. The varying degrees of evaporation of high As groundwater sources are indicative of differing recharge contributions (and thus indirectly inferred associated organic matter contributions). The presence of high As groundwaters with recharge derived from both local precipitation and relatively evaporated surface water sources, such as ponds or flooded wetlands, are consistent with (but do not provide direct evidence for) models of a potential dual role of surface-derived and sedimentary organic matter in As mobilization.

  10. Portable device for generation of ultra-pure water vapor feeds

    Science.gov (United States)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  11. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  12. Implication of the level mixing concept on the possibility of Moessbauer absorption on isotopes with a long lived excited state

    International Nuclear Information System (INIS)

    Coussement, R.; Scheveneels, G.; Hardeman, F.; Boolchand, P.

    1988-01-01

    In proposals and designs of possible γ-lasers, called grasers, the resonant absorption of γ-rays, called Moessbauer absorption, plays a dominant role. However two conflicting requirements on the lifetime of the isomeric state result in poor perspectives. In order to achieve the inversion of population that is necessary for the laser working, a long lived state is preferred so that the inverted system could be prepared by radiochemical means. However a long lived state implies a very small natural linewidth. At the other hand one needs a linewidth that is at least of the same order of magnitude as the inhomogeneous energy spread due to imperfections in the crystalline surrounding or due to dipole-dipole interactions with the nearest neighbours. One can circumvent the stringent requirement on the natural linewidth, when the effective lifetime is much shorter than the radiative one. The effective lifetime is in fact nothing else than the coherence time of the quantum state. If this coherence is only broke by the radiative decay, one obtains the natural linewidth. If, however, the nucleus is strongly coupled to the reservoir of its surrounding, it makes frequent phase and energy jumps. Its correlation time becomes very short and the associated linewidth becomes strongly but homogeneously broadened. To couple the nucleus with its neighbours and with the reservoir we use the principles of resonant level mixing. We will describe and illustrate this method with the case of 109m Ag. (orig./BHO)

  13. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  14. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  15. Filter for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  16. Atomic vapor laser isotope separation in France

    Science.gov (United States)

    Camarcat, Noel; Lafon, Alain; Perves, Jean-Pierre; Rosengard, Alex; Sauzay, Guy

    1993-05-01

    France has developed a very complete nuclear industry, from mining to reprocessing and radwastes management, and now has a major electro-nuclear park, with 55 power reactors, supplying 75% of the nation's electricity and representing 32% of its energy requirements. The modern multinational EURODIF enrichment plant in Pierrelatte in the south of the country supplies these reactors with enriched uranium as well as foreign utilities (30% exports). It works smoothly and has continuously been improved to reduce operating costs and to gain flexibility and longevity. Investment costs will be recovered at the turn of the century. The plant will be competitive well ahead of an aging production park, with large overcapacity, in other countries. Meanwhile, world needs will increase only slightly during the next 15 years, apart from the Asian Pacific area, but many world governments are becoming well aware of the necessity to progressively resume nuclear energy development worldwide from the year 2000 on.

  17. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  18. Genesis of fumarolic emissions as inferred by isotope mass balances: CO 2 and water at Vulcano Island, Italy

    Science.gov (United States)

    Paonita, A.; Favara, R.; Nuccio, P. M.; Sortino, F.

    2002-03-01

    We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The δ13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks

  19. Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon

    Science.gov (United States)

    Schill, Gregory P.; DeMott, Paul J.; Levin, Ezra J. T.; Kreidenweis, Sonia M.

    2018-05-01

    Ice nucleation is a fundamental atmospheric process that impacts precipitation, cloud lifetimes, and climate. Challenges remain to identify and quantify the compositions and sources of ice-nucleating particles (INPs). Assessment of the role of black carbon (BC) as an INP is particularly important due to its anthropogenic sources and abundance at upper-tropospheric cloud levels. The role of BC as an INP, however, is unclear. This is, in part, driven by a lack of techniques that directly determine the contribution of refractory BC (rBC) to INP concentrations. One previously developed technique to measure this contribution uses the Single Particle Soot Photometer (SP2) as a pre-filter to an online ice-nucleating particle counter. In this technique, rBC particles are selectively heated to their vaporization temperature in the SP2 cavity by a 1064 nm laser. From previous work, however, it is unclear under what SP2 conditions, if any, the original rBC particles were fully vaporized. Furthermore, previous work also left questions about the effect of the SP2 laser on the ice-nucleating properties of several INP proxies and their mixtures with rBC.To answer these questions, we sampled the exhaust of an SP2 with a Scanning Mobility Particle Sizer and a Continuous Flow Diffusion Chamber. Using Aquadag® as an rBC proxy, the effect of several SP2 instrument parameters on the size distribution and physical properties of particles in rBC SP2 exhaust were explored. We found that a high SP2 laser power (930 nW/(220 nm PSL)) is required to fully vaporize a ˜ 0.76 fg rBC particle. We also found that the exhaust particle size distribution is minimally affected by the SP2 sheath-to-sample ratio; the size of the original rBC particle, however, greatly influences the size distribution of the SP2 exhaust. The effect of the SP2 laser on the ice nucleation efficiency of Snomax®, NX-illite, and Suwannee River Fulvic Acid was studied; these particles acted as proxies for biological, illite

  20. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs.

    Science.gov (United States)

    Minet, E P; Goodhue, R; Meier-Augenstein, W; Kalin, R M; Fenton, O; Richards, K G; Coxon, C E

    2017-11-01

    Excessive nitrate (NO 3 - ) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO 3 - sources is critical to efficiently control or reverse NO 3 - contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15 N/ 14 N and 18 O/ 16 O in NO 3 - (expressed as δ 15 N-NO 3 - and δ 18 O-NO 3 - , respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO 3 - source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO 3 - problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO 3 - sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na + ) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P-), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ 15 N-NO 3 - and δ 18 O-NO 3 - data were superimposed on the classification. As δ 15 N-NO 3 - was plotted against δ 18 O-NO 3 - , comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p contamination groups revealed that denitrification did not occur in the absence of point

  1. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  2. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  3. Physics with isotopically controlled semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1994-08-01

    Control of the isotopic composition of semiconductors offers a wide range of new scientific opportunities. In this paper a number of recent results obtained with isotopically pure as well as deliberately mixed diamond and Ge bulk single crystals and Ge isotope superlattices will be reviewed. Isotopic composition affects several properties such as phonon energies, bandstructure and lattice constant in subtle but theoretically well understood ways. Large effects are observed for thermal conductivity, local vibrational modes of impurities and after neutron transmutation doping (NTD). Several experiments which could profit greatly from isotope control are proposed

  4. Potential use of the non-random distribution of N2 and N2O mole masses in the atmosphere as a tool for tracing atmospheric mixing and isotope fractionation processes

    International Nuclear Information System (INIS)

    Well, R.; Langel, R.; Reineking, A.

    2002-01-01

    The variation in the natural abundance of 15 N in atmospheric gas species is often used to determine the mixing of trace gases from different sources. With conventional budget calculations one unknown quantity can be determined if the remaining quantities are known. From 15 N tracer studies in soils with highly enriched 15 N-nitrate a procedure is known to calculate the mixing of atmospheric and soil derived N 2 based on the measurement of the 30/28 and 29/28 ratios in gas samples collected from soil covers. Because of the non-random distribution of the mole masses 30 N 2 , 29 N 2 and 28 N 2 in the mixing gas it is possible to calculate two quantities simultaneously, i.e. the mixing ratio of atmospheric and soil derived N 2 , and the isotopic signature of the soil derived N 2 . Routine standard measurements of laboratory air had suggested a non-random distribution of N 2 -mole masses. The objective of this study was to investigate and explain the existence of non-random distributions of 15 N 15 N, 14 N 15 N and 14 N 14 N in N 2 and N 2 O in environmental samples. The calculation of theoretical isotope data resulting from hypothetical mixing of two sources differing in 15 N natural abundance demonstrated, that the deviation from an ideal random distribution of mole masses is not detectable with the current precision of mass spectrometry. 15 N-analysis of N 2 or N 2 O was conducted with randomised and non-randomised replicate samples of different origin. 15 N abundance as calculated from 29/28 ratios were generally higher in randomised samples. The differences between the treatments ranged between 0.05 and 0.17 δper mille 15 N. It was concluded that the observed randomisation effect is probably caused by 15 N 15 N fractionation during environmental processes. (author)

  5. Advances in laser isotope separation

    International Nuclear Information System (INIS)

    Herman, I.P.; Bernhardt, A.F.

    1988-01-01

    The physical and chemical concepts required to understand laser isotope separation are presented and discussed. The numerous successful demonstrations of separating isotopes using lasers are reviewed to 1983. Emphasis is placed on the separation of 235-U from 238-U by multi-step selective ioniation of uranium atomic vapor, and on the separation of D and H and of T from D, by pulsed infrared laser multiple-photon dissociation of fluoroform and chloroform, respectively, because they are among the most successful and important examples of laser isotope separation to date. 161 refs.; 7 figs

  6. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  7. Fundamental studies in isotope chemistry. Progress report, 1 July 1976--30 Jun 1977

    International Nuclear Information System (INIS)

    Bigeleisen, J.; Harris, T.H.

    1977-01-01

    The current thrust of the program is the use of isotope effects to study the fundamental properties of matter, measurement and calculation of isotope fractionation factors of systems of potential technological importance and the correlation of isotope effects with molecular structure. The first measurements of the isotopic fractionation factors for two components in a solution were completed by the study of argon-krypton mixtures. The measurements cover the range from pure argon to pure krypton and extrapolate very well to previous measurements on the pure components. The vapor pressure isotope effects between solid-vapor and liquid-vapor for the rare gases neon, argon, and krypton is given

  8. Isotopic reconstruction of the weaning process in the archaeological population of Canímar Abajo, Cuba: A Bayesian probability mixing model approach.

    Directory of Open Access Journals (Sweden)

    Yadira Chinique de Armas

    Full Text Available The general lack of well-preserved juvenile skeletal remains from Caribbean archaeological sites has, in the past, prevented evaluations of juvenile dietary changes. Canímar Abajo (Cuba, with a large number of well-preserved juvenile and adult skeletal remains, provided a unique opportunity to fully assess juvenile paleodiets from an ancient Caribbean population. Ages for the start and the end of weaning and possible food sources used for weaning were inferred by combining the results of two Bayesian probability models that help to reduce some of the uncertainties inherent to bone collagen isotope based paleodiet reconstructions. Bone collagen (31 juveniles, 18 adult females was used for carbon and nitrogen isotope analyses. The isotope results were assessed using two Bayesian probability models: Weaning Ages Reconstruction with Nitrogen isotopes and Stable Isotope Analyses in R. Breast milk seems to have been the most important protein source until two years of age with some supplementary food such as tropical fruits and root cultigens likely introduced earlier. After two, juvenile diets were likely continuously supplemented by starch rich foods such as root cultigens and legumes. By the age of three, the model results suggest that the weaning process was completed. Additional indications suggest that animal marine/riverine protein and maize, while part of the Canímar Abajo female diets, were likely not used to supplement juvenile diets. The combined use of both models here provided a more complete assessment of the weaning process for an ancient Caribbean population, indicating not only the start and end ages of weaning but also the relative importance of different food sources for different age juveniles.

  9. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  10. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Spatio-Temporal Variations of the Stable H-O Isotopes and Characterization of Mixing Processes between the Mainstream and Tributary of the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Rong Jiang

    2018-04-01

    Full Text Available Understanding the runoff characteristics and interaction processes between the mainstream and its tributaries are an essential issue in watershed and water management. In this paper, hydrogen (δD and oxygen (δ18O isotope techniques were used in the mainstream and Zhuyi Bay (ZYB of the Three Gorges Reservoir (TGR during the wet and dry seasons in 2015. It revealed that (1 Precipitation was the main source of stream flow compared to the TGR water line with meteoric water line of the Yangtse River basin; (2 The δD and δ18O values exhibited a ‘toward lighter-heavier’ trend along mainstream due to the continuous evaporation effect in the runoff direction, and the fluctuations reflected incoming water from the nearest tributaries. The general trend of d-excess increased with increasing distance from the Three Gorges Dam, which indicated that kinetic fractionation was an important process affecting the isotopic composition. The enrichment effect of isotopes was found in the downstream of TGR; (3 Water mass from the TGR mainstream flowed backward to the confluence zone of ZYB via the middle and bottom layers in the dry season, whereas in the wet season, water reversed through the upper-middle layers due to thermal density flows. This study described and demonstrated that the water cycle of TGR was driven by natural environmental variability and operational system, which will provide valuable information for the water resource management and for controlling the algal blooms in the future.

  13. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  14. A Case for Nebula Scale Mixing Between Non-Carbonaceous and Carbonaceous Chondrite Reservoirs: Testing the Grand Tack Model with Chromium Isotopic Composition of Almahata Sitta Stone 91A

    Science.gov (United States)

    Sanborn, M. E.; Yin, Q.-Z.; Goodrich, C. A.; Zolensky, M.; Fioretti, A. M.

    2017-01-01

    There is an increasing number of Cr-O-Ti isotope studies that show solar system materials are divided into two main populations, one carbonaceous chondrite (CC)-like and the other is non-carbonaceous (NC)-like, with minimal mixing attributed to a gap opened in the protoplanetary disk due to Jupiter's formation. The Grand Tack model suggests there should be large-scale mixing between S- and C-type asteroids, an idea supported by our recent work on chondrule (Delta)17O-e54Cr isotope systematics. The Almahata Sitta (AhS) meteorite provides a unique opportunity to test the Grand Tack model. The meteorite fell to Earth in October 2008 and has been linked to the asteroid 2008 TC3 which was discovered just prior to the fall of the AhS stones. The AhS meteorite is composed of up to 700 individual pieces with approx.140 of those pieces having some geochemical and/or petrologic studies. Almahata Sitta is an anomalous polymict ureilite with other meteorite components, including enstatite, ordinary, and carbonaceous chondrites with an approximate abundance of 70% ureilites and 30% chondrites. This observation has lead to the suggestion that TC3 2008 was a loosely aggregated rubble pile-like asteroid with the non-ureilite sample clasts within the rubble-pile. Due to the loosely-aggregated nature of AhS, the object disintegrated during atmospheric entry resulting in the weakly held clasts falling predominantly as individual stones in the AhS collection area. However, recent work has identified one sample of AhS, sample 91A, which may represent two different lithologies coexisting within a single stone. The predominate lithology type in 91A appears to be that of a C2 chondrite based on mineralogy but also contains olivine, pyroxene, and albite that have ureilite-like compositions. Previous Cr isotope investigations into AhS stones are sparse and what data is available show nearly uniform isotopic composition similar to that of typical ureilites with negative e54Cr values.

  15. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  16. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-01-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining

  17. High atomic weight isotope separator

    International Nuclear Information System (INIS)

    Book, D.L.

    1978-01-01

    A continuously operating device is described which separates one isotopic species of a given element from a mixture. The given element is vaporized and formed into a neutral beam containing the isotopes desired to be separated. The plasma is accelerated through a laser beam which is formed by two separate lasers which operate in the continuous wave mode in which the beams are as nearly as possible in the same beam path. The two laser output beams excite and ionize the isotope of interest while leaving the remaining atoms unaffected. The ionized isotopes are then separated from the beam by an electrostatic deflection technique and the unaffected atoms continue on in their path and are directed to a recovery device

  18. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Brandes, J.A.; Devol, A.H.; Yoshinari, T.; Jayakumar, D.A.; Naqvi, S.W.A.

    Trench. Ph.D. Thesis, Univ. of Cali- fornia, Los Angeles. -. AND I. R. KAPLAN. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pa- cific. Mar. Chem. 3: 271-299. CODISPOTI, L. A., AND J. P....-K. 1979. Geochemistry of inorganic nitrogen compounds in two marine environments: The Santa Barbara basin and the ocean off Peru. Ph.D. Thesis, Univ. of California, Los Angeles. -, AND I. R. KAPLAN. 1989. The eastern tropical Pacific as a source of 15N...

  19. AN INVESTIGATION OF THE ENERGY L.EVELS AND MUL TIPOLE MIXING RATIO OF ELECTROMAGNETIC TRANSITIONSIN THE EVEN-EVEN ISOTOPES

    Directory of Open Access Journals (Sweden)

    R. KARAKAYA

    1998-12-01

    Full Text Available In this work some of the electromagnetic interactions of even-even Haf nium isotopes in the 150lt;k:;l90 defoıınation region were studied in a detailed manner. l n this region� us ing the experimental 8(E2/lv11 ınultipole ınixing ratios the deformation parameters �o and the quadrupole moments q0 and q'2 were calculated. The obtained results are in a good agreement ·with the ge neral systematic of the defoıınation region under consideration.

  20. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  1. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  2. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  3. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  4. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  5. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system

    International Nuclear Information System (INIS)

    Puig, R.; Folch, A.; Menció, A.; Soler, A.; Mas-Pla, J.

    2013-01-01

    Highlights: ► We studied a range-and-basin area where different scale flow systems converge. ► Pig manure and chemical fertilizers are the main nitrate and sulfate sources. ► Mixing between regional and local groundwater can favor denitrification processes. - Abstract: The integrated use of hydrogeologic and multi-isotopic approaches (δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 ) was applied in the Selva basin area (NE Spain) to characterize NO 3 - and SO 4 2- sources and to evaluate which geochemical processes affect NO 3 - in groundwater. The studied basin is within a basin-and-range physiographic province where natural hydrodynamics have been modified and different scale flow systems converge as a consequence of recent groundwater development and exploitation rates. As a result, groundwaters related to the local recharge flow system (affected by anthropogenic activities) and to the generally deeper regional flow system (recharged from the surrounding ranges) undergo mixing processes. The δ 15 N, δ 18 O NO3 and δ 34 S indicated that the predominant sources of contamination in the basin are pig manure and synthetic fertilizers. Hydrochemical data along with δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 of some wells confirmed mixing between regional and local flow systems. Apart from dilution processes that can contribute to the decrease of NO 3 - concentrations, the positive correlation between δ 15 N and δ 18 O NO3 agreed with the occurrence of denitrification processes. The δ 34 S and δ 18 O SO4 indicated that pyrite oxidation is not linked to denitrification, and δ 13 C HCO3 did not clearly point to a role of organic matter as an electron donor. Therefore, it is proposed that the mixing processes between deeper regional and local surface groundwater allow denitrification to occur due to the reducing conditions of the regional groundwater. Thus, isotopic data add useful complementary information to hydrochemical

  6. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  7. Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor

    International Nuclear Information System (INIS)

    Olander, D.R.; Acharya, T.R.; Ullman, A.Z.

    1977-01-01

    The reaction of water vapor with the prism plane face of anneal pyrolytic graphite was investigated by modulated molecular beam--mass spectrometry methods. The equivalent water vapor pressure of the beam was approx.2 x 10 -5 Torr and the graphite temperature was varied from 300 to 2500 0 K. The mechanism was deduced from three types of experiments: isotope exchange utilizing modulated H 2 O and steady D 2 O beams; measurements of the phase difference between H 2 O and neon reflected from the surface from a mixed primary beam of these species; and reaction of a modulated H 2 O beam to produce CO and H 2 . Based upon the isotope exchange experiments chemisorption of water on graphite was found to be dissociative and reversible. Incident water molecules chemisorbed with a sticking probability of 0.15 +- 0.02 to form the complexes C--OH and C--H. Recombination of the surface complexes reverses the adsorption step and is responsible for the isotope exchange properties of the graphite surface. This process is unactivated. Reaction to produce CO and H 2 also results from collisions of the primary surface complexes, but this step has an activation energy of 170 kJ/mole. This reaction yields bound complexes tentatively identified as C--O and H--C--H, which then decompose to produce the stable reaction products. All of the above steps exhibit characteristic times on the order of milliseconds, and are therefore detectable by the modulated beam method. All surface intermediates are strongly affected by solution and diffusion in the bulk of the solid

  8. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  9. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-09-07

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  10. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  11. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  12. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  13. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  14. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  15. Interaction of water vapor with erbium and erbium dideuteride films

    International Nuclear Information System (INIS)

    Holloway, D.M.; Swartz, W.E. Jr.

    1976-01-01

    The reaction of water vapor with erbium and erbium dideuteride thin films was studied by x-ray diffraction, mass spectrometry and Auger electron spectroscopy. The data indicate that significant reactions take place above 573 K forming both the hydride and the oxide. The data also indicate that isotopic displacement occurs. These are important considerations in hydrogen storage applications

  16. Method and apparatus for separating uranium isotopes

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-01-01

    A uranium compound in the solid phase (uranium borohydride four) is subjected to radiation of a first predetermined frequency that excites the uranium-235 isotope-bearing molecules but not the uranium-238 isotope-bearing molecules. The compound is simultaneously subjected to radiation of a second predetermined frequency which causes the excited uranium-235 isotope-bearing molecules to chemically decompose but which does not affect the uranium-238 isotope-bearing molecules. Sufficient heat is then applied to the irradiated compound in the solid phase to vaporize the non-decomposed uranium-238 isotope-bearing molecules but not the decomposed uranium-235 isotope-bearing molecules, thereby physically separating the uranium-235 isotope-bearing molecules from the uranium-238 isotope-bearing molecules. The uranium compound sample in the solid phase is deposited or grown in an elongated tube supported within a dewar vessel having a clear optical path tail section surrounded by a coolant. Two sources of radiation are focused on the uranium compound sample. A heating element is attached to the elongated tube to vaporize the irradiated compound

  17. Quantification of submarine groundwater discharge and its short-term dynamics by linking time-variant end-member mixing analysis and isotope mass balancing (222-Rn)

    Science.gov (United States)

    Petermann, Eric; Knöller, Kay; Stollberg, Reiner; Scholten, Jan; Rocha, Carlos; Weiß, Holger; Schubert, Michael

    2017-04-01

    Submarine groundwater discharge (SGD) plays a crucial role for the water quality of coastal waters due to associated fluxes of nutrients, organic compounds and/or heavy-metals. Thus, the quantification of SGD is essential for evaluating the vulnerability of coastal water bodies with regard to groundwater pollution as well as for understanding the matter cycles of the connected water bodies. Here, we present a scientific approach for quantifying discharge of fresh groundwater (GWf) and recirculated seawater (SWrec), including its short-term temporal dynamics, into the tide-affected Knysna estuary, South Africa. For a time-variant end-member mixing analysis we conducted time-series observations of radon (222Rn) and salinity within the estuary over two tidal cycles in combination with estimates of the related end-members for seawater, river water, GWf and SWrec. The mixing analysis was treated as constrained optimization problem for finding an end-member mixing ratio that simultaneously fits the observed data for radon and salinity best for every time-step. Uncertainty of each mixing ratio was quantified by Monte Carlo simulations of the optimization procedure considering uncertainty in end-member characterization. Results reveal the highest GWf and SWrec fraction in the estuary during peak low tide with averages of 0.8 % and 1.4 %, respectively. Further, we calculated a radon mass balance that revealed a daily radon flux of 4.8 * 108 Bq into the estuary equivalent to a GWf discharge of 29.000 m3/d (9.000-59.000 m3/d for 25th-75th percentile range) and a SWrec discharge of 80.000 m3/d (45.000-130.000 m3/d for 25th-75th percentile range). The uncertainty of SGD reflects the end-member uncertainty, i.e. the spatial heterogeneity of groundwater composition. The presented approach allows the calculation of mixing ratios of multiple uncertain end-members for time-series measurements of multiple parameters. Linking these results with a tracer mass balance allows conversion

  18. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  19. System for illuminating a region for isotopically selective photoexcitation

    International Nuclear Information System (INIS)

    Debaryshe, P.G.; Janes, G.S.; Levy, R.H.; Lindenmeier, C.W.

    1979-01-01

    A method is described to improve laser beam utilization in isotope separation techniques (using laser induced isotopically selective photoexcitation) by increasing the probability of photon absorption without extreme beam propagation lengths. For this purpose an optical reflection system has been designed for illuminating substantially all of three-dimensional space of a transversely flowing vapor with multiple traversals of a beam of radiation. (UK)

  20. Radioisotope labeling technique for vapor density measurements of volatile inorganic species

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    A new method for complexed metal ion vapor density measurement involving labeling the metal ions of interest with a radioactive isotope is described. The isotope chosen in the present work is unstable and leads to emission of a characteristic γ ray. Thus the γ-counting rate was related to the number density of complexed metal ions in the vapor phase. This technique is applicable to the study of any volatile inorganic species, but in the present study has been used to measure vapor densities of complex species in the TbCl 3 -AlCl 3 system by using tracer 160 Tb. 4 figures, 2 tables

  1. Coupling End-Member Mixing Analysis and Isotope Mass Balancing (222-Rn) for Differentiation of Fresh and Recirculated Submarine Groundwater Discharge Into Knysna Estuary, South Africa

    Science.gov (United States)

    Petermann, E.; Knöller, K.; Rocha, C.; Scholten, J.; Stollberg, R.; Weiß, H.; Schubert, M.

    2018-02-01

    Quantification of submarine groundwater discharge (SGD) is essential for evaluating the vulnerability of coastal water bodies to groundwater pollution and for understanding water body material cycles response due to potential discharge of nutrients, organic compounds, or heavy metals. Here we present an environmental tracer-based methodology for quantifying SGD into Knysna Estuary, South Africa. Both components of SGD, (1) fresh, terrestrial (FSGD) and (2) saline, recirculated (RSGD), were differentiated. We conducted an end-member mixing analysis for radon (222Rn) and salinity time series of estuary water over two tidal cycles to determine fractions of seawater, riverwater, FSGD, and RSGD. The mixing analysis was treated as a constrained optimization problem for finding the end-member mixing ratio that is producing the best fit to observations at every time step. Results revealed highest FSGD and RSGD fractions in the estuary during peak low tide. Over a 24 h time series, the portions of FSGD and RSGD in the estuary water were 0.2% and 0.8% near the estuary mouth and the FSGD/RSGD ratio was 1:3.3. We determined a median FSGD of 41,000 m³ d-1 (1.4 m³ d-1 per m shoreline) and a median RSGD of 135,000 m³ d-1 (4.5 m³ d-1 per m shoreline) which suggests that SGD exceeds river discharge by a factor of 1.0-2.1. By comparison to other sources, this implies that SGD is responsible for 28-73% of total DIN fluxes into Knysna Estuary.

  2. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  3. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  4. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  5. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  6. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  7. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  8. Neodymium isotopic variations in seawater

    Science.gov (United States)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  9. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  10. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  11. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  12. Environmental Development Plan for advanced isotope separation

    International Nuclear Information System (INIS)

    1979-05-01

    This EDP identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety aspects of the Advanced Isotope Separation (AIS) program. Current AIS processes include the molecular and atomic vapor laser processes and the plasma process. This document covers the technology program, environmental concerns and requirements, and environmental strategy

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  14. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  15. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  16. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  17. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  18. Method for isotope separation by photodeflection

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states

  19. Isotope angiocardiography

    International Nuclear Information System (INIS)

    Stepinska, J.; Ruzyllo, W.; Konieczny, W.

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness. (author)

  20. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  1. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-(micro)m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  2. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    Science.gov (United States)

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  3. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  4. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  5. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  6. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  7. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  8. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  9. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  10. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  11. Some characteristics of isotopic separation laser systems

    International Nuclear Information System (INIS)

    Pochon, E.

    1988-01-01

    The principle of Laser Isotope Separation (LIS) is simple and based on either selective electronic photoexcitation and photoionization of atomic vapor, or selective vibrational photoexcitation and photodissociation of molecules in the gas phase. These processes, respectively called SILVA (AVLIS) and SILMO (MLIS) in France, both use specific laser systems with wavelengths spanning from infrared to ultraviolet. This article describes briefly some of the characteristics of a SILVA laser system. Following a three-step process, a SILVA laser system is based on dye copper vapor lasers. The pulse dye lasers provide the tunable laser light and are optically pumped by copper vapor laser operating at high repetition rates. In order to meet plant laser system requirements, the main improvements under way relate to copper vapor laser devices the power capability, efficiency, reliability and lifetime of which have to be increased. 1 fig

  12. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  13. Innovative lasers for uranium isotope separation

    International Nuclear Information System (INIS)

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed

  14. Isotope-based quantum information

    CERN Document Server

    G Plekhanov, Vladimir

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial...

  15. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  16. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  17. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  18. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  19. Laboratory isotopic behaviour (2H, 18O) of sediments pore water during evaporation

    International Nuclear Information System (INIS)

    Ciolzyk, A.; Bariac, T.; Klamecki, A.; Jusserand, C.

    1987-01-01

    Two bare sediments (sand and loam) wetted with water of known isotopic composition have been subjected to evaporation in laboratory conditions. An attempt of application of classical isotopic evaporation models for free waters with reducing reservoir has been made, the better fit implies: a)laminar conditions of the atmosphere in the sediment under evaporation; b) a similar isotopic composition of water vapor as the isotopic composition of the water vapor of the external atmosphere. Variation of ε K and δ V H implies a better knowledge of the complex mechanisms of the atmosphere behaviour in the pore path of porous media under evaporation [fr

  20. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  1. Assessing the recharge process and importance of montane water to adjacent tectonic valley-plain groundwater using a ternary end-member mixing analysis based on isotopic and chemical tracers

    Science.gov (United States)

    Peng, Tsung-Ren; Zhan, Wen-Jun; Tong, Lun-Tao; Chen, Chi-Tsun; Liu, Tsang-Sen; Lu, Wan-Chung

    2018-03-01

    A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ 2H and δ 18O) and chemical concentrations (electrical conductivity (EC) and Cl-). After evaluation, Cl- is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ 18O-EC pair are similar to those derived by the δ 2H-EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679 × 106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 20-50% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.

  2. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  3. Isotope separation utilizing Zeeman compensated magnetic extraction

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1978-01-01

    A vapor flow of elemental uranium is directed into a region where narrow band, tuned laser radiation is repeatedly applied to provide at least two energy step selective ionization of the U 235 isotope in the vapor flow. A magnetic field is applied in the region of the ionized U 235 which creates a Lorentz force on the moving ions directing them toward one of a plurality of collection plates placed generally parallel to the vapor flow to permit collection of the U 235 particles in substantially enriched proportions as compared to the concentration in the vapor flow generally. To prevent a broadening of the absorption lines for both the U 235 and U 238 isotopes in the vapor flow from the applied magnetic field and thus prevent substantial reduction in the selectivity of the excitation and ionization, the magnetic field is preferably applied in a time varying magnitude which is phased with respect to the repetitive application of laser radiation to provide a relatively low field strength and corresponding small Zeeman splitting during selective excitation and ionization of the U 235 particles

  4. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  5. Isotopes Project

    International Nuclear Information System (INIS)

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  6. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  7. Advanced isotope separation

    International Nuclear Information System (INIS)

    1982-01-01

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  8. Isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  9. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  10. Isotopic and chemical features of hot springs in Akita Prefecture

    International Nuclear Information System (INIS)

    Matsubaya, Osamu

    1997-01-01

    All over the Akita Prefecture, many hot springs are located. Most of them are of meteoric water, fossil sea water and volcanic gas origins. In the Ohdate-Kazuno area, moderate temperature hot springs of meteoric water origin are found, which may exist as rather shallow formation water in the Green Tuff formations. On the contrary, high temperature geothermal waters of meteoric origin, which are used for power generation, are obtained in two volcanic area of Hachimantai and Oyasu. Those geothermal waters are expected to come up through vertical fissures from depth deeper than 2 km. The difference of these two manners of meteoric water circulation should be necessarily explained to understand the relationship of shallow and deep geothermal systems. About some hot springs of fossil sea water origin, the relationships of δ D and Cl - don't agree to the mixing relation of sea water and meteoric water. This may be explained by two different processes, one of which is mixing of sea water with saline meteoric water (Cl - ca. 12 g/kg). The other is modification of δD by hydrogen isotopic exchange with hydrous minerals underground, or by exchange with atmospheric vapor during a relic lake before burying. (author)

  11. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  12. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  13. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  14. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  15. Engineering Task Plan for a vapor treatment system on Tank 241-C-103

    International Nuclear Information System (INIS)

    Conrad, R.B.

    1995-01-01

    This Engineering Task Plan describes tasks and responsibilities for the design, fabrication, test, and installation of a vapor treatment system (mixing system) on Tank 241-C-103. The mixing system is to be installed downstream of the breather filter and will use a mixing blower to reduce the chemical concentrations to below allowable levels

  16. Modeling potential migration of petroleum hydrocarbons from a mixed-waste disposal site in the vadose zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Walton, J.C.; Baca, R.G.

    1989-01-01

    Environmental monitoring of a mixed-waste disposal site at the Idaho National Engineering Laboratory has confirmed release and migration into the vadose zone of: (1) chlorinated hydrocarbons in the vapor phase and (2) trace levels of certain transuranic elements. The finding has prompted an evaluation of the potential role of waste petroleum hydrocarbons in mediating or influencing contaminant migration from the disposal site. Disposal records indicate that a large volume of machine oil contaminated with transuranic isotopes was disposed at the site along with the chlorinated solvents and other radioactive wastes. A multiphase flow model was used to assess the possible extent of oil and vapor movement through the 177 m thick vadose zone. One dimensional simulations were performed to estimate the vertical distribution of the vapor phase, the aqueous phase, and immiscible free liquid as a function of time. The simulations indicate that the oil may migrate slowly through the vadose zone, to potentially significant depths. Calculated transport rates support the following ranking with regard to relative mobility: vapor phase > aqueous phase > free liquid. 21 refs., 7 figs., 2 tabs

  17. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  18. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  19. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  20. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  1. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  2. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  3. Measurements of upper atmosphere water vapor made in situ with a new moisture sensor

    Science.gov (United States)

    Chleck, D.

    1979-01-01

    A new thin-film aluminum oxide sensor, Aquamax II, has been developed for the measurement of stratospheric and upper tropospheric water vapor levels. The sensor is briefly described with attention given to its calibration and performance. Data obtained from six balloon flights are presented; almost all the results show a constant water vapor mixing ratio, in agreement with other data from midlatitude regions.

  4. The effect of deuterium substitution on the vapor pressure of acetonitrile

    International Nuclear Information System (INIS)

    Jancso, G.; Jakli, Gy.; Koritsanszky, T.

    1980-01-01

    The vapor pressure difference between CH 3 CN and CD 3 CN was measured by differential capacitance manometry between -40 and +80 deg C. The vapor pressure isotope effects (VPIE) derived from the results may be expressed by the equation: ln(psub(H)/Psub(D))=871.761/T 2 -13.577/T+0.006874. The experimental data were interpreted within the framework of the statistical theory of isotope effects in condensed systems. The largest contribution to the VPIE arises from the shifts in the CH stretching vibrations resulting from condensation which were found to be temperature dependent in good agreement with the available spectroscopic information. (author)

  5. Isotope-based quantum information

    International Nuclear Information System (INIS)

    Plekhanov, Vladimir G.

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

  6. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau

    International Nuclear Information System (INIS)

    Cui, Bu-Li; Li, Xiao-Yan

    2015-01-01

    The use of isotopic tracers is an effective approach for characterizing the moisture sources of precipitation in cold and arid regions, especially in the Tibetan Plateau (TP), an area of sparse human habitation with few weather and hydrological stations. This study investigated stable isotope characteristics of precipitation in the Qinghai Lake Basin, analyzed moisture sources using data sets from NCEP–NCAR, and calculated vapor contributions from lake evaporation to the precipitation in the basin using a two-component mixing model. Results showed that the Local Meteoric Water Line (LMWL) was defined as δ 2 H = 7.86 δ 18 O + 15.01, with a slope of less than 8, indicating that some non-equilibrium evaporation processes occurred when the drops fell below the cloud base. Temperature effects controlled δ 18 O and δ 2 H in precipitation in the basin, with high values in summer season and low values in winter season. Moisture in the basin was derived predominantly from the Southeast Asian Monsoon (SEAM) from June to August and the Westerly Circulation (WC) from September through May. Meanwhile, the transition in atmospheric circulation took place in June and September. The SEAM strengthened gradually, while the WC weakened gradually in June, and inversely in September. However, the Southwest Asian Monsoon (SWAM) did not reach the Qinghai Lake Basin due to the barrier posed by Tanggula Mountain. High d-excess (> 10‰) and significant altitude and lake effects of δ 18 O in precipitation suggested that the vapor evaporated from Qinghai Lake, strongly influenced annual precipitation, and affected the regional water cycle in the basin distinctly. The monthly contribution of lake evaporation to basin precipitation ranged from 3.03% to 37.93%, with an annual contribution of 23.42% or 90.54 mm, the majority of which occurred in the summer season. The findings demonstrate that the contribution of evaporation from lakes to atmospheric vapor is fundamental to water cycling

  7. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Bu-Li, E-mail: cuibuli@ieecas.cn [State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an 710061 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, Xiao-Yan [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2015-09-15

    The use of isotopic tracers is an effective approach for characterizing the moisture sources of precipitation in cold and arid regions, especially in the Tibetan Plateau (TP), an area of sparse human habitation with few weather and hydrological stations. This study investigated stable isotope characteristics of precipitation in the Qinghai Lake Basin, analyzed moisture sources using data sets from NCEP–NCAR, and calculated vapor contributions from lake evaporation to the precipitation in the basin using a two-component mixing model. Results showed that the Local Meteoric Water Line (LMWL) was defined as δ{sup 2}H = 7.86 δ{sup 18}O + 15.01, with a slope of less than 8, indicating that some non-equilibrium evaporation processes occurred when the drops fell below the cloud base. Temperature effects controlled δ{sup 18}O and δ{sup 2}H in precipitation in the basin, with high values in summer season and low values in winter season. Moisture in the basin was derived predominantly from the Southeast Asian Monsoon (SEAM) from June to August and the Westerly Circulation (WC) from September through May. Meanwhile, the transition in atmospheric circulation took place in June and September. The SEAM strengthened gradually, while the WC weakened gradually in June, and inversely in September. However, the Southwest Asian Monsoon (SWAM) did not reach the Qinghai Lake Basin due to the barrier posed by Tanggula Mountain. High d-excess (> 10‰) and significant altitude and lake effects of δ{sup 18}O in precipitation suggested that the vapor evaporated from Qinghai Lake, strongly influenced annual precipitation, and affected the regional water cycle in the basin distinctly. The monthly contribution of lake evaporation to basin precipitation ranged from 3.03% to 37.93%, with an annual contribution of 23.42% or 90.54 mm, the majority of which occurred in the summer season. The findings demonstrate that the contribution of evaporation from lakes to atmospheric vapor is

  8. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  9. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  10. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  11. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen; Deutscher, Nicholas; Griffith, David; McCabe, Matthew

    2015-01-01

    retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key

  12. Status of Uranium Atomic Vapor Laser Isotope Separation Program

    International Nuclear Information System (INIS)

    Chen, Hao-Lin; Feinberg, R.M.

    1993-06-01

    This report discusses demonstrations of plant-scale hardware embodying AVLIS technology which were completed in 1992. These demonstrations, designed to provide key economic and technical bases for plant deployment, produced significant quantities of low enriched uranium which could be used for civilian power reactor fuel. We are working with industry to address the integration of AVLIS into the fuel cycle. To prepare for deployment, a conceptual design and cost estimate for a uranium enrichment plant were also completed. The U-AVLIS technology is ready for commercialization

  13. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  14. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  15. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  16. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  17. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  18. Sources of Holocene variability of oxygen isotopes in paleoclimate archives

    Directory of Open Access Journals (Sweden)

    A. N. LeGrande

    2009-08-01

    Full Text Available Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

  19. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  20. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  1. Isotope shift studies in gadolinium spectra

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Saksena, G.D.; Venugopalan, A.

    1976-01-01

    Isotope shift studies have been carried out in the gadolinium spectrum using a recording Fabry-Perot spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. Isotope shifts Δsigma(156-160) have been recorded in 134 lines in the region 3930-4140 A. Some of these lines involve the recently identified even configuration 4f 8 5d6s of Gd I and the newly classified transition 4f 8 6s-4f 8 6p of Gd II. From the isotope shift measurements of lines involving the 4f 8 6s-4f 8 6p transition in Gd II, the isotope shift, ΔT(156-160)=87 mK, has been obtained for the 4f 8 6s configuration. Electronic configurations have been suggested for a number of energy levels and configuration mixing has been pointed out in certain cases. (Auth.)

  2. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  3. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  4. Are Polyatomic Interferences, Cross Contamination, Mixing-Effect, etc., Obstacles for the Use of Laser Ablation-ICP-MS Coupling as an Operational Technique for Uranium Isotope Ratio Particle Analysis?

    International Nuclear Information System (INIS)

    Donard, A.; Pointurier, F.; Pecheyran, C.

    2015-01-01

    Analysis of ''environmental samples'', which consists in dust collected with cotton clothes wiped by inspectors on surfaces inside declared nuclear facilities, is a key tool for safeguards. Although two methods (fission tracks-TIMS and SIMS) are already used routinely to determine the isotopic composition of uranium particles, the laser ablationinductively coupled plasma mass spectrometry (LA-ICP-MS) coupling has been proven to be an interesting option thanks to its rapidity, high sensitivity and high signal/noise ratio. At CEA and UPPA, feasibility of particle analysis using a nanosecond LA device and a quadrupole ICP-MS has been demonstrated. However, despite the obvious potential of LA-ICP-MS for particle analysis, the effect of many phenomena which may bias isotope ratio measurements or lead to false detections must be investigated. Actually, environmental samples contain many types of non-uranium particles (organic debris, iron oxides, etc.) that can form molecular interferences and induce the risk of isotopic measurement bias, especially for minor isotopes (234U, 236U). The influence of these polyatomic interferences on the measurements will be discussed. Moreover, different uranium isotopic compositions can be found in the same sample. Therefore, risks of memory effect and of particle-toparticle cross-contamination by the deposition of ablation debris around the crater have also been investigated. This study has been conducted by using a femtosecond laser ablation device coupled to a high sensitivity sector field ICP-MS. Particles were fixed onto the discs with collodion and were located thanks to their fission tracks so that micrometric particles can be analyzed separately. All uranium isotope ratios were measured. Results are compared with the ones obtained with the fission tracks-TIMS technique on other deposition discs from the same sample. Performance of the method in terms of accuracy, precision, and detection limits are estimated

  5. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  6. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  7. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  8. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  9. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  10. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  11. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  12. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  13. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  14. Natural isotopes

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  15. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  16. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  17. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  18. Study of groundwater recharge in Rechna Doab using isotope techniques

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Ahmed, M.; Hussain, S.D.; Khan, I.H.; Akram, W.

    1992-04-01

    Isotopic studies were performed in the Rechna Doab area to understand the recharge mechanism, investigate the relative contributions from various sources such as rainfall, rivers and canal system and to estimate the turn over times and replenishment rate of groundwater. The isotopic data suggest that the groundwater in the project area can be divided into different zones each having its own characteristic isotopic composition. The enriched isotopic values show rain recharge and depleted isotopic values are associated with river/canal system while the intermediate isotopic values show a mixing of two or more sources of water. The major contribution, however, comes from canal system. The isotopic data suggest that there is no quick movement of groundwater in the area. 18 figs. (author)

  19. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  20. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  1. Muonium formation and the 'missing fraction' in vapors

    International Nuclear Information System (INIS)

    Fleming, D.G.; Arseneau, D.J.; Garner, D.M.; Senba, M.; Mikula, R.J.

    1983-06-01

    The vapor phase fractional polarizations of positive muons thermalizing as the muonium atom (Psub(M)) and in diamagnetic environments (Psub(D)) has been measured in H 2 O, CH 3 OH, C 6 H 14 , C 6 H 12 , CCl 4 , CHCl 3 , CH 2 Cl 2 and TMS, in order to compare with the corresponding fractions measured in the condensed phases. There is a marked contrast in every case, with the vapor phase results being largely understandable in terms of a charge exchange/hot atom model. Unlike the situation in the corresponding liquids, there is no permanent lost fraction in the vapor phase in the limit of even moderately high pressures (approximately 1 atm); at lower pressures, depolarization is due to hyperfine mixing and is believed to be well understood. For vapor phase CH 3 OH, C 6 H 14 , C 6 H 12 , and TMS the relative fractions are found to be pressure dependent, suggesting the importance of termolecular hot atom (or ion) reactions in the slowing-down process. For vapor phase H 2 O and the chloromethanes, the relative fractions are pressure independent. For CCl 4 , Psub(M) = Psub(D) approximately 0.5 in the vapor phase vs. Psub(D) = 1.0 in the liquid phase; fast thermal reactions of Mu likely contribute significantly to this difference in the liquid phase. For H 2 O, Psub(M) approximately 0.9 and Psub(D) approximately 0.1 in the vapor phase vs. Psub(D) approximately 0.6 and Psub(M) approximately 0.2 in the liquid phase. Water appears to be the one unequivocal case where the basic charge exchange/hot atom model is inappropriate in the condensed phase, suggesting, therefore, that radiation-induced 'spur' effects play a major role

  2. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  3. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  4. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  5. Plutonium determination by isotope dilution

    International Nuclear Information System (INIS)

    Lucas, M.

    1980-01-01

    The principle is to add to a known amount of the analysed solution a known amount of a spike solution consisting of plutonium 242. The isotopic composition of the resulting mixture is then determined by surface ionization mass spectrometry, and the plutonium concentration in the solution is deduced, from this measurement. For irradiated fuels neutronic studies or for fissile materials balance measurements, requiring the knowledge of the ratio U/Pu or of concentration both uranium and plutonium, it is better to use the double spike isotope dilution method, with a spike solution of known 233 U- 242 Pu ratio. Using this method, the ratio of uranium to plutonium concentration in the irradiated fuel solution can be determined without any accurate measurement of the mixed amounts of sample and spike solutions. For fissile material balance measurements, the uranium concentration is determined by using single isotope dilution, and the plutonium concentration is deduced from the ratio Pu/U and U concentration. The main advantages of isotope dilution are its selectivity, accuracy and very high sensitivity. The recent improvements made to surface ionization mass spectrometers have considerably increased the precision of the measurements; a relative precision of about 0.2% to 0.3% is obtained currently, but it could be reduced to 0.1%, in the future, with a careful control of the experimental procedures. The detection limite is around 0.1 ppb [fr

  6. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  7. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  8. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  9. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  10. Sneutrino mixing

    International Nuclear Information System (INIS)

    Grossman, Y.

    1997-10-01

    In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed

  11. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  12. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  13. Innovative lasers for uranium isotope separation. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  14. Shape coexistence and phase transitions in the platinum isotopes

    International Nuclear Information System (INIS)

    Morales, Irving O.; Frank, Alejandro; Vargas, Carlos E.; Isacker, P. Van

    2008-01-01

    The matrix coherent-state approach of the interacting boson model with configuration mixing is used to study the geometry of the platinum isotopes. With a parameter set determined in previous studies, it is found that the absolute minimum of the potential for the Pt isotopes evolves from spherical to oblate and finally to prolate shapes when the neutron number decreases from N=126 (semi-magic) to N=104 (mid-shell). Shape coexistence is found in the isotopes 182,184,186,188 Pt. A phase diagram is constructed that shows the coexistence region as a function of the number of bosons and the strength of the mixing parameter

  15. Hydrogeological and isotopic studies for selected springs in Sinai Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M S; Awad, M A; El-gamal, S A [Atomic Energy Authority, Cairo Egypt and Middle Eastern Regional Radioisotope Center for The Arab Countries, Dokki, 12311, Cairo (Egypt); Hammad, F A [Desert Research Centre, Materia, Cairo, (Egypt)

    1995-10-01

    This paper deals with the hydrogeology and isotopic composition of water samples collected from selected spring in sinai (e.g. Algudierate, Alqusiema, qidis and Isram) in order to identify their genesis, their interaction with the host rocks and mixing trend. Results of isotopic composition have indicated the similarity in the hydrogeologic situation of Ain qidis and Ain-al-gudierate, while Ain Isram has shown a marked difference in its stable isotope and this could be due to evaporation effect. The isotopic and hydrochemical constituents of the studied springs reflect eater of a meteoric origin with a possible contamination from surficial materials (evaporates) and deeper aquifers. 6 figs., 2 tabs.

  16. Isotope puzzle in sputtering

    International Nuclear Information System (INIS)

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  17. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  18. Theorical and experimental study of the induced forces by the mixed, divergent, convergent and straight labyrinth of seal systems on the steam turbines, gas turbines and compressor rotors; Estudio teorico-experimental de las fuerzas inducidas por los sistemas de sellos de laberinto rectos, convergentes, divergentes y mixtos sobre los rotores de turbinas de vapor, turbinas de gas y compresores

    Energy Technology Data Exchange (ETDEWEB)

    Salazar San Andres, Octavio Ramon

    1991-12-31

    A theoretical and experimental research is conducted in order to determine the labyrinth seal forces, as well as the stiffness and damping coefficients for straight, convergent, divergent, and combined shapes on turbine and compressor rotors. The mathematical model is deduced on the basis of the single volume method and its solution is obtained by the perturbation procedure. The validation is achieved with published results. Experimental work carried out on a test bench is described in the text. This involved labyrinth seals with straight, convergent, and divergent profiles, as the published information relating to mixed type is sufficient to perform the evaluation. The conclusions demonstrate that the model is able to predict and determine the performance of labyrinth seals based on forces and rotordynamic coefficients for static and dynamic motions. Finally, tests on real steam turbines of 300 MW are recommended. In this case the high pressures and use of wheels with strips on the periphery and supported by the upper part of blades, increase the susceptibility of self excited subsynchronous vibrations. [Espanol] Se presenta una investigacion teorica-experimental relacionada con la obtencion y validacion de un modelo matematico capaz de predecir las fuerzas y los coeficientes de rigidez y amortiguamiento de los sellos de laberinto de tipo recto, convergente, divergente y mixto que se emplean en turbinas y compresores tanto terrestres como aereos. El modelo matematico propuesto se deduce a partir del metodo de un solo volumen y su solucion se obtiene a traves de metodos perturbatorios. La validacion del mismo se consigue al comparar con resultados experimentales publicados en revistas especializadas y con los datos medidos en un banco de pruebas cuya descripcion se incluye en el trabajo, cualculado para sellos rectos, convergentes y divergentes, ya que la informacion publicada respecto al tipo mixto o combinado es suficiente. Las conclusiones de la investigacion

  19. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  20. Radiation stable, hybrid, chemical vapor infiltration/preceramic polymer joining of silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E., E-mail: hesham.khalifa@ga.com [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States); Koyanagi, Takaaki [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge 37831, TN (United States); Jacobsen, George M.; Deck, Christian P.; Back, Christina A. [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States)

    2017-04-15

    This paper reports on a nuclear-grade joining material for bonding of silicon carbide-based components. The joint material is fabricated via a hybrid preceramic polymer, chemical vapor infiltration process. The joint is comprised entirely of β-SiC and results in excellent mechanical and permeability performance. The joint strength, composition, and microstructure have been characterized before and after irradiation to 4.5 dpa at 730 °C in the High Flux Isotope Reactor. The hybrid preceramic polymer-chemical vapor infiltrated joint exhibited complete retention of shear strength and no evidence of microstructural evolution or damage was detected following irradiation.

  1. Isotopic analysis of uranium by thermoionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1979-01-01

    Uranium isotopic ratio measurements by thermoionic spectrometry are presented. Emphasis is given upon the investigation of the parameters that directly affect the precision and accuracy of the results. Optimized procedures, namely, chemical processing, sample loading on the filaments, vaporization, ionization and measurements of ionic currents, are established. Adequate statistical analysis of the data for the calculation of the internal and external variances and mean standard deviation are presented. These procedures are applied to natural and NBS isotopic standard uranium samples. The results obtained agree with the certified values within specified limits. 235 U/ 238 U isotopic ratios values determined for NBS-U500, and a series of standard samples with variable isotopic compositon, are used to calculate mass discrimination factor [pt

  2. Tritium isotope fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, Franz

    1989-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by determining the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to cell water. The determination of the R-value always involves isotope fractionation is applied analytical procedures and hence the evaluation of the true OBT -value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fractionation in the cell water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure tritium water systems as well as in real biological systems, e.g. corn plant. The results are systematically analyzed and the influence of isotope effects on the R-value is rigorously quantified

  3. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  4. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  5. Paleogene Seawater Osmium Isotope Records

    Science.gov (United States)

    Rolewicz, Z.; Thomas, D. J.; Marcantonio, F.

    2012-12-01

    Paleoceanographic reconstructions of the Late Cretaceous and early Cenozoic require enhanced geographic coverage, particularly in the Pacific, in order to better constrain meridional variations in environmental conditions. The challenge with the existing inventory of Pacific deep-sea cores is that they consist almost exclusively of pelagic clay with little existing age control. Pelagic clay sequences are useful for reconstructions of dust accumulation and water mass composition, but accurate correlation of these records to other sites requires improved age control. Recent work indicates that seawater Os isotope analyses provide useful age control for red clay sequences. The residence time of Os in seawater is relatively long compared to oceanic mixing, therefore the global seawater 187Os/188Os composition is practically homogeneous. A growing body of Late Cretaceous and Cenozoic data has constrained the evolution of the seawater Os isotopic composition and this curve is now a viable stratigraphic tool, employed in dating layers of Fe-Mn crusts (e.g., Klemm et al., 2005). Ravizza (2007) also demonstrated that the seawater Os isotopic composition can be extracted reliably from pelagic red clay sediments by analyzing the leached oxide minerals. The drawback to using seawater Os isotope stratigraphy to date Paleogene age sediments is that the compilation of existing data has some significant temporal gaps, notably between ~38 and 55 Ma. To improve the temporal resolution of the seawater Os isotope curve, we present new data from Ocean Drilling Program (ODP) Site 865 in the equatorial Pacific. Site 865 has excellent biostratigraphic age control over the interval ~38-55Ma. Preliminary data indicate an increase in the seawater composition from 0.427 at 53.4 Ma to 0.499 by 43 Ma, consistent with the apparent trend in the few existing data points. We also analyzed the Os isotopic composition recorded by oxide minerals at Integrated Ocean Drilling Program (IODP) Site U1370

  6. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    Science.gov (United States)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  7. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  8. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  9. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  10. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  11. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  12. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America

    International Nuclear Information System (INIS)

    Marfia, A.M.; Krishnamurthy, R.V.; Atekwana, E.A.; Panton, W.F.

    2004-01-01

    Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ 18 O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8%o). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ 13 C DIC ranged from -7.4 to -17.4%o. SO 4 2 , Ca 2+ and Mg 2+ in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and δ 13 C DIC indicate both open and closed system carbonate evolution. Combined δ 13 C DIC and Ca 2+ , Mg 2+ , and SO 4 2- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO 4 2- content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ 18 O, δD and δ 13 C DIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa

  13. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s.

    Science.gov (United States)

    Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S

    2015-11-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.

  14. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  15. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  16. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  17. Water-Vapor Raman Lidar System Reaches Higher Altitude

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  18. Stable isotope studies: Progress report, March 1985--August 1987

    International Nuclear Information System (INIS)

    Ishida, Takanobu.

    1987-01-01

    Studies have been carried out in the following areas: Stable Isotope Fractionation (1) Effects of chemical poisons and surface modifiers on polycrystalline platinum electrode surfaces have been investigated with a goal to develop a new form of heterogeneous catalyst for the hydrogen isotope exchange between dihydrogen and water. (2) A new nitrogen-15 fractionation process has been developed, based on the isotope exchange between liquid N 2 O 3 -N 2 O 4 mixture and their vapor phase at a subambient temperature and a raised pressure. (3) A closed chemical recycle process has been developed for use in connection with the refluxer in the Nitrox-type nitrogen-15 plant. Isotope Effects (1) The vapor pressure isotope effect (VPIE) study of liquid fluoromethanes have been completed. (2) The VPIE study of solid and liquid ammonia has been completed. (3) A theoretical foundation of the additivity for the vibrational zero-point energy (ZPE) has been developed. Studies of Liquid Ammonia. With an aim to study intermolecular interaction (and the inversion phenomenon, in particular) in liquid ammonia, and to further investigate various ammonia solutions, a molecular dynamics (MD) study has been initiated. An MD program has been completed, and force field functions have been developed for an ensemble of non-rigid ammonia molecules. 107 refs., 41 figs., 10 tabs

  19. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  20. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Salamalikis, V., E-mail: vsalamalik@upatras.gr [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Argiriou, A.A. [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Dotsika, E. [Stable Isotope Unit, Institute of Nanoscience and Nanotechnology, National Center of Scientific Research ‘Demokritos’, Ag. Paraskevi Attikis, 15310 Athens (Greece)

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R{sup 2} > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  1. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    International Nuclear Information System (INIS)

    Salamalikis, V.; Argiriou, A.A.; Dotsika, E.

    2016-01-01

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R"2 > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  2. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  3. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  4. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  5. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  6. Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O

    International Nuclear Information System (INIS)

    Jakli, G.; Hook, W.A. Van

    1997-01-01

    The osmotic coefficients of 1,3-dimethylurea-h 2 (DMUh 2 )/H 2 O and 1,3-dimethylurea-d 2 (DMUd 2 )/D 2 O solutions (1, 2, 4, 12, and 20 m aq , 15 < t/degree C < 80) were obtained from differential vapor pressure measurements. Excess partial molar free energies, enthalpies, and entropies for the solvent and their isotope effects were calculated from the temperature derivatives of the osmotic coefficients. New partial molar volume data are reported at 25 C at low and intermediate concentrations. The thermodynamic properties of solution are compared with those of urea and discussed using the cage model of hydrophobic hydration. The results support the mixed (polar-apolar) character of this compound and show that its structural effect on water changes with temperature and concentration

  7. Titanium Isotopes Provide Clues to Lunar Origin

    Science.gov (United States)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than

  8. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  9. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  10. Pb isotopes of Gorgona Island (Colombia): Isotopic variations correlated with magma type

    International Nuclear Information System (INIS)

    Dupre, B.; Echeverria, L.M.

    1984-01-01

    Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8x2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios ( 206 Pb/ 204 Pbproportional19.75) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle sourbe regions, and by mixing or contamination between them. (orig.)

  11. Pb isotopes of Gorgona Island (Colombia): isotopic variations correlated with magma type

    Science.gov (United States)

    Dupré, B.; Echeverría, L. M.

    1984-02-01

    Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8 × 2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios ( 206Pb/ 204Pb˜ 19.75 ) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle source regions, and by mixing or contamination between them.

  12. What Affects the Isotopic Composition of Precipitation - A New Interpretation?

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A. [Nuclear Research Center, Negev, Beer Sheva (Israel)

    2013-07-15

    Rainfall events were sampled in high resolution for stable isotope analyses during four rainy seasons in the central negev of Israel. Each sample is equivalent to 1-2 mm of rain. High variability in the isotopic composition was found in fractions of rain during storms. Two modes of isotopic distribution were found. The first is a wave shaped distribution, where isotopic compositions showed enriched to depleted graded changes and vice versa. The second mode is a step function where each rain cell displayed a constant {delta}{sup 18}O value, but varied greatly from the other rain cells. New interpretation suggests that during the transport of the air parcel system three processes can occur. The first process is a complete blending among the rain cells. The second is a partial isotopic mixing between the rain cells. Finally the third case is when each rain cell maintains its own isotopic values separate from the other rain cells. The third case of no mixing showed unexpected results due to the high air turbulence, vertically and horizontally. There was no evidence of complete mixing among the rain cells of identical air parcel systems. The processes in the air parcel trajectory itself suggested here is put forward as a new way to explain the changes in the isotopic composition during the rain. (author)

  13. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  14. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  15. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  16. Isotope effect on the zero point energy shift upon condensation

    International Nuclear Information System (INIS)

    Kornblum, Z.C.

    1977-01-01

    The various isotope-dependent and independent atomic and molecular properties that pertain to the isotopic difference between the zero point energy (ZPE) shifts upon condensation have been derived. The theoretical development of the change of the ZPE associated with the internal molecular vibrations, due to the condensation of the gaseous molecules, has been presented on the basis of Wolfsberg's second-order perturbation treatment of the isotope-dependent London dispersion forces between liquid molecules. The isotope effect on the ZPE shift is related to the difference between the sums of the integrated intensities of the infrared absorption bands of the two gaseous isotopic molecules. Each intensity sum is expressed, in part, in terms of partial derivatives of the molecular dipole moment with respect to atomic cartesian coordinates. These derivatives are related to the isotope-independent effective charges of the atoms, which are theoretically calculated by means of a modified CNDO/2 computer program. The effective atomic charges are also calculated from available experimental infrared intensity data. The effects of isotopic substitutions of carbon-13 for carbon-12 and/or deuterium for protium, in ethylene, methane, and the fluorinated methanes, CH 3 F, CH 2 F 2 , CHF 3 , and CF 4 , on the ZPE shift upon condensation are calculated. These results compare well with the Bigeleisen B-factors, which are experimentally obtained from vapor pressure measurements of the isotopic species. Each of the following molecular properties will tend to increase the isotopic difference between the ZPE shifts upon condensation: (1) large number of highly polar bonds, (2) high molecular weight, (3) non-polar (preferably) or massive molecule, (4) non-hydrogenous molecule, and (5) closely packed liquid molecules. These properties will result in stronger dispersion forces in the liquid phase between the lighter molecules than between the isotopically heavier molecules

  17. Piston pump and method of reducing vapor lock

    Science.gov (United States)

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  18. Radio-frequency-modulated Rydberg states in a vapor cell

    Science.gov (United States)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  19. Derivation of basic equations for rigorous dynamic simulation of cryogenic distillation column for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    The basic equations are derived for rigorous dynamic simulation of cryogenic distillation columns for hydrogen isotope separation. The model accounts for such factors as differences in latent heat of vaporization among the six isotopic species of molecular hydrogen, decay heat of tritium, heat transfer through the column wall and nonideality of the solutions. Provision is also made for simulation of columns with multiple feeds and multiple sidestreams. (author)

  20. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  1. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    Science.gov (United States)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  2. New flash mixing

    International Nuclear Information System (INIS)

    Sackmann, I.

    1980-01-01

    It was found that even for stars evolved away from the red giant branch, a new mixing of nucleo-synthesis products from the hydrogen-burning shells into surface layers was possible, from the penetration of the contaminated intershell region with the H- and He-ionization convection zones. This is due to the helium shell flash driving an immense expansion of an inner carbon pocket, namely, by a factor of 12,000 in radius, a drop in density of about 10 12 , and a cooling of inner pockets normally near 10 8 K to 23,000 K. The surface would be enriched in carbon ( 12 C), helium ( 4 He), and s-process elements, but not significantly in nitrogen ( 14 N), oxygen ( 16 O), or the isotope 13 C. This new type of mixing might provide the missing clue for FG Sagittae. Such a mixing had been suggested by the observations of FG Sagittae, but had been unexplainable by theory up to now

  3. An overview of copper-laser development for isotope separation

    International Nuclear Information System (INIS)

    Warner, B.E.

    1987-01-01

    We have developed a copper-laser pumped dye-laser system that addresses all of the requirements for atomic vapor laser isotope separation. The requirement for high average power for the laser system has led to the development of copper-laser chains with injection-locked oscillators and multihundred-watt amplifiers. By continuously operating the Laser Demonstration Facility, we gain valuable data for further upgrade and optimization

  4. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  5. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  6. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  7. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  8. Applications of Radium Isotopes to Ocean Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moore, W. S. [Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC (United States)

    2013-07-15

    With half-lives ranging from 3.7 days to 1600 a, naturally occurring radium isotopes have been used to study a variety of processes in the ocean. New techniques, which allow rapid analyses of the short lived isotopes, {sup 224}Ra (half-life = 3.7 days) and {sup 223}Ra (half-life = 11 days), have lead to many novel ways to apply radium to oceanography. This paper will focus on how the use of these isotopes has led to breakthroughs in quantifying: (1) the residence time of water in estuaries, (2) coastal ocean mixing rates and (3) submarine groundwater discharge (SGD). With this new understanding of rates and fluxes in the near shore environment, scientists and coastal managers are now able to evaluate sources of nutrients, carbon, and metals and their impact on the coastal ocean. For example, it is now known that SGD rivals rivers as a nutrient source to many coastal environments. (author)

  9. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  10. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  11. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  12. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  13. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  14. Critical overview on water - hydrogen isotopic exchange; a case study

    International Nuclear Information System (INIS)

    Peculea, Marius

    2002-01-01

    Water - hydrogen isotopic exchange process is attractive due to its high separation factor; it is neither corrosive or pollutant and, when used as a technological process of heavy water production, it requires water as raw material. Its efficiency depends strongly on the catalyst performance and geometry of the isotopic water - hydrogen exchange zone in which the isotopic transfer proceeds in two steps: liquid vapor distillation in the presence of an inert gas and a catalytic reaction in vapor - gas gaseous phase. An overview of the water hydrogen isotopic exchange is presented and technological details of the Trail - Canada facility as well as characteristics of the two pilots operated in Romania with Ni, Cr and hydrophobic catalysts are described. The mathematical approach of the successive water-water vapor-hydrogen isotopic exchange process given is based on a mathematical model worked out earlier by Palibroda. Discrepancies between computation and experimental results, lower than 11% for extreme cases and around 6% for the average range are explained as due to the ratio of the exchange potentials. Assumption is made in the theoretical approach that this ratio is positive and constant all long the column while the measurements showed that it varies within 0.7 and 1.1 at the upper end and within - 2.5 and - 4.4 at the lower end, what indicates a strong end effect. In conclusion it is stressed that a competing technological solution is emerging based on a monothermal electrolytic process or a bithermal - bibaric process both for heavy water and tritium separation process

  15. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  16. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    Science.gov (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    Magnesium isotopes are an emerging tool to study the geological processes recorded in carbonates. Calcite, due to its ubiquitous occurrence and the large Mg isotope fractionation associated with the mineral, has attracted great interests in applications of Mg isotope geochemistry. However, the fidelity of Mg isotopes in geological records of carbonate minerals (e.g., calcite and dolomite) against burial metamorphism remains poorly constrained. Here we report our investigation on the Mg isotope systematics of a dolomitized Middle Triassic Geshan carbonate section in eastern China. Magnesium isotope analysis was complemented by analyses of Sr-C-O isotopic compositions, major and trace element concentrations, and petrographic and mineralogical features. Multiple lines of evidence consistently indicated that post-depositional diagenesis of carbonate minerals occurred to the carbonate rocks. Magnesium isotope compositions of the carbonate rocks closely follow a mixing trend between a high δ26Mg dolomite end member and a low δ26Mg calcite end member, irrespective of sample positions in the section and calcite/dolomite ratio in the samples. By fitting the measured Mg isotope data using a two-end member mixing model, an inter-mineral Δ26Mgdolomite-calcite fractionation of 0.72‰ was obtained. Based on the experimentally derived Mg isotope fractionation factors for dolomite and calcite, a temperature of 150-190 °C was calculated to correspond to the 0.72‰ Δ26Mgdolomite-calcite fractionation. Such temperature range matches with the burial-thermal history of the local strata, making a successful case of Mg isotope geothermometry. Our results indicate that both calcite and dolomite had been re-equilibrated during burial metamorphism, and based on isotope mass balance of Mg, the system was buffered by dolomite in the section. Therefore, burial metamorphism may reset Mg isotope signature of calcite, and Mg isotope compositions in calcite should be dealt with caution in

  17. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  18. Tritium isotopic exchange in air detritiation dryers

    International Nuclear Information System (INIS)

    Everatt, A.E.; Johnson, R.E.; Senohrabek, J.A.; Shultz, C.M.

    1989-02-01

    Isotopic exchange between tritiated and non-tritiated water species in a molecular sieve bed has been demonstrated. At high humidities (+6 degrees Celsius dew point) the rate of tritium isotopic exchange in a 2.4 L molecular sieve bed has been demonstrated to be at least 50% of published exchange rates. In an industrial-sized air detritiation dryer, utilizing the pretreatment technique of H 2 O steam washing to elute the residual tritium, a DF of 12 600 has been demonstrated when operating at an inlet vapor tritium concentration of 14 Ci/kg and at inlet and outlet dew points of 4.8 and -54 degrees Celsius, respectively. In the NPD dryer bed studied, which was not optimally designed for full benefit from isotopic exchange, at least one order of magnitude in additional detritiation is attributed to isotopic exchange in the unsaturated zone. The technique of eluting the residual tritium from an industrial sized bed by H 2 O washing at high temperature, high humidity and low bed loading has been demonstrated to be a fast and effective way of removing tritium from a molecular sieve bed during regeneration. The isotopic exchange model accurately predicted the exchange between tritiated and non-tritiated water species in a molecular sieve bed where there is no net adsorption or desorption. The model's prediction of the tritium breakthrough trend observed in the NPD tests was poor; however, a forced fit can be achieved if the exchange rates in the MTZ and the unsaturated zone are manipulated. More experiments are needed to determine the relative rates of tritium exchange in the saturated, mass transfer, and unsaturated zones of a dryer bed

  19. Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE

    CERN Document Server

    Neven, Michiel

    The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...

  20. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    International Nuclear Information System (INIS)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya.

    1982-01-01

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C 2 and C 3 fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO 2 appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown. (author)

  1. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  2. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2016-01-01

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  3. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  4. Isotopes in oxidation reactions

    International Nuclear Information System (INIS)

    Stewart, R.

    1976-01-01

    The use of isotopes in the study of organic oxidation mechanisms is discussed. The help provided by tracer studies to demonstrate the two-equivalent path - hydride transfer, is illustrated by the examples of carbonium oxidants and the Wacker reaction. The role of kinetic isotope effects in the study of the scission of carbon-hydrogen bonds is illustrated by hydride abstraction, hydrogen atom abstraction, proton abstraction and quantum mechanical tunnelling. Isotopic studies on the oxidation of alcohols, carbonyl compounds, amines and hydrocarbons are discussed. The role of isotopes in the study of biochemical oxidation is illustrated with a discussion on nicotinamide and flavin coenzymes. (B.R.H.)

  5. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  6. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  7. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    Science.gov (United States)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar class="text">PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the class="text">PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman

  8. Configuration mixing of mean-field states

    International Nuclear Information System (INIS)

    Bender, M; Heenen, P-H

    2005-01-01

    Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes

  9. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  10. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  11. Isotope effect on the zero point energy shift upon condensation

    International Nuclear Information System (INIS)

    Kornblum, Z.C.; Ishida, T.

    1977-07-01

    The various isotope-dependent and independent atomic and molecular properties that pertain to the isotopic difference between the zero point energy (ZPE) shifts upon condensation were derived. The theoretical development of the change of the ZPE associated with the internal molecular vibrations, due to the condensation of the gaseous molecules, is presented on the basis of Wolfsberg's second-order perturbation treatment of the isotope-dependent London dispersion forces between liquid molecules. The isotope effect on the ZPE shift is related to the difference between the sums of the integrated intensities of the infrared absorption bands of the two gaseous isotopic molecules. The effective atomic charges are also calculated from available experimental infrared intensity data. The effects of isotopic substitutions of carbon-13 for carbon-12 and/or deuterium for protium, in ethylene, methane, and the fluorinated methanes, CH 3 F, CH 2 F 2 , CHF 3 , and CF 4 , on the ZPE shift upon condensation are calculated. These results compare well with the Bigeleisen B-factors, which are experimentally obtained from vapor pressure measurements of the isotopic species. Each of the following molecular properties will tend to increase the isotopic difference between the ZPE shifts upon condensation: (1) large number of highly polar bonds, (2) high molecular weight, (3) non-polar (preferably) or massive molecule, (4) non-hydrogenous molecule, and (5) closely packed liquid molecules. These properties will result in stronger dispersion forces in the liquid phase between the lighter molecules than between the isotopically heavier molecules. 36 tables, 9 figures

  12. Isotopes in North American Rocky Mountain snowpack 1993–2014

    Science.gov (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  13. Hydrochemical and isotope study of Lake Titicaca

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Cioni, R.; Paredes, M.

    2002-01-01

    The chemical and isotopic compositions of Lake Titicaca and its inflow waters (precipitation, tributaries, groundwater) were determined with the aim of establishing the lake chemical and isotope balance. The three main regions of the lake, i.e. the Lago Mayor, the eastern and the western basins of Lago Menor, connected in cascade, show significant chemical and isotopic differences. Chloride and sodium balance indicates that an average of about 92% of the inflow water evaporates, and the remaining 8 % is lost through Rio Desaguadero and infiltration. The balance of each basin is also obtained, including the inter-basin fluxes. The stable isotope balance in not possible because no data are available on the mean atmospheric vapour isotopic composition. However, this was tentatively computed using the fluxes obtained from chemistry. The vapour δ-values are slightly more negative than those of rainfall. Tritium, noble gases and chloro-fluoro-carbons in vertical profiles show that the lake is vertically well mixed and there is no water segregation at depth. (author)

  14. Chemical stability of levoglucosan: An isotopic perspective

    Science.gov (United States)

    Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.

    2016-05-01

    The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.

  15. A thoroughly validated spreadsheet for calculating isotopic abundances (H-2, O-17, O-18) for mixtures of waters with different isotopic compositions

    NARCIS (Netherlands)

    Faghihi, V.; Meijer, H. A. J.; Groening, Manfred

    2015-01-01

    RationaleOxygen and hydrogen stable isotopes are widely used tracers for studies on naturally occurring and laboratory mixtures of isotopically different waters. Although the mixing calculations are straightforward to perform, there are ample possibilities to make mistakes, especially when dealing

  16. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  17. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  18. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  19. Discovery of the iron isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Twenty-eight iron isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  20. Discovery of the silver isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Ginepro, J.Q.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Thirty-eight silver isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Regolith history from cosmic-ray-produced isotopes

    International Nuclear Information System (INIS)

    Fireman, E.L.

    1974-04-01

    A statistical model is given for soil development relating meteoroid impacts on the moon to cosmic-ray-produced isotopes in the soil. By means of this model, the average lunar mass loss rate during the past 14 aeons is determined to be 170 g/sq cm aeon and the soil mixing rate to be approximately 200 cm/aeon from the gadolinium isotope data for the Apollo 15 and 16 drill stems. The isotope data also restrict the time variation of the meteoroid flux during the past 14 aeons. (U.S.)

  3. Combined stable isotope trajectories for water-rock interaction

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1981-01-01

    The 'mixed' model of water-rock interaction (1980 Workshop) is explained in detail. Based on the magnitude of the oxygen isotope shifts of their recharge water, different geothermal systems can be placed in an evolutionary series, from incipient (large shift of water) to mature (small shift of water). Isotopes of different chemical elements may be combined, to yield a stringent test of whether or not a given change in rock composition may be ascribed to interaction with water (L-shaped trajectories). For the acidic eruptives of the Taupo Volcanic Zone, available strontium and oxygen isotope data practically rule out an origin by partial melting of greywacke basement

  4. Mixed parentage

    DEFF Research Database (Denmark)

    Bang Appel, Helene; Singla, Rashmi

    2016-01-01

    Despite an increase in cross border intimate relationships and children of mixed parentage, there is little mention or scholarship about them in the area of childhood and migrancy in the Nordic countries. The international literature implies historical pathologisation, contestation and current...... of identity formation in the . They position themselves as having an “in-between” identity or “ just Danes” in their every day lives among friends, family, and during leisure activities. Thus a new paradigm is evolving away- from the pathologisation of mixed children, simplified one-sided categories...

  5. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  6. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  7. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  8. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  9. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A.

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T mi ) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T h ) = 325 ± 5 deg C. The boiling zone shows T h = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO 2 . Positive clathrate melting temperatures (fusion) with T h = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO 2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ 18 O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ 18

  10. High-precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O / CO2 ratio from polar ice core samples

    Directory of Open Access Journals (Sweden)

    T. K. Bauska

    2014-11-01

    Full Text Available An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ13C-CO2 trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ13C of CO2 at very high precision, as well as measuring the CO2 and N2O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~400 g with a dry-extraction "ice grater" device. The liberated air is cryogenically purified to a CO2 and N2O mixture and analyzed with a microvolume-equipped dual-inlet IRMS (Thermo MAT 253. The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02‰ for δ13C-CO2 and 2 ppm and 4 ppb for the CO2 and N2O mixing ratios, respectively (1σ pooled standard deviation. Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultralow-temperature freezer (−60 °C improves the precision and decreases the experimental blank of the method to −0.07 ± 0.04‰. We describe techniques for accurate calibration of small samples and the application of a mass-spectrometric method based on source fragmentation for reconstructing the N2O history of the atmosphere. The oxygen isotopic composition of CO2 is also investigated, confirming previous observations of oxygen exchange between gaseous CO2 and solid H2O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H2O and CO2 exchange below the H2O bulk melting temperature.

  11. Isotopes of water. A biblography

    International Nuclear Information System (INIS)

    Summers, W.K.; Sittler, C.J.

    1976-01-01

    This bibliography contains at least 2300 references to currently available literature on the isotopes of water-viz., hydrogen, deuterium, tritium, and 16 O and 18 O forms. The bulk of the references appeared before 1975. The references are presented in two parts. Part I contains those references relating to tritium. The references in this part are included under the following categories: bibliography; symposia, conferences and collections; methods for measurement; decay rate; tritium production; meteorites and moon rocks; history and state of the art; processing and handling; proposals for using; methods in hydrologic studies; hydrologic cycle; biology and ecology; nuclear facilities; and supportive techniques. References to deuterium and oxygen are included in Part II. These references are organized under the following headings: bibliography; symposia, conferences and collections; history and state of the art; proposals for using; methods for measurement; physics, chemistry and thermodynamics; water, water vapor and ice; carbon dioxide and carbon dioxide-water; biology and ecology; extraterrestrial studies; concentrations in rocks and minerals; hydrologic cycle; hydrocarbons; paleotemperatures and paleoclimatology

  12. IM-CRDS for the analysis of matrix-bound water isotopes: a streamlined (and updated) tool for ecohydrologists to probe small-scale variability in plants Yasuhara, S. (syasuhara@picarro.com)1,Carter, J.A. (jcarter@picarro.com)1, Dennis, K.J. (kdennis@picarro.com)1 1Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, CA 95054

    Science.gov (United States)

    Yasuhara, S.

    2013-12-01

    The ability to measure the isotopic composition of matrix-bound water is valuable to many facets of earth and environmental sciences. For example, ecohydrologists use stable isotopes of oxygen and hydrogen in plant and soil water, in combination with measurements of atmospheric water vapor, surface water and precipitation, to estimate budgets of evapotranspiration. Likewise, water isotopes of oceanic water, brines and other waters with high total dissolved solids (TDS, e.g., juices) are relevant to studying large-scale oceanic circulation, small-scale mixing, groundwater contamination, the balance of evaporation to precipitation, and the provenance of food. Conventionally matrix-bound water has been extracted using cryogenic distillation, whereby water is distilled from the material in question (e.g., a leaf sample) by heating under vacuum and collecting the resultant water vapor using liquid nitrogen. The water can then be analyzed for its stable isotopic composition by a variety of methods, including isotope ratio mass spectrometry and laser techniques, such as Cavity Ring-Down Spectroscopy (CRDS). Here we present recent improvements in an alternative, and stream-lined, solution for integrated sample extraction and isotopic measurement using a Picarro Induction Module (IM) coupled to commercially-available CRDS analyzer from Picarro. This technique is also valuable for waters with high TDS, which can have detrimental effects on flash vaporization process, typically used for the introduction of water to Picarro CRDS water isotope analyzers. The IM works by inductively heating a sample held within a metal sample holder in a glass vial flushed with dry air. Tested samples include leaves, stems, twigs, calibration water, juices, and salt water. The heating process evolves water vapor which is then swept through the system at approximately 150 standard cubic centimeters per minute. The evolved water vapor passes through an activated charcoal cartridge for removal of

  13. Isotopic research in Antarctica

    International Nuclear Information System (INIS)

    Schuetze, H.

    1983-01-01

    Since 1978 scientists of the Central Institute of Isotope- and Radiation Research of the Academy of Sciences of the GDR have participated in antarctic research. Substantial results have been achieved in research on isotope ratios, on the dynamics of water resources, on concentration of deuterium in lichens, and on age determination of a mummified seal and a penguin colony

  14. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  15. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  16. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  17. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus are disclosed for separation of uranium isotopes by selective isotopic excitation of photochemically reactive uranyl salt source material at cryogenic temperatures, followed by chemical separation of selectively photochemically reduced U+4 thereby produced from remaining uranyl source material

  19. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  1. Superdeformation in Pb isotopes

    International Nuclear Information System (INIS)

    Naz, Tabassum; Ahmad, Shakeb

    2017-01-01

    The Relatvistic Hartree-Bogoliubov (RHB) theory is used to explore the structure of superdeformed (SD) 190,212 Pb isotopes using the non-linear NL3* and density dependent (DD-ME2, DD-PC1) interactions. We have studied the the excitation energy, the potential depth and the deformation of these Pb isotopes

  2. Detecting isotopic ratio outliers

    Science.gov (United States)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  3. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1986-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers

  4. Isotope dilution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fudge, A.

    1978-12-15

    The following aspects of isotope dilution analysis are covered in this report: fundamental aspects of the technique; elements of interest in the nuclear field, choice and standardization of spike nuclide; pre-treatment to achieve isotopic exchange and chemical separation; sensitivity; selectivity; and accuracy.

  5. Environmental isotope hydrology

    International Nuclear Information System (INIS)

    1973-01-01

    Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32 Si and 238 U/ 234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. (author)

  6. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  7. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  8. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  9. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  10. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-01-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling either medium dose (3.53%), low dose (1.29%), or placebo cannabis with the primary outcome being VAS pain intensity. Psychoactive side-effects, and neuropsychological performance were also evaluated. Mixed effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the two active dose groups’ results (p>0.7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo vs. low dose, 2.9 for placebo vs. medium dose, and 25 for medium vs. low dose. As these NNT are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being, for all intents and purposes, as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well-tolerated, and neuropsychological effects were of limited duration and readily reversible within 1–2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. PMID:23237736

  11. Mixed Movements

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2010-01-01

    levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....

  12. Lateral Mixing

    Science.gov (United States)

    2014-09-30

    negative (right panel c) and the kinetic energy dissipation is larger than that expected from meterological forcing alone (right panel a). This is...10.1002/grl.50919. Shcherbina, A. et al., 2014, The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean., Bull. American Meterological

  13. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    Greenland ice cores offer a unique opportunity to investigate the climate system behaviour. The objective of this PhD project is to investigate isotope modelling of present- day conditions and conduct model-data comparison using Greenland ice cores. Thus this thesis investigates how the integration...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  14. Applications of isotopes

    International Nuclear Information System (INIS)

    Kirby-Smith, J.S.

    1976-01-01

    Current and potential applications of stable isotopes as tracers in a number of biomedical and environmental areas are discussed. It is pointed out that a wide variety of problems exist in these fields whose solutions in principle are amenable to the isotopic approach. The number and diversity of these problems as well as the unique role stable isotopes can play in their solution illustrate the importance of achieving and maintaining a broad inventory of isotopic species. Experience has demonstrated unequivocally an additional overriding requirement for widespread exploration of stable isotopes by the scientific and technical community, i.e., the need for low cost availability of the materials in quantity. Some representative applications of 12 C, 13 C, 14 N, 15 N, 16 O, 17 O, and 18 O are discussed

  15. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  16. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  17. An IBM description of coexistence in the platinum isotopes

    International Nuclear Information System (INIS)

    Harder, M.; Tang, K.T.; Van Isacker, P.

    1996-06-01

    The low-energy spectra of the platinum isotopes show evidence for the presence of two types of configurations: one which involves only excitations of the valence nucleons and another which includes proton excitations across the Z = 82 shell gap. A schematic description is presented of the coexistence and mixing of both configurations in the context of the interacting boson model and energies, electromagnetic transition rates and moments, and radii are studied. The analysis shows that a simultaneous description of both configurations puts constraints on the possible range of model parameters. Isotope and isomer shifts are shown to be sensitive to the mixing of both configurations. (author)

  18. Table of laser lines in gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, R; Englisch, W; Guers, K

    1980-01-01

    Numerous applications of lasers require use of specific wavelengths (gas analysis including remote sensing, Raman spectroscopy, optical pumping, laser chemistry and isotope separation). Scientists active in these fields have been compelled to search, in addition to the available, mostly obsolete, laser-line tables, the entire recent literature in order to find suitable laser transitions. Over 6100 laser transitions are presented. An additional list of the lines arranged in order of wavelength should greatly facilitate the search for a laser material that generates a specific wavelength. Further information has also been supplied by listing the pump transition for each of the FIR lines obtained with the optically pumped organic vapors. In addition to the laser lines, the operating conditions under which emission has been achieved are briefly specified at the top of the list for each active medium. The order in which the atomic laser media are listed is based on the periodic system, beginning with the noble gases, continuing with hydrogen and the alkalies to the halogens and the rare earths. The molecular laser media are arranged in order of chemical composition, beginning with the compounds of noble gases (the excimers), then other diatomic molecules, triatomic molecules, and ending with the more complex molecules of organic vapors. (WHK).

  19. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  20. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015