WorldWideScience

Sample records for isomerase deficiency activates

  1. Neurological findings in triosephosphate isomerase deficiency

    NARCIS (Netherlands)

    Poll-The, B. T.; Aicardi, J.; Girot, R.; Rosa, R.

    1985-01-01

    Two siblings with hemolytic anemia caused by triosephosphate isomerase deficiency developed a progressive neurological syndrome featuring dystonic movements, tremor, pyramidal tract signs, and evidence of spinal motor neuron involvement. Intelligence was unaffected. The findings in these patients

  2. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    OpenAIRE

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-01-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally...

  3. [Deficiency of triosephosphate isomerase. Apropos of 2 new cases].

    Science.gov (United States)

    Delso Martínez, M C; Uriel Miñana, P; Pérez Lugmus, G; Giménez Mas, J A; Baldellou Vázquez, A

    1983-08-01

    Two siblings, born of a no consanguineous couple, a female and a male, affected by a severe and progressive neurological disease and chronic hemolytic anemia are presented. Their clinical, hematological, biochemical and pathological studies are discussed. One of the patients showed a triosephosphate isomerase deficiency and the carrier condition of their parents was tested. Commentaries about physiopathology of this disease are made.

  4. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    Science.gov (United States)

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  5. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.; Pallanck, Leo J.

    2016-03-31

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.

  6. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    Science.gov (United States)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  7. Triose phosphate isomerase deficiency is caused by altered dimerization--not catalytic inactivity--of the mutant enzymes.

    Directory of Open Access Journals (Sweden)

    Markus Ralser

    Full Text Available Triosephosphate isomerase (TPI deficiency is an autosomal recessive disorder caused by various mutations in the gene encoding the key glycolytic enzyme TPI. A drastic decrease in TPI activity and an increased level of its substrate, dihydroxyacetone phosphate, have been measured in unpurified cell extracts of affected individuals. These observations allowed concluding that the different mutations in the TPI alleles result in catalytically inactive enzymes. However, despite a high occurrence of TPI null alleles within several human populations, the frequency of this disorder is exceptionally rare. In order to address this apparent discrepancy, we generated a yeast model allowing us to perform comparative in vivo analyses of the enzymatic and functional properties of the different enzyme variants. We discovered that the majority of these variants exhibit no reduced catalytic activity per se. Instead, we observed, the dimerization behavior of TPI is influenced by the particular mutations investigated, and by the use of a potential alternative translation initiation site in the TPI gene. Additionally, we demonstrated that the overexpression of the most frequent TPI variant, Glu104Asp, which displays altered dimerization features, results in diminished endogenous TPI levels in mammalian cells. Thus, our results reveal that enzyme deregulation attributable to aberrant dimerization of TPI, rather than direct catalytic inactivation of the enzyme, underlies the pathogenesis of TPI deficiency. Finally, we discovered that yeast cells expressing a TPI variant exhibiting reduced catalytic activity are more resistant against oxidative stress caused by the thiol-oxidizing reagent diamide. This observed advantage might serve to explain the high allelic frequency of TPI null alleles detected among human populations.

  8. Glucose (xylose) isomerase production from thermotolerant and ...

    African Journals Online (AJOL)

    Owner

    2012-11-13

    Nov 13, 2012 ... in the production of the high fructose corn syrup (HFCS) from corn starch. ... Key words: Glucose isomerase, xylose isomerase, enzyme activity, Klebsiella, ... Soil, water, and manure (five samples each) were collected from.

  9. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice.

    Science.gov (United States)

    Rhimi, Moez; Bermudez-Humaran, Luis G; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, Héla; Langella, Philippe; Maguin, Emmanuelle

    2015-12-21

    The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive L-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of D-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. The L-arabinose isomerase (L-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SP(Usp45)). The L-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakei L-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant L-AI with the SP(Usp45). Th L-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the L-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. We report for the first time the secretion of the intracellular L-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly display other secreted proteins. The secreted L-AI originated from the food

  10. The effect of a moderate zinc deficiency and dietary fat source on the activity and expression of the Δ(3)Δ (2)-enoyl-CoA isomerase in the liver of growing rats.

    Science.gov (United States)

    Justus, Jennifer; Weigand, Edgar

    2014-06-01

    Auxiliary enzymes participate in β-oxidation of unsaturated fatty acids. The objective of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on Δ(3)Δ(2)-enoyl-CoA isomerase (ECI) in the liver and other tissues. Five groups of eight weanling rats each were fed moderately zinc-deficient (ZD) or zinc-adequate (ZA) semisynthetic diets (7 or 50 mg Zn/kg) enriched with 22 % cocoa butter (CB) or 22 % safflower oil (SO) for 4 weeks: (1) ZD-CB, fed free choice; (2) ZA-CBR, ZA-CB diet fed in equivalent amounts consumed by the ZD-CB group; (3) ZD-SO, fed free choice; (4) ZA-SOR, ZA-SO diet fed in equivalent amounts consumed by the ZD-SO group; and (5) ZA-SO, fed free choice. Growth and Zn status markers were markedly reduced in the ZD groups. ECI activity in the liver of the animals fed the ZD- and ZA-SO diets were significantly higher (approximately 2- and 3-fold, respectively) as compared with the CB-fed animals, whereas activities in extrahepatic tissues (kidneys, heart, skeletal muscle, testes, adipose tissue) were not altered by dietary treatments. Transcript levels of the mitochondrial Eci gene in the liver did not significantly differ between ZD and ZA rats, but were 1.6-fold higher in the ZA-SO- than in the ZD-CB-fed animals (P safflower oil as a source high in linoleic acid induce markedly increased hepatic ECI activities and that a moderate Zn deficiency does not affect transcription of the mitochondrial Eci gene in the liver.

  11. Affinity labeling and characterization of the active site histidine of glucosephosphate isomerase

    International Nuclear Information System (INIS)

    Gibson, D.R.; Gracy, R.W.; Hartman, F.C.

    1980-01-01

    N-bromoacetylethanolamine phosphate was found to act as a specific affinity label for the active center of glucosephosphate isomerase. The inactivation process followed pseudo-first order kinetics, was irreversible, and exhibited rate saturation kinetics with minimal half-lives of inactivation of 4.5 and 6.3 min for the enzyme isolated from human placenta and rabbit muscle, respectively. The pH dependence of the inactivation process closely paralleled the pH dependence of the overall catalytic process with pK/sub a/ values at pH 6.4 and 9.0. The stoichiometry of labeling of either enzyme, as determined with N-bromo[ 14 C 2 ]acetylethanolamine phosphate, was 1 eq of the affinity label/subunit of enzyme. After acid hydrolysis and amino acid analysis of the radioactive affinity-labeled human enzyme, only radioactive 3-carboxymethyl histidine was found. In the case of the rabbit enzyme, the only radioactive derivative obtained was 1-carboxymethyl histidine. Active site tryptic peptides were isolated by solvent extraction, thin layer peptide fingerprinting, and ion exchange chromatography before and after removal of the phosphate from the active site peptide. Amino acid analysis of the labeled peptides from the two species were very similar. Using high sensitivity methods for sequence analysis, the primary structure of the active site was established as Val-Leu-His-Ala-Glu-Asn-Val-Asp (Gly,Thr,Ser) Glu-Ile (Thr-Gly-His-Lys-Glx)-Tyr-Phe. Apparent sequence homology between the catalytic center of glucosephosphate isomerase and triosephosphate isomerase suggest that the two enzymes may have evolved from a common ancestral gene

  12. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  13. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Science.gov (United States)

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  14. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  15. Inhibiting prolyl isomerase activity by hybrid organic-inorganic molecules containing rhodium(II) fragments.

    Science.gov (United States)

    Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T

    2014-11-15

    A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  17. Effects of polybrominated diphenyl ethers (PBDEs) and their derivatives on protein disulfide isomerase activity and growth hormone release of GH3 cells.

    Science.gov (United States)

    Hashimoto, Shoko; Yoshimura, Hiromi; Okada, Kazushi; Uramaru, Naoto; Sugihara, Kazumi; Kitamura, Shigeyuki; Imaoka, Susumu

    2012-03-19

    Polybrominated diphenyl ethers (PBDEs) have been used in a variety of consumer products such as flame retardants and recently have been known to be widespread environmental pollutants, which probably affect biological functions of mammalian cells. However, the risk posed by PBDE metabolites has not been clarified. Our previous study suggested that bisphenol A (BPA), an endocrine-disrupting chemical, binds to protein disulfide isomerase (PDI) and inhibits its activity. PDI is an isomerase enzyme in the endoplasmic reticulum and facilitates the formation or cleavage of disulfide bonds. PDI consists of a, b, b', and a' domains and the c region, with the a and a' domains having isomerase active sites. In the present study, we tested the effects of 10 kinds of PBDE compounds and their metabolites on PDI. OH-PBDEs specifically inhibited the isomerase activity of PDI, with 4'-OH-PBDE more effective than 2' (or 2)-OH-PBDEs. 4'-OH-PBDE inhibited the isomerase activity of the b'a'c fragment but not that of ab and a'c, suggesting that the b' domain of PDI is essential for the inhibition by 4'-OH-PBDE. We also investigated the effects of these chemicals on the production of growth hormone (GH) in GH3 cells. In GH3 cells, levels of mRNA and protein of GH stimulated by T(3) were reduced by 4'-OH-PBDE and 4'-MeO-PBDE. The reduction in GH expression caused by these compounds was not changed by the overexpression or knockdown of PDI in GH3 cells, while these manipulations of PDI levels significantly suppressed the expression of GH. These results suggest that the biological effects of PBDEs differed depending on their brominated and hydroxylated positions. © 2011 American Chemical Society

  18. Revisiting the mechanistic basis of the French Paradox: red wine inhibits the activity of protein disulfide isomerase in vitro

    Science.gov (United States)

    Galinski, Christine N.; Zwicker, Jeffrey I.; Kennedy, Daniel R.

    2015-01-01

    Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. PMID:26585763

  19. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    Science.gov (United States)

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  20. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  1. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  3. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose.

    Science.gov (United States)

    Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K

    2006-07-01

    Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.

  4. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    Science.gov (United States)

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preparation of fluorescence quenched libraries containing interchain disulphide bonds for studies of protein disulphide isomerases

    DEFF Research Database (Denmark)

    Spetzler, J C; Westphal, V; Winther, Jakob R.

    1998-01-01

    Protein disulphide isomerase is an enzyme that catalyses disulphide redox reactions in proteins. In this paper, fluorogenic and interchain disulphide bond containing peptide libraries and suitable substrates, useful in the study of protein disulphide isomerase, are described. In order to establish...... the quenching chromophore (Tyr(NO2)) and Cys(pNpys) activated for reaction with a second thiol. The formation and cleavage of the interchain disulphide bonds in the library were monitored under a fluorescence microscope. Substrates to investigate the properties of protein disulphide isomerase in solution were...

  6. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    Science.gov (United States)

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. © 2015 Authors.

  7. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase.

    Science.gov (United States)

    Mishra, Abha; Debnath Das, Meera

    2002-01-01

    pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.

  8. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  9. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  10. Purification and characterization of the d-xylose isomerase gene from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N W.Y.; Rosenfeld, S; Stevis, P; Tsao, G T

    1983-11-01

    A DNA fragment containing both the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene and the D-xylulokinase (ATP: D-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The D-xylose isomerase gene was separated from the D-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The D-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the D-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first D-xylose isomerase gene that has been isolated and extensively purified from any organism. D-Xylose isomerase, the enzyme product of the D-xylose isomerase gene, is responsible for the conversion of D-xylose to D-xylulose, as well as D-glucose to D-fructose. It is widely believed that yeast cannot ferment D-xylose to ethanol primarily because of the lack of D-xylose isomerase in yeast. D-Xylose isomerase (also known as D-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the D-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting D-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology. 14 references.

  11. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  12. Obtaining mutants of Streptomyces griseoflavus strain 1339, producers of glucose isomerase, following gamma irradiation

    International Nuclear Information System (INIS)

    Dzhedzheva, G.; Stoeva, N.; Stojchev, M.

    1990-01-01

    A water suspension of Streptomyces griseoflavus strain 1339 spores of a density of 8.7.10 6 spores/cm 3 is gamma irradiated ( 60 Co, RHM-γ-20, 30.3 Gy/min). The survival of Streptomyces griseoflavus strain 1339 spores was determined depending on radiation doses, exposure times and incubation temperature. Five major morphological types of colonies were isolated, characterized by different levels of glucose isomerase activity. Maximum specific glucose isomerase activity (GIU/g) was attained after the third gamma irradiation step using a dose of 3000 Gy. 2 tabs., 3 figs., 7 refs

  13. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.

    Science.gov (United States)

    Zheng, Zhaojuan; Lin, Xi; Jiang, Ting; Ye, Weihua; Ouyang, Jia

    2016-08-01

    To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.

  14. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  15. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  16. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins.

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    Full Text Available The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca(2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.

  17. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    Science.gov (United States)

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  18. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  20. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  1. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  2. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively. Conclusion The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.

  3. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    Science.gov (United States)

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  4. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  5. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  6. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  7. Overexpression, purification, crystallization and preliminary X-ray crystal analysis of Bacillus pallidusd-arabinose isomerase

    International Nuclear Information System (INIS)

    Takeda, Kosei; Yoshida, Hiromi; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2008-01-01

    Recombinant B. pallidusd-arabinose isomerase was crystallized and diffraction data were collected to 2.3 Å resolution. d-Arabinose isomerase catalyzes the isomerization of d-arabinose to d-ribulose. Bacillus pallidusd-arabinose isomerase has broad substrate specificity and can catalyze the isomerization of d-arabinose, l-fucose, l-xylose, l-galactose and d-altrose. Recombinant B. pallidusd-arabinose isomerase was overexpressed, purified and crystallized. A crystal of the enzyme was obtained by the sitting-drop method at room temperature and belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 144.9, b = 127.9, c = 109.5 Å. Diffraction data were collected to 2.3 Å resolution

  8. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  9. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  10. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  11. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Science.gov (United States)

    2010-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma. (b...

  12. The secreted l-arabinose isomerase displays anti-hyperglycemic effects in mice

    OpenAIRE

    Rhimi, Moez; Bermudez-Humaran, Luis G.; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, H?la; Langella, Philippe; Maguin, Emmanuelle

    2015-01-01

    Background The l-arabinose isomerase is an intracellular enzyme which converts l-arabinose into l-ribulose in living systems and d-galactose into d-tagatose in industrial processes and at industrial scales. d-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The d-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive l-arabinose isomerase should be thermoactive and a...

  13. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    Science.gov (United States)

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  14. Purification, crystallization and preliminary crytallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Akerboom, A.P.; Turnbull, A.P.; Hargreaves, D.; Fischer, M.; Geus, de D.; Sedelnikova, S.E.; Berrisford, J.M.; Baker, P.J.; Verhees, C.H.; Oost, van der J.; Rice, D.W.

    2003-01-01

    The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic

  15. Mechanism of ultraviolet light induced catabolite repression of L-arabinose isomerase

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, D; Bhattacharya, A K [Banaras Hindu Univ. (India). Inst. of Medical Sciences

    1982-12-01

    An attempt has been made to find out how U.V. irradiation of E.coli B/r cells causes catabolite repression to inhibit L-arabinose isomerase synthesis. The results presented show that U.V. irradiation leads to a lowering of the cellular cyclic AMP level and of the cyclic AMP binding activity. Unlike catabolite repression by glucose, no small molecular weight compound is involved in U.V. light induced inhibition of the binding activity. It is therefore concluded that the mechanism of catabolite repression induced by U.V. appears to be different from that of the catabolite repression by glucose.

  16. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    Science.gov (United States)

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  17. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener.

    Science.gov (United States)

    Nguyen, Tien-Kieu; Hong, Moon-Gi; Chang, Pahn-Shick; Lee, Byung-Hoo; Yoo, Sang-Ho

    2018-01-01

    d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.

  18. Characterization of an L-arabinose isomerase from Bacillus thermoglucosidasius for D-tagatose production.

    Science.gov (United States)

    Seo, Myung-Ji

    2013-01-01

    L-Arabinose isomerase from Bacillus thermoglucosidasius KCTC 1828 (BTAI) was expressed in Escherichia coli. The optimal temperature and pH for the activity of the purified BTAI were 40 °C and pH 7.0. The Mn(2+) ion was an activator of BTAI activity. The kinetic parameters of BTAI for D-galactose were a K(m) of 175 mM and a k(cat)/K(m) of 2.8 mM(-1)min(-1). The conversion ratio by BTAI to D-tagatose reached 45.6% at 40 °C.

  19. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  20. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ann De Vos

    2015-04-01

    Full Text Available Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau as well as promoting the dephosphorylation of the protein by the trans-dependent phosphatase PP2A. In this study we used models based on Saccharomyces cerevisiae to further elucidate the influence of Pin1 and its yeast ortholog Ess1 on tau phosphorylation and self-assembly. We could demonstrate that in yeast, a lack of Pin1 isomerase activity leads to an increase in phosphorylation of tau at Thr231, comparable to AD brain and consistent with earlier findings in other model organisms. However, we could also distinguish an effect by Pin1 on other residues of tau, i.e. Ser235 and Ser198/199/202. Furthermore, depletion of Pin1 isomerase activity results in reduced growth of the yeast cells, which is enhanced upon expression of tau. This suggests that the accumulation of hyperphosphorylated and aggregation-prone tau causes cytotoxicity in yeast. This study introduces yeast as a valuable model organism to characterize in detail the effect of Pin1 on the biochemical characteristics of protein tau, more specifically its phosphorylation and aggregation.

  1. High production of D-tagatose, a potential sugar substitute, using immobilized L-arabinose isomerase.

    Science.gov (United States)

    Kim, P; Yoon, S H; Roh, H J; Choi, J H

    2001-01-01

    An L-arabinose isomerase of Escherichia coli was immobilized using covalent binding to agarose to produce D-tagatose, a bulking sweetener that can be economically used as a sugar substitute. The immobilized L-arabinose isomerase stably produced an average of 7.5 g-tagatose/L.day for 7 days with a productivity exceeding that of the free enzyme (0.47 vs 0.30 mg/U.day). Using a scaled-up immobilized enzyme system, 99.9 g-tagatose/L was produced from galactose with 20% equilibrium in 48 h. The process was repeated two more times with production of 104.1 and 103.5 g-tagatose/L. D-Tagatose production using an immobilized L-arabinose isomerase has a high potential for commercial application.

  2. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method

    International Nuclear Information System (INIS)

    Mori, Tadashi; Hidaka, Masafumi; Lin, Yi-Chin; Yoshizawa, Ibuki; Okabe, Takayoshi; Egashira, Shinichiro; Kojima, Hirotatsu; Nagano, Tetsuo; Koketsu, Mamoru; Takamiya, Mari; Uchida, Takafumi

    2011-01-01

    Research highlights: → A Pin1 (prolyl isomerase) inhibitor, TME-001, has been discovered by using a new established high-throughput screening method. → The TME-001 showed a cell-active inhibition with lower cytotoxic effect than known Pin1 inhibitors. → Kinetic analyses revealed that the TME-001 is the first compound that exhibits dual inhibition of Pin1 and another type of prolyl isomerase, cyclophilin. → Thus, similarities of structure and reaction mechanism between Pin1 and cyclophilin are proposed. -- Abstract: Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer's disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC 50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC 50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.

  3. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  4. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei

    Science.gov (United States)

    Lopez-Zavala, Alonso A.; Carrasco-Miranda, Jesus S.; Ramirez-Aguirre, Claudia D.; López-Hidalgo, Marisol; Benitez-Cardoza, Claudia G.; Ochoa-Leyva, Adrian; Cardona-Felix, Cesar S.; Diaz-Quezada, Corina; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2016-01-01

    Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7 Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation. PMID:27614148

  5. The crystal structure of a multifunctional protein: Phosphoglucose isomerase/autocrine motility factor/neuroleukin

    OpenAIRE

    Sun, Yuh-Ju; Chou, Chia-Cheng; Chen, Wei-Shone; Wu, Rong-Tsun; Meng, Menghsiao; Hsiao, Chwan-Deng

    1999-01-01

    Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-Å resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm tha...

  6. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    Science.gov (United States)

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  7. Characteristics of chalcone isomerase promoter in crabapple leaves ...

    African Journals Online (AJOL)

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of plants and chalcone isomerase (CHI) is one of the key enzymes in anthocyanin biosynthetic pathway. What characteristic is CHI promoter known as the regulation sequence of CHI gene, has been rarely investigated. We isolated A ...

  8. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...... catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...

  9. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque......The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  10. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  11. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, ...

  12. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv

    International Nuclear Information System (INIS)

    Mathur, Divya; Anand, Kanchan; Mathur, Deepika; Jagadish, Nirmala; Suri, Anil; Garg, Lalit C.

    2007-01-01

    The phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv was crystallized and diffraction data were collected to 2.8 Å resolution. Phosphoglucose isomerase is a ubiquitous enzyme that catalyzes the isomerization of d-glucopyranose-6-phosphate to d-fructofuranose-6-phosphate. The present investigation reports the expression, purification, crystallization and preliminary crystallographic studies of the phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv, which shares 46% sequence identity with that of its human host. The recombinant protein, which was prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group I2 1 2 1 2 1 , with unit-cell parameters a = 109.0, b = 119.8, c = 138.9 Å

  13. Arabidopsis Phosphomannose Isomerase 1, but Not Phosphomannose Isomerase 2, Is Essential for Ascorbic Acid Biosynthesis*S⃞

    OpenAIRE

    Maruta, Takanori; Yonemitsu, Miki; Yabuta, Yukinori; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2008-01-01

    We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between d-fructose 6-phosphate and d-mannose 6-phosphate (Man-6P). The apparent Km and Vmax values for Man-6P of purified recombinant PMI1 were 41.3 ± 4.2 μm and 1.89 μmol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372 ± 13 μm and 22.5 μmol/min/mg protein, respectively. Both PMI1 ...

  14. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  15. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    Directory of Open Access Journals (Sweden)

    Cody Caba

    2018-02-01

    Full Text Available Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI, the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin. A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  16. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation.

    Science.gov (United States)

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys 57 and Lys 401 of human PDI in vitro . Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys 57 and Lys 401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys 57 and acLys 401 . The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  17. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  18. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  19. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    Triosephosphate isomerase (TPI), which catalyses the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), was studied for its control on glycolysis and mixed acid production in L. lactis subspecies lactis IL1403 and L. lactis subspecies cremoris MG1363. Strains...... metabolites glucose-6-phosphate, fructose-1,6-bisphosphate and DHAP in the IL1403 derivatives were essentially unchanged for TPI activities from 26% to 225%. At a TPI activity of 3%, the level of DHAP increased four times. The finding that an increased level of DHAP coincides with an increase in formate...

  20. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  2. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Directory of Open Access Journals (Sweden)

    Hironori Kurisaki

    Full Text Available Although the autoimmune regulator (Aire knockout (KO mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2, which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  3. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Science.gov (United States)

    Kurisaki, Hironori; Nagao, Yukihiro; Nagafuchi, Seiho; Mitsuyama, Masao

    2013-01-01

    Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  4. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    Aspects of protein disulfide isomerase (PDI) function have been studied in yeast in vivo. PDI contains two thioredoxin-like domains, a and a', each of which contains an active-site CXXC motif. The relative importance of the two domains was analyzed by rendering each one inactive by mutation to SGAS....... Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC......-deleted strains overexpressing the yeast PDI homologue EUG1 are viable. Exchanging the wild-type Eug1p C(L/I)HS active site sequences for C(L/I)HC increased the growth rate significantly, however, further highlighting the importance of the oxidizing function for optimal growth....

  5. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    Directory of Open Access Journals (Sweden)

    Wanarska Marta

    2012-08-01

    Full Text Available Abstract Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield

  6. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.

    Science.gov (United States)

    Wanarska, Marta; Kur, Józef

    2012-08-23

    D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization

  7. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  8. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  9. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  10. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Kozak, Maciej; Taube, Michał

    2009-10-01

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  11. Coexpression of β-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetener.

    Science.gov (United States)

    Zhan, Yijing; Xu, Zheng; Li, Sha; Liu, Xiaoliu; Xu, Lu; Feng, Xiaohai; Xu, Hong

    2014-03-19

    The functional sweetener, d-tagatose, is commonly transformed from galactose by l-arabinose isomerase. To make use of a much cheaper starting material, lactose, hydrolization, and isomerization are required to take place collaboratively. Therefore, a single-step method involving β-d-galactosidase was explored for d-tagatose production. The two vital genes, β-d-galactosidase gene (lacZ) and l-arabinose isomerase mutant gene (araA') were extracted separately from Escherichia coli strains and incorporated into E. coli simultaneously. This gave us E. coli-ZY, a recombinant producing strain capable of coexpressing the two key enzymes. The resulted cells exhibited maximum d-tagatose producing activity at 34 °C and pH 6.5 and in the presence of borate, 10 mM Fe(2+), and 1 mM Mn(2+). Further monitoring showed that the recombinant cells could hydrolyze more than 95% lactose and convert 43% d-galactose into d-tagatose. This research has verified the feasibility of single-step d-tagatose fermentation, thereby laying down the foundation for industrial usage of lactose.

  12. SCREENING OF 6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE ACTIVITY DEFICIENCY AMONG HYPERP HENYLALANINEMIC PATIENTS

    Directory of Open Access Journals (Sweden)

    DURDI QUJEQ

    1999-10-01

    Full Text Available A deficiency of the phenylalanine hydroxylase activity or its cofactor tetrahydrobiopterin may"nlead to hyperphenylalamnemia and as a result, loss of IQ, poor school performance, and"nbehavior problems occurs. Deficiency in 6-pyruvoyl-tetrahydropterin synthase activity is the"nmajor cause of tetrahydrobiopterin deficient phenylketonuria. In this study, blood specimens"nfrom 165 healthy volunteers and 127 children with phenylketonuria were used to determine"nthe 6-pyruvoyl-tetrahydropterin synthase activity. It was found that the activity of 6-"npyruvoyl- tetrahydropterin synthase was decreased in comparison with control [23.46 +/-"n2.94, (mean +/- SD, mmol/ ml/h, n=I27 vs. 127.63 +/- 4.52, n=165, p<0.05]. Results of"nthis study indicate that examination of 6-pyruvoyl-tetrahydropterin synthase activity is helpful"nand may lead to the diagnosis cause of hyperphenylalaninemia.

  13. Mechanisms of Neuroprotection by Protein Disulphide Isomerase in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Adam K. Walker

    2011-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI, which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.

  14. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  15. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.

    Directory of Open Access Journals (Sweden)

    Patrick Schaub

    Full Text Available CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40 hydrocarbon substrate.

  16. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  17. Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases.

    Science.gov (United States)

    Legname, Giuseppe; Virgilio, Tommaso; Bistaffa, Edoardo; De Luca, Chiara Maria Giulia; Catania, Marcella; Zago, Paola; Isopi, Elisa; Campagnani, Ilaria; Tagliavini, Fabrizio; Giaccone, Giorgio; Moda, Fabio

    2018-04-20

    Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1 +/+ ), hemizygous (Pin1 +/- ) or knock-out (Pin1 -/- ) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.

  18. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun

    2006-02-01

    Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.

  19. Thyroid function and deiodinase activities in rats with marginal iodine deficiency

    NARCIS (Netherlands)

    K.P.L.T.M.K. Janssen (Karin); D. van der Heide (Daan); T.J. Visser (Theo); E. Kaptein (Ellen); A.C. Beynen (Anton)

    1994-01-01

    textabstractThe hypothesis tested was whether marginal iodine deficiency for a period of 6 wk affects iodothyronine deiodinase activities in liver and brain of rats. Male rats were fed purified diets either deficient or sufficient in iodine; the diets were fed on a restricted basis (60% of ad

  20. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  1. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase.

    Science.gov (United States)

    Roh, H J; Kim, P; Park, Y C; Choi, J H

    2000-02-01

    D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harbouring the L-arabinose isomerase gene (araA) from Escherichia coli, Bacillus subtilis and Salmonella typhimurium were constructed because L-arabinose isomerase was suggested previously as an enzyme that mediates the bioconversion of galactose into tagatose as well as that of arabinose to ribulose. The constructed plasmids were named pTC101, pTC105 and pTC106, containing araA from E. coli, B. subtilis and S. typhimurium respectively. In the cultures of recombinant E. coli with pTC101, pTC105 and pTC106, tagatose was produced from galactose in 9.9, 7.1 and 6.9% yields respectively. The enzyme extract of E. coli with the plasmid pTC101 also converted galactose into tagatose with a 96.4% yield.

  2. Thermoinactivation Mechanism of Glucose Isomerase

    Science.gov (United States)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  3. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  4. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

    Science.gov (United States)

    Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy

    2009-05-15

    We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.

  5. Enhancement of hippocampal mossy fiber activity in zinc deficiency and its influence on behavior.

    Science.gov (United States)

    Takeda, Atsushi; Itoh, Hiromasa; Yamada, Kohei; Tamano, Haruna; Oku, Naoto

    2008-10-01

    The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.

  6. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    Science.gov (United States)

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    Science.gov (United States)

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  8. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases

    NARCIS (Netherlands)

    Zoldak, G.; Aumuller, T.; Lucke, C.; Hritz, J.; Oostenbrink, C.; Fischer, G.; Schmid, F.X.

    2009-01-01

    To fully explore the substrate specificities of prolyl isomerases, we synthesized a library of 20 tetrapeptides that are labeled with a 2-aminobenzoyl (Abz) group at the amino terminus and a p-nitroanilide (pNA) group at the carboxy terminus. In this peptide library of the general formula

  9. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme.

    Science.gov (United States)

    Kim, Byoung-Chan; Lee, Yoon-Hee; Lee, Han-Seung; Lee, Dong-Woo; Choe, Eun-Ah; Pyun, Yu-Ryang

    2002-06-18

    Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.

  10. Crystallization and preliminary X-ray diffraction studies of l-rhamnose isomerase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Yoshida, Hiromi; Wayoon, Poonperm; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2006-01-01

    Recombinant l-rhamnose isomerase from P. stutzeri has been crystallized. Diffraction data have been collected to 2.0 Å resolution. l-Rhamnose isomerase from Pseudomonas stutzeri (P. stutzeril-RhI) catalyzes not only the reversible isomerization of l-rhamnose to l-rhamnulose, but also isomerization between various rare aldoses and ketoses. Purified His-tagged P. stutzeril-RhI was crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 74.3, b = 104.0, c = 107.0 Å, β = 106.8°. Diffraction data have been collected to 2.0 Å resolution. The molecular weight of the purified P. stutzeril-RhI with a His tag at the C-terminus was confirmed to be 47.7 kDa by MALDI–TOF mass-spectrometric analysis and the asymmetric unit is expected to contain four molecules

  11. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin.

    Science.gov (United States)

    Sun, Y J; Chou, C C; Chen, W S; Wu, R T; Meng, M; Hsiao, C D

    1999-05-11

    Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-A resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm that PGI is neuroleukin and AMF. PGI has an open twisted alpha/beta structural motif consisting of two globular domains and two protruding parts. Based on this substrate-free structure, together with the previously published biological, biochemical, and modeling results, we postulate a possible substrate-binding site that is located within the domains' interface for PGI and AMF. In addition, the structure provides evidence suggesting that the top part of the large domain together with one of the protruding loops might participate in inducing the neurotrophic activity.

  12. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  13. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Hanson, B. Leif [University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mason, Sax A. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Forsyth, V. Trevor [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keele University, Staffordshire (United Kingdom); Fisher, Zoe [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Mustyakimov, Marat [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Blakeley, Matthew P. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keen, David A. [Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Langan, Paul [Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States)

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  14. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  15. Depression of calcium pump activity in renal cortex of vitamin D-deficient rats with secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Tsukamoto, Yusuke; Saitoh, Michiyo; Takita, Yumiko; Nakano, Toshiaki; Tamura, Teiichi

    1990-01-01

    To examine the hormonal regulation of the ATP-dependent Ca 2+ pump in the kidneys, the ATP-dependent Ca 2+ uptake by the basolateral membrane vesicles in the renal cortex was measured using radioactive calcium ( 45 Ca 2+ ) in rats with vitamin D deficiency or rats undergoing thyroparathyroidectomy. The V max of the Ca 2+ pump activity was increased not only by administering calcitriol, but also by normalizing the serum calcium level in vitamin D-deficient rats. PTH suppressed the Ca 2+ pump activity in normocalcemic vitamin D-deficient rats. Thyroparathyroidectomy did not affect the Ca 2+ pump activity in the kidneys of normal rats. It was concluded that the ATP-dependent Ca 2+ pump activity was depressed by secondary hyperparathyroidism in vitamin D-deficient rats. (author)

  16. Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes.

    Science.gov (United States)

    Burke, Derek G; Rahim, Ahad A; Waddington, Simon N; Karlsson, Stefan; Enquist, Ida; Bhatia, Kailash; Mehta, Atul; Vellodi, Ashok; Heales, Simon

    2013-09-01

    Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal β-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 ± 5.6, heterozygote; 71.5 ± 2.4, wild type 76.8 ± 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.

  17. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  18. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    DEWI FITRIANI

    2010-06-01

    Full Text Available L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme had optimum activity at high temperature and alkalin condition.

  19. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  20. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.

    Science.gov (United States)

    Morris, D P; Phatnani, H P; Greenleaf, A L

    1999-10-29

    A phospho-carboxyl-terminal domain (CTD) affinity column created with yeast CTD kinase I and the CTD of RNA polymerase II was used to identify Ess1/Pin1 as a phospho-CTD-binding protein. Ess1/Pin1 is a peptidyl prolyl isomerase involved in both mitotic regulation and pre-mRNA 3'-end formation. Like native Ess1, a GSTEss1 fusion protein associates specifically with the phosphorylated but not with the unphosphorylated CTD. Further, hyperphosphorylated RNA polymerase II appears to be the dominant Ess1 binding protein in total yeast extracts. We demonstrate that phospho-CTD binding is mediated by the small WW domain of Ess1 rather than the isomerase domain. These findings suggest a mechanism in which the WW domain binds the phosphorylated CTD of elongating RNA polymerase II and the isomerase domain reconfigures the CTD though isomerization of proline residues perhaps by a processive mechanism. This process may be linked to a variety of pre-mRNA maturation events that use the phosphorylated CTD, including the coupled processes of pre-mRNA 3'-end formation and transcription termination.

  1. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta

    Energy Technology Data Exchange (ETDEWEB)

    Old, S.E.; Mohrenweiser, H.W. (Univ. of Michigan, Ann Arbor (USA))

    1988-09-26

    The triosephosphate isomerase gene from a rhesus monkey, Macaca mulatta, charon 34 library was sequenced. The human and chimpanzee enzymes differ from the rhesus enzyme at ASN 20 and GLU 198. The nucleotide sequence identity between rhesus and human is 97% in the coding region and >94% in the flanking regions. Comparison of the rhesus and chimp genes, including the intron and flanking sequences, does not suggest a mechanism for generating the two TPI peptides of proliferating cells from hominoids and a single peptide from the rhesus gene.

  2. Genetics Home Reference: complete plasminogen activator inhibitor 1 deficiency

    Science.gov (United States)

    ... well studied in a large family belonging to the Old Order Amish population of eastern and southern Indiana. Additional cases in North ... Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997 Jul 1;90( ...

  3. Identification and quantification of nitrogen nutrient deficiency in the activated sludge process using respirometry

    NARCIS (Netherlands)

    Ning, Z.; Patry, G.G.; Spanjers, H.

    2000-01-01

    Experimental protocols to identify and quantify nitrogen nutrient deficiency in the activated sludge process were developed and tested using respirometry. Respirometric experiments showed that when a nitrogen nutrient deficient sludge is exposed to ammonia nitrogen, the oxygen uptake rate (OUR) of

  4. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    Science.gov (United States)

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  5. Reduced prostasin (CAP1/PRSS8 activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation.

    Directory of Open Access Journals (Sweden)

    Roman Szabo

    Full Text Available Loss of either hepatocyte growth factor activator inhibitor (HAI-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8, restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2, or the epithelial sodium channel (ENaC alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.

  6. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    International Nuclear Information System (INIS)

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-01-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2 1 3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M

  8. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    Science.gov (United States)

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  9. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    Science.gov (United States)

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  10. Creation of metal-independent hyperthermophilic L-arabinose isomerase by homologous recombination.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Pyun, Yu-Ryang; Lee, Sung Haeng

    2011-12-28

    Hyperthermophilic L-arabinose isomerases (AIs) are useful in the commercial production of D-tagatose as a low-calorie bulk sweetener. Their catalysis and thermostability are highly dependent on metals, which is a major drawback in food applications. To study the role of metal ions in the thermostability and catalysis of hyperthermophilic AI, four enzyme chimeras were generated by PCR-based hybridization to replace the variable N- and C-terminal regions of hyperthermophilic Thermotoga maritima AI (TMAI) and thermophilic Geobacillus stearothermophilus AI (GSAI) with those of the homologous mesophilic Bacillus halodurans AI (BHAI). Unlike Mn(2+)-dependent TMAI, the GSAI- and TMAI-based hybrids with the 72 C-terminal residues of BHAI were not metal-dependent for catalytic activity. By contrast, the catalytic activities of the TMAI- and GSAI-based hybrids containing the N-terminus (residues 1-89) of BHAI were significantly enhanced by metals, but their thermostabilities were poor even in the presence of Mn(2+), indicating that the effects of metals on catalysis and thermostability involve different structural regions. Moreover, in contrast to the C-terminal truncate (Δ20 residues) of GSAI, the N-terminal truncate (Δ7 residues) exhibited no activity due to loss of its native structure. The data thus strongly suggest that the metal dependence of the catalysis and thermostability of hyperthermophilic AIs evolved separately to optimize their activity and thermostability at elevated temperatures. This may provide effective target regions for engineering, thereby meeting industrial demands for the production of d-tagatose.

  11. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Nickbarg, E.B.; Knowles, J.R.

    1988-01-01

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from [1(R)- 3 H]dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase

  12. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    Science.gov (United States)

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  13. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities.

    Science.gov (United States)

    Huang, C S; Weng, C F; Lee, S C

    2001-06-01

    The resident and migratory types of gray mullet, Mugil cephalus, on the coast of Taiwan can not be separated morphologically. Allozyme analysis was applied to estimate genetic variation between the two types of gray mullet and to test whether they belong to different populations. After starch gel electrophoresis, different allelic frequency spectra of glucose-6-phosphate isomerase-A (GPI-A) between stocks was observed. The resident stock contained Gpi-A(135) and Gpi-A(100), whereas the migratory type contained Gpi-A(100) only. In addition, GPI activities of locus A showed two distinct profiles between the two alleles. The results broadly revealed that Gpi-A allelic frequency was not regulated by temperature changes even after 6 months of thermal acclimation. This suggests that natural selection may play a role in shaping the allelic frequency change during the migratory journey. These findings suggest that the Gpi-A allelic difference can be used for population discrimination.

  14. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Giri; Sagurthi, Someswar Rao [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  15. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    Science.gov (United States)

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  16. Effect of gamma irradiation on whole-cell glucose isomerase. Pt.1

    International Nuclear Information System (INIS)

    Bachman, S.; Gebicka, L.

    1984-01-01

    Gamma-rays induced inactivation of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase has been studied. This enzyme exhibits high resistance against ionizing radiation. The D 37 value was found to be equal to 131 kGy for Actinoplanes missouriensis cells and 88 kGy for Streptomyces olivaceus cells when irradiated in the dry state in the presence of air. Mg 2+ ions do not affect the radiosensitivity of the enzyme in cells, while the addition of Co 2+ ions to the cell suspension increases its stability against ionizing radiation. (orig.) [de

  17. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    Science.gov (United States)

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  18. Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase.

    Science.gov (United States)

    Rhimi, Moez; Chouayekh, Hichem; Gouillouard, Isabelle; Maguin, Emmanuelle; Bejar, Samir

    2011-02-01

    Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Kim, Mi-Sun; Shin, Dong Hae

    2009-01-01

    Sedoheptulose-7-phosphate isomerase (GmhA) from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 Å resolution. The crystal belonged to the primitive orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 Å. A full structural determination is under way in order to provide insights into the structure–function relationships of this protein

  20. TAL effectors target the C-terminal domain of RNA polymerase II (CTD by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin.

    Directory of Open Access Journals (Sweden)

    Mariane Noronha Domingues

    Full Text Available Transcriptional activator-like (TAL effectors of plant pathogenic bacteria function as transcription factors in plant cells. However, how TAL effectors control transcription in the host is presently unknown. Previously, we showed that TAL effectors of the citrus canker pathogen Xanthomonas citri, named PthAs, targeted the citrus protein complex comprising the thioredoxin CsTdx, ubiquitin-conjugating enzymes CsUev/Ubc13 and cyclophilin CsCyp. Here we show that CsCyp complements the function of Cpr1 and Ess1, two yeast cyclophilins that regulate transcription by the isomerization of proline residues of the regulatory C-terminal domain (CTD of RNA polymerase II. We also demonstrate that CsCyp, CsTdx, CsUev and four PthA variants interact with the citrus CTD and that CsCyp co-immunoprecipitate with the CTD in citrus cell extracts and with PthA2 transiently expressed in sweet orange epicotyls. The interactions of CsCyp with the CTD and PthA2 were inhibited by cyclosporin A (CsA, a cyclophilin inhibitor. Moreover, we present evidence that PthA2 inhibits the peptidyl-prolyl cis-trans isomerase (PPIase activity of CsCyp in a similar fashion as CsA, and that silencing of CsCyp, as well as treatments with CsA, enhance canker lesions in X. citri-infected leaves. Given that CsCyp appears to function as a negative regulator of cell growth and that Ess1 negatively regulates transcription elongation in yeast, we propose that PthAs activate host transcription by inhibiting the PPIase activity of CsCyp on the CTD.

  1. Hamstrings co-activation in ACL-deficient subjects during isometric whole-leg extensions

    NARCIS (Netherlands)

    Aalbersberg, S.; Kingma, I.; van Dieen, J.H.

    2009-01-01

    It has been reported that anterior cruciate ligament (ACL)-deficient subjects increase the level of hamstrings activation and this has been interpreted as a means to cope with increased anterior tibial laxity in the knee. This study aimed to establish to what extent co-activation strategies in

  2. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  3. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2017-12-01

    Full Text Available l-Arabinose isomerase (EC 5.3.1.4 (l-AI from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg−1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.

  4. Crystallization and preliminary X-ray crystallographic analysis of l-rhamnose isomerase with a novel high thermostability from Bacillus halodurans

    International Nuclear Information System (INIS)

    Doan, Thi-Ngoc-Thanh; Prabhu, Ponnandy; Kim, Jin-Kwang; Ahn, Yeh-Jin; Natarajan, Sampath; Kang, Lin-Woo; Park, Geon Tae; Lim, Sang-Boem; Lee, Jung-Kul

    2010-01-01

    l-Rhamnose isomerase (l-RhI) from B. halodurans has been purified and crystallized. The crystals of l-RhI belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 83.2, b = 164.9, c = 92.0 Å, β = 116.0°, and diffracted to 2.5 Å resolution. l-Rhamnose isomerases catalyze isomerization between l-rhamnose (6-deoxy-l-mannose) and l-rhamnulose (6-deoxy-l-fructose), which is the first step in rhamnose catabolism. l-Rhamnose isomerase from Bacillus halodurans ATCC BAA-125 (BHRI) exhibits interesting characteristics such as high thermostability and selective substrate specificity. BHRI fused with an HHHHHH sequence was purified and crystallized in order to elucidate the molecular basis of its unique enzymatic properties. The crystals were grown by the hanging-drop vapour-diffusion method and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 83.2, b = 164.9, c = 92.0 Å, β = 116.0°. Diffraction data were collected to 2.5 Å resolution. According to a Matthews coefficient calculation, there are four monomers in the asymmetric unit with a V M of 3.0 Å 3 Da −1 and a solvent content of 59.3%. The initial structure of BHRI has been determined by the molecular-replacement method

  5. Genetics Home Reference: triosephosphate isomerase deficiency

    Science.gov (United States)

    ... movement problems are caused by impairment of motor neurons, which are specialized nerve cells in the brain ... known as glycolysis. During glycolysis, the simple sugar glucose is broken down to produce energy for cells. ...

  6. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  7. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  8. Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of zinc-deficient rats.

    Science.gov (United States)

    Lee, Bao-Hong; Ho, Bing-Ying; Wang, Chin-Thin; Pan, Tzu-Ming

    2009-11-25

    Zn deficiency is a common disease leading to memory impairment with increasing age. This study evaluated the protection effects of red mold rice (RMR) administration and Zn supplementation against memory and learning ability impairments from oxidative stress caused by Zn deficiency. Rats (4 weeks old) were induced to be Zn deficiency by a Zn-deficient diet for 12 weeks. After that, rats were administered Zn, 1xRMR, 5xRMR, and various dosages of RMR plus Zn, respectively. Decreases of antioxidant enzyme activities in the hippocampus and cortex were observed, and the levels of Ca, Fe, and Mg were increased in the hippocampus and cortex of Zn-deficient rats, leading to memory and learning ability injury. However, the administration of RMR (1- or 5-fold dosage) and with or without Zn significantly improved the antioxidase and neural activity to maintain cortex and hippocampus functions. This study demonstrates that RMR is a possible functional food for the prevention or cure of neural injury associated with Zn deficiency.

  9. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    Science.gov (United States)

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  10. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    Science.gov (United States)

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  11. Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency.

    Science.gov (United States)

    Msilini, Najoua; Oueslati, Samia; Amdouni, Thouraya; Chebbi, Mohamed; Ksouri, Riadh; Lachaâl, Mokhtar; Ouerghi, Zeineb

    2013-06-01

    Fe deficiency affects food growth and quality in calcareous soils. In this study, the effect of Fe deficiency on growth parameters, phenolic content and antioxidant capacities of two lettuce shoots varieties (Romaine and Vista) were investigated. Fresh matter production, pigment (chlorophyll and carotenoid) and Fe2+ content were significantly reduced by Fe deficiency in both varieties. However, restriction of these parameters was particularly pronounced in Romaine variety as compared to Vista. Moreover, Fe deficiency caused decreases in the activity of antioxidant enzymes such as catalase and guaiacol peroxidase, whereas ascorbate peroxidase and malondialdehyde concentrations were not significantly affected. On the other hand, Fe deficiency in Vista variety induced an increase in polyphenol and flavonoid content as compared to Romaine variety. In addition, total antioxidant capacity and antiradical test against DPPH radical decreased in leaves of Romaine variety after 15 days of treatment. These results suggest that the higher polyphenol content in Vista variety supports the involvement of these components in the stability of antioxidant capacities and then in its protection against oxidative damage generated by Fe deficiency in lettuce plants. © 2012 Society of Chemical Industry.

  12. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    Science.gov (United States)

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  13. Physical activity prevents augmented body fat accretion in moderately iron-deficient rats.

    Science.gov (United States)

    McClung, James P; Andersen, Nancy E; Tarr, Tyson N; Stahl, Chad H; Young, Andrew J

    2008-07-01

    Recent studies describe an association between poor iron status and obesity in humans, although the mechanism explaining this relationship is unclear. The present study aimed to determine the effect of moderate iron deficiency and physical activity (PA) on body composition in an animal model. Male Sprague-Dawley rats consumed iron-adequate (IA; 40 mg/kg) or moderately iron-deficient (ID; 9 mg/kg) diets ad libitum for 12 wk. Rats were assigned to 4 treatment groups (n = 10 per group): IA, sedentary (IAS); IA, PA (IAPA); ID, sedentary (IDS); or ID, PA (IDPA). Activity involved running on motorized running wheels at 4 m/min for 1 h/d for 5 d/wk. After 12 wk, ID rats were not anemic, but body iron stores were reduced as indicated by diminished (P IA rats. Treatment group did not affect body weight or feed consumption. However, fat mass was greater (P IAS (31.8 +/- 2.9%), IAPA (31.8 +/- 2.0%), and IDPA (32.8 +/- 4.5%) rats. Furthermore, lean body mass was diminished in IDS rats (58.7 +/- 6.8%) compared with IAS (65.6 +/- 3.0%), IAPA (65.6 +/- 2.1%), and IDPA (64.7 +/- 4.5%) rats. Thus, moderate iron deficiency may cause increased body fat accretion in rats and PA attenuates that effect.

  14. Molecular identification, immunolocalization, and characterization of Clonorchis sinensis triosephosphate isomerase.

    Science.gov (United States)

    Zhou, Juanjuan; Liao, Hua; Li, Shan; Zhou, Chenhui; Huang, Yan; Li, Xuerong; Liang, Chi; Yu, Xinbing

    2015-08-01

    Clonorchis sinensis triosephosphate isomerase (CsTIM) is a key regulatory enzyme of glycolysis and gluconeogenesis, which catalyzes the interconversion of glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. In this study, the biochemical characterizations of CsTIM have been examined. A full-length complementary DNA (cDNA; Cs105350) sequence encoding CsTIM was obtained from our C. sinensis cDNA library. The open reading frame of CsTIM contains 759 bp which encodes 252 amino acids. The amino acid sequence of CsTIM shares 60-65% identity with other species. Western blot analysis displayed that recombinant CsTIM (rCsTIM) can be probed by anti-rCsTIM rat serum and anti-C. sinensis excretory/secretory products (anti-CsESPs) rat serum. Quantitative reverse transcription (RT)-PCR and western blotting analysis revealed that CsTIM messenger RNA (mRNA) and protein were differentially expressed in development cycle stages of the parasite, including adult worm, metacercaria, excysted metacercaria, and egg. In addition, immunolocalization assay showed that CsTIM was located in the seminal vesicle, eggs, and testicle. Moreover, rCsTIM exhibited active enzyme activity in catalytic reactions. The Michaelis constant (K m) of rCsTIM was 0.33 mM, when using glyceraldehyde 3-phosphate as the substrate. The optimal temperature and pH of CsTIM were 37 °C and 7.5-9.5, respectively. Collectively, these results suggest that CsTIM is an important protein involved in glycometabolism, and CsTIM possibly take part in many biological functions in the growth and development of C. sinensis.

  15. Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation

    DEFF Research Database (Denmark)

    Szabo, Roman; Uzzun Sales, Katiuchia; Kosa, Peter

    2012-01-01

    is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase......-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during...

  16. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  17. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose.

    Science.gov (United States)

    Chen, Ziwei; Xu, Wei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2018-04-01

    l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co 2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co 2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg -1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L -1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L -1 l-mannose, respectively. The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Rheumatoid arthritis disease activity and vitamin D deficiency in an Asian resident population.

    Science.gov (United States)

    Quraishi, Mohammed K; Badsha, Humeira

    2016-04-01

    We aimed to assess the prevalence of vitamin D deficiency and its association with rheumatoid arthritis (RA) disease activity in a UAE population. Forty-five consecutive subjects were prospectively recruited during the early summer with their clinical examination and Health Assessment Questionnaire (HAQ) being recorded at a clinic appointment, along with their blood sample being taken for the 25-hydroxyvitamin D (25(OH)D) total test. Thirty-five (76%) patients claimed to be exposed to sunlight for Disease Activity Score (DAS28) or HAQ scores. A direct relationship was observed between HAQ scores and DAS28 scores (P culture. No association was observed between vitamin D and disease activity. However, the high prevalence of vitamin D deficiency may negatively impact on bone health of these patients in the future. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  19. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao.

    Science.gov (United States)

    Yang, Yang; Chen, Zhong-Wei; Hurlburt, Barry K; Li, Gui-Ling; Zhang, Yong-Xia; Fei, Dan-Xia; Shen, Hai-Wang; Cao, Min-Jie; Liu, Guang-Ming

    2017-05-01

    Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A 71 G 74 S 69 D 75 T 73 F 72 V 67 ) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000. Keywords: Soda Lake, Haloterrigena turkmenica, Carboxylesterase, Carboxylase, Xylose isomerase, Whole genome sequencing

  1. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  2. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  3. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory

    OpenAIRE

    Fiset, Catherine; Rioux, France M.; Surette, Marc E.; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, th...

  4. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA

    International Nuclear Information System (INIS)

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2005-01-01

    The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution. Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source

  5. Prasugrel and Acquired Thrombotic Thrombocytopenic Purpura Associated with ADAMTS13 Activity Deficiency

    Directory of Open Access Journals (Sweden)

    Yanet Parodis Lopez

    2016-07-01

    Full Text Available We report a case of a 64-year-old male who, 44 days after starting treatment with prasugrel, presented with severe thrombocytopenia, anemia, renal failure, and severe ADAMTS13 activity deficiency, along with a high titer of autoantibodies to this protease.

  6. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.

    Directory of Open Access Journals (Sweden)

    Valentina Castillo

    Full Text Available ERp57 (also known as grp58 and PDIA3 is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.

  7. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  8. Polimorfisme Enzim Glucose-6-Phosphate Isomerase pada Tiga Populasi Tuna Sirip Kuning (Thunnus albacares)

    OpenAIRE

    Permana, Gusti Ngurah; Hutapea, Jhon H.; Moria, Sari Budi; Haryanti, Haryanti

    2006-01-01

    Samples of yellowfin tuna (Thunnus albacares) were taken from three locations Bali, North Sulawesi and North Maluku. The glucose-6-phosphate isomerase (GPI) was analyzed from liver using allozyme electrophoresis method. Polymorphism of GPI enzyme was observed and four alleles (A, B ,C, D) were found in Bali population, three alleles (A,B,C) were found in North Maluku and North Sulawesi populations. Heterozygosity values, from Bali, North Maluku and North Sulawesi were 0.419; 0.417; 0.143 resp...

  9. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI by high-throughput screening of existing drugs

    Directory of Open Access Journals (Sweden)

    Rana Eltahan

    2018-04-01

    Full Text Available Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min. We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM, while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM. Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Keywords: Apicomplexan, Cryptosporidium parvum, Glucose-6-phosphate isomerase (GPI, Ebselen

  10. The disulfide isomerase ERp57 is required for fibrin deposition in vivo.

    Science.gov (United States)

    Zhou, J; Wu, Y; Wang, L; Rauova, L; Hayes, V M; Poncz, M; Essex, D W

    2014-11-01

    ERp57 is required for platelet function; however, whether ERp57 contributes to fibrin generation is unknown. Using an inhibitory anti-ERp57 antibody (mAb1), Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice, and mutants of ERp57, we analyzed the function of ERp57 in laser-induced thrombosis. Fibrin deposition was decreased in Pf4-Cre/ERp57(fl/fl) mice, consistent with a role for platelet ERp57 in fibrin generation. Fibrin deposition was further decreased with infusion of mAb1 and in Tie2-Cre/ERp57(fl/fl) mice, consistent with endothelial cells also contributing to fibrin deposition. Infusion of eptibifatide inhibited platelet and fibrin deposition, confirming a role for platelets in fibrin deposition. Infusion of recombinant ERp57 corrected the defect in fibrin deposition but not platelet accumulation, suggesting a direct effect of ERp57 on coagulation. mAb1 inhibited thrombin generation in vitro, consistent with a requirement for ERp57 in coagulation. Platelet accumulation was decreased to similar extents in Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice and normal mice infused with mAb1. Infusion of completely inactivated ERp57 or ERp57 with a non-functional second active site inhibited fibrin deposition and platelet accumulation, indicating that the isomerase activity of the second active site is required for these processes. ERp57 regulates thrombosis via multiple targets. © 2014 International Society on Thrombosis and Haemostasis.

  11. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  12. Proline substitutions in a Mip-like peptidyl-prolyl cis-trans isomerase severely affect its structure, stability, shape and activity

    Directory of Open Access Journals (Sweden)

    Soumitra Polley

    2015-01-01

    Full Text Available FKBP22, an Escherichia coli-specific peptidyl-prolyl cis-trans isomerase, shows substantial homology with the Mip-like virulence factors. Mip-like proteins are homodimeric and possess a V-shaped conformation. Their N-terminal domains form dimers, whereas their C-terminal domains bind protein/peptide substrates and distinct inhibitors such as rapamycin and FK506. Interestingly, the two domains of the Mip-like proteins are separated by a lengthy, protease-susceptible α-helix. To delineate the structural requirement of this domain-connecting region in Mip-like proteins, we have investigated a recombinant FKBP22 (rFKBP22 and its three point mutants I65P, V72P and A82P using different probes. Each mutant harbors a Pro substitution mutation at a distinct location in the hinge region. We report that the three mutants are not only different from each other but also different from rFKBP22 in structure and activity. Unlike rFKBP22, the three mutants were unfolded by a non-two state mechanism in the presence of urea. In addition, the stabilities of the mutants, particularly I65P and V72P, differed considerably from that of rFKBP22. Conversely, the rapamycin binding affinity of no mutant was different from that of rFKBP22. Of the mutants, I65P showed the highest levels of structural/functional loss and dissociated partly in solution. Our computational study indicated a severe collapse of the V-shape in I65P due to the anomalous movement of its C-terminal domains. The α-helical nature of the domain-connecting region is, therefore, critical for the Mip-like proteins.

  13. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  14. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  15. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  16. L-Rhamnose isomerase and its use for biotechnological production of rare sugars.

    Science.gov (United States)

    Xu, Wei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-04-01

    L-Rhamnose isomerase (L-RI, EC 5.3.1.14), catalyzing the isomerization between L-rhamnose and L-rhamnulose, plays an important role in microbial L-rhamnose metabolism and thus occurs in a wide range of microorganisms. It attracts more and more attention because of its broad substrate specificity and its great potential in enzymatic production of various rare sugars. In this article, the enzymatic properties of various reported L-RIs were compared in detail, and their applications in the production of L-rhamnulose and various rare sugars including D-allose, D-gulose, L-lyxose, L-mannose, L-talose, and L-galactose were also reviewed.

  17. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    OpenAIRE

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDI...

  18. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency

    NARCIS (Netherlands)

    Boerboom, AL; Hof, AL; Halbertsma, JPK; van Raaij, JJAM; Schenk, W; Diercks, RL; van Horn, [No Value; van Horn, J.R.

    Anterior cruciate ligament (ACL) deficiency may cause functional instability of the knee (noncopers), while other patients compensate and perform at the same level as before injury (copers). This pilot study investigated whether there is a compensatory electromyographic (EMG) activity of the

  19. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    Science.gov (United States)

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  20. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  1. Receptor type I and type II binding regions and the peptidyl-prolyl isomerase site of cyclophilin B are required for enhancement of T-lymphocyte adhesion to fibronectin.

    Science.gov (United States)

    Carpentier, Mathieu; Allain, Fabrice; Slomianny, Marie-Christine; Durieux, Sandrine; Vanpouille, Christophe; Haendler, Bernard; Spik, Geneviève

    2002-04-23

    Cyclophilin B (CyPB), a cyclosporin A (CsA) binding protein, interacts with two types of binding sites at the surface of T-lymphocytes. The type I sites correspond to functional receptors involved in endocytosis and the type II sites to sulfated glycosaminoglycans (GAGs). Mutational analysis of CyPB has revealed that W128, which is part of the CsA-binding pocket, is implicated in the binding to the functional type I receptors and that two amino acid clusters located in the N-terminus ensure the binding to GAGs. The peptidyl-prolyl isomerase activity of CyPB is not required for receptor binding. We have recently demonstrated that CyPB enhances adhesion of peripheral blood T-lymphocytes to fibronectin, a component of the extracellular matrix. We intended to identify additional amino acids involved in the binding of CyPB to its functional type I receptor and to determine regions responsible for the stimulation of peripheral blood T-lymphocyte adhesion. We determined that residues R76, G77, K132, D155, and D158 of the calcineurin (CN) interacting region were implicated in the recognition of type I receptor but not of GAGs. We also found that two different changes in the N-terminal extension that abated binding to GAGs prevented adhesion of peripheral blood T-lymphocytes to coated CyPB, whereas abbrogation of the PPIase activity had no effect. On the other hand, the adhesion of peripheral blood T-lymphocytes to coated fibronectin was not stimulated by CyPB mutants devoid of either type I receptor or GAGs binding activity or by mutants of the PPIase site. Altogether, the results demonstrate that different regions of CyPB are involved in peripheral blood T-lymphocyte activation and imply a novel important physiological function for peptidyl-prolyl isomerase activity.

  2. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    Science.gov (United States)

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  3. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Park, Sun-Ha; Lee, Chang Woo; Cho, Sung Mi; Lee, Hyoungseok; Park, Hyun; Lee, Jungeun; Lee, Jun Hyuck

    2018-01-01

    Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  4. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Sun-Ha Park

    Full Text Available Chalcone isomerase (CHI is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1 is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  5. Newly identified invertebrate-type lysozyme (Splys-i) in mud crab (Scylla paramamosain) exhibiting muramidase-deficient antimicrobial activity.

    Science.gov (United States)

    Zhou, Jian; Zhao, Shu; Fang, Wen-Hong; Zhou, Jun-Fang; Zhang, Jing-Xiao; Ma, Hongyu; Lan, Jiang-Feng; Li, Xin-Cang

    2017-09-01

    Lysozymes are widely distributed immune effectors exerting muramidase activity against the peptidoglycan of the bacterial cell wall to trigger cell lysis. However, some invertebrate-type (i-type) lysozymes deficient of muramidase activity still exhibit antimicrobial activity. To date, the mechanism underlying the antimicrobial effect of muramidase-deficient i-type lysozymes remains unclear. Accordingly, this study characterized a novel i-type lysozyme, Splys-i, in the mud crab Scylla paramamosain. Splys-i shared the highest identity with the Litopenaeus vannamei i-type lysozyme (Lvlys-i2, 54% identity) at the amino acid level. Alignment analysis and 3D structure comparison show that Splys-i may be a muramidase-deficient i-type lysozyme because it lacks the two conserved catalytic residues (Glu and Asp) that are necessary for muramidase activity. Splys-i is mainly distributed in the intestine, stomach, gills, hepatopancreas, and hemocytes, and it is upregulated by Vibrio harveyi or Staphylococcus aureus challenge. Recombinant Splys-i protein (rSplys-i) can inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio alginolyticus, Vibrio parahemolyticus, and Escherichia coli), Gram-positive bacteria (S. aureus, Bacillus subtilis, and Bacillus megaterium), and the fungus Candida albicans to varying degrees. In this study, two binding assays and a bacterial agglutination assay were conducted to elucidate the potential antimicrobial mechanisms of Splys-i. Results demonstrated that rSplys-i could bind to all nine aforementioned microorganisms. It also exhibited a strong binding activity to lipopolysaccharide from E. coli and lipoteichoic acid and peptidoglycan (PGN) from S. aureus but a weak binding activity to PGN from B. subtilis and β-glucan from fungi. Moreover, rSplys-i could agglutinate these nine types of microorganisms in the presence of Ca 2+ at different protein concentrations. These results suggest that the binding activity and its triggered

  6. Cobalt-vitamin B12 deficiency and the activity of methylmalonyl CoA mutase and methionine synthase in cattle.

    Science.gov (United States)

    Kennedy, D G; Young, P B; Kennedy, S; Scott, J M; Molloy, A M; Weir, D G; Price, J

    1995-01-01

    Cobalt deficiency was induced in cattle by feeding two groups of animals either a basal diet that was very low in Co (12.9-17.6 micrograms Co per kg), or the same diet supplemented with cobalt, for a total of 64 weeks. Vitamin B12 deficiency was induced, as judged by hepatic concentrations of vitamin B12 and plasma concentrations of MMA. However, the activity of holo-methylmalonyl CoA mutase was significantly reduced only in brain. This was reflected in very minor alterations in the tissue concentrations of branched chain- and odd numbered-fatty acids. The activity of holo-methionine synthase was significantly reduced in liver and brain, but there were no consequent alterations in the concentrations of phosphatidyl choline and phosphatidyl ethanolamine. This study confirms that cattle are less susceptible to the effects of cobalt deficiency than sheep, and concludes that prolonged cobalt deficiency had little significant effect on tissue metabolism.

  7. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  8. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... glycolytic pathway; in this step, a molecule called glucose-6-phosphate is converted to another molecule called fructose-6-phosphate. When GPI remains a single molecule (a monomer) it is involved in the development and maintenance of nerve cells ( neurons ). In this context, it is often known as ...

  9. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency.

    Science.gov (United States)

    Rossi, E; Lentze, M J

    1984-12-01

    The study of deficiencies of small intestinal brush-border hydrolases increased our knowledge about the specific functions of hydrolases in the digestion of smaller molecules on the microvillus surface of the absorptive cells. The sucrase-isomaltase (SI) complex has been shown to be synthesized as a precursor (pro-sucrase-isomaltase) which is then incorporated into the membrane. The hydrophobic N-terminal end of the molecule is anchored in the lipid bilayer. In SI deficiency the molecular base of the disease is still not clear. Absence of SI activity could be due to complete lack of precursor synthesis or to structural changes within the N-terminal end of the SI-complex. Deficiencies of peptide hydrolases have not been reported with the exception of enteropeptidase (EP). Here a congenital deficiency of the enzyme was observed as the primary defect in enzyme synthesis within the enterocytes and as a secondary defect due to exocrine pancreatic insufficiency. In contrast to the primary EP deficiency, the activity of EP can be restored in the cases of exocrine pancreatic insufficiency by treatment with pancreatic extracts. Primary lactase deficiency exists in various forms. Besides congenital lactase deficiency, the late onset or adult type of lactase deficiency has been observed. The latter occurs in many different ethnic groups around the world. Here, using gel electrophoresis and immunoelectrophoresis, the lack of enzyme activity could be shown to be a primary defect in enzyme protein synthesis. In man and in the rat, two different lactases have been identified. In contrast to adult lactase, fetal lactase contains sialic acid at the end of carbohydrate side chains.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Helicobacter pylori Peptidyl Prolyl Isomerase Expression Is Associated with the Severity of Gastritis.

    Science.gov (United States)

    Oghalaie, Akbar; Saberi, Samaneh; Esmaeili, Maryam; Ebrahimzadeh, Fatemeh; Barkhordari, Farzaneh; Ghamarian, Abdolreza; Tashakoripoor, Mohammad; Abdirad, Afshin; Eshagh Hosseini, Mahmoud; Khalaj, Vahid; Mohammadi, Marjan

    2016-12-01

    Helicobacter pylori secretory peptidyl prolyl isomerase, HP0175, is progressively identified as a pro-inflammatory and pro-carcinogenic protein, which serves to link H. pylori infection to its more severe clinical outcomes. Here, we have analyzed host HP0175-specific antibody responses in relation to the severity of gastritis. The HP0175 gene fragment was PCR-amplified, cloned, expressed and purified by Ni-NTA affinity chromatography. Serum antigen-specific antibody responses of non-ulcer dyspeptic patients (N = 176) against recombinant HP0175 were detected by western blotting. The infection status of these subjects was determined by rapid urease test, culture, histology, and serology. The grade of inflammation and stage of atrophy were scored blindly according to the OLGA staging system. The recombinant HP0175 (rHP0175) was expressed as a ~35 kDa protein and its identity was confirmed by western blotting using anti-6X His tag antibody and pooled H. pylori-positive sera. Serum IgG antibodies against rHP0175 segregated our patients into two similar-sized groups of sero-positives (90/176, 51.1 %) and sero-negatives (86/176, 48.9 %). The former presented with higher grades of gastric inflammation (OR = 4.4, 95 % CI = 1.9-9.9, P = 0.001) and stages of gastric atrophy (OR = 18.3, 95 %CI = 1.4-246.6, P = 0.028). Our findings lend further support to the pro-inflammatory nature of H. pylori peptidyl prolyl isomerase (HP0175) and recommends this antigen as a non-invasive serum biomarker of the severity of H. pylori-associated gastritis.

  11. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    Science.gov (United States)

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2010-04-15

    The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.

  13. Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides

    DEFF Research Database (Denmark)

    Westphal, V; Spetzler, J C; Meldal, M

    1998-01-01

    Protein-disulfide isomerase (PDI) is an abundant folding catalyst in the endoplasmic reticulum of eukaryotic cells. PDI introduces disulfide bonds into newly synthesized proteins and catalyzes disulfide bond isomerizations. We have synthesized a library of disulfide-linked fluorescence......-quenched peptides, individually linked to resin beads, for two purposes: 1) to probe PDI specificity, and 2) to identify simple, sensitive peptide substrates of PDI. Using this library, beads that became rapidly fluorescent by reduction by human PDI were selected. Amino acid sequencing of the bead-linked peptides...

  14. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  15. The acid tolerant L-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive D-tagatose producer.

    Science.gov (United States)

    Rhimi, Moez; Ilhammami, Rimeh; Bajic, Goran; Boudebbouze, Samira; Maguin, Emmanuelle; Haser, Richard; Aghajari, Nushin

    2010-12-01

    The araA gene encoding an L-arabinose isomerase (L-AI) from the psychrotrophic and food grade Lactobacillus sakei 23K was cloned, sequenced and over-expressed in Escherichia coli. The recombinant enzyme has an apparent molecular weight of nearly 220 kDa, suggesting it is a tetramer of four 54 kDa monomers. The enzyme is distinguishable from previously reported L-AIs by its high activity and stability at temperatures from 4 to 40 degrees C, and pH from 3 to 8, and by its low metal requirement of only 0.8 mM Mn(2+) and 0.8 mM Mg(2+) for its maximal activity and thermostability. Enzyme kinetic studies showed that this enzyme displays a high catalytic efficiency allowing D-galactose bioconversion rates of 20% and 36% at 10 and 45 degrees C, respectively, which are useful for commercial production of D-tagatose. 2010 Elsevier Ltd. All rights reserved.

  16. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  17. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    Science.gov (United States)

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  18. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    Science.gov (United States)

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  19. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.

    Science.gov (United States)

    Li, Yanjun; Zhu, Yueming; Liu, Anjun; Sun, Yuanxia

    2011-05-01

    D-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert D-galactose into the valuable D-tagatose using L-arabinose isomerase (L-AI). In this study, a thermophilic strain possessing L-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding L-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). L-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more D-tagatose from D-galactose by raising the reaction temperatures and adding borate. A 60% conversion of D-galactose to D-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k (cat) /K (m)) for D-galactose with borate was 9.47 mM(-1) min(-1), twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for D-galactose, suggesting its great potential for producing D-tagatose.

  20. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Delphine Bonnet Wersinger

    Full Text Available Wolfram syndrome is an early onset genetic disease (1/180,000 featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP, protein disulfide isomerase (PDI and inositol-requiring enzyme 1 alpha (Ire1α markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.

  1. Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence

    International Nuclear Information System (INIS)

    Price, E.R.; Zydowsky, L.D.; Jin, Mingjie; Baker, C.H.; McKeon, F.D.; Walsh, C.T.

    1991-01-01

    The authors report the cloning and characterization of a cDNA encoding a second human cyclosporin A-binding protein (hCyPB). Homology analyses reveal that hCyPB is a member of the cyclophilin B (CyPB) family, which includes yeast CyPB, Drosophila nina A, and rat cyclophilin-like protein. This family is distinguished from the cyclophilin A (CyPA) family by the presence of endoplasmic reticulum (ER)-directed signal sequences. hCyPB has a hydrophobic leader sequence not found in hCyPA, and its first 25 amino acids are removed upon expression in Escherichia coli. Moreover, they show that hCyPB is a peptidyl-prolyl cis-trans isomerase which can be inhibited by cyclosporin A. These observations suggest that other members of the CyPB family will have similar enzymatic properties. Sequence comparisons of the CyPB proteins show a central, 165-amino acid peptidyl-prolyl isomerase and cyclosprorin A-binding domain, flanked by variable N-terminal and C-terminal domains. These two variable regions may impart compartmental specificity and regulation to this family of cyclophilin proteins containing the conserved core domain. Northern blot analyses show that hCyPB mRNA is expressed in the Jurkat T-cell line, consistent with its possible target role in cyclosporin A-mediated immunosuppression

  2. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs

    International Nuclear Information System (INIS)

    Ravel, P.; Garel, M.C.; Toullec, D.

    1997-01-01

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  3. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  4. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    OpenAIRE

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequ...

  5. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Activities Obesity, Nutrition, and Physical Activity Population and Epidemiology Studies Women’s Health All Science A-Z Grants ... health for people with iron-deficiency anemia. Recipient Epidemiology Donor Studies program findings help to protect blood ...

  7. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  8. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  9. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  10. Enzymatic conversion of D-galactose to D-tagatose: cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5.

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Zhang, Lili; Kang, Zhenkui; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-01-01

    The gene encoding L-arabinose isomerase from food-grade strain Pediococcus pentosaceus PC-5 was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at 50 °C and pH 6.0. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its maximal activity evaluated at 0.6 mM Mn(2+) or 0.8 mM Co(2+). Interestingly, this enzyme was distinguished from other L-AIs, it could not use L-arabinose as its substrate. In addition, a three-dimensional structure of L-AI was built by homology modeling and L-arabinose and D-galactose were docked into the active site pocket of PPAI model to explain the interaction between L-AI and its substrate. The purified P. pentosaceus PC-5 L-AI converted D-galactose into D-tagatose with a high conversion rate of 52% after 24 h at 50 °C, suggesting its excellent potential in D-tagatose production. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  11. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  12. Growth hormone deficiency in treated acromegaly and active Cushing's syndrome.

    Science.gov (United States)

    Formenti, Anna Maria; Maffezzoni, Filippo; Doga, Mauro; Mazziotti, Gherardo; Giustina, Andrea

    2017-02-01

    Growth hormone deficiency (GHD) in adults is characterized by reduced quality of life and physical fitness, skeletal fragility, increased weight and cardiovascular risk. It may be found in (over-) treated acromegaly as well as in active Cushing's syndrome. Hypopituitarism may develop in patients after definitive treatment of acromegaly, although the exact prevalence of GHD in this population is still uncertain because of limited awareness, and scarce and conflicting data so far available. Because GHD associated with acromegaly and Cushing's syndrome may yield adverse consequences on similar target systems, the final outcomes of some complications of both acromegaly and Cushing's syndrome may be further affected by the occurrence of GHD. It is still largely unknown, however, whether GHD in patients with post-acromegaly or active Cushing's syndrome (e.g. pharmacologic glucocorticoid treatment) may benefit from GH replacement. We review the diagnostic, clinical and therapeutic aspects of GHD in adults treated for acromegaly and in those with active Cushing's syndrome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spectroscopic and computational studies of cobalamin species with variable lower axial ligation: implications for the mechanism of Co-C bond activation by class I cobalamin-dependent isomerases.

    Science.gov (United States)

    Conrad, Karen S; Jordan, Christopher D; Brown, Kenneth L; Brunold, Thomas C

    2015-04-20

    5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) serves as the cofactor for several enzymes that play important roles in fermentation and catabolism. All of these enzymes initiate catalysis by promoting homolytic cleavage of the cofactor's Co-C bond in response to substrate binding to their active sites. Despite considerable research efforts, the role of the lower axial ligand in facilitating Co-C bond homolysis remains incompletely understood. In the present study, we characterized several derivatives of AdoCbl and its one-electron reduced form, Co(II)Cbl, by using electronic absorption and magnetic circular dichroism spectroscopies. To complement our experimental data, we performed computations on these species, as well as additional Co(II)Cbl analogues. The geometries of all species investigated were optimized using a quantum mechanics/molecular mechanics method, and the optimized geometries were used to compute absorption spectra with time-dependent density functional theory. Collectively, our results indicate that a reduction in the basicity of the lower axial ligand causes changes to the cofactor's electronic structure in the Co(II) state that replicate the effects seen upon binding of Co(II)Cbl to Class I isomerases, which replace the lower axial dimethylbenzimidazole ligand of AdoCbl with a protein-derived histidine (His) residue. Such a reduction of the basicity of the His ligand in the enzyme active site may be achieved through proton uptake by the catalytic triad of conserved residues, DXHXGXK, during Co-C bond homolysis.

  14. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1*

    Science.gov (United States)

    Niu, Yingbo; Zhang, Lihui; Yu, Jiaojiao; Wang, Chih-chen; Wang, Lei

    2016-01-01

    The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway. PMID:26846856

  15. Vitamin D deficiency and leisure time activities in the elderly: are all pastimes the same?

    Science.gov (United States)

    De Rui, Marina; Toffanello, Elena Debora; Veronese, Nicola; Zambon, Sabina; Bolzetta, Francesco; Sartori, Leonardo; Musacchio, Estella; Corti, Maria Chiara; Baggio, Giovannella; Crepaldi, Gaetano; Perissinotto, Egle; Manzato, Enzo; Sergi, Giuseppe

    2014-01-01

    Optimal vitamin D status is important for overall health and well-being, particularly in the elderly. Although vitamin D synthesis in the skin declines with age, exposure to sunlight still seems to help older-aged adults to achieve adequate serum 25-hydroxyvitamin D (25OHD) levels. Elderly people would therefore benefit from outdoor leisure activities, but the effects of different types of pastime on serum 25OHD levels have yet to be thoroughly investigated. To assess the association of different pastimes with 25OHD deficiency in elderly subjects. A sample of 2,349 community-dwelling elderly individuals (1,389 females and 960 males) enrolled in the Progetto Veneto Anziani was analyzed. Brisk walking, cycling, gardening and fishing were classed as outdoor activities, and dancing and gym workouts as indoor pastimes. Any activities undertaken for at least 1 hour/week during the previous month were considered as being practiced regularly. Logistic regression models were used to estimate the association between different pastimes and 25OHD deficiency. Serum 25OHD levels were significantly higher in individuals who engaged in outdoor pastimes (+25% in women, +27.7% in men) compared to those who did not. In particular, subjects regularly practicing gardening or cycling had higher serum 25OHD levels than those who did not, whereas 25OHD levels differed little between subjects who did or did not undertake indoor activities. Among the outdoor pastimes considered, logistic regression analysis confirmed a lower likelihood of vitamin D deficiency (25OHDvitamin D status in Caucasian elderly people, irrespective of their age, BMI and comorbidities, and of the season of the year.

  16. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production.

    Science.gov (United States)

    Zheng, Zhaojuan; Mei, Wending; Xia, Meijuan; He, Qin; Ouyang, Jia

    2017-06-14

    d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L -1 d-tagatose could be produced from 150 and 250 g L -1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.

  17. Androgen deficiency during mid- and late pregnancy alters progesterone production and metabolism in the porcine corpus luteum.

    Science.gov (United States)

    Grzesiak, Malgorzata; Knapczyk-Stwora, Katarzyna; Ciereszko, Renata E; Golas, Aniela; Wieciech, Iwona; Slomczynska, Maria

    2014-06-01

    We determined whether androgen deficiency induced by flutamide treatment during mid- and late pregnancy affects the functions of the porcine corpus luteum (CL). Pregnant gilts were injected with flutamide between days 43 and 49 (gestation day [GD] 50F), days 83 and 89 (GD90F), or days 101 and 107 (GD108F) of gestation. Antiandrogen treatment increased the luteal progesterone concentration in the GD50F group and decreased progesterone content in the GD90F and GD108F groups. Luteal levels of side-chain cleavage cytochrome P450 (CYP11A1) mRNA and protein were significantly downregulated in the GD90F and GD108F groups as compared with the respective controls. The 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B) mRNA and protein expression were significantly reduced only in the GD108F group as compared with the control. Decreased luteal 20α-hydroxysteroid dehydrogenase (AKR1C1) mRNA and protein levels were observed in the GD50F group. Thus, androgen deficiency during pregnancy in pigs led to CL dysfunction that is marked by decreased progesterone production. Furthermore, exposure to flutamide during late pregnancy downregulated steroidogenic enzymes (CYP11A1 and HSD3B) in pigs. We conclude that androgens are important regulators of CL function during pregnancy.

  18. Iodine deficiency and thyroid disorders.

    Science.gov (United States)

    Zimmermann, Michael B; Boelaert, Kristien

    2015-04-01

    Iodine deficiency early in life impairs cognition and growth, but iodine status is also a key determinant of thyroid disorders in adults. Severe iodine deficiency causes goitre and hypothyroidism because, despite an increase in thyroid activity to maximise iodine uptake and recycling in this setting, iodine concentrations are still too low to enable production of thyroid hormone. In mild-to-moderate iodine deficiency, increased thyroid activity can compensate for low iodine intake and maintain euthyroidism in most individuals, but at a price: chronic thyroid stimulation results in an increase in the prevalence of toxic nodular goitre and hyperthyroidism in populations. This high prevalence of nodular autonomy usually results in a further increase in the prevalence of hyperthyroidism if iodine intake is subsequently increased by salt iodisation. However, this increase is transient because iodine sufficiency normalises thyroid activity which, in the long term, reduces nodular autonomy. Increased iodine intake in an iodine-deficient population is associated with a small increase in the prevalence of subclinical hypothyroidism and thyroid autoimmunity; whether these increases are also transient is unclear. Variations in population iodine intake do not affect risk for Graves' disease or thyroid cancer, but correction of iodine deficiency might shift thyroid cancer subtypes toward less malignant forms. Thus, optimisation of population iodine intake is an important component of preventive health care to reduce the prevalence of thyroid disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Effects of Methionine-Enriched and Vitamins (Folate, Pyridoxine and Cobalamine-Deficient Diet on Exploratory Activity in Rats - A Brief Report

    Directory of Open Access Journals (Sweden)

    Mijailovic Natasa

    2017-12-01

    Full Text Available The aim of this study was to evaluate the impact of increased homocysteine levels induced by methionine nutritional overload (twice as standard and deficiency of the vitamins folate, pyridoxine and cobalamine, which plays an important role in homocysteine metabolism in anxiety-related behaviour, expressed by means of exploratory activity in rats. Twenty-three male Wistar albino rats (4 weeks old, 100±15 g body weight were divided into three groups: control (n=8, methionine-enriched (Meth+, 7.7 g of methionine/kg chow, n=7 and methionine-enriched vitamin-deficient (Meth+Vit-, 7.7 g of methionine/ kg chow, deficient in folate, pyridoxine and cobalamine - 0.08, 0.01 and 0.01 mg/kg, n=8. All animals had free access to food and water for 30 days. Behavioural testing was performed using the elevated plus maze (EPM test. Standard parameters for vertical exploratory activity, the number of rearings and the number of head-dippings, as well as the total exploratory activity (summarizing overall exploratory activity in the EPM were significantly reduced following 30 days of methionine nutritional overload (p<0.05, p<0.05 and p<0.01, respectively. A methionine-enriched diet coupled with a reduction in some B vitamins resulted in a more pronounced decline in exploratory drive observed in the EPM test compared to the control (p<0.01. The decline in total exploratory activity associated with vitamin deficiency was significant compared to the Meth+ group (p<0.05. The results of this study highlight the important role of homocysteine in the modulation of exploratory activity in rats. Decreased exploratory drive induced by both a methionine-enriched and vitamin-deficient diet could be attributed to an anxiogenic effect of hyperhomocysteinemia.

  20. Evaluation of thromboelastography in two factor XII-deficient cats.

    Science.gov (United States)

    Blois, Shauna L; Holowaychuk, Marie K; Wood, R Darren

    2015-01-01

    The current report describes thromboelastography (TEG) findings in two cats with factor XII (FXII) deficiency. The first cat was diagnosed with bilateral perinephric pseudocysts; hemostatic testing was performed prior to performing renal aspirates. The second cat was healthy; hemostatic testing was performed prior to inclusion into a research project. Both cats had markedly prolonged partial thromboplastin times and hypocoagulable TEG tracings when samples were activated with kaolin. However, when tissue factor (TF) was used to activate the sample, both cats had normal-to-hypercoagulable TEG tracings. The cats each had a subnormal FXII level. TEG is becoming widely used to investigate hemostasis in veterinary patients, and TEG results in cats with FXII deficiency have not been previously reported. FXII deficiency is the most common hereditary hemostatic defect in cats. While FXII deficiency does not lead to in vivo hemorrhagic tendencies, it can lead to marked prolongation in activated partial thromboplastin and activated clotting times, and cannot be differentiated from true hemorrhagic diatheses without measuring individual factor activity. With the increased use of TEG to evaluate hemostasis in veterinary patients, it is important to recognize the effects of FXII deficiency on this testing modality. The finding of a hypocoagulable kaolin-activated TEG tracing and a concurrent normal TF-activated TEG tracing in samples should prompt clinicians to consider ruling out FXII deficiency.

  1. Evaluation of thromboelastography in two factor XII-deficient cats

    Directory of Open Access Journals (Sweden)

    Shauna L Blois

    2015-05-01

    Full Text Available Case summary The current report describes thromboelastography (TEG findings in two cats with factor XII (FXII deficiency. The first cat was diagnosed with bilateral perinephric pseudocysts; hemostatic testing was performed prior to performing renal aspirates. The second cat was healthy; hemostatic testing was performed prior to inclusion into a research project. Both cats had markedly prolonged partial thromboplastin times and hypocoagulable TEG tracings when samples were activated with kaolin. However, when tissue factor (TF was used to activate the sample, both cats had normal-to-hypercoagulable TEG tracings. The cats each had a subnormal FXII level. Relevance and novel information TEG is becoming widely used to investigate hemostasis in veterinary patients, and TEG results in cats with FXII deficiency have not been previously reported. FXII deficiency is the most common hereditary hemostatic defect in cats. While FXII deficiency does not lead to in vivo hemorrhagic tendencies, it can lead to marked prolongation in activated partial thromboplastin and activated clotting times, and cannot be differentiated from true hemorrhagic diatheses without measuring individual factor activity. With the increased use of TEG to evaluate hemostasis in veterinary patients, it is important to recognize the effects of FXII deficiency on this testing modality. The finding of a hypocoagulable kaolin-activated TEG tracing and a concurrent normal TF-activated TEG tracing in samples should prompt clinicians to consider ruling out FXII deficiency.

  2. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase.

    Science.gov (United States)

    Jez, Joseph M; Bowman, Marianne E; Noel, Joseph P

    2002-04-23

    In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional

  3. MET18 Deficiency Increases the Sensitivity of Yeast to Oxidative Stress and Shortens Replicative Lifespan by Inhibiting Catalase Activity.

    Science.gov (United States)

    Chen, Ya-Qin; Liu, Xin-Guang; Zhao, Wei; Cui, Hongjing; Ruan, Jie; Yuan, Yuan; Tu, Zhiguang

    2017-01-01

    Yeast MET18 , a subunit of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery which is responsible for the maturation of Fe/S proteins, has been reported to participate in the oxidative stress response. However, the underlying molecular mechanisms remain unclear. In this study, we constructed a MET18/met18Δ heterozygous mutant yeast strain and found that MET18 deficiency in yeast cells impaired oxidative stress resistance as evidenced by increased sensitivity to hydrogen peroxide (H 2 O 2 ) and cumene hydroperoxide (CHP). Mechanistically, the mRNA levels of catalase A (CTA1) and catalase T (CTT1) as well as the total catalase activity were significantly reduced in MET18 -deficient cells. In contrast, overexpression of CTT1 or CTA1 in MET18 -deficient cells significantly increased the intracellular catalase activity and enhanced the resistance ability against H 2 O 2 and CHP. In addition, MET18 deficiency diminished the replicative capacity of yeast cells as evidenced by the shortened replicative lifespan, which can be restored by CTT1 overexpression, but not by CTA1 , in the MET18 -deficient cells. These results suggest that MET18 , in a catalase-dependent manner, plays an essential role in enhancing the resistance of yeast cells to oxidative stress and increasing the replicative capacity of yeast cells.

  4. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency.

    Science.gov (United States)

    Yan, Feng; Zhu, Yiyong; Müller, Caroline; Zörb, Christian; Schubert, Sven

    2002-05-01

    White lupin (Lupinus albus) is able to adapt to phosphorus deficiency by producing proteoid roots that release a huge amount of organic acids, resulting in mobilization of sparingly soluble soil phosphate in rhizosphere. The mechanisms responsible for the release of organic acids by proteoid root cells, especially the trans-membrane transport processes, have not been elucidated. Because of high cytosolic pH, the release of undissociated organic acids is not probable. In the present study, we focused on H+ export by plasma membrane H+ ATPase in active proteoid roots. In vivo, rhizosphere acidification of active proteoid roots was vanadate sensitive. Plasma membranes were isolated from proteoid roots and lateral roots from P-deficient and -sufficient plants. In vitro, in comparison with two types of lateral roots and proteoid roots of P-sufficient plants, the following increase of the various parameters was induced in active proteoid roots of P-deficient plants: (a) hydrolytic ATPase activity, (b) Vmax and Km, (c) H+ ATPase enzyme concentration of plasma membrane, (d) H+-pumping activity, (e) pH gradient across the membrane of plasmalemma vesicles, and (f) passive H+ permeability of plasma membrane. In addition, lower vanadate sensitivity and more acidic pH optimum were determined for plasma membrane ATPase of active proteoid roots. Our data support the hypothesis that in active proteoid root cells, H+ and organic anions are exported separately, and that modification of plasma membrane H+ ATPase is essential for enhanced rhizosphere acidification by active proteoid roots.

  5. Comparison of pre- and postimplantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation

    DEFF Research Database (Denmark)

    Vanden Meerschaut, Frauke; Nikiforaki, D.; De Roo, C.

    2013-01-01

    STUDY QUESTION Does the application of three different artificial activating stimuli lead to a difference in pre- and post-implantation embryo development in the wobbler mouse, a mouse model with oocyte activation deficient round-headed sperm cells similar to human globozoospermia? SUMMARY ANSWER...... fertilized by wobbler and wild-type (WT) sperm following ICSI with or without three different artificial activating agents. Preimplantation development was assessed on 70 injected oocytes on average per group. On average, 10 foster mothers were used per activating group to compare post......-implantation development. PARTICIPANTS/MATERIALS, SETTING, METHODS We used the wobbler mouse model that possesses oocyte activation deficient round-headed sperm cells. First, the calcium release following ICSI using wobbler sperm was compared with that of WT sperm. Outcome measures were the percentage of oocytes...

  6. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  7. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis

    International Nuclear Information System (INIS)

    Wohlkönig, Alexandre; Hodak, Hélène; Clantin, Bernard; Sénéchal, Magalie; Bompard, Coralie; Jacob-Dubuisson, Françoise; Villeret, Vincent

    2008-01-01

    Par27 from B. pertussis, the prototype of a new group of parvulins has been crystallized in two different crystal forms. Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 Å, β = 95.1°), diffracts to 2.8 Å resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 Å), diffracts to 2.2 Å resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form

  8. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  9. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  10. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  11. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  12. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta......- (28kDa) subunits encoded by the ETFA and ETFB genes, respectively. In the present study, we have analysed tissue samples from 16 unrelated patients with ETF deficiency, and we report the results of ETF activity, Western blot analysis and mutation analysis. The ETF assay provides a reliable diagnostic...... tool to confirm ETF deficiency in patients suspected to suffer from MADD. Activity ranged from less than 1 to 16% of controls with the most severely affected patients disclosing the lowest activity values. The majority of patients had mutations in the ETFA gene while only two of them harboured...

  13. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisation.

    Science.gov (United States)

    Cheng, Lifang; Mu, Wanmeng; Jiang, Bo

    2010-06-01

    D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.

  14. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while protein S deficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  16. Pharmacodynamics of recombinant activated factor VII and plasma-derived factor VII in a cohort of severe FVII deficient patients.

    Science.gov (United States)

    van Geffen, Mark; Mathijssen, Natascha C J; Holme, Pål A; Laros-van Gorkom, Britta A P; van Kraaij, Marian G J; Masereeuw, Roselinde; Peyvandi, Flora; van Heerde, Waander L

    2013-07-01

    Recombinant activated factor VII (rFVIIa) and plasma-derived factor VII (pdFVII) are used to prevent bleedings in severe FVII deficient patients, despite their short half-lifes. It is suggested that FVII levels of 15-20 IU/dL are sufficient to maintain hemostasis. We analyzed the pharmacodynamic effects of FVII substitution therapy in the Nijmegen Hemostasis Assay (NHA) that simultaneously measures thrombin and plasmin generation. Ten severe FVII deficient patients were treated with 20 μg/kg rFVIIa or 25 IU/kg pdFVII in a cross-over design. Thrombin generation lag-time (TG-LT) was identified as an effect-response parameter. Pharmacodynamic analysis using a maximum effect model showed 50% reduction of the TG-LT effect at ~2 IU/dL FVII activity for both rFVIIa and pdFVII. The FVII activity to obtain TG-LT comparable to the upper limit of normal range in healthy controls (4 min) was given by the effective concentration (ECnormal), showing sufficient hemostasis at 3-4 IU/dL FVII activity. No association was seen between FVII activity and other thrombin or plasmin generation parameters as measured by NHA. In conclusion, 3-4 IU/dL FVII activity seems sufficient to maintain hemostasis in patients with severe FVII deficiency during prophylaxis. These data may suggest a potential value for measurement of TG-LT in the monitoring of FVII(a) therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Purification and characterization of an L-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing D-tagatose.

    Science.gov (United States)

    Kim, Hye-Jung; Oh, Deok-Kun

    2005-11-04

    The araA gene, encoding l-arabinose isomerase (AI), from the thermophilic bacterium Geobacillus thermodenitrificans was cloned and expressed in Escherichia coli. Recombinant AI was isolated with a final purity of about 97% and a final specific activity of 2.10 U/mg. The molecular mass of the purified AI was estimated to be about 230 kDa to be a tetramer composed of identical subunits. The AI exhibited maximum activity at 70 degrees C and pH 8.5 in the presence of Mn2+. The enzyme was stable at temperatures below 60 degrees C and within the pH range 7.5-8.0. d-Galactose and l-arabinose as substrate were isomerized with high activities. Ribitol was the strongest competitive inhibitor of AI with a Ki of 5.5mM. The apparent Km and Vmax for L-arabinose were 142 mM and 86 U/mg, respectively, whereas those for d-galactose were 408 mM and 6.9 U/mg, respectively. The catalytic efficiency (kcat/Km) was 48 mM(-1)min(-1) for L-arabinose and 0.5mM(-1)min(-1) for D-galactose. Mn2+ was a competitive activator and increased the thermal stability of the AI. The D-tagatose yield produced by AI from d-galactose was 46% without the addition of Mn2+ and 48% with Mn2+ after 300 min at 65 degrees C.

  18. Vitamin D insufficiency and deficiency in mexican patients with systemic lupus erythematosus: Prevalence and relationship with disease activity.

    Science.gov (United States)

    García-Carrasco, Mario; Mendoza-Pinto, Claudia; Etchegaray-Morales, Ivet; Soto-Santillán, Pamela; Jiménez-Herrera, Erick Alejandro; Robles-Sánchez, Viridiana; Rodríguez-Gallegos, Alma; Ramos-Varela, Araceli; Muñoz-Guarneros, Margarita; Ruiz-Argüelles, Alejandro

    To determine and compare the prevalence of vitamin D insufficiency and deficiency in patients with systemic lupus erythematosus (SLE) with and without disease activity. We made a comparative, observational, cross-sectional, prospective study of 137 women with SLE according to American College of Rheumatology criteria. Patients with chronic kidney disease, cancer, hyperparathyroidism, pregnancy, and lactation were excluded. Disease activity was assessed using the MEX-SLEDAI score: a score of ≥3 was considered as disease activity. Data were collected on diabetes mellitus, the use of corticosteroids, chloroquine, and immunosuppressants, photoprotection and vitamin D supplementation. Vitamin D levels were measured by chemiluminescent immunoassay: insufficiency was defined as serum 25-hydroxyvitamin D <30ng/ml and deficiency as <10ng/ml. 137 women with SLE (mean age 45.9±11.6 years, disease duration 7.7±3.4 years) were evaluated. Mean disease activity was 2 (0-8): 106 patients had no disease activity and 31 had active disease (77.4% versus 22.6%). Vitamin D insufficiency and deficiency was found in 122(89.0%) and 4 (2.9%) patients, respectively. There was no significant difference in vitamin D levels between patients with and without active disease (19.3±4.5 versus 19.7±6.8; P=.75). No correlation between the MEX-SLEDAI score (P=.21), photosensitivity, photoprotection, prednisone or chloroquine use and vitamin D supplementation was found. Women with SLE had a high prevalence of vitamin D insufficient. No association between vitamin D levels and disease activity was found. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  19. Continuous infusion of recombinant activated factor VII for bleeding control after lobectomy in a patient with inherited factor VII deficiency.

    Science.gov (United States)

    Miyata, Naoko; Isaka, Mitsuhiro; Kojima, Hideaki; Maniwa, Tomohiro; Takahashi, Shoji; Takamiya, Osamu; Ohde, Yasuhisa

    2016-03-01

    Inherited factor VII (FVII) deficiency is a rare recessive inherited coagulation disorder with limited available information, especially in patients undergoing major thoracic surgery. In addition, an optimal management strategy for the disease has not been defined. We herein report a case involving a 61-year-old man with asymptomatic FVII deficiency who underwent a right middle and lower lobectomy to treat lung cancer. To the best of our knowledge, the present report is the first to describe the use of recombinant activated FVII continuous infusion for bleeding control after a major thoracic surgery in a patient with inherited FVII deficiency.

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Safety Sleep Science and Sleep Disorders Lung Diseases Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, ... iron-deficiency anemia can cause serious complications, including heart failure and development delays in children. Explore this ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Individuals with a gene for hemophilia, including symptomatic female carriers who have heavy menstrual periods, may be ... anemia. Endurance activities and athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance athletes ...

  2. Storage Pool Deficiencies

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  3. FabQ, a Dual-Function Dehydratase/Isomerase, Circumvents the Last Step of the Classical Fatty Acid Synthesis Cycle

    OpenAIRE

    Bi, Hongkai; Wang, Haihong; Cronan, John E.

    2013-01-01

    In the classical anaerobic pathway of unsaturated fatty acid biosynthesis, that of Escherichia coli, the double bond is introduced into the growing acyl chain by the FabA dehydratase/isomerase. Another dehydratase, FabZ, functions in the chain elongation cycle. In contrast, Aerococcus viridans has only a single FabA/FabZ homolog we designate FabQ. FabQ can not only replace the function of E. coli FabZ in vivo, but it also catalyzes the isomerization required for unsaturated fatty acid biosynt...

  4. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  5. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    Science.gov (United States)

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  7. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu; Chen, Xiao; Peng, Bingyin; Chen, Liyuan; Hou, Jin; Bao, Xiaoming [Shandong Univ., Jinan (China). State Key Lab. of Microbial Technology

    2012-11-15

    Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The {mu}{sub max} of the evolved strain in 20 gl{sup -1} xylose is 0.11 {+-} 0.00 h{sup -1}, and the evolved strain consumed 17.83 gl{sup -1} xylose within 72 h, with an ethanol yield of 0.43 gg{sup -1} total consumed sugars during glucose-xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase activity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains. (orig.)

  8. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Arginine Deficiency Causes Runting in the Suckling Period by Selectively Activating the Stress Kinase GCN2

    NARCIS (Netherlands)

    Marion, Vincent; Sankaranarayanan, Selvakumari; de Theije, Chiel; van Dijk, Paul; Lindsey, Patrick; Lamers, Marinus C.; Harding, Heather P.; Ron, David; Lamers, Wouter H.; Koehler, S. Eleonore

    2011-01-01

    Suckling "F/A2" mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the

  10. Antithrombin deficiency and decreased protein C activity in a young man with venous thromboembolism: a case report.

    Science.gov (United States)

    Wang, Dong; Tian, Min; Cui, Guanglin; Wang, Dao Wen

    2018-06-01

    Antithrombin and protein C are two crucial members in the anticoagulant system and play important roles in hemostasis. Mutations in SERPINC1 and PROC lead to deficiency or dysfunction of the two proteins, which could result in venous thromboembolism (VTE). Here, we report a Chinese 22-year-old young man who developed recurrent and serious VTE in cerebral veins, visceral veins, and deep veins of the lower extremity. Laboratory tests and direct sequencing of PROC and SERPINC1 were conducted for the patient and his family members. Coagulation tests revealed that the patient presented type I antithrombin deficiency combined with decreased protein C activity resulting from a small insertion mutation c.848_849insGATGT in SERPINC1 and a short deletion variant c.572_574delAGA in PROC. This combination of the two mutations was absent in 400 healthy subjects each from southern and northern China. Then, we summarized all the mutations of the SERPINC1 and PROC gene reported in the Chinese Han population. This study demonstrates that the combination of antithrombin deficiency and decreased protein C activity can result in severe VTE and that the coexistence of different genetic factors may increase the risk of VTE.

  11. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    DEFF Research Database (Denmark)

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice ...

  12. Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-κB pathway.

    Science.gov (United States)

    Wang, Yanping; Yan, Ming; Yu, Yan; Wu, Jintao; Yu, Jinhua; Fan, Zhipeng

    2013-06-01

    Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.

  13. L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome.

    Science.gov (United States)

    Choe, Chi-un; Nabuurs, Christine; Stockebrand, Malte C; Neu, Axel; Nunes, Patricia; Morellini, Fabio; Sauter, Kathrin; Schillemeit, Stefan; Hermans-Borgmeyer, Irm; Marescau, Bart; Heerschap, Arend; Isbrandt, Dirk

    2013-01-01

    Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.

  14. Production of L-allose and D-talose from L-psicose and D-tagatose by L-ribose isomerase.

    Science.gov (United States)

    Terami, Yuji; Uechi, Keiko; Nomura, Saki; Okamoto, Naoki; Morimoto, Kenji; Takata, Goro

    2015-01-01

    L-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert L-psicose and D-tagatose to L-allose and D-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce L-allose and D-talose. Conversion reaction was performed with the reaction mixture containing 10% L-psicose or D-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of L-allose and D-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert L-psicose to L-allose without remarkable decrease in the enzyme activity over 7 times use and D-tagatose to D-talose over 37 times use. After separation and concentration, the mixture solution of L-allose and D-talose was concentrated up to 70% and crystallized by keeping at 4 °C. L-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% L-allose and 7.30% D-talose that were obtained from L-psicose and D-tagatose, respectively.

  15. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  16. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.

    2009-01-01

    Complete deficiency of complement inhibitor factor I (FI) results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation leading to susceptibility to infections. Current genetic examination of two patients with near complete FI deficiency and three patie...

  17. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  18. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The Anticomplementary Activity of ’Fusobacterium polymorphum’ in Normal and C-4 Deficient Sources of Guinea Pig Complement.

    Science.gov (United States)

    1977-01-12

    A complement consumption assay was used to show that the anticomplementary activity of a cell wall preparation from F. polymorphum in guinea pig complement...tests with C𔃾-deficient guinea pig sera confirmed that F. polymorphum cell walls were capable of generating alternate complement pathway activity in guinea pig sera.

  20. Japanese family with congenital factor VII deficiency.

    Science.gov (United States)

    Sakakibara, Kanae; Okayama, Yoshiki; Fukushima, Kenji; Kaji, Shunsaku; Muraoka, Michiko; Arao, Yujiro; Shimada, Akira

    2015-10-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder with autosomal recessive inheritance. The present female patient was diagnosed with congenital FVII deficiency because of low hepaplastin test (HPT), although vitamin K was given. Heterozygous p.A191T mutation was detected in the peripheral blood, and the same mutation was also found in the mother and sister. To the best of our knowledge, this is the fourth reported case of p.A191T mutation of FVII in the literature and the first to be reported in Japan. FVII coagulation activity (FVII:C) in asymptomatic heterozygous carriers is mildly reduced. Therefore, some patients may not be accurately diagnosed with congenital FVII deficiency. In infants with low HPT without vitamin K deficiency, congenital FVII deficiency should be considered. © 2015 Japan Pediatric Society.

  1. Iodine Deficiency

    Science.gov (United States)

    ... Fax/Phone Home » Iodine Deficiency Leer en Español Iodine Deficiency Iodine is an element that is needed ... world’s population remains at risk for iodine deficiency. Iodine Deficiency FAQs WHAT IS THE THYROID GLAND? The ...

  2. Ferrotherapy of iron deficiency anemia in children

    OpenAIRE

    Berezhniy V.V.; Korneva V.V.

    2016-01-01

    Present article devoted to the steps for implementation unified clinical protocol of the primary, secondary (specialized) medical care «Iron deficiency» to the practical activities of pediatricians, family physicians. The features of ferrotherapy in children of different age groups and the issues of prevention of iron deficiency states are highlighted.

  3. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.

    Science.gov (United States)

    Zhai, Xiang; Amyes, Tina L; Richard, John P

    2015-12-09

    The side chains of Y208 and S211 from loop 7 of triosephosphate isomerase (TIM) form hydrogen bonds to backbone amides and carbonyls from loop 6 to stabilize the caged enzyme-substrate complex. The effect of seven mutations [Y208T, Y208S, Y208A, Y208F, S211G, S211A, Y208T/S211G] on the kinetic parameters for TIM catalyzed reactions of the whole substrates dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate [(k(cat)/K(m))(GAP) and (k(cat)/K(m))DHAP] and of the substrate pieces glycolaldehyde and phosphite dianion (k(cat)/K(HPi)K(GA)) are reported. The linear logarithmic correlation between these kinetic parameters, with slope of 1.04 ± 0.03, shows that most mutations of TIM result in an identical change in the activation barriers for the catalyzed reactions of whole substrate and substrate pieces, so that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The second linear logarithmic correlation [slope = 0.53 ± 0.16] between k(cat) for isomerization of GAP and K(d)(⧧) for phosphite dianion binding to the transition state for wildtype and many mutant TIM-catalyzed reactions of substrate pieces shows that ca. 50% of the wildtype TIM dianion binding energy, eliminated by these mutations, is expressed at the wildtype Michaelis complex, and ca. 50% is only expressed at the wildtype transition state. Negative deviations from this correlation are observed when the mutation results in a decrease in enzyme reactivity at the catalytic site. The main effect of Y208T, Y208S, and Y208A mutations is to cause a reduction in the total intrinsic dianion binding energy, but the effect of Y208F extends to the catalytic site.

  4. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

    Directory of Open Access Journals (Sweden)

    Arne Björn Potthast

    Full Text Available Sirtuins are NAD+ dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro.We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment by Western blot.We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50% in COX-deficient cells. Additionally, the intracellular concentration of NAD+ was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities.We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological

  5. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan.

    Science.gov (United States)

    Gao, Zhenxing; Zhang, Huixia; Hu, Fei; Yang, Liheng; Yang, Xiaowen; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2016-06-01

    Whether the two N-linked glycans are important in prion, PrP, biology is unresolved. In Chinese hamster ovary (CHO) cells, the two glycans are clearly not important in the cell surface expression of transfected human PrP. Compared to fully-glycosylated PrP, glycan-deficient PrP preferentially partitions to lipid raft. In CHO cells glycan-deficient PrP also interacts with glycosaminoglycan (GAG) and vascular endothelial growth factor receptor 2 (VEGFR2), resulting in VEGFR2 activation and enhanced Akt phosphorylation. Accordingly, CHO cells expressing glycan-deficient PrP lacking the GAG binding motif or cells treated with heparinase to remove GAG show diminished Akt signaling. Being in lipid raft is critical, chimeric glycan-deficient PrP with CD4 transmembrane and cytoplasmic domains is absent in lipid raft and does not activate Akt signaling. CHO cells bearing glycan-deficient PrP also exhibit enhanced cellular adhesion and migration. Based on these findings, we propose a model in which glycan-deficient PrP, GAG, and VEGFR2 interact, activating VEGFR2 and resulting in changes in cellular behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. LACTASE DEFICIENCY IN BABIES AND INFANTS

    Directory of Open Access Journals (Sweden)

    E.A. Kornienko

    2006-01-01

    Full Text Available Lactose, the constituent disaccharide of milk and other dairy products, is an important nutrient in early childhood. Lactase breaks down lactose in small intestine. In most people the activity of lactase reduces with age. In infancy lactase deficiency tends to be either transient, which is more often, or secondary to intestinal diseases. Abdominal cramps, anxiety and dyspepsia are the common symptoms of lactase deficiency. Tactics of treatment should take into account a cause and severity of the condition. A specialized milk formula «enfamil lactofree», distinguished for its' optimal formulation, high clinical effectiveness and good tolerance, could be recommended for use in children with primary, transient and secondary lactase deficiency who receive formula and mixed feeding.Key words: lactose, lactase deficiency, lactose-free formula.

  7. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  8. Regulation of Calcitriol Biosynthesis and Activity: Focus on Gestational Vitamin D Deficiency and Adverse Pregnancy Outcomes

    Directory of Open Access Journals (Sweden)

    Andrea Olmos-Ortiz

    2015-01-01

    Full Text Available Vitamin D has garnered a great deal of attention in recent years due to a global prevalence of vitamin D deficiency associated with an increased risk of a variety of human diseases. Specifically, hypovitaminosis D in pregnant women is highly common and has important implications for the mother and lifelong health of the child, since it has been linked to maternal and child infections, small-for-gestational age, preterm delivery, preeclampsia, gestational diabetes, as well as imprinting on the infant for life chronic diseases. Therefore, factors that regulate vitamin D metabolism are of main importance, especially during pregnancy. The hormonal form and most active metabolite of vitamin D is calcitriol. This hormone mediates its biological effects through a specific nuclear receptor, which is found in many tissues including the placenta. Calcitriol synthesis and degradation depend on the expression and activity of CYP27B1 and CYP24A1 cytochromes, respectively, for which regulation is tissue specific. Among the factors that modify these cytochromes expression and/or activity are calcitriol itself, parathyroid hormone, fibroblast growth factor 23, cytokines, calcium and phosphate. This review provides a current overview on the regulation of vitamin D metabolism, focusing on vitamin D deficiency during gestation and its impact on pregnancy outcomes.

  9. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  10. Is zinc deficiency a risk factor for atherosclerosis?

    Science.gov (United States)

    Beattie, John H; Kwun, In-Sook

    2004-02-01

    The development of atherosclerosis is influenced by genetic, lifestyle and nutritional risk factors. Zn and metallothionein deficiency can enhance oxidative-stress-related signalling processes in endothelial cells, and since changes in available plasma Zn may affect the Zn status of the endothelium, Zn deficiency could be a risk factor for IHD. Although the association of Zn with many proteins is essential for their function, three key signalling processes are highlighted as being principal targets for the effect of Zn deficiency: the activation of NF-kappaB, the activation of caspase enzymes and the signalling of NO. The need to develop a reliable indicator of Zn status is critical to any epidemiological approach for studying the relationship between Zn status and disease incidence. Studies using appropriate animal models and investigating how the plasma Zn pool influences endothelial intracellular labile Zn would be helpful in appreciating the importance of Zn deficiency in atherogenesis.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  12. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    Science.gov (United States)

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  13. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  14. L-Arabinose isomerase and its use for biotechnological production of rare sugars.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Liang, Jinfeng; Xu, Hong

    2014-11-01

    L-Arabinose isomerase (AI), a key enzyme in the microbial pentose phosphate pathway, has been regarded as an important biological catalyst in rare sugar production. This enzyme could isomerize L-arabinose into L-ribulose, as well as D-galactose into D-tagatose. Both the two monosaccharides show excellent commercial values in food and pharmaceutical industries. With the identification of novel AI family members, some of them have exhibited remarkable potential in industrial applications. The biological production processes for D-tagatose and L-ribose (or L-ribulose) using AI have been developed and improved in recent years. Meanwhile, protein engineering techniques involving rational design has effectively enhanced the catalytic properties of various AIs. Moreover, the crystal structure of AI has been disclosed, which sheds light on the understanding of AI structure and catalytic mechanism at molecular levels. This article reports recent developments in (i) novel AI screening, (ii) AI-mediated rare sugar production processes, (iii) molecular modification of AI, and (iv) structural biology study of AI. Based on previous reports, an analysis of the future development has also been initiated.

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  16. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  17. Clinical pattern, mutations and in vitro residual activity in 33 patients with severe 5, 10 methylenetetrahydrofolate reductase (MTHFR) deficiency

    NARCIS (Netherlands)

    Huemer, Martina; Mulder-Bleile, Regina; Burda, Patricie; Froese, D. Sean; Suormala, Terttu; Ben Zeev, Bruria; Chinnery, Patrick F.; Dionisi-Vici, Carlo; Dobbelaere, Dries; Gokcay, Gulden; Demirkol, Muebeccel; Haeberle, Johannes; Lossos, Alexander; Mengel, Eugen; Morris, Andrew A.; Niezen-Koning, Klary E.; Plecko, Barbara; Parini, Rossella; Rokicki, Dariusz; Schiff, Manuel; Schimmel, Mareike; Sewell, Adrian C.; Sperl, Wolfgang; Spiekerkoetter, Ute; Steinmann, Beat; Taddeucci, Grazia; Trejo-Gabriel-Galan, Jose M.; Trefz, Friedrich; Tsuji, Megumi; Antonia Vilaseca, Maria; von Kleist-Retzow, Juergen-Christoph; Walker, Valerie; Zeman, Jiri; Baumgartner, Matthias R.; Fowler, Brian

    Background Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare inborn defect disturbing the remethylation of homocysteine to methionine ( Methods Clinical, biochemical and treatment data was obtained from physicians by using a questionnaire. MTHFR activity was measured in primary

  18. Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI as a putative drug target for Aspergillosis

    Directory of Open Access Journals (Sweden)

    Morya Vivek K

    2012-02-01

    Full Text Available Abstract Aspergillus is a leading causative agent for fungal morbidity and mortality in immuno-compromised patients. To identify a putative target to design or identify new antifungal drug, against Aspergillus is required. In our previous work, we have analyzed the various biochemical pathways, and we found Ketol Acid Reducto-Isomerase (KARI an enzyme involves in the amino acid biosynthesis, could be a better target. This enzyme was found to be unique by comparing to host proteome through BLASTp analysis. A homology based model of KARI was generated by Swiss model server. The generated model had been validated by PROCHECK and WHAT IF programs. The Zinc library was generated within the limitation of the Lipinski rule of five, for docking study. Based on the dock-score six molecules have been studied for ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678, ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a drug target and the screened inhibitors could help in the development of the better drug against Aspergillus.

  19. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  20. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    Science.gov (United States)

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  1. Cyclosporin A Impairs the Secretion and Activity of ADAMTS13 (A Disintegrin and Metalloprotease with Thrombospondin Type 1 Repeat)*

    Science.gov (United States)

    Hershko, Klilah; Simhadri, Vijaya L.; Blaisdell, Adam; Hunt, Ryan C.; Newell, Jordan; Tseng, Sandra C.; Hershko, Alon Y.; Choi, Jae Won; Sauna, Zuben E.; Wu, Andrew; Bram, Richard J.; Komar, Anton A.; Kimchi-Sarfaty, Chava

    2012-01-01

    The protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat) cleaves multimers of von Willebrand factor, thus regulating platelet aggregation. ADAMTS13 deficiency leads to the fatal disorder thrombotic thrombocytopenic purpura (TTP). It has been observed that cyclosporin A (CsA) treatment, particularly in transplant patients, may sometimes be linked to the development of TTP. Until now, the reason for such a link was unclear. Here we provide evidence demonstrating that cyclophilin B (CypB) activity plays an important role in the secretion of active ADAMTS13. We found that CsA, an inhibitor of CypB, reduces the secretion of ADAMTS13 and leads to conformational changes in the protein resulting in diminished ADAMTS13 proteolytic activity. A direct, functional interaction between CypB (which possesses peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone functions) and ADAMTS13 is demonstrated using immunoprecipitation and siRNA knockdown of CypB. Finally, CypB knock-out mice were found to have reduced ADAMTS13 levels. Taken together, our findings indicate that cyclophilin-mediated activity is an important factor affecting secretion and activity of ADAMTS13. The large number of proline residues in ADAMTS13 is consistent with the important role of cis-trans isomerization in the proper folding of this protein. These results altogether provide a novel mechanistic explanation for CsA-induced TTP in transplant patients. PMID:23144461

  2. Cyclosporin A impairs the secretion and activity of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat).

    Science.gov (United States)

    Hershko, Klilah; Simhadri, Vijaya L; Blaisdell, Adam; Hunt, Ryan C; Newell, Jordan; Tseng, Sandra C; Hershko, Alon Y; Choi, Jae Won; Sauna, Zuben E; Wu, Andrew; Bram, Richard J; Komar, Anton A; Kimchi-Sarfaty, Chava

    2012-12-28

    The protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat) cleaves multimers of von Willebrand factor, thus regulating platelet aggregation. ADAMTS13 deficiency leads to the fatal disorder thrombotic thrombocytopenic purpura (TTP). It has been observed that cyclosporin A (CsA) treatment, particularly in transplant patients, may sometimes be linked to the development of TTP. Until now, the reason for such a link was unclear. Here we provide evidence demonstrating that cyclophilin B (CypB) activity plays an important role in the secretion of active ADAMTS13. We found that CsA, an inhibitor of CypB, reduces the secretion of ADAMTS13 and leads to conformational changes in the protein resulting in diminished ADAMTS13 proteolytic activity. A direct, functional interaction between CypB (which possesses peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone functions) and ADAMTS13 is demonstrated using immunoprecipitation and siRNA knockdown of CypB. Finally, CypB knock-out mice were found to have reduced ADAMTS13 levels. Taken together, our findings indicate that cyclophilin-mediated activity is an important factor affecting secretion and activity of ADAMTS13. The large number of proline residues in ADAMTS13 is consistent with the important role of cis-trans isomerization in the proper folding of this protein. These results altogether provide a novel mechanistic explanation for CsA-induced TTP in transplant patients.

  3. Isotypic analysis of antibodies against activated Factor VII in patients with Factor VII deficiency using the x-MAP technology.

    Science.gov (United States)

    Pfeiffer, Caroline; Mathieu-Dupas, Eve; Logghe, Pauline; Lissalde-Lavigne, Géraldine; Balicchi, Julien; Caliskan, Umran; Valentin, Thomas; Laune, Daniel; Molina, Franck; Schved, Jean François; Giansily-Blaizot, Muriel

    2016-05-01

    While the immune response to hemophilic factors in hemophilia has been widely studied, little is known about the development of anti-Factor VII (FVII) antibodies in FVII deficiency. We developed a robust technique based on the x-MAP technology to detect the presence of antibodies against FVII and characterize their isotype and validated this method using blood samples from 100 patients with FVII deficiency (median FVII clotting activity [FVII:C]: 6%) and 95 healthy controls. Anti-FVII antibodies were detected in patients but also in some controls, although the concentration of total immunoglobulin G (IgGt) and IgG1 and IgG4 subclasses was significantly different between groups. The IgG1 subclass concentrations remained significantly different also when only untreated patients were compared with controls. This difference could partially be related to the F7 genotype, particularly in patients harboring the p.Arg139Gln mutation. This x-MAP-based method might be useful for assessing the immunogenicity of novel FVII compounds and of activated FVII (FVIIa) concentrates. Further prospective studies are needed to better understand the clinical relevance of these antibodies in the management of patients with FVII deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice

    Science.gov (United States)

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-01-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX; 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, 6 daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 μg per 100 mg body-weight per day, required three weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  5. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  6. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    Science.gov (United States)

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  7. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  8. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  9. Iron deficiency and hematinic deficiencies in atrial fibrillation: A new insight into comorbidities.

    Science.gov (United States)

    Keskin, Muhammed; Ural, Dilek; Altay, Servet; Argan, Onur; Börklü, Edibe Betül; Kozan, Ömer

    2018-03-01

    Iron deficiency (ID) is the most common nutritional deficiency, and iron metabolism becomes further deteriorated in the presence of certain conditions, such as heart failure (HF). Atrial fibrillation (AF) has many similarities to HF, including a chronic inflammatory pathophysiology; however, the prevalence of ID and other hematinic deficiencies in AF patients have not been determined. In this study, the prevalence of iron (serum ferritin <100 µg/L or ferritin 100-299 µg/L with transferrin saturation <20%), vitamin B12 (<200 pg/mL), and folate deficiency (<4.0 ng/mL) was evaluated in 101 patients with non-valvular AF with preserved left ventricular ejection fraction and no signs of HF, and the results were compared with 35 age- and gender-matched controls. Anemia was detected in 26% of the patients. A total of 48 (47.6%) patients had ID, 10 (9.9%) had a vitamin B12 deficiency, and 13 (12.9%) had a folate deficiency. The prevalence of ID was similar in the controls and the paroxysmal AF patients, but increased gradually in persistent and permanent AF. Univariate logistic regression analysis demonstrated that permanent vs. paroxysmal AF [Odds ratio (OR): 2.17; 95% confidence interval (CI): 0.82-5.69; p=0.011], high sensitive C-reactive protein (OR: 1.47; 95% CI: 0.93-2.36; p=0.019), N-terminal pro b-type natriuretic peptide (OR: 1.24; 95% CI: 0.96-1.71; p=0.034), and white blood cell count (OR: 1.21; 95% CI: 0.95-1.58; p=0.041) were associated with ID. In multivariable analysis, permanent AF remained as an independent clinical associate of ID (OR: 4.30; 95% CI: 0.83-12.07; p=0.039). ID is common in permanent AF, as in HF. Inflammation and neurohormonal activation seem to contribute to its development.

  10. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  11. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Stephanie Abromaitis

    2009-04-01

    Full Text Available Chlamydia is an obligate intracellular pathogen that causes a wide range of diseases in humans. Attachment and entry are key processes in infectivity and subsequent pathogenesis of Chlamydia, yet the mechanisms governing these interactions are unknown. It was recently shown that a cell line, CHO6, that is resistant to attachment, and thus infectivity, of multiple Chlamydia species has a defect in protein disulfide isomerase (PDI N-terminal signal sequence processing. Ectopic expression of PDI in CHO6 cells led to restoration of Chlamydia attachment and infectivity; however, the mechanism leading to this recovery was not ascertained. To advance our understanding of the role of PDI in Chlamydia infection, we used RNA interference to establish that cellular PDI is essential for bacterial attachment to cells, making PDI the only host protein identified as necessary for attachment of multiple species of Chlamydia. Genetic complementation and PDI-specific inhibitors were used to determine that cell surface PDI enzymatic activity is required for bacterial entry into cells, but enzymatic function was not required for bacterial attachment. We further determined that it is a PDI-mediated reduction at the cell surface that triggers bacterial uptake. While PDI is necessary for Chlamydia attachment to cells, the bacteria do not appear to utilize plasma membrane-associated PDI as a receptor, suggesting that Chlamydia binds a cell surface protein that requires structural association with PDI. Our findings demonstrate that PDI has two essential and independent roles in the process of chlamydial infectivity: it is structurally required for chlamydial attachment, and the thiol-mediated oxido-reductive function of PDI is necessary for entry.

  12. Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles.

    Science.gov (United States)

    Aluise, Christopher D; Rose, Kristie; Boiani, Mariana; Reyzer, Michelle L; Manna, Joseph D; Tallman, Keri; Porter, Ned A; Marnett, Lawrence J

    2013-02-18

    Oxidation of membrane phospholipids is associated with inflammation, neurodegenerative disease, and cancer. Oxyradical damage to phospholipids results in the production of reactive aldehydes that adduct proteins and modulate their function. 4-Hydroxynonenal (HNE), a common product of oxidative damage to lipids, adducts proteins at exposed Cys, His, or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme that catalyzes the conversion of the peptide bond of pSer/pThr-Pro moieties in signaling proteins from cis to trans, is highly susceptible to HNE modification. Incubation of purified Pin1 with HNE followed by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael adducts at the active site residues His-157 and Cys-113. Time and concentration dependencies indicate that Cys-113 is the primary site of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation with biotin followed by streptavidin-based pulldown and Western blotting with anti-Pin1 antibody. Furthermore, orbitrap MS data support the adduction of Cys-113 in the Pin1 active site upon HNE treatment of MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially protected the cells from HNE-induced toxicity. Recent studies indicate that Pin1 is an important molecular target for the chemopreventive effects of green tea polyphenols. The present study establishes that it is also a target for electrophilic modification by products of lipid peroxidation.

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  14. Arginase-1 deficiency.

    Science.gov (United States)

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  15. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  16. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven(®)).

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of severe side effects.

  17. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  18. Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants

    International Nuclear Information System (INIS)

    Ormrod, D.P.; Landry, L.G.; Conklin, P.L.

    1995-01-01

    The presence of UV-absorptive substances in the epidermal cells of leaves is thought to protect mesophyll tissues from the harmful effects of UV-B radiation. We examined the influence of short-term UV-B exposures on UV-absorptive (330 nm) sinapates and flavonols, and on shoot growth of the Arabidopsis wild type ecotype Landsberg erecta and two mutants. 114 deficient in chalcone synthase, and 115, deficient in chalcone/flavonone isomerase. Sequential ozone exposures were used to determine the effects of oxidative stress The levels of sinapates and flavonols on a leaf fresh weight basis increased substantially in the wild type and sinapates increased in the 114 mutant in vegetative vegetative/reproductive transitional and reproductive stage plants in response to short-term (48h) UV-B radiation. When UV-B was discontinued the levels generally decreased lo pre-exposure levels after 48 h in vegetative/reproductive but not in reproductive plants. Exposure to ozone before or alter UV-B treatment did not consistently affect the levels of these UV-absorptive compounds. Dry matter accumulation was less affected by UV-B at the vegetative and reproductive stages than at the vegetative/reproductive stage. At the vegetative/reproductive stage, shoot growth of all 3 genotypes was retarded by UV-B. Growth was not retarded by short-term ozone exposure alone but when exposure to ozone followed UV-B exposure, growth was reduced in all genotypes. Leaf cupping appeared on 115 plants exposed to UV-B

  19. Car allocation between household heads in car deficient households : A decision model

    NARCIS (Netherlands)

    Anggraini, Renni; Arentze, Theo A.; Timmermans, Harry J P

    2008-01-01

    This paper considers car allocation choice behaviour in car-deficient households explicitly in the context of an activity-scheduling process, focusing on work activities. A decision tree induction method is applied to derive a decision tree for the car allocation decision in automobile deficient

  20. Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A; Boudko, Sergei P; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R; Rashmir-Raven, Ann M; Nagata, Kazuhiro; Winand, Nena J; Bächinger, Hans Peter

    2012-06-22

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.

  1. Mutation in Cyclophilin B That Causes Hyperelastosis Cutis in American Quarter Horse Does Not Affect Peptidylprolyl cis-trans Isomerase Activity but Shows Altered Cyclophilin B-Protein Interactions and Affects Collagen Folding*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A.; Boudko, Sergei P.; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R.; Rashmir-Raven, Ann M.; Nagata, Kazuhiro; Winand, Nena J.; Bächinger, Hans Peter

    2012-01-01

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum. PMID:22556420

  2. Alpha 1,3-Galactosyltransferase Deficiency in Pigs Increases Sialyltransferase Activities That Potentially Raise Non-Gal Xenoantigenicity

    Directory of Open Access Journals (Sweden)

    Jong-Yi Park

    2011-01-01

    Full Text Available We examined whether deficiency of the GGTA1 gene in pigs altered the expression of several glycosyltransferase genes. Real-time RT-PCR and glycosyltransferase activity showed that 2 sialyltransferases [α2,3-sialyltransferase (α2,3ST and α2,6-sialyltransferase (α2,6ST] in the heterozygote GalT KO liver have higher expression levels and activities compared to controls. Enzyme-linked lectin assays indicated that there were also more sialic acid-containing glycoconjugate epitopes in GalT KO livers than in controls. The elevated level of sialic-acid-containing glycoconjugate epitopes was due to the low level of α-Gal in heterozygote GalT KO livers. Furthermore, proteomics analysis showed that heterozygote GalT KO pigs had a higher expression of NAD+-isocitrate dehydrogenase (IDH, which is related to the CMP-N-acetylneuraminic acid hydroxylase (CMAH enzyme reaction. These findings suggest the deficiency of GGTA1 gene in pigs results in increased production of N-glycolylneuraminic acid (Neu5Gc due to an increase of α2,6-sialyltransferase and a CMAH cofactor, NAD+-IDH. This indicates that Neu5Gc may be a critical xenoantigen. The deletion of the CMAH gene in the GalT KO background is expected to further prolong xenograft survival.

  3. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.

    Science.gov (United States)

    Lee, Jae-Sung; Wissuwa, Matthias; Zamora, Oscar B; Ismail, Abdelbagi M

    2017-11-01

    Zn deficiency is one of the major soil constraints currently limiting rice production. Although recent studies demonstrated that higher antioxidant activity in leaf tissue effectively protects against Zn deficiency stress, little is known about whether similar tolerance mechanisms operate in root tissue. In this study we explored root-specific responses of different rice genotypes to Zn deficiency. Root solute leakage and biomass reduction, antioxidant activity, and metabolic changes were measured using plants grown in Zn-deficient soil and hydroponics. Solute leakage from roots was higher in sensitive genotypes and linked to membrane damage caused by Zn deficiency-induced oxidative stress. However, total root antioxidant activity was four-fold lower than in leaves and did not differ between sensitive and tolerant genotypes. Root metabolite analysis using gas chromatography-mass spectrometry and high performance liquid chromatography indicated that Zn deficiency triggered the accumulation of glycerol-3-phosphate and acetate in sensitive genotypes, while less or no accumulation was seen in tolerant genotypes. We suggest that these metabolites may serve as biochemical indicators of root damage under Zn deficiency.

  4. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  5. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Mirończuk

    2018-05-01

    Full Text Available Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1, the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.

  6. Deoxyribonucleic acid repair in Escherichia coli mutants deficient in the 5'----3' exonuclease activity of deoxyribonucleic acid polymerase I and exonuclease VII

    International Nuclear Information System (INIS)

    Chase, J.W.; Masker, W.E.

    1977-01-01

    A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants

  7. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  8. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  9. Simultaneous occurrence of hereditary C6 and C2 deficiency in a French-Canadian family.

    Science.gov (United States)

    Delâge, J M; Lehner-Netsch, G; Lafleur, R; Simard, J; Brun, G; Prochazka, E

    1979-06-01

    The sera of four sisters were found to lack the sixth component of complement (C6) and the serum of one was also partially deficient in the second component (C2). Two other blood relatives were found to be heterozygous for both deficiencies, while only one sibling had normal values. The father of these eight siblings was heterozygous for C2D and C6D and in the third generation, six children were heterozygous for C6 deficiency was treated for chronic active brucel-transmitted; the C6 deficiency was not linked to the HLA system, while the C2-deficiency segregated with the haplotype A10,B18. The proband, homozygous for C6 deficiency was treated for chronic active Brucellosis and in another sibling with C6 deficiency, toxoplasmosis was diagnosed. Neither bleeding disorders nor a tendency to collagen diseases have been observed and the opsonic activity was normal in the sera of all family members.

  10. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  11. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  12. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  13. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  14. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes.

    Science.gov (United States)

    Pyott, Shawna M; Schwarze, Ulrike; Christiansen, Helena E; Pepin, Melanie G; Leistritz, Dru F; Dineen, Richard; Harris, Catharine; Burton, Barbara K; Angle, Brad; Kim, Katherine; Sussman, Michael D; Weis, Maryann; Eyre, David R; Russell, David W; McCarthy, Kevin J; Steiner, Robert D; Byers, Peter H

    2011-04-15

    Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis-trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin B (CYPB; encoded by PPIB), which reside in the rough endoplasmic reticulum (RER) and can form a complex involved in prolyl 3-hydroxylation in type I procollagen. CYPB, a prolyl cis-trans isomerase, has been thought to drive the prolyl-containing peptide bonds to the trans configuration needed for triple helix formation. Here, we describe mutations in PPIB identified in cells from three individuals with OI. Cultured dermal fibroblasts from the most severely affected infant make some overmodified type I procollagen molecules. Proα1(I) chains are slow to assemble into trimers, and abnormal procollagen molecules concentrate in the RER, and bind to protein disulfide isomerase (PDI) and prolyl 4-hydroxylase 1 (P4H1). These findings suggest that although CYPB plays a role in helix formation another effect is on folding of the C-terminal propeptide and trimer formation. The extent of procollagen accumulation and PDI/P4H1 binding differs among cells with mutations in PPIB, CRTAP and LEPRE1 with the greatest amount in PPIB-deficient cells and the least in LEPRE1-deficient cells. These findings suggest that prolyl cis-trans isomerase may be required to effectively fold the proline-rich regions of the C-terminal propeptide to allow proα chain association and suggest an order of action for CRTAP, P3H1 and CYPB in procollagen biosynthesis and pathogenesis of OI.

  15. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  16. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  17. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    Science.gov (United States)

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  18. Improving Effect Of Vitamin E Supplementation In Rats Suffering From Zinc Deficiency

    International Nuclear Information System (INIS)

    Matta, T.F.

    2009-01-01

    Vitamin E is a membrane-bound soluble lipid and naturally occurring antioxidant which protects animal tissues against oxidative damage. Several studies have suggested a possible interaction between zinc status and vitamin E in animals. The current investigation was conduced to elucidate the improving effect of vitamin E supplementation on some selected biochemical variables in the blood and tissues of albino rats suffering from zinc deficiency.Zinc deficiency was induced in rats by feeding male rats a low zinc diet for 6 weeks. Dietary vitamin E and zinc, separated or combined, were used to ameliorate the impacts of zinc deficiency in the last two weeks of the experiment. Fifty male albino rats weighing 70-80g in 5 equal groups were given for 6 weeks five semi purified diets different in their contents of vitamin E and zinc / kg diet as follows: Zn adequate diet (Zn =35 ppm) for group (I) served as control, Zn deficient diet (Zn = 3 ppm) for group (II), Zn deficient diet plus supplemental zinc (Zn = 84 ppm) for group (III), Zn deficient diet plus supplemental vitamin E (50 IU) for group (IV) and Zn deficient diet plus supplemental zinc and vitamin E (Zn = 84 ppm + i.p. 50 IU vitamin E) for group (V). Supplemental zinc and vitamin E were only given on the last two weeks of the experiment.The obtained results revealed that Zn deficiency led to a significant (P 4 , T 3 and testosterone levels were declined significantly in Zn deficient rats as well as a significant (P < 0.05) rise in TSH level as compared with their levels in the Zn deficient rats supplemented with Zn and vitamin E.In contrast, the concentration of serum total cholesterol (T.Chol) and triglycerides (TG) in Zn deficient rats were significantly increased than those recorded in control group. On the other hand, the activities of cytochrome P450 reductase and microsomal NADPH reductase were significantly decreased (P<0.05) in liver homogenates while significant increase was recorded in their corresponding

  19. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    Science.gov (United States)

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  20. Replication fork stability confers chemoresistance in BRCA-deficient cells

    DEFF Research Database (Denmark)

    Chaudhuri, Arnab Ray; Callen, Elsa; Ding, Xia

    2016-01-01

    /4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11......Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3...... nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations...

  1. Trace element deficiency and its diagnosis by biochemical criteria

    International Nuclear Information System (INIS)

    Kirchgessner, M.; Grassmann, E.; Roth, H.P.; Spoerl, R.; Schnegg, A.

    1976-01-01

    The effect of trace element deficiency on growth of rats and dairy cows is demonstrated using zinc and nickel. The effect of copper deficiency on reproductive performance is shown to be associated with increased death rates of pregnant animals and their foetuses. For the diagnosis of suboptimum states of trace element supply, biochemical criteria are needed. The mere analysis of the trace element content of various body tissues may lead to falase diagnoses because of the often slow response to varying intake and because of interactions with other dietary ingredients affecting absorption and metabolic efficiency of utilization. Thus copper deficiency is associated with a decrease in the serum level of both copper and iron, despite adequate iron intake, and simultaneously with an accumulation of iron in the liver of the animal. Enzymes and hormones containing the essential trace element as an integral constituent may serve as biochemical criteria. A sensitive response to zinc intake is exhibited by the activity of the alkaline phosphatase of serum or bones, and by the activity of the pancreatic carboxypeptidase A, all of which show a significant reaction to deficient intake within two to four days, and perhaps by the biopotency of insulin. Ceruloplasmin responds to the supply of copper. Its biosynthesis in the liver is possible only from copper available for this purpose. Thus, the determination of ceruloplasmin may take account of at least part of the copper available to the body for metabolic functions. Among various criteria, the catalase activity in blood may provide additional information on the state of iron supply. Malate dehydrogenase and glucose-6-phosphate dehydrogenase respond to nickel-deficient intake. Nickel deficiency also involves anaemia due to disorders in iron absorption

  2. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  3. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase

    International Nuclear Information System (INIS)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose

    2008-01-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  4. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.

    Science.gov (United States)

    van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M

    2005-01-14

    Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.

  5. Vitamin Deficiency Anemia

    Science.gov (United States)

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  6. Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water

    Science.gov (United States)

    Dehui, XU; Qingjie, CUI; Yujing, XU; Bingchuan, WANG; Miao, TIAN; Qiaosong, LI; Zhijie, LIU; Dingxin, LIU; Hailan, CHEN; Michael, G. KONG

    2018-04-01

    Cold atmospheric-pressure plasma is a new technology, widely used in many fields of biomedicine, especially in cancer treatment. Cold plasma can selectively kill a variety of tumor cells, and its biological safety in clinical trials is also very important. In many cases, the patient’s immune level is relatively low, so we first studied the safety assessment of plasma treatment in an immuno-compromised animal model. In this study, we examined the safety of immuno-deficient nude mice by oral lavage treatment of plasma-activated water, and studied the growth status, main organs and blood biochemical indexes. Acute toxicity test results showed that the maximum dose of plasma treatment for 15 min had no lethal effect and other acute toxicity. There were no significant changes in body weight and survival status of mice after 2 min and 4 min of plasma-activated water (PAW) treatment for 2 weeks. After treatment, the major organs, including heart, liver, spleen, lung and kidney, were not significantly changed in organ coefficient and tissue structure. Blood biochemical markers showed that blood neutrophils and mononuclear cells were slightly increased, and the others remained unchanged. Liver function, renal function, electrolytes, glucose metabolism and lipid metabolism were not affected by different doses of PAW treatment. The above results indicate that PAW treatment can be used to treat immuno-deficient nude mice without significant safety problems.

  7. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves.

    Science.gov (United States)

    Hu, Wei; Coomer, Taylor D; Loka, Dimitra A; Oosterhuis, Derrick M; Zhou, Zhiguo

    2017-06-01

    Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K 2 O ha -1 and K67: 67 kg K 2 O ha -1 ) and a controlled environment experiment with K-deficient solution (K1: 0 mM K + ) and K-sufficient solution (K2: 6 mM K + ). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency

  8. Long-chain n-3 PUFA supplementation decreases physical activity during class time in iron-deficient South African school children.

    Science.gov (United States)

    Smuts, Cornelius M; Greeff, Jani; Kvalsvig, Jane; Zimmermann, Michael B; Baumgartner, Jeannine

    2015-01-28

    Both Fe deficiency and poor n-3 fatty acid status have been associated with behavioural changes in children. In the present study, we investigated the effects of Fe and DHA+EPA supplementation, alone or in combination, on physical activity during school days and on teacher-rated behaviour in healthy Fe-deficient school children. In a 2 × 2 factorial design, children (n 98, 6-11 years) were randomly assigned to receive (1) Fe (50 mg) plus DHA (420 mg)+EPA (80 mg), (2) Fe plus placebo, (3) placebo plus DHA+EPA or (4) placebo plus placebo as oral supplements (4 d/week) for 8.5 months. Physical activity was measured during four school days at baseline and endpoint using accelerometers, and data were stratified into morning class time (08.00-10.29 hours), break time (10.30-11.00 hours) and after-break class time (11.01-12.00 hours) for analysis. Classroom behaviour was assessed at endpoint using Conners' Teacher Rating Scales. DHA+EPA supplementation decreased physical activity counts during morning class time, increased sedentary physical activity, and decreased light- and moderate-intensity physical activities. Consistently, DHA+EPA supplementation increased sedentary physical activity and decreased light-intensity physical activity during after-break class time. Even though there were no treatment effects found on teacher-rated behaviour, lower physical activity during morning class time was associated with lower levels of teacher-rated hyperactivity and oppositional behaviour at endpoint. Despite a positive association between Fe status and physical activity during break time at baseline, Fe supplementation did not affect physical activity during break time and class time. Our findings suggest that DHA+EPA supplementation may decrease physical activity levels during class time, and further indicate that accelerometry might be a useful tool to assess classroom behaviour in healthy children.

  9. Glucose 6 phosphate dehydrogenase deficiency in adults

    International Nuclear Information System (INIS)

    Khan, M.

    2004-01-01

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  12. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  13. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup.

    Science.gov (United States)

    Jia, Dong-Xu; Zhou, Lin; Zheng, Yu-Guo

    2017-04-01

    Glucose isomerase (GI) is used in vitro to convert d-glucose to d-fructose, which is capable of commercial producing high fructose corn syrup (HFCS). To manufacture HFCS at elevated temperature and reduce the cost of enriching syrups, novel refractory GIs from Thermoanaerobacterium xylanolyticum (TxGI), Thermus oshimai (ToGI), Geobacillus thermocatenulatus (GtGI) and Thermoanaerobacter siderophilus (TsGI) were screened via genome mining approach. The enzymatic characteristics research showed that ToGI had higher catalytic efficiency and superior thermostability toward d-glucose among the screened GIs. Its optimum temperature reached 95°C and could retain more than 80% of initial activity in the presence of 20mM Mn 2+ at 85°C for 48h. The K m and k cat /K m values for ToGI were 81.46mM and 21.77min -1 mM -1 , respectively. Furthermore, the maximum conversion yield of 400g/L d-glucose to d-fructose at 85°C was 52.16%. Considering its excellent high thermostability and ameliorable application performance, ToGI might be promising for realization of future industrial production of HFCS at elevated temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4-isomerase expressed in the adrenal gland and gonads.

    Science.gov (United States)

    Durocher, Francine; Sanchez, Rocio; Ricketts, Marie-Louise; Labrie, Yvan; Laudet, Vincent; Simard, Jacques

    2005-11-01

    The guinea pig adrenal gland, analogous to the human, possesses the capacity to synthesize C(19) steroids. In order to further understand the control of guinea pig adrenal steroidogenesis we undertook the characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD) expressed in the adrenal gland. A cDNA clone encoding guinea pig 3beta-HSD isolated from a guinea pig adrenal library is predicted to encode a protein of 373 amino acid residues and 41,475Da. Ribonuclease protection assay suggests that this cDNA corresponds to the predominant, if not the sole, mRNA species detectable in total RNA from the guinea pig adrenal gland, ovary and testis. The guinea pig 3beta-HSD shows a similar affinity for both pregnenolone and dehydroepiandrosterone, and in addition, a 17beta-HSD type II-like activity was also observed. A phylogenetical analysis of the 3beta-HSD gene family demonstrates that the guinea pig is in a parallel branch to the myomorpha group supporting the hypothesis that the guinea pig lineage has branched off after the divergence among primates, artiodactyls and rodents, suggesting the paraphyly of the order rodentia.

  15. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  16. What Are Rare Clotting Factor Deficiencies?

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  17. Isolation and characterization of a Chinese hamster ovary cell line deficient in fatty alcohol:NAD+ oxidoreductase activity

    International Nuclear Information System (INIS)

    James, P.F.; Lee, J.; Rizzo, W.B.; Zoeller, R.A.

    1990-01-01

    The authors have isolated a mutant Chinese hamster ovary cell line that is defective in long-chain fatty alcohol oxidation. The ability of the mutant cells to convert labeled hexadecanol to the corresponding fatty acid in vivo was reduced to 5% of the parent strain. Whole-cell homogenates from the mutant strain, FAA.1, were deficient in long-chain fatty alcohol:NAD + oxidoreductase activity, which catalyzes the oxidation of hexadecanol to hexadecanoic acid, although the intermediate fatty aldehyde was formed normally. A direct measurement of fatty aldehyde dehydrogenase showed that the FAA.1, strain was defective in this component of FAO activity. FAA.1 is a two-stage mutant that was selected from a previously described parent strain, ZR-82, which is defective in ether lipid biosynthesis and peroxisome assembly. Because of combined defects in ether lipid biosynthesis and fatty alcohol oxidation, the ability of the FAA.1 cells to incorporate hexadecanol into complex lipids was greatly impaired, resulting in a 60-fold increase in cellular fatty alcohol levels. As the FAO deficiency in FAA.1 cells appears to be identical to the defect associated with the human genetic disorder Sjoegren-Larsson syndrome, the FAA.1 cell line may be useful in studying this disease

  18. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit

    Directory of Open Access Journals (Sweden)

    Badaut Jérôme

    2012-06-01

    Full Text Available Abstract Aging and atherosclerosis are well-recognized risk factors for cardiac and neurovascular diseases. The Apolipoprotein E deficient (ApoE−/− mouse on a high-fat diet is a classical model of atherosclerosis, characterized by the presence of atherosclerotic plaques in extracranial vessels but not in cerebral arteries. Increase in arginase activity was shown to participate in vascular dysfunction in the peripheral arteries of atherosclerotic mice by changing the level of nitric oxide (NO. NO plays a key role in the physiological functions of the neurovascular unit (NVU. However, the regulation of arginase expression and activity in the brain was never investigated in association with changes in the NVU, ApoE deficiency and high fat diet. Fourteen-month-old ApoE−/− mice on high-fat diet exhibited deposition of lipids in the NVU, impairment of blood–brain barrier properties, astrogliosis and an increase of aquaporin 4 staining. In association with these changes, brain arginase activity was significantly increased in the old ApoE−/− mice as compared to old wild type mice, with an increase in the level of arginase type I in the blood vessels. In conclusion, aging in this classical mouse model of atherosclerosis induces an increase in the level and activity of arginase I that may impair NO synthesis and contribute to changes in the NVU leading to blood–brain barrier leakage and inflammation.

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  1. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  2. Vitamin D Deficiency in Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Suzan M. Attar

    2013-01-01

    Full Text Available Objectives: Hypovitaminosis D is common in the general population. Many studies that have been conducted to show the association between vitamin D deficiency and systemic lupus erythematosus (SLE reveal that deficiencies in vitamin D are common in this group of patients. Our aim was to study the relationship between 25(OHD and disease activity in patients with SLE.Methods: Retrospective cohort study of patients with SLE who were followed up at King Abdulaziz University Hospital, Jeddah, from January 2007 to November 2010. Demographic and clinical data were recorded and the 25(OHD levels of the patients were measured. Chi square tests, Student’s t-test, ANOVA and Pearson tests were used for data analysis. ANOVA test was followed by Bonferroni correction. A p-value <0.05 was considered significant.Results: Ninety-five patients with SLE were enrolled in the study. The levels of 25(OHD were significantly lower in patients with active SLE (n=41; 43% than in those with inactive disease (n=54; 57%; p=0.04. The mean (SD levels were 22.3 (14 nmol/L for patients with active disease against 25.0 (14 nmol/L for patients with inactive SLE. No correlation was detected between 25(OH D levels and disease activity score evaluated by SLEDAI-2K. By Pearson correlation, a significant negative correlation existed between 25(OH D and anti ds-DNA (r=-0.38; p<0.001; a positive correlation existed between 25(OHD levels and C4 (r=0.25; p=0.25. By chi square testing, azathioprine treatment (OR=3.5, low C4 (OR= 2.23, low C3 (OR=1.92, and active disease (OR=1.6 were associated with 25(OHD deficiency in SLE patients.Conclusion: Vitamin D deficiency is frequent in patients with SLE. Patients with SLE have a higher risk of developing 25(OHD deficiency in the presence of low serum C3 and C4 levels, and high anti-dsDNA levels.

  3. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven®)

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. Case report A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. Conclusion This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of

  4. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations.

    Science.gov (United States)

    Bradford, Kathryn L; Moretti, Federico A; Carbonaro-Sarracino, Denise A; Gaspar, Hubert B; Kohn, Donald B

    2017-10-01

    Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T - B - NK - ), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.

  5. Recombinase Activating Gene 1 Deficiencies Without Omenn Syndrome May Also Present With Eosinophilia and Bone Marrow Fibrosis

    OpenAIRE

    Ulusoy, Ezgi; Karaca, Neslihan Edeer; Azarsiz, Elif; Berdeli, Afig; Aksu, Guzide; Kutukculer, Necil

    2016-01-01

    Background Severe combined immunodeficiency (SCID) syndromes are a heterogenous group of diseases characterized by impairment in both cellular and humoral immunity with a range of genetic disorders. Complete recombinase activating gene (RAG) deficiency is associated with classical T-B-NK+ SCID which is the most common phenotype of Turkish SCID patients. There is a broad spectrum of hypomorfic RAG mutations including Omenn syndrome, leaky or atypical SCID with expansion of ?? T cells, autoimmu...

  6. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia, your doctor may order the following blood tests to diagnose iron-deficiency anemia: Complete blood count (CBC) to ... than normal when viewed under a microscope. Different tests help your doctor diagnose iron-deficiency anemia. In iron-deficiency anemia, blood ...

  8. β-Galactosidase Deficiency in Colombia

    Directory of Open Access Journals (Sweden)

    Alfredo Uribe PhD

    2015-05-01

    Full Text Available β-Galactosidase (BGal is the first enzyme involved in the catabolism of sphingolipids. Two pathologies have been directly associated with its deficiency: GM1 gangliosidosis and Morquio B. Morquio B is among the rarest types of mucopolysaccharidosis (MPS. We aim to document the β-galactosidase deficiency in Colombia. We evaluated leukocytes from 1492 healthy Colombian individuals and 923 patients, referred between 2005 and August 2014. Dried blood spot (DBS samples from the same number of patients were evaluated. β-Galactosidase was measured with 4-methylumbelliferyl-β- d -galactoside. As a control enzyme, the total hexosaminidase activity was also evaluated. We identified 14 patients with GM1 gangliosidosis, 5 patients with Morquio B, and 1 patient with I-cell disease. We could establish a reference value for Bgal in Colombian leukocyte samples. GM1 gangliosidosis is the main pathology associated with a direct deficiency of BGal. The high number of patients found with MPS IVB indicates that there are patients who could be misdiagnosed due to an unawareness of the disease.

  9. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma.

    Science.gov (United States)

    Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V

    1999-07-09

    To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs.

  10. Health Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all health deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron-deficiency anemia because of your age, ... or sex. Age You may be at increased risk for iron deficiency at certain ages: Infants between ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics News & Resources Intramural Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer ... and symptoms as well as complications from iron-deficiency anemia. Research for Your Health The NHLBI is part of the U.S. Department ...

  13. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  14. Micronutrient deficiencies and gender: social and economic costs.

    Science.gov (United States)

    Darnton-Hill, Ian; Webb, Patrick; Harvey, Philip W J; Hunt, Joseph M; Dalmiya, Nita; Chopra, Mickey; Ball, Madeleine J; Bloem, Martin W; de Benoist, Bruno

    2005-05-01

    Vitamin and mineral deficiencies adversely affect a third of the world's people. Consequently, a series of global goals and a serious amount of donor and national resources have been directed at such micronutrient deficiencies. Drawing on the extensive experience of the authors in a variety of institutional settings, the article used a computer search of the published scientific literature of the topic, supplemented by reports and published and unpublished work from the various agencies. In examining the effect of sex on the economic and social costs of micronutrient deficiencies, the paper found that: (1) micronutrient deficiencies affect global health outcomes; (2) micronutrient deficiencies incur substantial economic costs; (3) health and nutrition outcomes are affected by sex; (4) micronutrient deficiencies are affected by sex, but this is often culturally specific; and finally, (5) the social and economic costs of micronutrient deficiencies, with particular reference to women and female adolescents and children, are likely to be considerable but are not well quantified. Given the potential impact on reducing infant and child mortality, reducing maternal mortality, and enhancing neuro-intellectual development and growth, the right of women and children to adequate food and nutrition should more explicitly reflect their special requirements in terms of micronutrients. The positive impact of alleviating micronutrient malnutrition on physical activity, education and productivity, and hence on national economies suggests that there is also an urgent need for increased effort to demonstrate the cost of these deficiencies, as well as the benefits of addressing them, especially compared with other health and nutrition interventions.

  15. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  16. Disaccharidase Deficiencies in Children With Chronic Abdominal Pain.

    Science.gov (United States)

    El-Chammas, Khalil; Williams, Sara E; Miranda, Adrian

    2017-03-01

    Carbohydrate intolerance or malabsorption has been suggested as a cause of chronic abdominal pain (CAP) in a subset of patients. We aimed to evaluate disaccharidase deficiencies in children with functional CAP and to correlate deficiencies with clinical features. Patients presenting to the gastroenterology clinic at Children's Hospital of Wisconsin with abdominal pain prospectively completed a detailed demographic, history, and symptom questionnaire. The CAP cohort included those with at least 1 month of symptoms. Data on disaccharidase activity and histology of endoscopic biopsies were collected retrospectively. Only patients with normal histology were included in the study. The association between groups with low disaccharidases and clinical features was examined. A total of 203 pediatric patients with CAP were included. The mean (SD) age was 11.5 (3.1) years, and 32.5% were male. The percentages of abnormally low disaccharidase levels using the standard laboratory cutoffs were lactase, 37%; sucrase, 21%; glucoamylase, 25%; and palatinase, 8%. Thirty-nine percent of the patients with low lactase also had low sucrase, and 67% of the patients with low sucrase had low lactase. There was no significant difference in the activities of any of the disaccharidases or sucrase/lactase ratio in relation to age. Also, no association was found between stool consistency, stool frequency, or location of pain and low disaccharidase activity. A large proportion of patients with CAP have deficiencies in disaccharidases. Bowel frequency, vomiting, or location of pain was no different between groups, suggesting that these clinical features cannot be used to predict disaccharidase deficiencies.

  17. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  18. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    Science.gov (United States)

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  19. The molecular basis of aminoacylase 1 deficiency

    DEFF Research Database (Denmark)

    Sommer, Anke; Christensen, Ernst; Schwenger, Susanne

    2011-01-01

    deficiency have not been characterized so far. This has prompted us to approach expression studies of all mutations known to occur in aminoacylase 1 deficient individuals in a human cell line (HEK293), thus providing the authentic human machinery for posttranslational modifications. Mutations were inserted...... using site directed mutagenesis and aminoacylase 1 enzyme activity was assessed in cells overexpressing aminoacylase 1, using mainly the natural high affinity substrate N-acetyl methionine. Overexpression of the wild type enzyme in HEK293 cells resulted in an approximately 50-fold increase...

  20. Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats.

    Science.gov (United States)

    Liu, Ying; Liu, Yi-qun; Morita, Tatsuya; Sugiyama, Kimio

    2012-01-01

    The effect of betaine status on folate deficiency-induced hyperhomocysteinemia was investigated to determine whether folate deficiency impairs homocysteine removal not only by the methionine synthase (MS) pathway but also by the betaine-homocysteine S-methyltransferase (BHMT) pathway. For this purpose, we investigated the effect of dietary supplementation with betaine at a high level (1%) in rats fed a folate-deprived 10% casein diet (10C) and 20% casein diet (20C). We also investigated the effect of choline deprivation on folate deficiency-induced hyperhomocysteinemia in rats fed 20C. Supplementation of folate-deprived 10C and 20C with 1% betaine significantly suppressed folate deprivation-induced hyperhomocysteinemia, but the extent of suppression was partial or limited, especially in rats fed 10C, the suppression of plasma homocysteine increment being 48.5% in rats fed 10C and 69.7% in rats fed 20C. Although betaine supplementation greatly increased hepatic betaine concentration and BHMT activity, these increases did not fully explain why the effect of betaine supplementation was partial or limited. Folate deprivation markedly increased the hepatic concentration of N,N-dimethylglycine (DMG), a known inhibitor of BHMT, and there was a significant positive correlation between hepatic DMG concentration and plasma homocysteine concentration, suggesting that folate deficiency increases hepatic DMG concentration and thereby depresses BHMT reaction, leading to interference with the effect of betaine supplementation. Choline deprivation did not increase plasma homocysteine concentration in rats fed 20C, but it markedly enhanced plasma homocysteine concentration when rats were fed folate-deprived 20C. This indicates that choline deprivation reinforced folate deprivation-induced hyperhomocysteinemia. Increased hepatic DMG concentration was also associated with such an effect. These results support the concept that folate deficiency impairs homocysteine metabolism not only

  1. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    Science.gov (United States)

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  2. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  3. Iodine deficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S M [Pakistan Council for Science and Technology, Islamabad (Pakistan)

    1994-12-31

    Iodine deficiency (IDD) is one of the common problem in the diet. Iodine deficiency as prevalence of goiter in population occurs in the mountainous areas. There is consensus that 800 million people are at risk of IDD from living in iodine deficient area and 190 million from goiter. Very high prevalence of IDD in different parts of the world are striking. It has generally observed that in iodine-deficient areas about 50% are affected with goiter, 1-5% from cretinsim and 20% from impaired mental and/or mortor function. (A.B.).

  4. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  5. Is Vitamin D Deficiency a Confounder in Alcoholic Skeletal Muscle Myopathy?

    NARCIS (Netherlands)

    Wijnia, J.W.; Wielders, J.P.M.; Lips, P.T.A.M.; van der Wiel, A.; Mulder, C.L.; Nieuwenhuis, K.G.A.

    2013-01-01

    Background: Excessive intake of alcohol is often associated with low or subnormal levels of vitamin D even in the absence of active liver disease. As vitamin D deficiency is a well-recognized cause of myopathy, alcoholic myopathy might be related to vitamin D deficiency. Chronic alcoholic myopathy

  6. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  7. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2007-10-01

    Full Text Available Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite.Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  8. [Significant decrease in factor VII activity by tissue thromboplastin derived from rabbit brain in a patient with congenital factor VII deficiency (FVII Padua)].

    Science.gov (United States)

    Sekiya, Akiko; Morishita, Eriko; Maruyama, Keiko; Asakura, Hidesaku; Nakao, Shinji; Ohtake, Shigeki

    2012-03-01

    Congenital factor VII (FVII) deficiency is a bleeding disorder that requires optimal hemostatic management for each case due to its wide variety of bleeding symptoms. We experienced a patient with inherited FVII deficiency who demonstrated different FVII activities depending on tissue thromboplastins used for assays. An 82-year-old woman without any episodes of abnormal bleeding was found to have different FVII activities of 1.4% and 32% when assayed using thromboplastins from rabbit brain and human placenta, respectively. DNA sequencing analysis revealed a homozygous missense mutation of G10828A (FVII Padua) that caused an amino acid substitution of Arg304 to Gln (R304Q). Carriers of 304Q alleles are usually clinically asymptomatic and do not require FVII replacement therapies even in cases of homozygotes. In case a prolonged prothrombin time or reduced FVII activity is detected, re-examination using thromboplastins of other sources can be helpful for preliminary diagnosis of R304Q, in order to prevent unnecessary FVII replacement therapies.

  9. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  10. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    Science.gov (United States)

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  11. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Kelly, Emer

    2009-06-19

    Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.

  12. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected.

  13. First contiguous gene deletion causing biotinidase deficiency: The enzyme deficiency in three Sri Lankan children

    Directory of Open Access Journals (Sweden)

    Danika Nadeen Senanayake

    2015-03-01

    Full Text Available We report three symptomatic children with profound biotinidase deficiency from Sri Lanka. All three children presented with typical clinical features of the disorder. The first is homozygous for a missense mutation in the BTD gene (c.98_104 del7insTCC; p.Cys33PhefsX36 that is commonly seen in the western countries, the second is homozygous for a novel missense mutation (p.Ala439Asp, and the third is the first reported instance of a contiguous gene deletion causing the enzyme deficiency. In addition, this latter finding exemplifies the importance of considering a deletion within the BTD gene for reconciling enzymatic activity with genotype, which can occur in asymptomatic children who are identified by newborn screening.

  14. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  15. Clinically unapparent infantile thiamin deficiency in Vientiane, Laos.

    Directory of Open Access Journals (Sweden)

    Sengmanivong Khounnorath

    2011-02-01

    Full Text Available Beriberi occurs in Vientiane, Lao PDR, among breastfed infants. Clinical disease may be the tip of an iceberg with subclinical thiamin deficiency contributing to other illnesses. Thiamin treatment could improve outcome.A cohort of 778 sick infants admitted during one year without clinical evidence of beriberi were studied prospectively and erythrocyte transketolase assays (ETK performed. Biochemical thiamin deficiency was defined both in terms of the activation coefficient (α>31% and basal ETK activity 31% and 13.4 % basal ETK<0.59 micromoles/min/gHb. Infants≥2 months old had a higher frequency of biochemical markers of thiamin deficiency. Mortality was 5.5% but, among infants ≥2 months old, mortality was higher in those with basal ETK<0.59 micromoles/min/gHb (3/47, 6.4% than in those with basal ETK≥0.59 micromoles/min/gHb (1/146, 0.7% (P=0.045, relative risk=9.32 (95%CI 0.99 to 87.5. Multivariate regression analysis indicated that infant age≥2 months and fewer maternal years of schooling were independently associated with infant basal ETK<0.59 micromoles/min/gHb.Clinically unapparent thiamin deficiency is common among sick infants (≥2 months old admitted to hospital in Vientiane. This may contribute to mortality and a low clinical threshold for providing thiamin to sick infants may be needed.

  16. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    Science.gov (United States)

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Åkerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjärnlund, Ulla; Oliveira, Kenneth; Ström, Karin; McCormick, Stephen D.; Karlsson, Simon; Ström, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Strömquist, Jennie; Collier, Tracy K.; Börjeson, Hans; Mörner, Torsten; Hansson, Tomas

    2016-12-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  17. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    Science.gov (United States)

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Akerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjarnlund, Ulla; Oliveira, Kenneth; Strom, Karin; McCormick, Stephen D.; Karlsson, Simon; Strom, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Stromquist, Jennie; Collier, Tracy K.; Borjeson, Hans; Morner, Torsten; Hansson, Tomas

    2016-01-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  18. Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients

    International Nuclear Information System (INIS)

    Alangari, Abdullah; AlHarbi, Abdullah; AlGhonaium Abdulaziz; Santisteban, Ines; Hershfield, Michael

    2009-01-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive metabolic disorder that results in combined immunodeficiency, neurologic dysfunction and autoimmunity. PNP deficiency has never been reported from Saudi Arabia or in patients with an Arabic ethnic background. We report on two Saudi girls with PNP deficiency. Both showed severe lymphopenia and neurological involvement. Sequencing of the PNP gene of one girl revealed a novel missense mutation Pro146>Leu in exon 4 due to a change in the codon from CCT>CTT. Expression of PNP (146L) cDNA in E coli indicated that the mutation greatly reduced, but did not completely eliminate PNP activity. (author)

  19. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  20. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  1. Carnitine Deficiency and Pregnancy

    Directory of Open Access Journals (Sweden)

    Anouk de Bruyn

    2015-01-01

    Full Text Available We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations.

  2. Vitamin D Deficiency Prevalence and Predictors in Early Pregnancy among Arab Women

    Directory of Open Access Journals (Sweden)

    Sara Al-Musharaf

    2018-04-01

    Full Text Available Data regarding the prevalence and predictors of vitamin D deficiency during early pregnancy are limited. This study aims to fill this gap. A total of 578 Saudi women in their 1st trimester of pregnancy were recruited between January 2014 and December 2015 from three tertiary care antenatal clinics in Riyadh, Saudi Arabia. Information collected includes socio-economic, anthropometric, and biochemical data, including serum vitamin D (25(OHD levels, intake of calcium and vitamin D, physical activity, and sun exposure indices. Pregnant women with 25(OHD levels <50 nmol/L were considered vitamin D deficient. The majority of participants (n = 468 (81% were vitamin D deficient. High levels of indoor activity, whole body clothing, multiparity, total cholesterol/HDL ratio(>3.5, low HDL-cholesterol, and living in West Riyadh were significant independent predictors for vitamin D deficiency, with odds ratios (ORs (95% confidence interval of 25.4 (5.5–117.3, 17.8 (2.3–138.5, 4.0 (1.7–9.5, 3.3 (1.4–7.9, 2.8 (1.2–6.4, and 2.0 (1.1–3.5, respectively. Factors like increased physical activity, sun exposure at noon, sunrise or sunset, high educational status, and residence in North Riyadh were protective against vitamin D deficiency with ORs 0.2 (0.1–0.5; 0.2 (0.1–0.6; 0.3 (0.1–0.9; and 0.4 (0.2–0.8, respectively. All ORs were adjusted for age, BMI, sun exposure, parity, summer season, vitamin D intake, multivitamin intake, physical activity, education, employment, living in the north, and coverage with clothing. In conclusion, the prevalence of vitamin D deficiency among Saudi women during early pregnancy was high (81%. Timely detection and appropriate supplementation with adequate amounts of vitamin D should reduce the risks of vitamin D deficiency and its complications during pregnancy.

  3. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  4. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin

    DEFF Research Database (Denmark)

    Clarke, Robert; Sherliker, Paul; Hin, Harold

    2007-01-01

    BACKGROUND: Impaired vitamin B(12) function and decreased vitamin B(12) status have been associated with neurological and cognitive impairment. Current assays analyze total vitamin B(12) concentration, only a small percentage of which is metabolically active. Concentrations of this active component......, carried on holotranscobalamin (holoTC), may be of greater relevance than total vitamin B(12). METHODS: We compared the utility of serum holoTC with conventional vitamin B(12) for detection of vitamin B(12) deficiency in a population-based study of older people, using increased methylmalonic acid (MMA......) concentrations as a marker of metabolic vitamin B(12) deficiency in the overall population (n = 2403) and in subsets with normal (n = 1651) and abnormal (n = 752) renal function. RESULTS: Among all participants, 6% had definite (MMA >0.75 micromol/L) and 16% had probable (MMA >0.45 micromol/L) metabolic vitamin...

  5. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Directory of Open Access Journals (Sweden)

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  6. Comparison between serum levels of carcinoembryonic antigen, sialic acid and phosphohexose isomerase in lung cancer

    International Nuclear Information System (INIS)

    Patel, P.S.; Raval, G.N.; Rawal, R.M.; Balar, D.B.; Patel, G.H.; Shah, P.M.; Patel, D.D.

    1995-01-01

    The identification and application of quantifiable tumor markers as adjuncts to clinical care is a story of both success and failure. The present study compared serum levels of carcinoembryogenic antigen (CEA) with total sialic acid/total protein (TSA/TP) ration and phosphohexose isomerase (PHI) in 192 untreated lung cancer patients as well as 80 age and sex matched controls (44 non-smokers). CEA values were significantly raised (p < 0.001) in smokers as compared to the non-smokers; whereas, TSA/TP and PHI values were comparable between the groups of the groups of the controls. All the bio-markers were significantly elevated (p < 0.00.1) in untreated lung cancer patients as compared to the controls. Receiver operating characteristic curve analysis revealed higher sensitivities of TSA/TP and PHI as compared to CEA at different specificity levels between 60% and 95%. Mean values of CEA, TSA/TP and PHI were higher in non-responders compared to the responders. The results indicate that TSA/TP and PHI are superior tumor markers than CEA for lung cancer patients. (author)

  7. Resurrection of vitamin D deficiency and rickets

    Science.gov (United States)

    Holick, Michael F.

    2006-01-01

    The epidemic scourge of rickets in the 19th century was caused by vitamin D deficiency due to inadequate sun exposure and resulted in growth retardation, muscle weakness, skeletal deformities, hypocalcemia, tetany, and seizures. The encouragement of sensible sun exposure and the fortification of milk with vitamin D resulted in almost complete eradication of the disease. Vitamin D (where D represents D2 or D3) is biologically inert and metabolized in the liver to 25-hydroxyvitamin D [25(OH)D], the major circulating form of vitamin D that is used to determine vitamin D status. 25(OH)D is activated in the kidneys to 1,25-dihydroxyvitamin D [1,25(OH)2D], which regulates calcium, phosphorus, and bone metabolism. Vitamin D deficiency has again become an epidemic in children, and rickets has become a global health issue. In addition to vitamin D deficiency, calcium deficiency and acquired and inherited disorders of vitamin D, calcium, and phosphorus metabolism cause rickets. This review summarizes the role of vitamin D in the prevention of rickets and its importance in the overall health and welfare of infants and children. PMID:16886050

  8. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Laura Margarita López-Castillo

    2016-12-01

    Full Text Available In plants triosephosphate isomerase (TPI interconverts glyceraldehyde 3-phosphate (G3P and dihydroxyacetone phosphate (DHAP during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI and chloroplast TPI (pdTPI share more than 60% amino acid identity and assemble as (β-α8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218. Site directed mutagenesis of residues pdTPI-C15, cTPI-C13 and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218. Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to

  9. A link between premenopausal iron deficiency and breast cancer malignancy

    International Nuclear Information System (INIS)

    Jian, Jinlong; Li, Jinqing; Huang, Xi; Yang, Qing; Shao, Yongzhao; Axelrod, Deborah; Smith, Julia; Singh, Baljit; Krauter, Stephanie; Chiriboga, Luis; Yang, Zhaoxu

    2013-01-01

    Young breast cancer (BC) patients less than 45 years old are at higher risk of dying from the disease when compared to their older counterparts. However, specific risk factors leading to this poorer outcome have not been identified. One candidate is iron deficiency, as this is common in young women and a clinical feature of young age. In the present study, we used immuno-competent and immuno-deficient mouse xenograft models as well as hemoglobin as a marker of iron status in young BC patients to demonstrate whether host iron deficiency plays a pro-metastatic role. We showed that mice fed an iron-deficient diet had significantly higher tumor volumes and lung metastasis compared to those fed normal iron diets. Iron deficiency mainly altered Notch but not TGF-β and Wnt signaling in the primary tumor, leading to the activation of epithelial mesenchymal transition (EMT). This was revealed by increased expression of Snai1 and decreased expression of E-cadherin. Importantly, correcting iron deficiency by iron therapy reduced primary tumor volume, lung metastasis, and reversed EMT markers in mice. Furthermore, we found that mild iron deficiency was significantly associated with lymph node invasion in young BC patients (p<0.002). Together, our finding indicates that host iron deficiency could be a contributor of poor prognosis in young BC patients

  10. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    Science.gov (United States)

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Aged PROP1 deficient dwarf mice maintain ACTH production.

    Directory of Open Access Journals (Sweden)

    Igor O Nasonkin

    Full Text Available Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null (Prop1(-/- and the Ames dwarf (Prop1(df/df mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism.

  12. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  13. Biotin and biotinidase deficiency

    OpenAIRE

    Zempleni, Janos; Hassan, Yousef I; Wijeratne, Subhashinee SK

    2008-01-01

    Biotin is a water-soluble vitamin that serves as an essential coenzyme for five carboxylases in mammals. Biotin-dependent carboxylases catalyze the fixation of bicarbonate in organic acids and play crucial roles in the metabolism of fatty acids, amino acids and glucose. Carboxylase activities decrease substantially in response to biotin deficiency. Biotin is also covalently attached to histones; biotinylated histones are enriched in repeat regions in the human genome and appear to play a role...

  14. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

    Science.gov (United States)

    Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi

    2017-08-01

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.

  15. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis

    Directory of Open Access Journals (Sweden)

    F. Habarou

    2015-03-01

    Full Text Available Pyruvate carboxylase (PC is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A. Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1 and type B (patient 2. Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.

  16. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  18. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels.

    Directory of Open Access Journals (Sweden)

    Soeren Ocvirk

    2015-06-01

    Full Text Available The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/- mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2 in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05 and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001. Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ

  19. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  20. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  1. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  2. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Koji Hase

    Full Text Available Activation-induced cytidine deaminase (AID expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM and class switch recombination (CSR. Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2 associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AID-/- mice spontaneously develop tertiary lymphoid organs (TLOs in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AID-/- mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF conditions. Gastric autoantigen -specific serum IgM was elevated in AID-/- mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells.

  3. Comparative tissue distribution profiles of five major bio-active components in normal and blood deficiency rats after oral administration of Danggui Buxue Decoction by UPLC-TQ/MS.

    Science.gov (United States)

    Shi, Xuqin; Tang, Yuping; Zhu, Huaxu; Li, Weixia; Li, Zhenhao; Li, Wei; Duan, Jin-ao

    2014-01-01

    Astragali Radix (AR) and Angelicae Sinensis Radix (ASR) were frequently combined and used in China as herbal pair called as Danggui Buxue Decoction (DBD) for treatment of blood deficiency syndrome, such as women's ailments. This study is to investigate the tissue distribution profiles of five major bio-active constituents (ferulic acid, caffeic acid, calycosin-7-O-β-glucoside, ononin and astragaloside IV) in DBD after oral administration of DBD in blood deficiency rats, and to compare the difference between normal and blood deficiency rats. The blood deficiency rats were induced by bleeding from orbit at the dosages of 5.0mLkg(-1) every day, and the experimental period was 12 days. At the finally day of experimental period, both normal and blood deficiency rats were orally administrated with DBD, and then the tissues samples were collected at different time points. Ferulic acid, caffeic acid, calycosin-7-O-β-glucoside, ononin and astragaloside IV in different tissues were detected simultaneously by UPLC-TQ/MS, and the histograms were drawn. The results showed that the overall trend was CLiver>CKidney>CHeart>CSpleen>CLung, CC-30min>CM-30min>CM-60min>CC-5min>CM-5min>CC-60min>CM-240min>CC-240min. The contents of the detected compounds in liver were more than that in other tissues no matter in normal or blood deficiency rats. Compared to normal rats, partial contents of the compounds in blood deficiency rats' tissues at different time points had significant difference (Pdistribution investigation in blood deficiency animals which is conducted by bleeding. And the results demonstrated that the five DBD components in normal and blood deficiency rats had obvious differences in some organs and time points, suggesting that the blood flow and perfusion rate of the organ were altered in blood deficiency animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Atividade da 6-fosfogliconato desidrogenase em deficientes de glicose-6-fosfato desidrogenase Activity of 6-phosphogluconate dehydrogenase in glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Daniela B. Nicolielo

    2006-06-01

    to know better the actuation of these enzymes. The goal of this study was to evaluate the 6PGD enzymatic activity on a population with G6PD deficiency, to verify if there is an elevation of the activity of this enzyme, and try to correlate to a possible increase on the number of reticulocytes or the presence of alterations on red series. The research with 2657 male individuals detected 97 deficient for G6PD, which determined a 3.65% prevalence for the Bauru (SP region, with mean enzymatic activity of 1.74 UI.g Hb-1. min-1 at 37ºC, 14,4% of the normal G6PD activity. Mean 6PGD enzymatic activity was 9.5 UI.g Hb-1. min-1 at 37ºC, and was elevated in 47.4% of the G6PD deficient individuals. The result obtained did not confirm the hypothesis that the elevation of the 6PGD enzymatic activity, in G6PD deficient individuals, was due to the presence of an increase of reticulocytes in blood stream, age or erythrocytometric alterations that could denote anemia. The most plausible theory is that the auto-limited hemolysis, imposed by oxidative processes, preserves young erythrocytes that have an elevated enzymatic activity, as naturally these enzymes lose activity with cellular aging.

  5. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  6. Factor VII deficiency: a single-center experience.

    Science.gov (United States)

    Salcioglu, Zafer; Akcay, Arzu; Sen, Hulya Sayilan; Aydogan, Gonul; Akici, Ferhan; Tugcu, Deniz; Ayaz, Nuray Aktay; Baslar, Zafer

    2012-11-01

    Congenital factor VII deficiency is the most common form of rare coagulation factor deficiencies. This article presents a retrospective evaluation of 73 factor VII deficiency cases that had been followed at our center. The study consisted of 48 males and 25 females (2 months-19 years). Thirty-one (42.5%) of them were asymptomatic. Out of symptomatic patients, 17 had severe clinical symptoms, whereas 8 presented with moderate and 17 with mild symptoms. The symptoms listed in order of frequency were as follows: epistaxis, petechia or ecchymose, easy bruising, and oral cavity bleeding. The genotype was determined in 8 patients. Recombinant activated factor VII (rFVIIa) was used to treat 49 bleeding episodes in 8 patients after 2002. In 2 patients with repeated central nervous system bleeding prophylaxis with rFVIIa was administered. No allergic and thrombotic events were observed during both treatment and prophylaxis courses. Antibody occurrence was not detected in the patients during treatment.

  7. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  8. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  11. Fire Safety Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all fire safety deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection...

  12. A comparison between recombinant activated factor VII (Aryoseven) and Novoseven in patients with congenital factor VII deficiency.

    Science.gov (United States)

    Faranoush, M; Abolghasemi, Hassan; Toogeh, Gh; Karimi, M; Eshghi, P; Managhchi, M; Hoorfar, H; Dehdezi, B Keikhaei; Mehrvar, A; Khoeiny, B; Kamyar, K; Heshmat, R; Baghaeipour, M R; Mirbehbahani, N B; Fayazfar, R; Ahmadinejad, M; Naderi, M

    2015-11-01

    In order to establish the efficacy and biosimilar nature of AryoSeven to NovoSeven in the treatment of congenital factor VII (FVII) deficiency, patients received either agent at 30 μg/kg, intravenously per week for 4 weeks, in a randomized fashion. The primary aim was to compare FVII:coagulation activity (FVII:C), 20 minutes after recombinant activated FVII (rFVIIa) injection, in the 2 groups. A secondary measure was self-reported bleeding. The median interquartile baseline range of the plasma level of activated FVII (FVIIa) activity in the 2 groups was 1.6 (1.1-14.0) IU/dL and 5.0 (1.1-25.5) IU/dL. All patients achieved levels of FVIIa (FVII:C) >30 IU/dL, 20 minutes after the injection of rFVIIa. Bleeding was similar between the 2 groups, with a comparable decrease in severity and frequency compared to the last month prior to treatment. AryoSeven is similar to NovoSeven in increasing postinjection FVIIa activity as well as in clinical safety and efficacy. © The Author(s) 2014.

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  14. Factor VII deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  15. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    International Nuclear Information System (INIS)

    Bandaralage, Sahan P.S.; Farnaghi, Soheil; Dulhunty, Joel M.; Kothari, Alka

    2016-01-01

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  16. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Bandaralage, Sahan P.S. [Gold Coast Hospital and Health Service, Southport, Queensland (Australia); Griffith University, School of Medicine, Southport, Queensland (Australia); Farnaghi, Soheil [Caboolture Hospital, Caboolture, Queensland (Australia); Dulhunty, Joel M.; Kothari, Alka [Redcliffe Hospital, Redcliffe, Queensland (Australia); The University of Queensland, School of Medicine, Herston, Queensland (Australia)

    2016-03-15

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  17. Study regarding the incidence of physical deficiencies of the vertebral column at puberty

    Directory of Open Access Journals (Sweden)

    Livia Avramescu-Opriţoiu

    2008-12-01

    Full Text Available The physical deficiencies of the vertebral column at puberty have become an acute reality of our present time in the schools ofTimisoara and not only, reason for which a study regarding their incidence on the pupils at the age of puberty, from Timisoara,has been started; the study was performed on a 308 pupil group (V-XI classes and used as methods the somatoscopic andsomatometrical exam of the pupils, as well as a short period of time related to the daily activities, which could be the sublayerof these pathological changes at the level of the vertebral column. The results of the study confirmed the hypothesis inaccordance with which there is an increasing number of deficient postures and proper deficiencies at the level of the vertebralcolumn at the young people being studied, correlated with a daily program where the static activities (TV watching, computeruse, individual study, etc. prevail over the physical activities; in accordance with this study 20,13% of them pupils do notshow changes at the level of the axial segment, the rest of 79,87% being diagnosed with deficient postures (45,12%,respectively with proper deficiencies (34,75%; the type of the found deficiencies are scoliosis (14,94%, kiphoses (8,77%,lumbar hyperlordoses (6,82% and kiphoscolioses (2,27%. The alarming proportion of young people that have been diagnosedwith such modifications make us conclude that there is given an insignificant importance to the physical exercise, the mainmethod of primary prophylaxis, but secondary as well of these disturbances.

  18. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  19. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    International Nuclear Information System (INIS)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-01-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1 -/- knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor β1 (TGF-β1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1 -/- mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  20. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  1. Toward reassessing data-deficient species.

    Science.gov (United States)

    Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben

    2017-06-01

    One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.

  2. Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.

    Science.gov (United States)

    Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal

    2016-07-01

    To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.

  3. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice

    International Nuclear Information System (INIS)

    Li, Xueyi; Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B.; DiFiglia, Marian

    2012-01-01

    Highlights: ► Primary Huntington’s disease neurons are impaired in taking up glucose. ► Rab11 modulates glucose uptake in neurons. ► Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. ► We provide a novel mechanism for glucose hypometabolism in Huntington’s disease. -- Abstract: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD 140Q/140Q ). Primary HD 140Q/140Q cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD 140Q/140Q neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD 140Q/140Q neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  4. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    Science.gov (United States)

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  5. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia can cause serious complications, including heart failure and development delays in children. Explore this Health ... to iron-deficiency anemia include: End-stage kidney failure, where there is blood loss during dialysis. People ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... view the colon directly. What if my doctor thinks something else is causing my iron-deficiency anemia? ... deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in premature ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia can cause serious complications, including heart failure and development delays in children. Explore this Health ... lead to iron-deficiency anemia include: End-stage kidney failure, where there is blood loss during dialysis. ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as celiac disease; inflammatory bowel diseases, ... iron-deficiency anemia , such as bleeding in the digestive or urinary tract or heavy menstrual bleeding, your ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fatigue or tiredness, shortness of breath, or chest pain. If your doctor diagnoses you with iron-deficiency ... Common symptoms of iron-deficiency anemia include: Chest pain Coldness in the hands and feet Difficulty concentrating ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ... Cells From Iron-deficient Donors: Recovery and Storage Quality. Learn more about participating in a clinical trial . ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... leaving cells where it is stored or from being absorbed in the duodenum, the first part of ... treatments for iron-deficiency anemia. Living With After being diagnosed with iron-deficiency anemia, it is important ...

  17. IRF4 Deficiency Abrogates Lupus Nephritis Despite Enhancing Systemic Cytokine Production

    Science.gov (United States)

    Lech, Maciej; Weidenbusch, Marc; Kulkarni, Onkar P.; Ryu, Mi; Darisipudi, Murthy Narayana; Susanti, Heni Eka; Mittruecker, Hans-Willi; Mak, Tak W.

    2011-01-01

    The IFN-regulatory factors IRF1, IRF3, IRF5, and IRF7 modulate processes involved in the pathogenesis of systemic lupus and lupus nephritis, but the contribution of IRF4, which has multiple roles in innate and adaptive immunity, is unknown. To determine a putative pathogenic role of IRF4 in lupus, we crossed Irf4-deficient mice with autoimmune C57BL/6-(Fas)lpr mice. IRF4 deficiency associated with increased activation of antigen-presenting cells in C57BL/6-(Fas)lpr mice, resulting in a massive increase in plasma levels of TNF and IL-12p40, suggesting that IRF4 suppresses cytokine release in these mice. Nevertheless, IRF4 deficiency completely protected these mice from glomerulonephritis and lung disease. The mice were hypogammaglobulinemic and lacked antinuclear and anti-dsDNA autoantibodies, revealing the requirement of IRF4 for the maturation of plasma cells. As a consequence, Irf4-deficient C57BL/6-(Fas)lpr mice neither developed immune complex disease nor glomerular activation of complement. In addition, lack of IRF4 impaired the maturation of Th17 effector T cells and reduced plasma levels of IL-17 and IL-21, which are cytokines known to contribute to autoimmune tissue injury. In summary, IRF4 deficiency enhances systemic inflammation and the activation of antigen-presenting cells but also prevents the maturation of plasma cells and effector T cells. Because these adaptive immune effectors are essential for the evolution of lupus nephritis, we conclude that IRF4 promotes the development of lupus nephritis despite suppressing antigen-presenting cells. PMID:21742731

  18. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. Search the NIH Research Portfolio Online Reporting Tools (RePORT) to learn about research that ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  20. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  1. The impacts of phosphorus deficiency on the photosynthetic electron transport chain

    DEFF Research Database (Denmark)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund

    2018-01-01

    light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and hence reduces CO2 fixation. In parallel, lumen acidification activates the qE component of the non-photochemical quenching (NPQ) mechanism......Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency...... accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol (PQH2) oxidation retards electron transport to the cytochrome (Cyt) b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high...

  2. [Vitamin deficiencies in breastfed children due to maternal dietary deficiency

    NARCIS (Netherlands)

    Kollee, L.A.A.

    2006-01-01

    Dietary deficiencies of vitamin B12 and vitamin D during pregnancy and lactation may result in health problems in exclusively breastfed infants. Vitamin-B12 deficiency in these infants results in irritability, anorexia and failure to thrive during the first 4-8 months of life. Severe and permanent

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... en español Iron-deficiency anemia is a common type of anemia that occurs if you do not ... iron-deficiency anemia and help rule out other types of anemia. Treatment will explain treatment-related complications ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... check the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ... clamping of your newborn’s umbilical cord at the time of delivery. This may help prevent iron-deficiency ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... loss and lead to iron-deficiency anemia. Common causes of blood loss that lead to iron-deficiency anemia include: Bleeding in your GI tract, from an ulcer, colon cancer, or regular use of medicines such as aspirin ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia. Return to Signs, Symptoms, and Complications to review signs and symptoms as well as complications from iron-deficiency ... NIH]) Heavy Menstrual Bleeding (Centers for Disease Control and ... Dietary Supplement Fact Sheet (NIH) Iron-Deficiency Anemia (National Library ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... be at risk for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, ... you are experiencing side effects such as a bad metallic taste, vomiting, diarrhea, constipation, or upset stomach. ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... how we are using current research and advancing research to prevent iron-deficiency anemia. Participate in NHLBI Clinical Trials will explain our ongoing clinical studies that are investigating prevention strategies for iron-deficiency anemia. Signs, Symptoms, and Complications ...

  13. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  14. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    Science.gov (United States)

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... exploring about iron-deficiency anemia. Read more New treatments for disorders that lead to iron-deficiency anemia. We are ... and other pathways. This could help develop new therapies for conditions that ... behavior, thinking, and mood during adolescence. Treating anemia in ...

  17. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  18. [2,3-diphosphoglycerate level during the active and maintenance treatment of iron-deficiency anemia patients].

    Science.gov (United States)

    Iordanova, E; Dosheva, I; Lulcheva, F; Tsvetkova, N; Dobrev, K

    1985-01-01

    The objective of the present study was to obtain information about the duration of tissue hypoxia in patients with iron deficiency anemia. That fact is of importance for the determination of the duration of maintenance iron therapy. The level of 2,3-diphosphoglycerate was studied during the treatment, after the correction of anemic syndrome and after 60-day out-patient department treatment. The data obtained revealed that the level of 2,3-diphosphoglycerate was considerably elevated, as compared with the norm, before the treatment. After the active treatment and correction of anemic syndrome it was decreased, but remaining above the norm. By the 60th day of the out-patient department treatment the decrease continued and the level of 2,3-diphosphoglycerate approached the norm.

  19. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.

    Science.gov (United States)

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Martí; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-05-01

    Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2 -/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. To test these hypotheses, we assessed two therapies in Tk2 -/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2 -/- animals compared to dCMP+dTMP. Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652. © 2017 American Neurological Association.

  20. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Rashda [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Efferth, Thomas [Institute of Pharmacy und Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Kuhmann, Christine [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Opatz, Till [Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz (Germany); Hao, Xiaojiang [Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 (China); Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  1. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    International Nuclear Information System (INIS)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine; Opatz, Till; Hao, Xiaojiang; Popanda, Odilia; Schmezer, Peter

    2012-01-01

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC 50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC 50 values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in

  2. Is prophylaxis required for delivery in women with factor VII deficiency?

    Science.gov (United States)

    Baumann Kreuziger, L M; Morton, Colleen T; Reding, Mark T

    2013-11-01

    Factor VII (fVII) deficiency is a rare congenital bleeding disorder in which fVII activity level and bleeding tendency do not completely correlate. Pregnancy and delivery present a significant haemostatic challenge to women with fVII deficiency. Treatment with recombinant factor VIIa (rfVIIa) carries a thrombotic risk and the literature is not clear whether prophylaxis is necessary prior to delivery. The aim of this study was to define management, haemorrhagic and thrombotic complications of pregnant women with fVII deficiency through a systematic review. Medical databases (PubMed, MEDLINE, CINAHL, Academic Search Premier, Cochrane Library, Web of Science and Scopus) were searched using "factor VII deficiency" and "pregnancy" or "surgery." Overall 34 articles, four abstracts, and three institutional cases were reviewed. Literature from 1953 to 2011 reported 94 live births from 62 women with fVII deficiency. The median fVII activity was 5.5%. Haemostatic prophylaxis was used in 32% of deliveries. Without prophylaxis, 40 vaginal deliveries and 16 caesarean sections were completed. The odds of receiving prophylaxis were 2.9 times higher in women undergoing caesarean section compared to vaginal delivery. Post-partum haemorrhage occurred in 10% of deliveries with prophylaxis and 13% of deliveries without prophylaxis. The fVII level did not significantly differ between women who did and did not receive prophylaxis. We present the only systematic review of the management of pregnancy in fVII deficient women. No difference in post-partum haemorrhage was seen in deliveries with and without prophylaxis. Therefore, we recommend that rfVIIa be available in the case of haemorrhage or surgical intervention, but not as mandatory prophylaxis. © 2013 John Wiley & Sons Ltd.

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Are you curious about how inflammation from chronic diseases can cause iron-deficiency anemia? Read more When there is ... DBDR) is a leader in research on the causes, prevention, and treatment of blood diseases, including iron-deficiency anemia. Search the NIH Research ...

  4. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  5. The effect of severe zinc deficiency and zinc supplement on spatial learning and memory.

    Science.gov (United States)

    Tahmasebi Boroujeni, S; Naghdi, N; Shahbazi, M; Farrokhi, A; Bagherzadeh, F; Kazemnejad, A; Javadian, M

    2009-07-01

    Zinc deficiency during pregnancy and during lactation has been shown to impair cognitive function and motor activity in offspring rats. In the present study, the effect of zinc deficiency and zinc supplement on spatial learning and memory in Morris Water Maze (MWM) and motor activity in open field were investigated. Pregnant rats after mating were divided to three groups. Control group fed a standard diet and a zinc deficient (ZnD) group fed a diet deficient in zinc (0.5-1.5 ppm) and a zinc supplement (ZnS) group fed a standard diet and enhanced zinc in the drinking water (10 ppm). All the diets were exposed during the last trisemester of pregnancy and during lactation. Rat's offspring in these groups were tested for spatial learning and memory in MWM at post natal day (PND) 56 and were tested for motor activity in open field at PND 66.The Escape Latency (EL) and Traveled Distance (TD) in the ZnD group were increased but Percentage of Time Spent in the target quadrant (PTS) was decreased compared to the control group. In addition, these were no significant differences in EL and TD, but PTS had significant increase in ZnS compared to the control group. In the open field, Total Distance Moved (TDM) and Time of Motor Activity (TMA) for the ZnD were decreased compared to the control group, but there were no significant differences in TDM and TMA between control and ZnS groups. These findings suggest that zinc deficiency during the last trimester of pregnancy and during lactation impaired spatial learning and memory in their offsprings and has also negative effect on motor activity. In addition, ZnS has a significant effect on spatial learning and memory but no effect on motor activity in their offsprings.

  6. Iron deficiency or anemia of inflammation? : Differential diagnosis and mechanisms of anemia of inflammation.

    Science.gov (United States)

    Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter

    2016-10-01

    Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body's iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear phagocytes system in liver and spleen. This results in iron-limited erythropoiesis and anemia. This review summarizes current diagnostic and pathophysiological concepts of iron deficiency anemia and anemia of inflammation, as well as combined conditions, and provides a brief outlook on novel therapeutic options.

  7. Adenine phosphoribosyltransferase-deficient Leishmania donovani

    International Nuclear Information System (INIS)

    Kaur, K.; Iovannisci, D.M.; Ullman, B.

    1986-01-01

    To elucidate the relative roles of two routes for adenine salvage, the authors use biochemical genetic approaches to isolate clonal strains of Leishmania donovani promasatigotes genetically deficient in APRTase activity. The studies suggest that the metabolic rate of adenine in these organisms is initiated by deamination. The radiolabel incorporation experiments and biochemical experiments are described in which the rate of uptake of radiolabelled purine nucleobases (C 14) was determined. Results are presented

  8. [Screening of food-grade microorganisms for biotransformation of D-tagatose and cloning and expression of L-arabinose isomerase].

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Guan, Yuping; Zhang, Tongcun; Izumori, Ken; Sun, Yuanxia

    2012-05-01

    L-Arabinose isomerase (L-AI) is an intracellular enzyme that catalyzes the reversible isomerization of D-galactose and D-tagatose. Given the widespread use of D-tagatose in the food industry, food-grade microorganisms and the derivation of L-AI for the production of D-tagatose is gaining increased attention. In the current study, food-grade strains from different foods that can convert D-galactose to D-tagatose were screened. According to physiological, biochemical, and 16S rDNA gene analyses, the selected strain was found to share 99% identity with Pediococcus pentosaceus, and was named as Pediococcus pentosaceus PC-5. The araA gene encoding L-AI from Pediococcus pentosaceus PC-5 was cloned and overexpressed in E. coli BL21. The yield of D-tagatose using D-galactose as the substrate catalyzed by the crude enzyme in the presence of Mn2+ was found to be 33% at 40 degrees C.

  9. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  10. Neonatal nucleated red blood cells in G6PD deficiency.

    Science.gov (United States)

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare.

  11. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.

  12. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  13. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females.

    Science.gov (United States)

    Peters, Anna L; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M M; Vlaar, Alexander P J; van Bruggen, Robin; de Korte, Dirk; Van Noorden, Cornelis J F; van Zwieten, Rob

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.

  14. Connective tissue integrity is lost in vitamin B-6-deficient chicks

    Science.gov (United States)

    Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.

    1995-01-01

    The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.

  15. An Assessment of the Selenium Status of Iodine-Deficient and Non-Iodine Deficient Filipino Children

    Directory of Open Access Journals (Sweden)

    Ma. Sofia Amarra

    2002-06-01

    Full Text Available The aim of this study is to examine and compare blood selenium levels in iodine-deficient and non-iodine deficient children. Two groups of children were examined: one group with iodine deficiency (n=31 and the other group with normal iodine status (n=32. Blood was extracted by venipuncture from children aged 6-10 years attending first grade in Commonwealth Elementary School in Quezon City. Whole blood selenium was examined by electrothermal atomic absorption spectrophotometry (AAS. Iodine status was determined by goiter palpation and urinary iodine excretion. Mean selenium levels of deficient and non-deficient children were compared using T-test. Using a cut-off value of 60 mg Se/L whole blood, the proportion of children with normal and deficient iodine status who fell below this cut-off was compared using chi-square test. Whole blood selenium values ranged from 17.6 to 133.6 mg/L. There were no significant differences in mean selenium levels between children with normal and deficient iodine status. Children with normal iodine status had a mean blood selenium level of 55.87 ± 26.3 mg/L while children with deficient iodine status had a mean level of 58.76 ± 26.4 mg/L. Sixty percent of children had blood selenium levels below the arbitrary cut-off of 60 mg/L with no significant difference between groups (p = 0.165, indicating that selenium deficiency is prevalent in this group of children regardless of iodine status. Since selenium deficiency limits the response to iodine supplementation, further investigation is needed to determine whether the same situation exists in children from other areas.

  16. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency

    NARCIS (Netherlands)

    Vaz, F. M.; Scholte, H. R.; Ruiter, J.; Hussaarts-Odijk, L. M.; Pereira, R. R.; Schweitzer, S.; de Klerk, J. B.; Waterham, H. R.; Wanders, R. J.

    1999-01-01

    Systemic carnitine deficiency is a potentially lethal, autosomal recessive disorder characterized by cardiomyopathy, myopathy, recurrent episodes of hypoketotic hypoglycemia, hyperammonemia, and failure to thrive. This form of carnitine deficiency is caused by a defect in the active cellular uptake

  17. [Iron deficiency and pica].

    Science.gov (United States)

    Muñoz, J A; Marcos, J; Risueño, C E; de Cos, C; López, R; Capote, F J; Martín, M V; Gil, J L

    1998-02-01

    To study the relationship between pica and iron-lack anaemia in a series of iron-deficiency patients in order to establish the pathogenesis of such relationship. Four-hundred and thirty-three patients were analysed. Pica was studied by introducing certain diet queries into the clinical history. All patients received oral iron and were periodically controlled with the usual clinico-haematological procedures. Pica was present in 23 patients (5.3%). Eight nourishing (namely, coffee grains, almonds, chocolate, ice, lettuce, carrots, sunflower seeds and bread) and 2 non-nourishing (clay and paper) substances were involved. A second episode of pica appeared in 9 cases upon relapsing of iron deficiency. Both anaemia and pica were cured by etiologic and substitutive therapy in all instances. No clear correlation was found with either socio-economic status or pathogenetic causes of iron deficiency and pica, and no haematological differences were seen between patients with pica and those without this alteration. (1) The pathogenesis of pica is unclear, although it appears unrelated to the degree of iron deficiency. (2) According to the findings in this series, pica seems a consequence of iron deficiency rather than its cause. (3) Adequate therapy can cure both conditions, although pica may reappear upon relapse of iron deficiency.

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics section only, or the News and Resources section. NHLBI Entire Site NHLBI Entire Site Health ... español Iron-deficiency anemia is a common type of anemia that occurs if you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  20. Prognosis of physiological disorders in physic nut to N, P, and K deficiency during initial growth.

    Science.gov (United States)

    Santos, Elcio Ferreira; Macedo, Fernando Giovannetti; Zanchim, Bruno José; Lima, Giuseppina Pace Pereira; Lavres, José

    2017-06-01

    The description of physiological disorders in physic nut plants deficient in nitrogen (N), phosphorus (P) and potassium (K) may help to predict nutritional imbalances before the appearance of visual symptoms and to guide strategies for early nutrient supply. The aim of this study was to evaluate the growth of physic nuts (Jatropha curcas L.) during initial development by analyzing the gas exchange parameters, nutrient uptake and use efficiency, as well as the nitrate reductase and acid phosphatase activities and polyamine content. Plants were grown in a complete nutrient solution and solutions from which N, P or K was omitted. The nitrate reductase activity, phosphatase acid activity, polyamine content and gas exchange parameters from leaves of N, P and K-deficient plants indicates earlier imbalances before the appearance of visual symptoms. Nutrient deficiencies resulted in reduced plant growth, although P- and K-deficient plants retained normal net photosynthesis (A), stomatal conductance (g s ) and instantaneous carboxylation efficiency (k) during the first evaluation periods, as modulated by the P and K use efficiencies. Increased phosphatase acid activity in P-deficient plants may also contribute to the P use efficiency and to A and gs during the first evaluations. Early physiological and biochemical evaluations of N-, P- and K-starved plants may rely on reliable, useful methods to predict early nutritional imbalances. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.

    Science.gov (United States)

    Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2018-01-01

    Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

  2. Diagnóstico diferencial da deficiência de ferro Differential diagnosis of iron deficiency

    Directory of Open Access Journals (Sweden)

    Perla Vicari

    2010-06-01

    Full Text Available A deficiência de ferro é considerada a patologia hematológica mais prevalente no homem. Assim, é fundamental a adequada identificação de suas causas, bem como a diferenciação com outras patologias distintas para adequada abordagem da deficiência de ferro. Neste artigo são brevemente descritas outras condições que podem cursar com anemia microcítica, tais como: talassemias, anemia de doença crônica, anemia sideroblástica e envenenamento por chumbo, patologias estas que devem ser afastadas durante investigação de anemia ferropriva.Iron deficiency is considered to be the commonest hematological pathology in humans. Thus, the essential steps in an adequate approach of iron deficiency include: the proper identification of its causes and the differentiation between iron deficiency and other conditions. This article briefly describes other conditions that may present with microcytic anemia such as thalassemia, anemia of chronic diseases, sideroblastic anemia and lead intoxication. These diseases should be considered during the investigation of iron deficiency anemia.

  3. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    Science.gov (United States)

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    International Nuclear Information System (INIS)

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T CDNB was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of 35 S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T CDNB activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T CDNB and GSH concentration regardless of VE status

  5. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  6. Risk Factors of Development of Iron-Deficiency Conditions in Moscow Adolescents

    Directory of Open Access Journals (Sweden)

    I. N. Zakharova

    2015-01-01

    Full Text Available The article presents data on prevalence structure and causes of iron-deficiency conditions (IDC in adolescents. The authors describe both literature data and the findings of their own study in the adolescents (n = 337 studying at Moscow comprehensive schools. Iron- deficiency anemia was revealed in 5.3% of the examined adolescents, latent iron deficiency — in 17%; vast majority of the last were females. The authors also determined the most common causes of IDC development in adolescents: growth spurt (according to the anamnesis, a source of chronic blood loss (prolonged and abundant menstruations [in girls], frequent nasal bleeding, vegetarianism, intense physical activity, diet compliance, excess weight, and obesity. 

  7. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    Science.gov (United States)

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  8. Kinematic characteristics of anterior cruciate ligament deficient knees with concomitant meniscus deficiency during ascending stairs.

    Science.gov (United States)

    Zhang, Yu; Huang, Wenhan; Ma, Limin; Lin, Zefeng; Huang, Huayang; Xia, Hong

    2017-02-01

    It is commonly believed that a torn ACL or a damaged meniscus may be associated with altered knee joint movements. The purpose of this study was to measure the tibiofemoral kinematics of ACL deficiency with concomitant meniscus deficiency. Unilateral knees of 28 ACL deficient participants were studied while ascending stairs. Among these patients, 6 had isolated ACL injuries (group I), 8 had combined ACL and medial meniscus injuries (group II), 8 had combined ACL and lateral meniscus injuries (group III) and 6 had combined ACL and medial-lateral meniscus injuries (group IV). Both knees were then scanned during a stair climb activity using single fluoroscopic image system. Knee kinematics were measured at 0°, 5°, 10°, 15°, 30° and 60° of flexion during ascending stairs. At 0°, 15° and 30° flexion of the knee, the tibia rotated externally by 13.9 ± 6.1°,13.8 ± 9.5° and 15.9 ± 9.8° in Group I. Group II and III exhibited decreased external rotation from 60° to full extension. Statistical differences were found in 0°, 15°and 30° of flexion for the 2 groups compared with Group I. In general, the tibia showed anterior translation with respect to the femur during ascending stairs. It was further determined that Group III had larger anterior translation compared with Group IV at 0° and 5° of flexion (-6.9 ± 1.7 mm vs. 6.2 ± 11.3 mm, P = 0.041; -9.0 ± 1.8 mm vs. 8.1 ± 13.4 mm, P = 0.044). During ascending stairs the ACL deficient knee with different deficiencies in the meniscus will show significantly different kinematics compared with that of uninjured contralateral knee. Considering the varying effect of meniscus injuries on knee joint kinematics, future studies should concentrate on specific treatment of patients with combined ACL and meniscus injuries to protect the joint from abnormal kinematics and subsequent postoperative degeneration.

  9. Bone marrow transplantation for correction of enzyme deficiency disease

    International Nuclear Information System (INIS)

    Hong, C.; Sutherland, D.E.R.; Matas, A.J.; Najarian, J.S.

    1979-01-01

    Mutant acatalasemic mice provide a prototype of congenital enzyme deficiency disease. Normal blood catalase levels were achieved permanently in congenitally acatalasemic mice by transplantation of bone marrow cells from congeneic normal catalasemic mice using relatively small numbers of cells following whole body irradiation. The increase in blood catalase activity was physiologically effective as demonstrated by the protection of the previously acatalasemic mice against the otherwise lethal effects of hydrogen peroxide injections. Bone marrow transplantation has the potential to provide a continuous source of some enzymes and may be applicable as treatment for certain congenital enzyme deficiency diseases

  10. The effect of X-irradiation on vitamin E deficient rat liver mitochondrial ATPase and cytochrome c oxidase

    International Nuclear Information System (INIS)

    Korkut, S.

    1978-01-01

    Male albino rats were fed for 3 weeks on standard diets or on diets either deficient in or supplemented by vitamin E, whole-body X-irradiated and then immediately decapitated. Liver mitochondrial ATPase activity was stimulated and cytochrome c oxidase inhibited in the irradiated vitamin E deficient group. These activities were not influenced by irradiation in the rats fed on vitamin E supplemented and standard diets. The live mitochondrial vitamin E level was decreased in rats fed on the deficient diet. No differences in liver mitochondrial vitamin E levels were observed after X-irradiation of rats fed on any of the diets. The results suggest that the liver mitochondrial inner-membrane structure may be altered by a diet deficient in vitamin E. (U.K.)

  11. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Ingrid Evans-Osses

    2013-01-01

    Full Text Available The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.

  12. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  14. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  15. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency

    DEFF Research Database (Denmark)

    Jackson, Robert S; Creemers, John W M; Farooqi, I Sadaf

    2003-01-01

    . The differences in the nature and severity of presentation between the two cases cannot readily be explained on the basis of allelic heterogeneity, as the nonsense and missense mutations from both subjects had comparably severe effects on the catalytic activity of PC1. Despite Subject A's negligible PC1 activity......We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound...

  16. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  18. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  19. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  20. Gaped deficiency distribution and variants in Saudi Arabia: An overview

    International Nuclear Information System (INIS)

    El-Hazmi, Mohsen A.F.; Warsy, Arjumand S.

    2001-01-01

    The first report of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Saudi population of the Eastern Province paved the way for extensive investigations to determine the distribution and molecular pathogenesis of G6PD deficiency in Saudis in different parts of the country. During a national study lasting from 1980 to 1993, 24,407 Saudi in 31 different areas of Saudi Arabia screened for G6PD deficiency using spectrophoretic estimation of enzyme activity and electrophoretic separation of the phenotypes. The results in the males and females were separately analyzed and showed a statistically significant difference in the frequency in the male (0.0905) and female (0.041) population (P<0.05). The frequency in the male varied from 0 to 0.398 and in the female from 0 to 0.214. The phenotypes identified included G6PD-A, G6PD-Mediterranean and G6PD-Med-Like with G6PD-B as the normal phenotype in all areas. This study shows that G6PD deficiency is a frequently identified single-gene disorder in Saudi Arabia and G6PD-Mediterranean is the major variant producing the severe deficiency state in this population. (author)