WorldWideScience

Sample records for islet gip receptor

  1. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  2. GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans

    DEFF Research Database (Denmark)

    Gasbjerg, Lærke S; Christensen, Mikkel B; Hartmann, Bolette

    2018-01-01

    AIMS/HYPOTHESIS: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted postprandially from enteroendocrine K cells, but despite therapeutically interesting effects, GIP physiology in humans remains incompletely understood. Progress in this field could be facilitated b...

  3. Species-specific action of (Pro3)GIP - an efficacious agonist on human GIP receptor, but partial agonist and competitive antagonist on rat and mouse GIP receptors

    DEFF Research Database (Denmark)

    Sparre-Ulrich, A H; Hansen, Lærke Smidt; Svendsen, B

    2016-01-01

    effect in murine studies. We conducted a pharmacological analysis of this ligand including interspecies differences between the rodent and human GIP system. EXPERIMENTAL APPROACH: Transiently transfected COS-7 cells were assessed for cAMP accumulation upon ligand stimulation and assayed in competition...... level. Thus, in rodent models human GIP is a comparatively weak partial agonist. Human (Pro3)GIP is not an effective antagonist, so there is still a need for an effective antagonist for the elucidation of GIP's physiology....

  4. N- and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor

    DEFF Research Database (Denmark)

    Hansen, L S; Sparre-Ulrich, A H; Christensen, M.

    2016-01-01

    functions and pharmacological potential. GIP(1-30)NH2 is a naturally occurring truncation of GIP(1-42). Here we characterize eight N-terminal trrncations of human GIP(1-30)NH2 : GIP(2- to 9-30)NH2 . EXPERIMENTAL APPROACH: COS-7 cells were transiently transfected with the human GIP receptor and assessed...... displayed lower affinities (Ki 2.3-347 nM) with highest affinities of GIP(3-30)NH2 and (5-30)NH2 . Agonism was only observed for GIP(1-30)NH2 with an Emax on 100% of GIP(1-42) and GIP(2-30)NH2 (Emax 20%). GIP(2- to 9-30)NH2 displayed antagonism (IC50 12-450 nM) and right-shifts of the GIP(1-42)-response......, but superior antagonist GIP(3-30)NH2 , that together with GIP(5-30)NH2 were high-affinity competitive antagonist and thus may be suitable tool compounds for basic GIP research and future pharmacological interventions....

  5. Human GIP(3-30)NH inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors

    DEFF Research Database (Denmark)

    Gabe, Maria Buur Nordskov; Sparre-Ulrich, Alexander Hovard; Pedersen, Mie Fabricius

    2018-01-01

    using human125I-GIP(3-30)NH2. The selectivity of human GIP(3-30)NH2was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH2inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive...... in transfected cells as well as in human adipocytes....

  6. Marked cortisol production by intracrine ACTH in GIP-treated cultured adrenal cells in which the GIP receptor was exogenously introduced.

    Directory of Open Access Journals (Sweden)

    Hiroko Fujii

    Full Text Available The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing's syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR. Interestingly, these steroidogenic enzymes were also expressed in the GIPR (- cells adjacent to the GIPR (+ cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3β2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH receptor and ACTH precursor proopiomelanocortin (POMC mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295R-GIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists

  7. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet

    DEFF Research Database (Denmark)

    McClean, Paula L; Irwin, Nigel; Cassidy, Roslyn S

    2007-01-01

    The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce...... obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic......))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet....

  8. AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

    Directory of Open Access Journals (Sweden)

    Kazuki Tajima

    Full Text Available The precise role of AMP-activated protein kinase (AMPK, a target of metformin, in pancreatic β cells remains controversial, even though metformin was recently shown to enhance the expression of incretin receptors (GLP-1 and GIP receptors in pancreatic β cells. In this study, we investigated the effect of AMPK in the regulation of incretin receptors expression in pancreatic islets. The phosphorylation of AMPK in the mouse islets was decreased by increasing glucose concentrations. We showed the expression of incretin receptors in bell-shaped response to glucose. Expression of the incretin receptors in the isolated islets showed higher levels under a medium glucose concentration (11.1 mM than that under a low glucose concentration (2.8 mM, but was suppressed under a high glucose concentration (22.2 mM. Both treatment with an AMPK inhibitor and DN-AMPK expression produced a significant increase of the incretin receptors expression under a low glucose concentration. By contrast, in hyperglycemic db/db islets, the enhancing effect of the AMPK inhibitor on the expression of incretin receptors was diminished under a low glucose concentration. Taken together, AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

  9. Sweet Taste Receptor Activation in the Gut Is of Limited Importance for Glucose-Stimulated GLP-1 and GIP Secretion

    DEFF Research Database (Denmark)

    Saltiel, Monika Yosifova; Kuhre, Rune Ehrenreich; Christiansen, Charlotte Bayer

    2017-01-01

    Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor (STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated incretin...

  10. Glucose-dependent insulinotropic polypeptide (GIP and GIP receptor (GIPR genes: An association analysis of polymorphisms and bone in young and elderly women

    Directory of Open Access Journals (Sweden)

    Gaurav Garg

    2016-06-01

    Conclusions: This first exploratory association study between polymorphisms in GIP and GIPR in relation to bone phenotypes and serum-GIP in women at different ages indicates a possible, albeit complex link between glucose metabolism genes and bone, while recognizing that further studies are warranted.

  11. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality.

    Science.gov (United States)

    Mieczkowska, Aleksandra; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2013-10-01

    Bone is permanently remodeled by a complex network of local, hormonal and neuronal factors that affect osteoclast and osteoblast biology. In this context, a role for gastro-intestinal hormones has been proposed based on evidence that bone resorption dramatically falls after a meal. Glucose-dependent insulinotropic polypeptide (GIP) is one of the candidate hormones as its receptor, glucose-dependent insulinotropic polypeptide receptor (GIPR), is expressed in bone. In the present study we investigated bone strength and quality by three-point bending, quantitative x-ray microradiography, microCT, qBEI and FTIR in a GIPR knockout (GIPR KO) mouse model and compared with control wild-type (WT) animals. Animals with a deletion of the GIPR presented with a significant reduction in ultimate load (--11%), stiffness (-16%), total absorbed (-28%) and post-yield energies (-27%) as compared with WT animals. Furthermore, despite no change in bone outer diameter, the bone marrow diameter was significantly increased and as a result cortical thickness was significantly decreased by 20% in GIPR deficient animals. Bone resorption at the endosteal surface was significantly increased whilst bone formation was unchanged in GIPR deficient animals. Deficient animals also presented with a pronounced reduction in the degree of mineralization of bone matrix. Furthermore, the amount of mature cross-links of collagen matrix was significantly reduced in GIPR deficient animals and was associated with lowered intrinsic material properties. Taken together, these data support a positive effect of the GIPR on bone strength and quality. © 2013.

  12. GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Plamboeck, Astrid; Rosenkilde, Mette M

    2006-01-01

    Glucose-dependent insulinotropic polypeptide [GIP-(1-42)] is degraded by dipeptidyl peptidase IV (DPP IV), forming GIP-(3-42). In mice, high concentrations of synthetic GIP-(3-42) may function as a GIP receptor antagonist, but it is unclear whether this occurs at physiological concentrations...... GIP, GIP-(3-42) behaved as a weak antagonist (IC(50), 92 and 731 nM for inhibition of cAMP accumulation elicited by 10 pM and 1 nM native GIP, respectively). In the isolated perfused rat pancreas, GIP-(3-42) alone had no effect on insulin output and only reduced the response to GIP (1 nM) when......-42) can weakly antagonize cAMP accumulation and insulin output in vitro, it does not behave as a physiological antagonist in vivo....

  13. Roles of Toll-like receptors in allogeneic islet transplantation.

    Science.gov (United States)

    Ro, Han; Hong, Juho; Kim, Beom Seok; Lee, Eun Won; Kim, Myung-Gyu; Han, Kyu Hyun; Yeom, Hye-Jung; Lee, Eun Mi; Jeong, Jong Cheol; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok

    2012-11-27

    Toll-like receptors (TLRs) are involved in the rejection of solid organ allografts. However, the roles of TLRs in islets are still controversial. We investigated the roles of TLRs in donor islets together with those in recipients in allogeneic islet transplantation. To assess the roles of TLRs in either donor islets or recipients, allogeneic islet transplantation was performed using myeloid differentiation factor 88 (MyD88)-knockout (KO), TLR4-KO, or Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)-KO mice. Both polyriboinosinic polyribocytidylic acid and lipopolysaccharide (LPS) stimulation induced the mRNA expression of regulated and normal T cell expressed and secreted, interferon-γ-inducible protein-10, monocyte chemotactic protein-1, interleukin-8, and inducible nitric oxide synthase in murine islets, whereas the induction was attenuated in TRIF-KO, interferon-β promoter stimulator-1-KO, and TLR4-KO mice. When islets from MyD88-KO, TLR4-KO, or TRIF-KO C57BL/6 mice were transplanted to BALB/c recipients, graft survival was not better than that of wild-type (WT) islets. However, the survival of the MyD88-KO islet allograft was significantly prolonged when combined with anti-CD40L. In parallel, LPS stimulation in donor islets interfered with anti-CD40L blockade-mediated long-term survival of islet allografts in TLR4-KO recipients. LPS stimulation increased the perigraft infiltration of both T cells and macrophages. Then again, when islets from WT BALB/c mice were transplanted to MyD88-KO, TRIF-KO, or WT C57BL/6 mice, there was no difference in graft survival, although some of the MyD88-KO recipients obtained long-term graft survival. However, anti-CD40L prolonged graft survival significantly in MyD88-KO recipients. The absence of MyD88 in either donors or recipients decreased the perigraft infiltration of inflammatory cells when combined with anti-CD40L. TLRs in both donor islets and recipients are involved in islet allograft

  14. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  15. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2010-01-01

    We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC. We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression. There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r s = 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r s = 0.499, p = 0.03) in the tumour islets. Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets

  16. G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction

    DEFF Research Database (Denmark)

    Holst, Birgitte; Egerod, Kristoffer L; Jin, Chunyu

    2009-01-01

    G protein-coupled receptor (GPR)-39 is a seven-transmembrane receptor expressed mainly in endocrine and metabolic tissues that acts as a Zn(++) sensor signaling mainly through the G(q) and G(12/13) pathways. The expression of GPR39 is regulated by hepatocyte nuclear factor (HNF)-1alpha and HNF-4...... tolerance both during oral and iv glucose tolerance tests, and Gpr39(-/-) mice had decreased plasma insulin response to oral glucose. Islet architecture was normal in the Gpr39 null mice, but expression of Pdx-1 and Hnf-1alpha was reduced. Isolated, perifused islets from Gpr39 null mice secreted less...

  17. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain

    OpenAIRE

    Lijun, Cao; Li, Dongfang; Feng, Peng; Li, Lin; Xue, Guofang; Li, Guanglai; Holscher, Christian

    2016-01-01

    The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson’s disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report ...

  18. Strategies to improve outcome after islet transplantation using the GLP-1 receptor agonist, extendin-4

    OpenAIRE

    Sharma, Amit

    2007-01-01

    Transplantation of pancreatic islets into the liver via the portal vein has emerged as a treatment option for patients with type I diabetes mellitus. However, loss of functional beta cell mass during isolation and following implantation is a major obstacle in obtaining good long-term results. Exendin-4, a glucagonlike peptide-1 (GLP-1) receptor agonist, improves glucose homeostasis in patients with diabetes. It also has anti-apoptotic and beta cell proliferative properties t...

  19. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain.

    Science.gov (United States)

    Cao, Lijun; Li, Dongfang; Feng, Peng; Li, Lin; Xue, Guo-Fang; Li, Guanglai; Hölscher, Christian

    2016-04-13

    The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once daily (20 mg/kg intraperitoneally) for 7 days and the dual agonist was coinjected once daily (50 nmol/kg intraperitoneally). We found that the drug reduced most of the MPTP-induced motor impairments in the rotarod, open-field locomotion, and muscle strength test. The number of tyrosine hydroxylase-positive neurons in the substantia nigra and striatum was reduced by MPTP and increased by DA-JC1. Synapse numbers (synaptophysin expression) were reduced in the substantia nigra and the striatum by MPTP and DA-JC1 reversed this effect. The activation of a chronic inflammation response by MPTP was considerably reduced by the dual agonist (DA) (astroglia and microglia activation). Therefore, dual agonists show promise as a novel treatment of PD.

  20. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF.

    Science.gov (United States)

    Ji, Chenhui; Xue, Guo-Fang; Lijun, Cao; Feng, Peng; Li, Dongfang; Li, Lin; Li, Guanglai; Hölscher, Christian

    2016-03-01

    The incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are growth factors with neuroprotective properties. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal models of Parkinson's and Alzheimer's disease. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed and are tested in diabetic patients. Here we demonstrate the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20 mg/kg i.p.) for 7 days, and the dual agonist was injected 30 min later i.p. (50 nmol/kg bw). The PI3k inhibitor LY294002 (0.6 mg/kg i.v.) was co-injected in one group. DA-JC1 reduced or reversed most of the MPTP induced motor impairments in the rotarod and in a muscle strength test. The number of tyrosine hydroxylase (TH) positive neurons in the substantia nigra (SN) was reduced by MPTP and increased by DA-JC1. The ratio of anti-inflammatory Bcl-2 to pro-inflammatory BAX as well as the activation of the growth factor kinase Akt was reduced by MPTP and reversed by DA-JC1. The PI3k inhibitor had only limited effect on the DA-JC1 drug effect. Importantly, levels of the neuroprotective brain derived neurotropic factor (BDNF) were reduced by MPTP and enhanced by DA-JC1. The results demonstrate that DA-JC1 shows promise as a novel treatment for PD. Copyright © 2016. Published by Elsevier B.V.

  1. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  2. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [Yale University School of Medicine (United States); Zhao, Xiaojian [Yale University School of Medicine (United States); Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L. [Pfizer Global Research and Development, Pfizer Inc., Groton CT (United States)

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  3. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic β-cell mass

    International Nuclear Information System (INIS)

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-01-01

    Highlights: → We screened G-protein coupled receptors for imaging pancreatic. → Database mining and immunohistochemistry identified GPCRs enriched in β-cells. → In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. → GPCR candidates for imaging of β-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic β-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet β-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 ∼ GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential

  4. A novel insulinotropic mechanism of whole grain-derived γ-oryzanol via the suppression of local dopamine D2 receptor signalling in mouse islet.

    Science.gov (United States)

    Kozuka, Chisayo; Sunagawa, Sumito; Ueda, Rei; Higa, Moritake; Ohshiro, Yuzuru; Tanaka, Hideaki; Shimizu-Okabe, Chigusa; Takayama, Chitoshi; Matsushita, Masayuki; Tsutsui, Masato; Ishiuchi, Shogo; Nakata, Masanori; Yada, Toshihiko; Miyazaki, Jun-Ichi; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2015-07-03

    γ-Oryzanol, derived from unrefined rice, attenuated the preference for dietary fat in mice, by decreasing hypothalamic endoplasmic reticulum stress. However, no peripheral mechanisms, whereby γ-oryzanol could ameliorate glucose dyshomeostasis were explored. Dopamine D 2 receptor signalling locally attenuates insulin secretion in pancreatic islets, presumably via decreased levels of intracellular cAMP. We therefore hypothesized that γ-oryzanol would improve high-fat diet (HFD)-induced dysfunction of islets through the suppression of local D 2 receptor signalling. Glucose metabolism and regulation of molecules involved in D 2 receptor signalling in pancreatic islets were investigated in male C57BL/6J mice, fed HFD and treated with γ-oryzanol . In isolated murine islets and the beta cell line, MIN6 , the effects of γ-oryzanol on glucose-stimulated insulin secretion (GSIS) was analysed using siRNA for D 2 receptors and a variety of compounds which alter D 2 receptor signalling. In islets, γ-oryzanol enhanced GSIS via the activation of the cAMP/PKA pathway. Expression of molecules involved in D 2 receptor signalling was increased in islets from HFD-fed mice, which were reciprocally decreased by γ-oryzanol. Experiments with siRNA for D 2 receptors and D 2 receptor ligands in vitro suggest that γ-oryzanol suppressed D 2 receptor signalling and augmented GSIS. γ-Oryzanol exhibited unique anti-diabetic properties. The unexpected effects of γ-oryzanol on D 2 receptor signalling in islets may provide a novel; natural food-based, approach to anti-diabetic therapy. © 2015 The British Pharmacological Society.

  5. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  6. NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide

    International Nuclear Information System (INIS)

    Alana, Inigo; Hewage, Chandralal M.; G. Malthouse, J. Paul; Parker, Jeremy C.; Gault, Victor A.; O'Harte, Finbarr P.M.

    2004-01-01

    Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic β-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length α-helical conformation between residues F 6 and A 28 . This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists

  7. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  8. OctreoScan 111 for imaging of a somatostatin receptor-positive islet cell tumor in rat

    International Nuclear Information System (INIS)

    Bruns, C.; Stolz, B.; Albert, R.; Marbach, P.; Pless, J.

    1993-01-01

    We report here the in vitro characterization of SDZ 215-811 and the in vivo imaging of a islet cell tumor gown in rats using [ 111 In]SDZ 215-811. In vitro autoradiographies revelaed a high density of SRIF receptors on the pancreatic tumor tissue. As early as 5 min after intravenous injection of [ 111 In]SDZ 215-811 into tumour-bearing rats, the tumors were clearly localized by gamma-camera scintigraphy. Even 24 h post injection, the islet cell tumor was still detectable. The radioligand was mainly cleared from the circulation via the Kidneys, with a rapid α-phase (t 1/2 =5.6 min) and a slow elimination phase (t 1/2 =7.3 h). Biodistribution studies revealed a relatively high accumulation of radioactivity in the kidneys, but low uptake into the liver and the intestine. High uptake of [ 111 In]SDZ 215-811 was observed for the tumor tissue (0.92±0.07% ID/g; 1 h post injection). Interestingly, a tumor load of 0.14±0.01% ID/g was still measured after 24 h. The tumor/blood ratio was 4.93 after 24 h, indicating specific accumulation of radioactivity in the islet cell tumour. [ 111 In]SDZ 215-811 appears to be sensitive and specific ligand for SRIF receptorpositive tumors and offers an easy procedure for scintigraphic imaging of such tumors in man. (orig.)

  9. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells

    DEFF Research Database (Denmark)

    Salehi, Albert; Gunnerud, Ulrika; Muhammed, Sarheed J

    2012-01-01

    Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators...... of whey's action on insulin secretion from isolated mouse Langerhans islets....

  10. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes – A role for the transcription factor NFAT and phosphodiesterase 3B

    International Nuclear Information System (INIS)

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-01-01

    Highlights: ► GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. ► GIP-induced osteopontin expression is NFAT-dependent. ► Osteopontin expression is PDE3-dependent. ► Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin – glucose-dependent insulinotropic polypeptide (GIP) – and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the β3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  11. Activin receptor-like kinase 5 inhibition reverses impairment of endothelial cell viability by endogenous islet mesenchymal stromal cells.

    Science.gov (United States)

    Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M

    2013-03-01

    Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.

  12. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.

    Science.gov (United States)

    Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob; Kassem, Moustapha; Frost, Morten

    2018-01-01

    The relationship between gut and skeleton is increasingly recognized as part of the integrated physiology of the whole organism. The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestine in response to nutrient intake and exhibit several physiological functions including regulation of islet hormone secretion and glucose levels. A number of GLP-1 receptor agonists (GLP-1RAs) are currently used in treatment of type 2 diabetes and obesity. However, GIP and GLP-1 cognate receptors are widely expressed suggesting that incretin hormones mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre-clinical investigations, clinical trials are needed to clarify whether similar effects are present and clinically relevant in humans. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Reappraisal of GIP Pharmacology for Metabolic Diseases

    DEFF Research Database (Denmark)

    Finan, Brian; Müller, Timo D; Clemmensen, Christoffer

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are considered the best current medicines for type 2 diabetes (T2D) and obesity due to their actions in lowering blood glucose and body weight. Despite similarities to GLP-1, glucose-dependent insulinotropic polypeptide (GIP) has not been extensively pursue...... be beneficial for metabolic diseases. However, a growing body of new evidence - including data based on refined genetically modified models and improved pharmacological agents - suggests a paradigm shift on how the GIP system should be manipulated for metabolic benefits....

  14. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  15. Liposome-mediated transfer of IL-1 receptor antagonist gene to dispersed islet cells does not prevent recurrence of disease in syngeneically transplanted NOD mice

    DEFF Research Database (Denmark)

    Saldeen, J; Sandler, S; Bendtzen, K

    2000-01-01

    transplanted non-obese diabetic (NOD) mice. NOD mouse islet cells were transfected using liposome-mediated gene transfer with a human IL-1ra cDNA construct and transplanted two days later to prediabetic NOD mice. Graft infiltration and destruction were monitored three, five and eight days posttransplantation...... by histology and determination of insulin and cytokine content. IL-1ra gene transfer resulted in transient expression of IL-1ra protein in islet cells in vitro as assessed by ELISA and of IL-1ra mRNA in transplanted islets as revealed by RT-PCR. However, both control and IL-1ra transfected NOD grafts exhibited......IL-1beta is cytotoxic to pancreatic beta-cells in vitro but its role in the vicinity of beta-cells in vivo is unknown. We explored whether liposome-mediated transfer of the interleukin 1 receptor antagonist (IL-1ra) gene to islet cells might prevent recurrence of disease in syngeneically...

  16. Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP): Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mizejewski, Gerald J. [Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States)

    2011-06-20

    The Alpha-fetoprotein (AFP) derived Growth Inhibitory Peptide (GIP) is a 34-amino acid segment of the full-length human AFP molecule that inhibits tumor growth and metastasis. The GIP-34 and its carboxy-terminal 8-mer segment, termed GIP-8, were found to be effective as anti-cancer therapeutic peptides against nine different human cancer types. Following the uptake of GIP-34 and GIP-8 into the cell cytoplasm, each follows slightly different signal transduction cascades en route to inhibitory pathways of tumor cell growth and proliferation. The parallel mechanisms of action of GIP-34 versus GIP-8 are demonstrated to involve interference of signaling transduction cascades that ultimately result in: (1) cell cycle S-phase/G2-phase arrest; (2) prevention of cyclin inhibitor degradation; (3) protection of p53 from inactivation by phosphorylation; and (4) blockage of K{sup +} ion channels opened by estradiol and epidermal growth factor (EGF). The overall mechanisms of action of both peptides are discussed in light of their differing modes of cell attachment and uptake fortified by RNA microarray analysis and electrophysiologic measurements of cell membrane conductance and resistance. As a chemotherapeutic adjunct, the GIPs could potentially aid in alleviating the negative side effects of: (1) tamoxifen resistance, uterine hyperplasia/cancer, and blood clotting; (2) Herceptin antibody resistance and cardiac (arrest) arrhythmias; and (3) doxorubicin's bystander cell toxicity.

  17. The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginine-induced insulin release

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Clemmensen, Christoffer; Johansen, Lars Dan

    2013-01-01

    insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by L-arginine did not stimulate insulin secretion. We also investigated central...... metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in L-arginine-induced insulin release and glucose...

  18. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Bilal [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Banke, Elin, E-mail: elin.banke@med.lu.se [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Guirguis, Emilia [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Aakesson, Lina [Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Clinical Research Centre, Lund University, Malmoe (Sweden); Manganiello, Vincent [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Lyssenko, Valeriya; Groop, Leif [Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmoe (Sweden); Gomez, Maria F. [Department of Clinical Sciences, Vascular ET Coupling, Clinical Research Centre, Lund University, Malmoe (Sweden); Degerman, Eva [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  19. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  20. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome

    Science.gov (United States)

    Lecoq, Anne-Lise; Stratakis, Constantine A.; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R.; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; Louiset, Estelle; Lacroix, André; Bouligand, Jérôme; Kamenický, Peter

    2017-01-01

    GIP-dependent Cushing’s syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing’s syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing’s syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations. PMID:28931750

  1. On the physiology of GIP and GLP-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2005-01-01

    circulation. Apparently, before it is degraded, GLP-1 activates sensory afferents in the gastrointestinal mucosa with cell bodies in the nodose ganglion, signaling onwards to the brain stem and the hypothalamus. A similar mechanism seems to be involved in GLP-1's effect on gastrointestinal motility...... and secretion, and perhaps its actions on appetite and food intake, all of which may be even more physiologically important than its effects on the beta cells. Cardiovascular and neuroprotective actions of GLP-1 have also recently been reported. Regarding GIP, several lines of evidence suggest that GIP......Recent studies have indicated that GIP and GLP-1 are about as important as each other in the incretin effect, being released rapidly after meals and being active already at fasting glucose levels. Although the density of GLP-1 producing cells is higher distally, GlP-1 is normally secreted...

  2. Expert system GIP-WWER for verification of seismic adequacy of WWER equipment

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    The aim of this report is to describe the modified Generic Implementation Procedure (GIP) titled GIP-WWER which can be used to verify seismic adequacy of the safe shutdown mechanical and electrical equipment and distribution systems of operating or constructed WWER NPPs, namely WWER-440/213 type. The WWER-GIP procedure was prepared using available information contained in GIP and the experience taken from various seismic inspections and evaluations of WWER type NPPs performed in the last five years

  3. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia

    DEFF Research Database (Denmark)

    Meier, J J; Gallwitz, B; Siepmann, N

    2003-01-01

    AIMS/HYPOTHESIS: In the isolated perfused pancreas, gastric inhibitory polypeptide (GIP) has been shown to enhance glucagon secretion at basal glucose concentrations, but in healthy humans no glucagonotropic effect of GIP has yet been reported. Therefore, we studied the effect of GIP on glucagon ...

  4. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  5. Intraportal islet oxygenation.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  6. The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Agersø, Henrik; Lauritsen, Torsten

    2006-01-01

    in the two groups and ranged from 8 to 21 l per subject. The primary metabolite, GIP 3-42, generated through the action of dipeptidyl peptidase IV (DPP-IV), was eliminated with a mean half-life of 17.5 and 20.5 min in patients and healthy subjects (NS). CONCLUSION: Elimination of GIP is similar in obese type...... 2 diabetic patients and matched healthy subjects. Differences in elimination of GIP and its primary metabolite, therefore, do not seem to contribute to the defective insulinotropic effect of GIP in type 2 diabetes....

  7. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  8. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.

    Science.gov (United States)

    Oshima, Naoki; Onimaru, Hiroshi; Matsubara, Hidehito; Uchida, Takahiro; Watanabe, Atsushi; Imakiire, Toshihiko; Nishida, Yasuhiro; Kumagai, Hiroo

    2017-03-06

    Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  11. Advances and Challenges in Islet Transplantation: Islet Procurement Rates and Lessons Learned from Suboptimal Islet Transplantation

    OpenAIRE

    Annette Plesner; C. Bruce Verchere

    2011-01-01

    The initial step in successful islet transplantation is procurement of healthy donor islets. Given the limited number of donor pancreata selected for islet isolation and that islets from multiple donors are typically required to obtain insulin independence, it is critical to improve pancreas procurement rates and yield of islets for transplantation. Islets are delicate microorgans that are susceptible to apoptosis, hypoxia, and ischemia during isolation, culture, and the peritransplant period...

  12. Discovery of dual-action membrane-anchored modulators of incretin receptors.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Fortin

    Full Text Available The glucose-dependent insulinotropic polypeptide (GIP and the glucagon-like peptide-1 (GLP-1 receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.Serial substitution of residue 7 in membrane-tethered GIP (tGIP led to a wide range of activities at the GIP receptor, with [G(7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4, did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7]tGIP and tEXE4 failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes.These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.

  13. Islet Assessment for Transplantation

    Science.gov (United States)

    Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.

    2010-01-01

    Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494

  14. Pancreatic Islet Cell Transplantation

    Science.gov (United States)

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  15. Clinical pancreatic islet transplantation.

    Science.gov (United States)

    Shapiro, A M James; Pokrywczynska, Marta; Ricordi, Camillo

    2017-05-01

    Clinical pancreatic islet transplantation can be considered one of the safest and least invasive transplant procedures. Remarkable progress has occurred in both the technical aspects of islet cell processing and the outcomes of clinical islet transplantation. With >1,500 patients treated since 2000, this therapeutic strategy has moved from a curiosity to a realistic treatment option for selected patients with type 1 diabetes mellitus (that is, those with hypoglycaemia unawareness, severe hypoglycaemic episodes and glycaemic lability). This Review outlines the techniques required for human islet isolation, in vitro culture before the transplant and clinical islet transplantation, and discusses indications, optimization of recipient immunosuppression and management of adjunctive immunomodulatory and anti-inflammatory strategies. The potential risks, long-term outcomes and advances in treatment after the transplant are also discussed to further move this treatment towards becoming a more widely available option for patients with type 1 diabetes mellitus and eventually a potential cure.

  16. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion

    DEFF Research Database (Denmark)

    Cani, Patrice D; Holst, Jens Juul; Drucker, Daniel J

    2007-01-01

    to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1...... content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion...

  17. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  18. Immunoassays for the incretin hormones GIP and GLP-1

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Holst, Jens J

    2009-01-01

    The measurement of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), using immunologically based assays is made difficult by the fact that the processing of the precursor molecules gives rise to a number of different peptides which cross......-react with antisera raised against the two hormones. For GLP-1, the picture is further complicated because of the necessity to differentiate between the intestinal and pancreatic proglucagon products. Finally, once secreted, both incretins are rapidly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4) to generate....... The use of highly specific assays using well-characterised antisera and careful sample handling is therefore required for a reliable determination of incretin hormone concentrations....

  19. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  20. Inflammatory Response in Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Mazhar A. Kanak

    2014-01-01

    Full Text Available Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.

  1. Inflammatory Response in Islet Transplantation

    Science.gov (United States)

    Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.

    2014-01-01

    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060

  2. Delayed revascularization of islets after transplantation by IL-6 blockade in pig to non-human primate islet xenotransplantation model.

    Science.gov (United States)

    Min, Byoung-Hoon; Shin, Jun-Seop; Kim, Jong-Min; Kang, Seong-Jun; Kim, Hyun-Je; Yoon, Il-Hee; Park, Su-Kyoung; Choi, Ji-Won; Lee, Min-Suk; Park, Chung-Gyu

    2018-01-01

    Pancreatic islet transplantation is currently proven as a promising treatment for type 1 diabetes patients with labile glycemic control and severe hypoglycemia unawareness. Upon islet transplantation, revascularization is essential for proper functioning of the transplanted islets. As IL-6 is important for endothelial cell survival and systemic inflammation related to xenograft, the effect of IL-6 receptor antagonist, tocilizumab, on revascularization of the transplanted islets was examined in pig to non-human primate islet xenotransplantation model. Also, the endothelial cell origin in a new vessel of the transplanted pig islets was determined. Pig islets were isolated from designated pathogen-free (DPF) SNU miniature pigs and transplanted via portal vein into five streptozotocin-induced diabetic monkeys. One group (n = 2, basal group) was treated with anti-thymoglobulin (ATG), anti-CD40 antibody (2C10R4), sirolimus, and tacrolimus, and the other group was additionally given tocilizumab on top of basal immunosuppression (n = 3, Tocilizumab group). To confirm IL-6 blocking effect, C-reactive protein (CRP) levels and serum IL-6 concentration were measured. Scheduled biopsy of the margin of the posterior segment right lobe inferior of the liver was performed at 3 weeks after transplantation to assess the degree of revascularization of the transplanted islets. Immunohistochemical staining using anti-insulin, anti-CD31 antibodies, and lectin IB4 was conducted to find the origin of endothelial cells in the islet graft. CRP significantly increased at 1~2 days after transplantation in Basal group, but not in Tocilizumab group, and higher serum IL-6 concentration was measured in latter group, showing the biological potency of tocilizumab. In Basal group, well-developed endothelial cells were observed on the peri- and intraislet area, whereas the number of CD31 + cells in the intraislet space was significantly reduced in Tocilizumab group. Finally, new endothelial

  3. A discussion on establishment of GIP management system for food irradiation facilities

    International Nuclear Information System (INIS)

    Lu Jiang; Shi Hua; Li Ruisong; Li Shurong; Zhou Hongjie; Ha Yiming

    2005-01-01

    This article analyses the hazard factors and selects Critical Control Point (CCP) for food irradiation process (including staff, facilities and processing) using HACCP version. The principles and method of GIP system for food irradiation plant are also discussed. (authors)

  4. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Yuan, Ziyue; Li, Dongfang; Feng, Peng; Xue, Guofang; Ji, Chenhui; Li, Guanglai; Hölscher, Christian

    2017-10-05

    Type 2 diabetes mellitus (T2DM) is one of the risk factors for Parkinson's disease (PD). Insulin desensitisation has been observed in the brains of patients, which may promote neurodegeneration. Incretins are a family of growth factors that can re-sensitise insulin signalling. We have previously shown that mimetics of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD. Recently, dual GLP-1/GIP receptor agonists have been developed. We therefore tested the novel dual agonist DA3-CH in comparison with the best GLP-1 analogue currently on the market, liraglutide (both drugs 25nmol/kg ip once-daily for 7 days) in the MPTP mouse model of PD (25mg/kg ip once-daily for 7 days). In the Rotarod and grip strength assessment, DA3-CH was superior to liraglutide in reversing the MPTP-induced motor impairment. Dopamine synthesis as indicated by levels of tyrosine hydroxylase was much reduced by MPTP in the substantia nigra and striatum, and DA3-CH reversed this while liragutide only partially reversed this. The chronic inflammation response as shown in increased levels of activated microglia and astrocytes was reduced by both drugs. Importantly, expression levels of the neuroprotective growth factor Glial Derived Neurotrophic Factor (GDNF) was much enhanced by both DA3-CH and liragutide. The results demonstrate that the combination of GLP-1 and GIP receptor activation is superior to single GLP-1 receptor activation alone. Therefore, new dual agonists may be a promising treatment for PD. The GLP-1 receptor agonist exendin-4 has already shown disease modifying effects in clinical trials in PD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  6. GLP-1 and GIP Levels in Patients With Hyperthyroidism: The Effect of Antithyroid Treatment.

    Science.gov (United States)

    Cira, Duygu Kalkan; Sari, Ramazan; Ozdem, Sebahat; Yilmaz, Nusret; Bozkurt, Selen

    2017-08-01

    Incretin hormones (glucagon-like peptide-1 [GLP-1] and gastric inhibitory polypeptide [GIP]) may play a role in the development of glucose intolerance and hyperglycemia in patients with hyperthyroidism. We aimed to assess both incretin levels and treatment-induced changes in incretin levels in those with hyperthyroidism. A total of 24 subjects (12 with hyperthyroidism and 12 healthy) were enrolled in the study. Oral glucose tolerance test was performed and serum glucose, insulin GLP1, and GIP levels were evaluated at 0 (baseline), 30, 60, 90, and 120 minutes using ELISA. Measurements were repeated after euthyroidism was reached in subjects with hyperthyroidism. The baseline glucose level was higher in those with hyperthyroidism compared with controls ( P = 0.03). GLP-1 and GIP responses to oral glucose load did not differ significantly between those with hyperthyroidism and controls. Peak GLP-1 and GIP levels were reached in both groups at 60 and 90 minutes, respectively. Areas under the curve (AUCs) for GLP1 and GIP were similar in those with hyperthyroidism and controls. Although GLP-1 and GIP levels did not change before and after antithyroid treatment in subjects with hyperthyroidism, time to peak GLP-1 and GIP levels were reached at 30 minutes after euthyroid state was achieved. Reversal of hyperthyroid to euthyroid status did not induce significant changes in AUCs for incretins. The findings of the present study suggest that the total incretin response to oral glucose load is preserved in patients with hypertyhroidism, but peak incretin responses may change after achieving euthyroid state.

  7. Diabetes and obesity treatment based on dual incretin receptor activation

    DEFF Research Database (Denmark)

    Skow, M A; Bergmann, N C; Knop, F K

    2016-01-01

    , whereas GIP seems to affect lipid metabolism. The introduction of selective GLP-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has increased the scientific and clinical interest in incretins. Combining the body weight-lowering and glucose-lowering effects of GLP-1...... with a more potent improvement of β cell function through additional GIP action could potentially offer a more effective treatment of diabetes and obesity, with fewer adverse effects than selective GLP-1R agonists; therefore, new drugs designed to co-activate both the GIP receptor (GIPR) and the GLP-1R...

  8. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Asmar, Ali

    2016-01-01

    CONTEXT AND OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increases blood flow and triglyceride (TAG) clearance in subcutaneous (sc) abdominal adipose tissue in lean humans. The present experiments were performed to further investigate the role...... of insulin for the vasoactive effect of GIP in adipose tissue metabolism and whether the vasodilatory effect of GIP is dependent on C-peptide. METHODS: Six lean healthy subjects were studied. The sc abdominal adipose tissue metabolism was assessed by Fick's principle during GIP infusion (1.5 pmol...

  9. Application of the SQUG-GIP to the seismic upgrade program of the Savannah River reactors

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1991-01-01

    In August 1991, the Savannah River Site (SRS) seismic evaluation program using the Generic Implementation Procedure (GIP) celebrated its third anniversary-a respectable age for such a new methodology. During these three years, the GIP, developed for the commercial nuclear industry's Seismic Qualification Utility Group (SQUG), had evolved through Revision 01, Revision 1, Revision 2 and a Revision 2 open-quotes updateclose quotes which is currently in the works. This evolution is not surprising for such an important, and in many ways pioneering, document. The various revisions were anticipated at SRS, and the program adjusted accordingly. The verification of seismic adequacy of equipment at the SRS nuclear reactors has been outlined in previous publications. The purpose of this paper is to relate the more practical and managerial aspects of our relatively mature SQUG-GIP implementation program, which will hopefully prove useful to future users of the GIP. This report is divided into four sections, which follow the normal flow of work under GIP: (1) Program Prerequisites; (2) Definition of Scope; (3) Equipment Evaluations; and (4) Resolution of Outliers

  10. Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function.

    Science.gov (United States)

    Song, Lili; Sun, Zhen; Kim, Do-Sung; Gou, Wenyu; Strange, Charlie; Dong, Huansheng; Cui, Wanxing; Gilkeson, Gary; Morgan, Katherine A; Adams, David B; Wang, Hongjun

    2017-08-30

    Chronic pancreatitis has surgical options including total pancreatectomy to control pain. To avoid surgical diabetes, the explanted pancreas can have islets harvested and transplanted. Immediately following total pancreatectomy with islet autotransplantation (TP-IAT), many islet cells die due to isolation and transplantation stresses. The percentage of patients remaining insulin free after TP-IAT is therefore low. We determined whether cotransplantation of adipose-derived mesenchymal stem cells (ASCs) from chronic pancreatitis patients (CP-ASCs) would protect islets after transplantation. In a marginal mass islet transplantation model, islets from C57BL/6 mice were cotransplanted with CP-ASCs into syngeneic streptozotocin-treated diabetic mice. Treatment response was defined by the percentage of recipients reaching normoglycemia, and by the area under the curve for glucose and c-peptide in a glucose tolerance test. Macrophage infiltration, β-cell apoptosis, and islet graft vasculature were measured in transplanted islet grafts by immunohistochemistry. mRNA expression profiling of 84 apoptosis-related genes in islet grafts transplanted alone or with CP-ASCs was measured by the RT 2 Profiler™ Apoptosis PCR Array. The impact of insulin-like growth factor-1 (IGF-1) on islet apoptosis was determined in islets stimulated with cytokines (IL-1β and IFN-γ) in the presence and absence of CP-ASC conditioned medium. CP-ASC-treated mice were more often normoglycemic compared to mice receiving islets alone. ASC cotransplantation reduced macrophage infiltration, β-cell death, suppressed expression of TNF-α and Bcl-2 modifying factor (BMF), and upregulated expressions of IGF-1 and TNF Receptor Superfamily Member 11b (TNFRSF11B) in islet grafts. Islets cultured in conditioned medium from CP-ASCs showed reduced cell death. This protective effect was diminished when IGF-1 was blocked in the conditioned medium by the anti-IGF-1 antibody. Cotransplantation of islets with ASCs

  11. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Gribble, Fiona M; Hartmann, Bolette

    2014-01-01

    Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans......, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3-36 nor glucagon secretion was affected by either treatment. Remarkably, while...... glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose...

  12. Prolongation of islet allograft survival

    International Nuclear Information System (INIS)

    Lacy, P.E.; Davie, J.M.; Finke, E.H.; Scharp, D.W.

    1979-01-01

    Pretreatment of donor rats with irradiation and silica followed by in vitro culture of the islets for 1 to 2 days prolonged survival of allografts across a minor histocompatibility barrier if hand-picked, clean islets were used for transplantation. Pretreatment of donor rats with irradiation and silica in conjunction with a single injection of antilymphocyte serum (ALS) into the recipient produced a prolongation of survival of hand-picked islets transplanted across a major histocompatibility barrier

  13. Update on Islet Transplantation

    Science.gov (United States)

    McCall, Michael; James Shapiro, A.M.

    2012-01-01

    Clinical islet transplantation has progressed considerably over the past 12 years, and >750 patients with type 1 diabetes have received islet transplants internationally over this time. Many countries are beginning to accept the transition from research to accepted and funded clinical care, especially for patients with brittle control that cannot be stabilized by more conventional means. Major challenges remain, including the need for more than one donor, and the requirement for potent, chronic immunosuppression. Combining immunological tolerance both to allo- and autoantigens, and a limitless expandable source of stem cell- or xenograft-derived insulin-secreting cells represent remaining hurdles in moving this effective treatment to a potential cure for all those with type 1 or 2 diabetes. PMID:22762022

  14. Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis

    DEFF Research Database (Denmark)

    Edholm, T; Degerblad, M; Grybäck, P

    2010-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are major incretins with important effects on glucoregulatory functions. The aim of this study was to investigate effects of GIP and GLP-1 on gastric emptying and appetite after a mixed meal, and effects...

  15. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Mentis, Nikolaos; Vardarli, Irfan; Köthe, Lars D

    2011-01-01

    OBJECTIVE The incretin glucagon-like peptide 1 (GLP-1) exerts insulinotropic activity in type 2 diabetic patients, whereas glucose-dependent insulinotropic polypeptide (GIP) no longer does. We studied whether GIP can alter the insulinotropic or glucagonostatic activity of GLP-1 in type 2 diabetic...... patients. RESEARCH DESIGN AND METHODS Twelve patients with type 2 diabetes (nine men and three women; 61 ± 10 years; BMI 30.0 ± 3.7 kg/m2; HbA1c 7.3 ± 1.5%) were studied. In randomized order, intravenous infusions of GLP-1(7-36)-amide (1.2 pmol · kg-1 · min-1), GIP (4 pmol · kg-1 · min-1), GLP-1 plus GIP...... the insulinotropic and glucose-lowering effects of GLP-1 in type 2 diabetes. Rather, the suppression of glucagon by GLP-1 is antagonized by GIP....

  16. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix.

    Science.gov (United States)

    Arzouni, Ahmed A; Vargas-Seymour, Andreia; Rackham, Chloe L; Dhadda, Paramjeet; Huang, Guo-Cai; Choudhary, Pratik; Nardi, Nance; King, Aileen J F; Jones, Peter M

    2017-12-01

    The aims of the present study were (i) to determine whether the reported beneficial effects of mesenchymal stromal cells (MSCs) on mouse islet function extend to clinically relevant human tissues (islets and MSCs), enabling translation into improved protocols for clinical human islet transplantation; and (ii) to identify possible mechanisms through which human MSCs influence human islet function. Human islets were co-cultured with human adipose tissue-derived MSCs (hASCs) or pre-treated with its products - extracellular matrix (ECM) and annexin A1 (ANXA1). Mouse islets were pre-treated with mouse MSC-derived ECM. Islet insulin secretory function was assessed in vitro by radioimmunoassay. Quantitative RT-PCR was used to screen human adipMSCs for potential ligands of human islet G-protein-coupled receptors. We show that co-culture with hASCs improves human islet secretory function in vitro , as measured by glucose-stimulated insulin secretion, confirming previous reports using rodent tissues. Furthermore, we demonstrate that these beneficial effects on islet function can be partly attributed to the MSC-derived products ECM and ANXA1. Our results suggest that hASCs have the potential to improve the quality of human islets isolated for transplantation therapy of Type 1 diabetes. Furthermore, it may be possible to achieve improvements in human islet quality in a cell-free culture system by using the MSC-derived products ANXA1 and ECM. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    Science.gov (United States)

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Placental Secretome: Identifying Potential Cross-Talk Between Placenta and Islet β-Cells

    Directory of Open Access Journals (Sweden)

    Robert Drynda

    2018-02-01

    Full Text Available Background/Aims: Insulin-secreting islet β-cells adapt to the insulin resistance associated with pregnancy by increasing functional β-cell mass, but the placental signals involved in this process are not well defined. In the current study, we analysed expression of G-protein coupled receptor (GPCR mRNAs in mouse islets and islet GPCR ligand mRNAs in placenta during pregnancy to generate an atlas of potential interactions between the placenta and β-cells to inform future functional studies of islet adaptive responses to pregnancy. Methods: Quantative RT-PCR arrays were used to measure mRNA expression levels of: (i 342 GPCRs in islets from non-pregnant mice, and in islets isolated from mice on gestational days 12 and 18; (ii 126 islet GPCR ligands in mouse placenta at gestational days 12 and 18. Results: At gestational day 12, a time of rapid expansion of the β-cell mass, 189 islet GPCR mRNAs were quantifiable, while 79 of the 126 known islet GPCR ligand mRNAs were detectable in placental extracts. Approximately half of the quantifiable placental GPCR ligand genes were of unknown function in β-cells. The expression of some islet GPCR and placental ligand mRNAs varied during pregnancy, with altered expression of both GPCR and ligand mRNAs by gestational day 18. Conclusion: The current study has revealed numerous potential routes for interaction between the placenta and islets, and offers an atlas to inform further functional studies of their roles in adaptive responses to pregnancy, and in the regulation of the β-cell mass.

  19. Glucose-dependent insulinotropic polypeptide (GIP) is associated with lower LDL but unhealthy fat distribution, independent of insulin

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Vistisen, Dorte; Færch, Kristine

    2016-01-01

    was measured by fasting plasma lipids and obesity including abdominal fat distribution assessed by ultrasonography. GIP and insulin were measured during an oral glucose tolerance test (0, 30 and 120 minutes). Linear regression analysis was used to study the associations between GIP, plasma lipids and obesity...... was associated with 0.13 cm less (0.01;0.25) subcutaneous fat but with more visceral abdominal fat (0.45 cm (0.12;0.78)) and higher waist-hip ratio (0.011 (0.004;0.019)). CONCLUSIONS: Contrary to what was previously thought, GIP may be associated with improved LDL clearance but with an unhealthy fat distribution...

  20. Treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin improves fasting islet-cell function in subjects with type 2 diabetes.

    Science.gov (United States)

    D'Alessio, David A; Denney, Amanda M; Hermiller, Linda M; Prigeon, Ronald L; Martin, Julie M; Tharp, William G; Saylan, Monica Liqueros; He, Yanling; Dunning, Beth E; Foley, James E; Pratley, Richard E

    2009-01-01

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are proposed to lower blood glucose in type 2 diabetes mellitus (T2DM) by prolonging the activity of the circulating incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). Consistent with this mechanism of action, DPP-4 inhibitors improve glucose tolerance after meals by increasing insulin and reducing glucagon levels in the plasma. However, DPP-4 inhibitors also reduce fasting blood glucose, an unexpected effect because circulating levels of active GIP and GLP-1 are low in the postabsorptive state. The objective of the study was to examine the effects of DPP-4 inhibition on fasting islet function. We conducted a randomized, double-blind, placebo-controlled trial. The study was performed in General Clinical Research Centers at two University Hospitals. Forty-one subjects with T2DM were treated with metformin or diet, having good glycemic control with glycosylated hemoglobin values of 6.2-7.5%. Subjects were treated with vildagliptin (50 mg twice daily) or placebo for 3 months, followed by a 2-wk washout. Major Outcome Measure: We measured insulin secretion in response to iv glucose and arginine before and after treatment and after drug washout. There were small and comparable reductions in glycosylated hemoglobin in both groups over 3 months. Vildagliptin increased fasting GLP-1 levels in subjects taking metformin, but not those managed with diet, and raised active GIP levels slightly. DPP-4 inhibitor treatment improved the acute insulin and C-peptide responses to glucose (50 and 100% respectively; P fasting conditions. This suggests that DPP-4 inhibition has metabolic benefits in addition to enhancing meal-induced GLP-1 and GIP activity.

  1. Incretin and islet hormone responses to meals of increasing size in healthy subjects.

    Science.gov (United States)

    Alsalim, Wathik; Omar, Bilal; Pacini, Giovanni; Bizzotto, Roberto; Mari, Andrea; Ahrén, Bo

    2015-02-01

    Postprandial glucose homeostasis is regulated through the secretion of glucagon-like peptide 1 (GLP-1) through the stimulation of insulin secretion and inhibition of glucagon secretion. However, how these processes dynamically adapt to demands created by caloric challenges achieved during daily life is not known. The objective of the study was to explore the adaptation of incretin and islet hormones after mixed meals of increasing size in healthy subjects. Twenty-four healthy lean subjects ingested a standard breakfast after an overnight fast followed, after 4 hours, by a lunch of a different size (511, 743, and 1034 kcal) but with identical nutrient composition together with 1.5 g paracetamol. Glucose, insulin, C-peptide, glucagon, intact GLP-1, and glucose-dependent insulinotropic polypeptide (GIP) and paracetamol were measured after the meals. Area under the 180-minute curve (AUC) for insulin, C-peptide, glucagon, GLP-1, and GIP and model-derived β-cell function and paracetamol appearance were calculated. Glucose profiles were similar after the two larger meals, whereas after the smaller meal, there was a postpeak reduction below baseline to a nadir of 3.8 ± 0.1 mmol/L after 75 minutes (P lunch meals of increasing size elicit a caloric-dependent insulin response due to increased β-cell secretion achieved by increased GIP and GLP-1 levels. The adaptation at larger meals results in identical glucose excursions, whereas after a lower caloric lunch, the insulin response is high, resulting in a postpeak suppression of glucose below baseline.

  2. Anti-inflammatory thalidomide improves islet grafts survival and functions in a xenogenic environment.

    Directory of Open Access Journals (Sweden)

    Chunguang Chen

    Full Text Available Thalidomide possesses both anti-inflammatory and anti-angiogenic properties. This study investigates its potential application in islet transplantation with a xenogenic transplantation model. Transplantation was performed using C57Bl/6 mice and NMRI nu/nu mice as recipients of porcine islets. Moreover, islet graft vasculature and inflammation were investigated to identify the mechanisms of thalidomide action. In the immunocompetent environment of C57Bl/6 mice, a fast graft rejection was observed. The group treated with thalidomide 200 mg/kg BW per day achieved and maintained euglycemia in the complete observation period for 42 days. The treated mice had more functional islet graft mass with less leukocyte infiltration. The pro-inflammatory TNF-alpha and VEGF content in islet grafted kidneys was significantly lowered by the treatment. By comparison, thalidomide was not effective in improving graft survival in immunocompromised nude mice. It strongly inhibited the VEGF and TNF-alpha-induced endothelial proliferation of isolated pig islets in a dose dependent manner. The magnitude of thalidomide's inhibitory effect was nearly identical to the effect of VEGF- receptor 2 inhibitor SU416 and anti-TNF-receptor 1 neutralizing antibody, and was reversed by sphingosine-1-phosphate. In conclusion, the anti-inflammatory effect of thalidomide improved islet graft survival and function in a transplantation model with a maximum immune barrier.

  3. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine

    DEFF Research Database (Denmark)

    Mortensen, Kristine; Christensen, Louise Lundby; Holst, Jens Juul

    2003-01-01

    BACKGROUND: The incretin hormones GIP and GLP-1 are thought to be produced in separate endocrine cells located in the proximal and distal ends of the mammalian small intestine, respectively. METHODS AND RESULTS: Using double immunohistochemistry and in situ hybridization, we found that GLP-1 was ....... CONCLUSIONS: Our results provide a morphological basis to suggest simultaneous, rather than sequential, secretion of these hormones by postprandial luminal stimulation....

  4. Detailed characterisation of STC-1 cells and the pGIP/Neo sub-clone suggests the incretin hormones are translationally regulated.

    Science.gov (United States)

    Gillespie, Anna L; Pan, Xiaobei; Marco-Ramell, Anna; Meharg, Caroline; Green, Brian D

    2017-10-01

    STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Interpreting change scores of the Behavioural Rating Scale for Geriatric Inpatients (GIP)].

    Science.gov (United States)

    Diesfeldt, H F A

    2013-09-01

    The Behavioural Rating Scale for Geriatric Inpatients (GIP) consists of fourteen, Rasch modelled subscales, each measuring different aspects of behavioural, cognitive and affective disturbances in elderly patients. Four additional measures are derived from the GIP: care dependency, apathy, cognition and affect. The objective of the study was to determine the reproducibility of the 18 measures. A convenience sample of 56 patients in psychogeriatric day care was assessed twice by the same observer (a professional caregiver). The median time interval between rating occasions was 45 days (interquartile range 34-58 days). Reproducibility was determined by calculating intraclass correlation coefficients (ICC agreement) for test-retest reliability. The minimal detectable difference (MDD) was calculated based on the standard error of measurement (SEM agreement). Test-retest reliability expressed by the ICCs varied from 0.57 (incoherent behaviour) to 0.93 (anxious behaviour). Standard errors of measurement varied from 0.28 (anxious behaviour) to 1.63 (care dependency). The results show how the GIP can be applied when interpreting individual change in psychogeriatric day care participants.

  6. Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models.

    Science.gov (United States)

    Citro, Antonio; Cantarelli, Elisa; Pellegrini, Silvia; Dugnani, Erica; Piemonti, Lorenzo

    2018-02-01

    The identification of pathway(s) playing a pivotal role in peritransplant detrimental inflammatory events represents the crucial step toward a better management and outcome of pancreatic islet transplanted patients. Recently, we selected the CXCR1/2 inhibition as a relevant strategy in enhancing pancreatic islet survival after transplantation. Here, the most clinically used anti-inflammatory compounds (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with a CXCR1/2 inhibitor were evaluated in their ability to improve engraftment or delay graft rejection. To rule out bias related to transplantation site, we used well-established preclinical syngeneic (250 C57BL/6 equivalent islets in C57BL/6) and allogeneic (400 Balb/c equivalent islets in C57BL6) intrahepatic islet transplantation platforms. In mice, we confirmed that targeting the CXCR1/2 pathway is crucial in preserving islet function and improving engraftment. In the allogeneic setting, CXCR1/2 inhibitor alone could reduce the overall recruitment of transplant-induced leukocytes and significantly prolong the time to graft rejection both as a single agent and in combination with immunosuppression. No other anti-inflammatory compounds tested (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with CXCR1/2 inhibitor improve islet engraftment and significantly delay graft rejection in the presence of MMF + FK-506 immunosuppressive treatment. These findings indicate that only the CXCR1/2-mediated axis plays a crucial role in controlling the islet damage and should be a target for intervention to improve the efficiency of islet transplantation.

  7. Oxygenation of the Intraportally Transplanted Pancreatic Islet.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2016-01-01

    Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure ( P ) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P . Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μ m diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional.

  8. Oxygenation of the Intraportally Transplanted Pancreatic Islet

    Directory of Open Access Journals (Sweden)

    Thomas M. Suszynski

    2016-01-01

    Full Text Available Intraportal islet transplantation (IT is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure (P (in surrounding portal blood, and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF of 14% and a function loss of 72% at a low external P. Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μm diameter account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional.

  9. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  10. Impact of islet size on pancreatic islet transplantation and potential interventions to improve outcome.

    Science.gov (United States)

    Zorzi, Daria; Phan, Tammy; Sequi, Marco; Lin, Yong; Freeman, Daniel H; Cicalese, Luca; Rastellini, Cristiana

    2015-01-01

    Better results have been recently reported in clinical pancreatic islet transplantation (ITX) due mostly to improved isolation techniques and immunosuppression; however, some limitations still exist. It is known that following transplantation, 30% to 60% of the islets are lost. In our study, we have investigated 1) the role of size as a factor affecting islet engraftment and 2) potential procedural manipulations to increase the number of smaller functional islets that can be transplanted. C57/BL10 mice were used as donors and recipients in a syngeneic islet transplant model. Isolated islets were divided by size (large, >300 μm; medium 150-300 μm; small, <150 μm). Each size was transplanted in chemically induced diabetic mice as full (600 IEQ), suboptimal (400 IEQ), and marginal mass (200 IEQ). Control animals received all size islets. Engraftment was defined as reversal of diabetes by day 7 posttransplantation. When the superiority of smaller islets was observed, strategies of overdigestion and fragmentation were adopted during islet isolation in the attempt to reduce islet size and improve engraftment. Smaller islets were significantly superior in engraftment compared to medium, large, and control (all sizes) groups. This was more evident when marginal mass data were compared. In all masses, success decreased as islet size increased. Once islets were engrafted, functionality was not affected by size. When larger islets were fragmented, a significant decrease in islet functionality was observed. On the contrary, if pancreata were slightly overdigested, although not as successful as small naive islets, an increase in engraftment was observed when compared to the control group. In conclusion, smaller islets are superior in engraftment following islet transplantation. Fragmentation has a deleterious effect on islet engraftment. Islet isolations can be performed by reducing islet size with slight overdigestion, and it can be safely adopted to improve clinical

  11. Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Chung, Hyunwoo; Byun, Nari; Kang, Seong-Jun; Lee, Sunho; Shin, Jun-Seop; Park, Chung-Gyu

    2018-03-04

    Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Organ culture studies for pancreatic islet transplantation

    International Nuclear Information System (INIS)

    Reemtsma, K.; Weber, C.J.; Pi-Sunyer, F.X.; Lerner, R.; Zimmerman, E.; Hardy, M.A.

    1979-01-01

    Data support the usefulness of tissue culture in isolation and preservation of islets prior to transplantation. Rodent islet viability in culture was demonstrated histologically and by functional analyses of hormone production. For reasons that remain to be defined, acinar cells disappeared rapidly in tissue culture, yielding an implant preparation relatively rich in islets and devoid of pancreatic exocrine elements. Isografts of cultured and noncultured islets were well tolerated intraperitoneally and intramuscularly; and prompt and lasting reversal of short- and long-standing experimental diabetes was observed regularly. In vitro studies of rodent islet viability after immunosuppressive treatment of donors or islet cultures showed insulin production comparable to that of control experiments, suggesting that immunologic modification of donors or islets might be feasible in eventual human islet allotransplantation

  13. In Vivo Imaging of Transplanted Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Donghee Kim

    2018-01-01

    Full Text Available The beta-cells in the islets of Langerhans in the pancreas secrete insulin and play an important role in glucose homeostasis. Diabetes, characterized by hyperglycemia, results from an absolute or a relative deficiency of the pancreatic beta-cell mass. Islet transplantation has been considered to be a useful therapeutic approach, but it is largely unsuccessful because most of the transplanted islets are lost in the early stage of transplantation. To evaluate the efficacy of intervention methods for the improvement of islet survival, monitoring of the functional islet mass is needed. Various techniques to image and track transplanted islets have been investigated to assess islets after transplantation. In this review, recent progresses in imaging methods to visualize islets are discussed.

  14. Basic and Meal Stimulated Plasma GIP Levels are Higher in Lean PCOS Women with FAI over 5.

    Science.gov (United States)

    Milewicz, T; Migacz, K; Kiałka, M; Rogatko, I; Kowalczuk, A; Spalkowska, M; Mrozińska, S; Czajkowska, Z; Sztefko, K

    2016-02-01

    Glucose dependent insulinotropic peptide (GIP) belongs to the incretins which are responsible for 70% of the insulin release after oral glucose intake. Its impaired secretion was noted in several conditions involving insulin resistance, including polycystic ovary syndrome (PCOS), known as the state with increased testosterone level. This paper considers a possible relationship between the free androgen index (FAI) and basal as well as meal stimulated level of GIP in lean women affected by PCOS. To our knowledge, no previous study has evaluated the matter so far. cross-sectional study 50 age-matched lean women (BMI=20.76±1.83) were enrolled to the study and divided into 2 groups. Patients with phenotype with FAIPCOS patients with FAI>5 formed group 2. All subjects underwent standard meal test. Serum GIP concentration was determined both at fasting and at 60 min of the test. Calculations were carried out using Statistica 10. Mann-Whitney test indicated a statistically significant difference in medians values of GIP plasma levels between groups on fasting (36.4 pg/ml vs. 59.6 pg/ml; p=0.0007) and at 60 min after meal test (50.1 pg/ml vs. 72.5 pg/ml; p=0.006). Spearman test indicated significant positive correlation between FAI and GIP levels at 0' and 60' in total study population (0':R=0.37;p=0.008; 60':R=0.28; p=0.049). Excess androgen activity might be a factor contributing to alter secretion of incretins in lean PCOS women. However it could not be ruled out that it is also possible that increased GIP levels might induce hyperandrogenemia in PCOS. An increased GIP levels may induce hyperinsulinemia and play an additive to insulin resistance role in progression to diabetes mellitus type 2 (DMT2). © Georg Thieme Verlag KG Stuttgart · New York.

  15. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function.

    Science.gov (United States)

    Di Cairano, Eliana S; Moretti, Stefania; Marciani, Paola; Sacchi, Vellea Franca; Castagna, Michela; Davalli, Alberto; Folli, Franco; Perego, Carla

    2016-04-01

    Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Radiological follow-up of the environment of the G.I.P. CYCERON of Caen - year 2005 - 2006 - assessment 2007; Suivi radiologique de l'environnement des installations du GIP CYCERON de Caen - annee 2005 - 2006 - bilan 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The present study answers at the request of the Inspection of the classified installations to see the operator of the G.I.P. Cyceron setting up a plan of environmental radiological surveillance around its installations and including, at a minimal level, the following data: Measures of radioactivity on representative biological indicators and measures of dose rate in the environment close to installations in functioning. Further to the radiological assessment of the terrestrial environment of the G.I.P. Cyceron installations realized at the end of 2003, within the framework of a project of the installations extension, the A.C.R.O. was again required for the implementation of this radiological surveillance for year 2005. The first purpose is to supply elements of appreciation about the impact of these installations on environment and persons. This evaluation participates in radiation protection and allows to make sure that the G.I.P. operator respects the required regulatory thresholds. (N.C.)

  17. Dual role of interleukin-1β in islet amyloid formation and its β-cell toxicity: Implications for type 2 diabetes and islet transplantation.

    Science.gov (United States)

    Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy

    2017-05-01

    Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.

  18. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    Science.gov (United States)

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  19. Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation.

    Science.gov (United States)

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Shim, Wooyoung; Choi, Jin Myung; Yoo, Dongkyeom; Hwang, Yong Hwa; Lee, Jung Hee; Lee, Dong Yun; Kim, Jae Hyeon

    2015-06-01

    There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Risk factors for islet loss during culture prior to transplantation.

    Science.gov (United States)

    Kin, Tatsuya; Senior, Peter; O'Gorman, Doug; Richer, Brad; Salam, Abdul; Shapiro, Andrew Mark James

    2008-11-01

    Culturing islets can add great flexibility to a clinical islet transplant program. However, a reduction in the islet mass has been frequently observed during culture and its degree varies. The aim of this study was to identify the risk factors associated with a significant islet loss during culture. One-hundred and four islet preparations cultured in an attempt to use for transplantation constituted this study. After culture for 20 h (median), islet yield significantly decreased from 363 309 +/- 12 647 to 313 035 +/- 10 862 islet equivalent yield (IE) (mean +/- SE), accompanied by a reduction in packed tissue volume from 3.9 +/- 0.1 to 3.0 +/- 0.1 ml and islet index (IE/islet particle count) from 1.20 +/- 0.04 to 1.05 +/- 0.04. Culture did not markedly alter islet purity or percent of trapped islet. Morphology score and viability were significantly improved after culture. Of 104 islet preparations, 37 suffered a substantial islet loss (> 20%) over culture. Factors significantly associated with risk of islet loss identified by univariate analysis were longer cold ischemia time, two-layer method (TLM) preservation, lower islet purity, and higher islet index. Multivariate analysis revealed that independent predictors of islet loss were higher islet index and the use of TLM. This study provides novel information on the link between donor- isolation factors and islet loss during culture.

  1. The role of endothelial cells on islet function and revascularization after islet transplantation.

    Science.gov (United States)

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-02

    Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.

  2. Rotational Transport of Islets: The Best Way for Islets to Get around?

    Directory of Open Access Journals (Sweden)

    Rupert Oberhuber

    2013-01-01

    Full Text Available Islet transplantation is a valid treatment option for patients suffering from type 1 diabetes mellitus. To assure optimal islet cell quality, specialized islet isolation facilities have been developed. Utilization of such facilities necessitates transportation of islet cells to distant institutions for transplantation. Despite its importance, a clinically feasible solution for the transport of islets has still not been established. We here compare the functionality of isolated islets from C57BL/6 mice directly after the isolation procedure as well as after two simulated transport conditions, static versus rotation. Islet cell quality was assessed using real-time live confocal microscopy. In vivo islet function after syngeneic transplantation was determined by weight and blood sugar measurements as well as by intraperitoneal glucose tolerance tests. Vascularization of islets was documented by fluorescence microscopy and immunohistochemistry. All viability parameters documented comparable cell viability in the rotary group and the group transplanted immediately after isolation. Functional parameters assessed in vivo displayed no significant difference between these two groups. Moreover, vascularization of islets was similar in both groups. In conclusion, rotary culture conditions allows the maintenance of highest islet quality for at least 15 h, which is comparable to that of freshly isolated islets.

  3. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.

    Science.gov (United States)

    Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko

    2016-02-12

    Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pancreas preservation for pancreas and islet transplantation

    Science.gov (United States)

    Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.

    2010-01-01

    Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343

  5. Metabolomics applied to the pancreatic islet.

    Science.gov (United States)

    Gooding, Jessica R; Jensen, Mette V; Newgard, Christopher B

    2016-01-01

    Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Improving Islet Engraftment by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.

  7. Current issues in allogeneic islet transplantation.

    Science.gov (United States)

    Chang, Charles A; Lawrence, Michael C; Naziruddin, Bashoo

    2017-10-01

    Transplantation of allogenic pancreatic islets is a minimally invasive treatment option to control severe hypoglycemia and dependence on exogenous insulin among type 1 diabetes (T1D) patients. This overview summarizes the current issues and progress in islet transplantation outcomes and research. Several clinical trials from North America and other countries have documented the safety and efficacy of clinical islet transplantation for T1D patients with impaired hypoglycemia awareness. A recently completed phase 3 clinical trial allows centres in the United States to apply for a Food and Drug Administration Biologics License for the procedure. Introduction of anti-inflammatory drugs along with T-cell depleting induction therapy has significantly improved long-term function of transplanted islets. Research into islet biomarkers, immunosuppression, extrahepatic transplant sites and potential alternative beta cell sources is driving further progress. Allogeneic islet transplantation has vastly improved over the past two decades. Success in restoration of glycemic control and hypoglycemic awareness after islet transplantation has been further highlighted by clinical trials. However, lack of effective strategies to maintain long-term islet function and insufficient sources of donor tissue still impose limitations to the widespread use of islet transplantation. In the United States, wide adoption of this technology still awaits regulatory approval and, importantly, a financial mechanism to support the use of this technology.

  8. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Qinghua eWang

    2013-01-01

    Full Text Available Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon are excessive, contributing to the development of diabetic hyperglycemia. Within an islet, intra-islet insulin, in cooperation with intra-islet GABA, suppresses glucagon secretion via direct modulation of -cell intracellular signaling pathways involving Akt activation, GABA receptor phosphorylation and the receptor plasma membrane translocation, while intra-islet glucagon plays an important role in modulating β-cell function and insulin secretion. Defects in the insulin-glucagon fine-tuning machinery may result in β-cell glucose incompetence, leading to unsuppressed glucagon secretion and subsequent hyperglycemia, which often occur under extreme conditions of glucose influx or efflux. Therefore, deciphering the precise molecular mechanisms underlying glucagon secretion and action will facilitate our understanding of glucagon physiology, in particular, its role in regulating islet β-cell function, and hence the mechanisms behind body glucose homeostasis.

  9. Orlistat accelerates gastric emptying and attenuates GIP release in healthy subjects

    DEFF Research Database (Denmark)

    Enç, Feruze Yilmaz; Ones, Tunç; Akin, H Levent

    2008-01-01

    Orlistat, an inhibitor of digestive lipases, is widely used for the treatment of obesity. Previous reports on the effect of orally ingested orlistat together with a meal on gastric emptying and secretion of gut peptides that modulate postprandial responses are controversial. We investigated...... the effect of ingested orlistat on gastric emptying and plasma responses of gut peptides in response to a solid mixed meal with a moderate energy load. In healthy subjects, gastric emptying was determined using scintigraphy and studies were performed without and with 120 mg of orlistat in pellet form......, implying that inhibition of fat absorption modifies determinants of gastric emptying of a meal. Orlistat administered similar to its use in obesity treatment accelerates gastric emptying of a solid mixed meal with a moderate energy load and profoundly attenuates release of GIP without appreciably altering...

  10. Islet Transplantation without Borders Enabling islet transplantation in Greece with international collaboration and innovative technology

    Science.gov (United States)

    Papas, Klearchos K; Karatzas, Theodore; Berney, Thierry; Minor, Thomas; Pappas, Paris; Pattou, François; Shaw, James; Toso, Christian; Schuurman, Henk-Jan

    2012-01-01

    Recently, initiatives have been undertaken to establish an islet transplantation program in Athens, Greece. A major hurtle is the high cost associated with the establishment and maintenance of a clinical-grade islet manufacturing center. A collaboration was established with the University Hospitals of Geneva, Switzerland, to enable remote islet cell manufacturing with an established and validated fully operational team. However, remote islet manufacturing requires shipment of the pancreas from the procurement to the islet manufacturing site (in this case from anywhere in Greece to Geneva) and then shipment of the islets from the manufacturing site to the transplant site (from Geneva to Athens). To address challenges related to cold ischemia time of the pancreas and shipment time of islets, a collaboration was initiated with the University of Arizona, Tucson, USA. An international workshop was held in Athens, December 2011, to mark the start of this collaborative project. Experts in the field presented in three main sessions: [1] Islet transplantation: state-of-the-art, and the “network approach”; [2] Technical aspects of clinical islet transplantation and outcomes; and [3] Islet manufacturing – from the donated pancreas to the islet product. This manuscript presents a summary of the workshop. PMID:23330863

  11. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability.

    Science.gov (United States)

    Weegman, Bradley P; Kumar Sajja, Venkata Sunil; Suszynski, Thomas M; Rizzari, Michael D; Scott Iii, William E; Kitzmann, Jennifer P; Mueller, Kate R; Hanley, Thomas R; Kennedy, David J; Todd, Paul W; Balamurugan, Appakalai N; Hering, Bernhard J; Papas, Klearchos K

    2016-01-01

    Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  12. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability

    Directory of Open Access Journals (Sweden)

    Bradley P. Weegman

    2016-01-01

    Full Text Available Islet transplantation (ITx is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG, all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL and the combined connecting/duodenal lobes (CDL, for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p<0.03 and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  13. Islet Product Characteristics and Factors Related to Successful Human Islet Transplantation From the Collaborative Islet Transplant Registry (CITR) 1999–2010

    Science.gov (United States)

    Balamurugan, A N; Naziruddin, B; Lockridge, A; Tiwari, M; Loganathan, G; Takita, M; Matsumoto, S; Papas, K; Trieger, M; Rainis, H; Kin, T; Kay, T W; Wease, S; Messinger, S; Ricordi, C; Alejandro, R; Markmann, J; Kerr-Conti, J; Rickels, M R; Liu, C; Zhang, X; Witkowski, P; Posselt, A; Maffi, P; Secchi, A; Berney, T; O’Connell, P J; Hering, B J; Barton, F B

    2014-01-01

    The Collaborative Islet Transplant Registry (CITR) collects data on clinical islet isolations and transplants. This retrospective report analyzed 1017 islet isolation procedures performed for 537 recipients of allogeneic clinical islet transplantation in 1999–2010. This study describes changes in donor and islet isolation variables by era and factors associated with quantity and quality of final islet products. Donor body weight and BMI increased significantly over the period (p Islet yield measures have improved with time including islet equivalent (IEQ)/particle ratio and IEQs infused. The average dose of islets infused significantly increased in the era of 2007–2010 when compared to 1999–2002 (445.4 ± 156.8 vs. 421.3 ± 155.4 ×103 IEQ; p Islet purity and total number of β cells significantly improved over the study period (p islets has remained consistently very high through this period, and differs substantially from nonclinical islets. In multivariate analysis of all recipient, donor and islet factors, and medical management factors, the only islet product characteristic that correlated with clinical outcomes was total IEQs infused. This analysis shows improvements in both quantity and some quality criteria of clinical islets produced over 1999–2010, and these parallel improvements in clinical outcomes over the same period. PMID:25278159

  14. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  15. Facilitated Engraftment of Isolated Islets Coated With Expanded Vascular Endothelial Cells for Islet Transplantation.

    Science.gov (United States)

    Barba-Gutierrez, D Alonso; Daneri-Navarro, A; Villagomez-Mendez, J Jesus Alejandro; Kanamune, J; Robles-Murillo, A Karina; Sanchez-Enriquez, S; Villafan-Bernal, J Rafael; Rivas-Carrillo, J D

    2016-03-01

    Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  17. Factors influencing insulin secretion from encapsulated islets

    NARCIS (Netherlands)

    de Haan, BJ; Faas, MM; de Vos, P

    2003-01-01

    Adequate regulation of glucose levels by a microencapsulated pancreatic islet graft requires a minute-to-minute regulation of blood glucose. To design such a transplant, it is mandatory to have sufficient insight in factors influencing the kinetics of insulin secretion by encapsulated islets. The

  18. Cyclic AMP in rat pancreatic islets

    International Nuclear Information System (INIS)

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  19. Pancreatic islet transplantation. Experimental and clinical aspects

    DEFF Research Database (Denmark)

    Yderstræde, Knud Bonnet

    1987-01-01

    interest has been shown in transplantation of isolated islets either directly, introduced intraportally, intramuscularly, inter alia, or encapsulated in artificial devices providing an immuno-isolation. Clinical application has revealed promising results concerning the immunological aspects. However......, quantitative assessment points to a difficulty in achieving satisfactory amounts of islets to attain normoglycaemia. Work with fetal pancreata has shown these to possess a growth potential in vitro thus, possibly, aiding the quantification of islets in transplantation models. In the field of pancreatic islet...... transplantation, future models include microencapsulation and hybrid artificial devices, both of which provide immuno-isolation - thus the ability of allo- as well as xeno-transplantation. The obvious advantage of immuno-isolated islet transplant, as opposed to segmentally engrafted pancreas, is stressed...

  20. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Daniel J Moore

    2010-10-01

    Full Text Available Insulin-dependent Type 1 diabetes (T1D is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction.Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells.These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.

  1. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    Science.gov (United States)

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999-2010.

    Science.gov (United States)

    Balamurugan, A N; Naziruddin, B; Lockridge, A; Tiwari, M; Loganathan, G; Takita, M; Matsumoto, S; Papas, K; Trieger, M; Rainis, H; Kin, T; Kay, T W; Wease, S; Messinger, S; Ricordi, C; Alejandro, R; Markmann, J; Kerr-Conti, J; Rickels, M R; Liu, C; Zhang, X; Witkowski, P; Posselt, A; Maffi, P; Secchi, A; Berney, T; O'Connell, P J; Hering, B J; Barton, F B

    2014-11-01

    The Collaborative Islet Transplant Registry (CITR) collects data on clinical islet isolations and transplants. This retrospective report analyzed 1017 islet isolation procedures performed for 537 recipients of allogeneic clinical islet transplantation in 1999-2010. This study describes changes in donor and islet isolation variables by era and factors associated with quantity and quality of final islet products. Donor body weight and BMI increased significantly over the period (pIslet yield measures have improved with time including islet equivalent (IEQ)/particle ratio and IEQs infused. The average dose of islets infused significantly increased in the era of 2007-2010 when compared to 1999-2002 (445.4±156.8 vs. 421.3±155.4×0(3) IEQ; pIslet purity and total number of β cells significantly improved over the study period (pislets has remained consistently very high through this period, and differs substantially from nonclinical islets. In multivariate analysis of all recipient, donor and islet factors, and medical management factors, the only islet product characteristic that correlated with clinical outcomes was total IEQs infused. This analysis shows improvements in both quantity and some quality criteria of clinical islets produced over 1999-2010, and these parallel improvements in clinical outcomes over the same period. © 2014 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  3. Beneficial effect of D-allose for isolated islet culture prior to islet transplantation.

    Science.gov (United States)

    Kashiwagi, Hirotaka; Asano, Eisuke; Noguchi, Chisato; Sui, Li; Hossain, Akram; Akamoto, Shintaro; Okano, Keiichi; Tokuda, Masaaki; Suzuki, Yasuyuki

    2016-01-01

    Pretransplant restoration of islets damaged during isolation remains to be solved. In this study, we examined the effect of D-allose on islets isolated from rat pancreata prior to islet transplantation. Rat islets isolated from fresh pancreata were cultured overnight in Roswell Park Memorial Institute 1640 solution in the absence (group 1) or presence (group 2) of D-allose. Then we assessed stimulation index of insulin, and cure rate after islet transplantation to diabetic nude mice. We also measured malondialdehyde level and caspase 3 activity of islets after the overnight culture for assessment of the oxidative stress and the apoptosis. D-allose significantly improved insulin secretion of islets. The stimulation index in group 2 was significantly higher than in group 1. Cure rate after transplantation in group 2 was higher than in group 1 especially in the first week. The malondialdehyde level in group 2 was significantly lower than in group 1. But the caspase 3 activities in both groups did not differ. D-allose treatment of isolated islet culture prior to transplantation restored islet function and increased successful transplant rate. The results of this study suggested that D-allose improved function of damaged islets through its anti-oxidative activity. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  4. Small Islets Transplantation Superiority to Large Ones: Implications from Islet Microcirculation and Revascularization

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2014-01-01

    Full Text Available Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.

  5. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  6. Novel immunological strategies for islet transplantation.

    Science.gov (United States)

    Tezza, Sara; Ben Nasr, Moufida; Vergani, Andrea; Valderrama Vasquez, Alessandro; Maestroni, Anna; Abdi, Reza; Secchi, Antonio; Fiorina, Paolo

    2015-08-01

    Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Treatment of diabetic rats with encapsulated islets.

    Science.gov (United States)

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-12-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ-induced diabetic rats, defined as two or more consecutive days of blood glucose>350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30-40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ-treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic-mediated weight loss in both BB rats and STZ-induced diabetic rats.

  8. Pharmacological strategies for protection of extrahepatic islet transplantation.

    Science.gov (United States)

    Omori, K; Komatsu, H; Rawson, J; Mullen, Y

    2015-06-01

    The safety and effectiveness of islet transplantation has been proven through world-wide trials. However, acute and chronic islet loss has hindered the ultimate objective of becoming a widely used treatment option for type 1 diabetes. A large islet loss is attributed, in part, to the liver being a less-than-optimal site for transplantation. Over half of the transplanted islets are destroyed shortly after transplantation due to direct exposure to blood and non-specific inflammation. Successfully engrafted islets are continuously exposed to the liver micro-environment, a unique immune system, low oxygen tension, toxins and high glucose, which is toxic to islets, leading to premature islet dysfunction/death. Investigations have continued to search for alternate sites to transplant islets that provide a better environment for prolonged function and survival. This article gathers courses and conditions that lead to islet loss, from organ procurement through islet transplantation, with special emphasis on hypoxia, oxidative stress, and antigen non-specific inflammation, and reviews strategies using pharmacological agents that have shown effectiveness in protecting islets, including a new treatment approach utilizing siRNA. Pharmacological agents that support islet survival and promote β-cell proliferation are also included. Treatment of donor pancreata and/or islets with these agents should increase the effectiveness of islets transplanted into extrahepatic sites. Furthermore, the development of methods designed to release these agents over an extended period, will further increase their efficacy. This requires the combined efforts of both islet transplant biologists and bioengineers.

  9. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  10. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  11. Effects of the dipeptidyl peptidase-IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rosenstock, Julio; Foley, James E; Rendell, Marc

    2008-01-01

    OBJECTIVE: This study was conducted to determine the effects of vildagliptin on incretin hormone levels, islet function, and postprandial glucose control in subjects with impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS: A 12-week, double-blind, randomized, parallel-group study...... comparing vildagliptin (50 mg q.d.) and placebo was conducted in 179 subjects with IGT (2-h glucose 9.1 mmol/l, A1C 5.9%). Plasma levels of intact glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), glucose, insulin, C-peptide, and glucagon were measured during standard meal tests...... performed at baseline and at week 12. Insulin secretory rate (ISR) was estimated by C-peptide deconvolution. The between-group differences (vildagliptin - placebo) in the adjusted mean changes from baseline to end point in the total and incremental (Delta) area under the curve (AUC)(0-2 h...

  12. Glucose and carbachol activate phospholipase C in digitonin-permeabilized islets

    International Nuclear Information System (INIS)

    Wolf, B.A.; Florholmen, J.; Turk, J.; McDaniel, M.L.

    1987-01-01

    Stimulation of intact islets with D-glucose, the major insulin secretagogue, or with carbachol, a muscarinic agonist, results in the accumulation of inositoltrisphosphate (IP 3 ) suggesting that activation of phospholipase C (PLC) has a major role in stimulus-secretion coupling. Carbachol activation of PLC is an example of receptor-mediated activation in islets, whereas, the mechanism of glucose activation of PLC is controversial since a glucose receptor has not been identified. They have measured PLC activity in digitonin-permeabilized islets. Islets were labeled with 3 H-inositol, permeabilized and IP 3 accumulation measured by HPLC. Carbachol, in the presence of ATP, GTP and 1 μM free Ca 2+ released two-fold more Ins 1,3,4-P 3 than control in a time-dependent manner. Glucose, under the same conditions also significantly released more Ins 1,3,4-P 3 than control. This effect was not due to metabolism of glucose nor to an effect on the IP 3 -phosphomonoesterase. Preliminary Ca 2+ -dependency studies indicate that PLC is not activated by Ca 2+ in the submicromolar range. In conclusion, these studies show that Ca 2+ does not activate PLC, and furthermore, that D-glucose may be recognized directly by PLC

  13. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Alessandra Baragli

    Full Text Available Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii increased cell survival and reduced apoptosis during precursor selection; (iii promoted the generation of islet-like cell clusters (ICCs with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs, Notch receptors and neurogenin 3 (Ngn3 during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.

  14. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.

    Science.gov (United States)

    Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C

    2017-01-01

    Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.

  15. Treatment of diabetic rats with encapsulated islets

    OpenAIRE

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-01-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte? immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We enca...

  16. Regulatory challenges in manufacturing of pancreatic islets.

    Science.gov (United States)

    Linetsky, E; Ricordi, C

    2008-03-01

    At the present time, transplantation of pancreatic islet cells is considered an experimental therapy for a selected cohort of patients with type 1 diabetes, and is conducted under an Investigational New Drug (IND) application. Encouraging results of the Edmonton Protocol published in the year 2000 sparked a renewed interest in clinical transplantation of allogeneic islets, triggering a large number of IND applications for phase I clinical trials. Promising results reported by a number of centers since then prompted the Food and Drug Administration (FDA) to consider the possibility of licensing allogeneic islets as a therapeutic treatment for patients with type 1 diabetes. However, prior to licensure, issues such as safety, purity, efficacy, and potency of the islet product must be addressed. This is complicated by the intricate nature of pancreatic islets and limited characterization prior to transplantation. In this context, control of the manufacturing process plays a critical role in the definition of the final product. Despite significant progress made in standardization of the donor organ preservation methods, reagents used, and characterization assays performed to qualify an islet cell product, control of the isolation process remains a challenge. Within the scope of the FDA regulations, islet cells meet the definition of a biologic product, somatic cell therapy, and a drug. In addition, AABB standards that address cellular therapy products apply to manufacturing facilities accredited by this organization. Control of the source material, isolation process, and final product are critical issues that must be addressed in the context of FDA and other relevant regulations applicable to islet cell products.

  17. Autologous islet transplantation with remote islet isolation after pancreas resection for chronic pancreatitis.

    Science.gov (United States)

    Tai, Denise S; Shen, Na; Szot, Gregory L; Posselt, Andrew; Feduska, Nicholas J; Habashy, Andrew; Clerkin, Barbara; Core, Erin; Busuttil, Ronald W; Hines, O Joe; Reber, Howard A; Lipshutz, Gerald S

    2015-02-01

    Autologous islet transplantation is an elegant and effective method for preserving euglycemia in patients undergoing near-total or total pancreatectomy for severe chronic pancreatitis. However, few centers worldwide perform this complex procedure, which requires interdisciplinary coordination and access to a sophisticated Food and Drug Administration-licensed islet-isolating facility. To investigate outcomes from a single institutional case series of near-total or total pancreatectomy and autologous islet transplantation using remote islet isolation. Retrospective cohort study between March 1, 2007, and December 31, 2013, at tertiary academic referral centers among 9 patients (age range, 13-47 years) with chronic pancreatitis and reduced quality of life after failed medical management. Pancreas resection, followed by transport to a remote facility for islet isolation using a modified Ricordi technique, with immediate transplantation via portal vein infusion. Islet yield, pain assessment, insulin requirement, costs, and transport time. Eight of nine patients had successful islet isolation after near-total or total pancreatectomy. Four of six patients with total pancreatectomy had islet yields exceeding 5000 islet equivalents per kilogram of body weight. At 2 months after surgery, all 9 patients had significantly reduced pain or were pain free. Of these patients, 2 did not require insulin, and 1 required low doses. The mean transport cost was $16,527, and the mean transport time was 3½ hours. Pancreatic resection with autologous islet transplantation for severe chronic pancreatitis is a safe and effective final alternative to ameliorate debilitating pain and to help prevent the development of surgical diabetes. Because many centers lack access to an islet-isolating facility, we describe our experience using a regional 2-center collaboration as a successful model to remotely isolate cells, with outcomes similar to those of larger case series.

  18. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  19. Concept and Establishment of the Mine Information System within the CROMAC GIP Project

    Directory of Open Access Journals (Sweden)

    Zvonko Biljecki

    2006-12-01

    Full Text Available In order to solve mine problems in the Republic of Croatia, a unique project CROMAC GIP (Croatian Mine Action Centre Geoinformation Project has been initiated significantly increasing the functional quality of the existing Mine Information System (MIS. Since mine problems are closely related to space, geodata are a crucial part of MIS intended for monitoring and planning of demining. Since the moment the Croatian Mine Action Centre was funded till today, the process of demining has progressed. The implementation of a topographic database in accordance with the CROTIS data model and the usage of orthophoto data produced according to the official product specifications can be pointed out in that progress. Usage of such geodata requires a sophisticated information system that enables a simultaneous usage of geodata and other data connected with solving mine problems. In order to reach all goals in demining and to use all advantages of geodata, it was indispensable to upgrade the existing Mine Information System by merging geodata and HCR data and to collect new data according to the standardized procedures, but controlling at the same time the quality and automated procedures of uploading into the system. Apart from being constructed in accordance with the Standard Operative Procedures (SOP, the modernised MIS is also based on generally accepted standards in the field of geoinformation and it is implemented on advanced technology. The core of the system is the Oracle database, and GeoMedia is a WebMap Professional tool on the basis of which the distribution and the work with spatial data is possible on intranet/Internet. In order to achieve full efficiency of the system, it is necessary to provide high quality and updated geodata. In this respect, photogrammetric data are the most efficient solution.

  20. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Science.gov (United States)

    Papas, Klearchos K; Bellin, Melena D; Sutherland, David E R; Suszynski, Thomas M; Kitzmann, Jennifer P; Avgoustiniatos, Efstathios S; Gruessner, Angelika C; Mueller, Kathryn R; Beilman, Gregory J; Balamurugan, Appakalai N; Loganathan, Gopalakrishnan; Colton, Clark K; Koulmanda, Maria; Weir, Gordon C; Wilhelm, Josh J; Qian, Dajun; Niland, Joyce C; Hering, Bernhard J

    2015-01-01

    Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  1. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  2. Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U

    2016-11-01

    NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.

  3. Application of Digital Image Analysis to Determine Pancreatic Islet Mass and Purity in Clinical Islet Isolation and Transplantation

    Science.gov (United States)

    Wang, Ling-jia; Kissler, Hermann J; Wang, Xiaojun; Cochet, Olivia; Krzystyniak, Adam; Misawa, Ryosuke; Golab, Karolina; Tibudan, Martin; Grzanka, Jakub; Savari, Omid; Grose, Randall; Kaufman, Dixon B; Millis, Michael; Witkowski, Piotr

    2015-01-01

    Pancreatic islet mass, represented by islet equivalent (IEQ), is the most important parameter in decision making for clinical islet transplantation. To obtain IEQ, the sample of islets is routinely counted manually under a microscope and discarded thereafter. Islet purity, another parameter in islet processing, is routinely acquired by estimation only. In this study, we validated our digital image analysis (DIA) system developed using the software of Image Pro Plus for islet mass and purity assessment. Application of the DIA allows to better comply with current good manufacturing practice (cGMP) standards. Human islet samples were captured as calibrated digital images for the permanent record. Five trained technicians participated in determination of IEQ and purity by manual counting method and DIA. IEQ count showed statistically significant correlations between the manual method and DIA in all sample comparisons (r >0.819 and p islet particle number (IPN) and the IEQ/IPN ratio did not differ statistically between manual counting method and DIA. In conclusion, the DIA used in this study is a reliable technique in determination of IEQ and purity. Islet sample preserved as a digital image and results produced by DIA can be permanently stored for verification, technical training and islet information exchange between different islet centers. Therefore, DIA complies better with cGMP requirements than the manual counting method. We propose DIA as a quality control tool to supplement the established standard manual method for islets counting and purity estimation. PMID:24806436

  4. Current status and outlook of pancreatic islets transplantation research

    International Nuclear Information System (INIS)

    Wang Wei; Ye Bin

    2006-01-01

    Diabetes is a common disease, severely harmful to the human's health and life quality. The pancreatic islets transplantation can correct the patient's hyperglycemia, stop or even reverse the progress of the complication and thus decrease the mortality of diabetic patients. It is the most safe and efficient therapy for diabetes. Since the Edmonton Protocol got success in pancreatic islet transplantation in 2000, it has been more and more interested because of its great clinical curative effect. Research strategy of islet transplantation is now focussed on increasing the acquired islets with normal viability, selecting the best transplantation pathway, and improving the immunosuppression protocol. The shortage of human pancreatic donor is an ever unsolved problem in clinical application. The potential resolutions may include acquisition from xenogenic-islets; islets originated from stem cells, and islets from the living-donor human pancreas. The islets transplantation will open a new application field for interventional radiology. (authors)

  5. Benefits and challenges of a QSP approach through case study: Evaluation of a hypothetical GLP-1/GIP dual agonist therapy.

    Science.gov (United States)

    Rieger, Theodore R; Musante, Cynthia J

    2016-10-30

    Quantitative Systems Pharmacology (QSP) is an emerging science with increasing application to pharmaceutical research and development paradigms. Through case study we provide an overview of the benefits and challenges of applying QSP approaches to inform program decisions in the early stages of drug discovery and development. Specifically, we describe the use of a type 2 diabetes systems model to inform a No-Go decision prior to lead development for a potential GLP-1/GIP dual agonist program, enabling prioritization of exploratory programs with higher probability of clinical success. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  7. Long-term effects of islet transplantation.

    Science.gov (United States)

    Holmes-Walker, D Jane; Kay, Thomas W H

    2016-10-01

    Islet transplantation has made great progress in recent years. This is a remarkable technical feat but raises the question of what the long-term benefits and risks are for type I diabetes recipients. Graft survival continues to improve, and recent multicenter studies show that islet transplantation is particularly effective to prevent hypoglycemic events even in those who do not become insulin-independent and to achieve excellent glycemic control. Concerns include histocompatability leucocyte antigen (HLA) sensitization and other risks including from immunosuppression that islet transplantation shares with other forms of allotransplantation. Reversal of hypoglycemia unawareness and protection from severe hypoglycemia events are two of the main benefits of islet transplantation and they persist for the duration of graft function. Islet transplantation compares favorably with other therapies for those with hypoglycemia unawareness, although new technologies have not been tested head-to-head with transplantation. HLA sensitization increases with time after transplantation especially if immunosuppression is ceased and is a risk for those who may require future transplantation as well as being associated with loss of graft function.

  8. Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival

    NARCIS (Netherlands)

    Smelt, M. J.; Faas, M. M.; Melgert, B. N.; de Vos, P.; de Haan, Bart; de Haan, Aalzen

    2011-01-01

    Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats

  9. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    OpenAIRE

    Juang, Jyuhn-Huarng; Kuo, Chien-Hung; Peng, Shih-Jung; Tang, Shiue-Cheng

    2015-01-01

    The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histolo...

  10. Potentiation of glucose-induced insulin release in islets by desHis1[Glu9]glucagon amide

    DEFF Research Database (Denmark)

    Kofod, Hans; Unson, C G; Merrifield, R B

    1988-01-01

    Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate...... in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release...

  11. Photochemical (PUVA) treatment of isolated rat islets

    International Nuclear Information System (INIS)

    Schmidt, S.; Wilke, B.; Kloeting, I.

    1984-01-01

    Isolated rat islets were irradiated with long-wave ultraviolet light alone or in combination with the photosensitizer 8-methoxypsoralen. The influence on specific beta cell functions was determined with the aim to find out experimental conditions which allow the use of such islets for transplantation. Short-term effects: Ultraviolet light affected [ 3 H]leucine incorporation into (pro)insulin (5 J/cm 2 : 53.8 %, 10 J/cm 2 : 41.0 % of the controls) and insulin release was slightly reduced. 8-methoxypsoralen enhanced the irradiation effect. Long-term effects: A restoration of irradiation-affected beta cell function was detected after 5 days of culture unless the dose exceeded 2 J/cm 2 (0.1 μM 8-methoxypsoralen) or 1 J/cm 2 (1 μM 8-methoxypsoralen). After functional restoration islets were used for transplantation experiments. (author)

  12. Photochemical (PUVA) treatment of isolated rat islets

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, S; Wilke, B; Kloeting, I [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1984-05-01

    Isolated rat islets were irradiated with long-wave ultraviolet light alone or in combination with the photosensitizer 8-methoxypsoralen. The influence on specific beta cell functions was determined with the aim to find out experimental conditions which allow the use of such islets for transplantation. Short-term effects: Ultraviolet light affected (/sup 3/H)leucine incorporation into (pro)insulin (5 J/cm/sup 2/ : 53.8 %, 10 J/cm/sup 2/ : 41.0 % of the controls) and insulin release was slightly reduced. 8-methoxypsoralen enhanced the irradiation effect. Long-term effects: A restoration of irradiation-affected beta cell function was detected after 5 days of culture unless the dose exceeded 2 J/cm/sup 2/ (0.1 ..mu..M 8-methoxypsoralen) or 1 J/cm/sup 2/ (1 ..mu..M 8-methoxypsoralen). After functional restoration islets were used for transplantation experiments.

  13. Introducing a New Experimental Islet Transplantation Model using Biomimetic Hydrogel and a Simple High Yield Islet Isolation Technique.

    Science.gov (United States)

    Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader

    2017-07-01

    Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.

  14. Extensive Loss of Islet Mass Beyond the First Day After Intraportal Human Islet Transplantation in a Mouse Model.

    Science.gov (United States)

    Liljebäck, Hanna; Grapensparr, Liza; Olerud, Johan; Carlsson, Per-Ola

    2016-01-01

    Clinical islet transplantation is characterized by a progressive deterioration of islet graft function, which renders many patients once again dependent on exogenous insulin administration within a couple of years. In this study, we aimed to investigate possible engraftment factors limiting the survival and viability of experimentally transplanted human islets beyond the first day after their transplantation to the liver. Human islets were transplanted into the liver of nude mice and characterized 1 or 30 days after transplantation by immunohistochemistry. The factors assessed were endocrine mass, cellular death, hypoxia, vascular density and amyloid formation in the transplanted islets. One day posttransplantation, necrotic cells, as well as apoptotic cells, were commonly observed. In contrast to necrotic death, apoptosis rates remained high 1 month posttransplantation, and the total islet mass was reduced by more than 50% between 1 and 30 days posttransplantation. Islet mass at 30 days posttransplantation correlated negatively to apoptotic death. Vascular density within the transplanted islets remained less than 30% of that in native human islets up to 30 days posttransplantation and was associated with prevailing hypoxia. Amyloid formation was rarely observed in the 1-day-old transplants, but was commonly observed in the 30-day-old islet transplants. We conclude that substantial islet cell death occurs beyond the immediate posttransplantation phase, particularly through apoptotic events. Concomitant low vascularization with prevailing hypoxia and progressive amyloid development was observed in the human islet grafts. Strategies to improve engraftment at the intraportal site or change of implantation site in the clinical setting are needed.

  15. Increased Postprandial GIP and Glucagon Responses, But Unaltered GLP-1 Response after Intervention with Steroid Hormone, Relative Physical Inactivity, And High-Calorie Diet in Healthy Subjects

    DEFF Research Database (Denmark)

    Hansen, Katrine B; Vilsbøll, Tina; Bagger, Jonatan I

    2011-01-01

    Objective:Increased postprandial glucose-dependent insulinotropic polypeptide (GIP) and glucagon responses and reduced postprandial glucagon-like peptide-1 (GLP-1) responses have been observed in some patients with type 2 diabetes mellitus. The causality of these pathophysiological traits...... postprandial GLP-1 responses as observed in some individuals with type 2 diabetes mellitus....... is unknown. We aimed to determine the impact of insulin resistance and reduced glucose tolerance on postprandial GIP, GLP-1, and glucagon responses in healthy subjects. Research Design and Methods:A 4-h 2200 KJ-liquid meal test was performed in 10 healthy Caucasian males without family history of diabetes...

  16. Xenotransplantation of piscine islets into hyperglycemic rats

    International Nuclear Information System (INIS)

    Weber, C.; Weil, R. III; McIntosh, R.; Hogle, H.; Warden, G.; Reemtsma, K.

    1975-01-01

    Xenotransplantation of piscine islets into hyperglycemic rats usually lowers the blood sugar level of the recipient. The duration of this effect is prolonged by irradiation of the host or by enclosing donor tissue in synthetic envelopes. This prolongation appears to be related to interference with the host's ability to reject the graft; the duration of the prolongation may be limited by the host tissue reaction surrounding the envelope. The availability of anatomically separate piscine islet tissue makes it potentially useful for xenotransplantation into mammals

  17. Isolation of Human Islets for Autologous Islet Transplantation in Children and Adolescents with Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Rita Bottino

    2012-01-01

    Full Text Available Chronic pancreatitis is an inflammatory disease of the pancreas that causes permanent changes in the function and structure of the pancreas. It is most commonly a complication of cystic fibrosis or due to a genetic predisposition. Chronic pancreatitis generally presents symptomatically as recurrent abdominal pain, which becomes persistent over time. The pain eventually becomes disabling. Once specific medical treatments and endoscopic interventions are no longer efficacious, total pancreatectomy is the alternative of choice for helping the patient achieve pain control. While daily administrations of digestive enzymes cannot be avoided, insulin-dependent diabetes can be prevented by transplanting the isolated pancreatic islets back to the patient. The greater the number of islets infused, the greater the chance to prevent or at least control the effects of surgical diabetes. We present here a technical approach for the isolation and preservation of the islets proven to be efficient to obtain high numbers of islets, favoring the successful treatment of young patients.

  18. Islets of Langerhans in the parakeet, Psittacula krameri.

    Science.gov (United States)

    Gupta, Y K; Kumar, S

    1980-01-01

    The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.

  19. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  20. A Practical Guide to Rodent Islet Isolation and Assessment

    Directory of Open Access Journals (Sweden)

    Carter Jeffrey D

    2009-12-01

    Full Text Available Abstract Pancreatic islets of Langerhans secrete hormones that are vital to the regulation of blood glucose and are, therefore, a key focus of diabetes research. Purifying viable and functional islets from the pancreas for study is an intricate process. This review highlights the key elements involved with mouse and rat islet isolation, including choices of collagenase, the collagenase digestion process, purification of islets using a density gradient, and islet culture conditions. In addition, this paper reviews commonly used techniques for assessing islet viability and function, including visual assessment, fluorescent markers of cell death, glucose-stimulated insulin secretion, and intracellular calcium measurements. A detailed protocol is also included that describes a common method for rodent islet isolation that our laboratory uses to obtain viable and functional mouse islets for in vitro study of islet function, beta-cell physiology, and in vivo rodent islet transplantation. The purpose of this review is to serve as a resource and foundation for successfully procuring and purifying high-quality islets for research purposes.

  1. Evolution of Islet Transplantation for the Last 30 Years.

    Science.gov (United States)

    Farney, Alan C; Sutherland, David E R; Opara, Emmanuel C

    2016-01-01

    In this article, we will review the changes that have occurred in islet transplantation at the birth of Pancreas 30 years ago. The first attempts at β-cell replacement in humans, pancreas and islet transplantation, were performed in the 1960s and 1970s. Although pancreas transplantation has been an accepted treatment for severe labile diabetes predating the emergence of the journal, allogeneic islet transplantation remains experimental. Current investigations within islet transplantation focus to improve islet function after transplantation. Improving islet viability during isolation, exploring ways to increase engraftment, and protection from the host immune system are some of the goals of these investigative efforts. The major barriers to clinical islet transplantation are shortage of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. It is generally accepted that islet encapsulation is an immunoisolation tool with good potential to address the first 2 of those barriers. We have therefore devoted a major part of this review to the critical factors needed to make it a clinical reality. With improved islet isolation techniques and determination of the best site of engraftment as well as improved encapsulation techniques, we hope that islet transplantation could someday achieve routine clinical use.

  2. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  3. The journey of islet cell transplantation and future development.

    Science.gov (United States)

    Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James

    2018-03-04

    Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.

  4. Striated Muscle as Implantation Site for Transplanted Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Daniel Espes

    2011-01-01

    Full Text Available Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation.

  5. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.

    Science.gov (United States)

    Shin, Soojeong; Yoo, Young Je

    2013-12-01

    Pancreatic islet transplantation is used to treat diabetes mellitus that has minimal complications and avoids hypoglycemic shock. Conformal microencapsulation of pancreatic islets improves their function by blocking immunogenic molecules while protecting fragile islets. However, production of empty alginate capsules during microencapsulation causes enlargement of the transplantation volume of the encapsulated islets and interferes with efficient transfer of nutrients and insulin. In this study, empty alginate capsules were separated after microencapsulation of neonatal porcine islet-like cell clusters (NPCC) using density-gradient centrifugation. Densities of NPCC and alginate capsules were determined using Percoll. Encapsulation products following alginate removal were 97 % of products, with less than 10 % of the capsules remaining empty. The viability of this process compared with manually-selected encapsulated islets indicates the separation process does not harm islets.

  6. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets.

    Science.gov (United States)

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Suh, Sunghwan; Bae, Ji Cheol; Lee, Jung Hee; Lee, Myung-Shik; Lee, Moon-Kyu; Kim, Kwang-Won; Kim, Jae Hyeon

    2014-01-01

    While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.

  7. International workshop: islet transplantation without borders enabling islet transplantation in Greece with international collaboration and innovative technology.

    Science.gov (United States)

    Papas, Klearchos K; Karatzas, Theodore; Berney, Thierry; Minor, Thomas; Pappas, Paris; Pattou, François; Shaw, James; Toso, Christian; Schuurman, Henk-Jan

    2013-01-01

    Recently, initiatives have been undertaken to establish an islet transplantation program in Athens, Greece. A major hurdle is the high cost associated with the establishment and maintenance of a clinical-grade islet manufacturing center. A collaboration was established with the University Hospitals of Geneva, Switzerland, to enable remote islet cell manufacturing with an established and validated fully operational team. However, remote islet manufacturing requires shipment of the pancreas from the procurement to the islet manufacturing site (in this case from anywhere in Greece to Geneva) and then shipment of the islets from the manufacturing site to the transplant site (from Geneva to Athens). To address challenges related to cold ischemia time of the pancreas and shipment time of islets, a collaboration was initiated with the University of Arizona, Tucson, USA. An international workshop was held in Athens, December 2011, to mark the start of this collaborative project. Experts in the field presented in three main sessions: (i) islet transplantation: state-of-the-art and the "network approach"; (ii) technical aspects of clinical islet transplantation and outcomes; and (iii) islet manufacturing - from the donated pancreas to the islet product. This manuscript presents a summary of the workshop. © 2013 John Wiley & Sons A/S.

  8. Islet transplantation in type 1 diabetes

    NARCIS (Netherlands)

    de Kort, H.; de Koning, E.; Rabelink, T.; Bruijn, J.A.; Bajema, I.

    2011-01-01

    Hanneke de Kort, research fellow1, Eelco J de Koning, associate professor, head of clinical islet transplantation programme234, Ton J Rabelink, professor of medicine, chair of department of nephrology2, Jan A Bruijn, professor immunopathology1, Ingeborg M Bajema, renal and transplantation

  9. Encapsulated Islet Transplantation: Where Do We Stand?

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E

    2017-01-01

    Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.

  10. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration.

    Science.gov (United States)

    Juang, Jyuhn-Huarng; Kuo, Chien-Hung; Peng, Shih-Jung; Tang, Shiue-Cheng

    2015-02-01

    The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  11. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets

    Science.gov (United States)

    Pavanello, Audrei; Peixoto, Giuliana Maria Ledesma; Matiusso, Camila Cristina Ianoni; de Moraes, Ana Maria Praxedes; Martins, Isabela Peixoto; Palma-Rigo, Kesia; da Silva Franco, Claudinéia Conationi; Milani, Paula Gimenez; Dacome, Antonio Sérgio; da Costa, Silvio Claudio; de Freitas Mathias, Paulo Cezar; Mareze-Costa, Cecília Edna

    2018-01-01

    Stevia rebaudiana (Bert.) Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF), has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS) only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α 2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells. PMID:29853880

  12. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Silvano Piovan

    2018-01-01

    Full Text Available Stevia rebaudiana (Bert. Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF, has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells.

  13. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    Science.gov (United States)

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Islet transplantation: the quest for an ideal source

    International Nuclear Information System (INIS)

    Younes, Nidal A.; Nothias, J.; Garfinkel, Marc R.

    2008-01-01

    The progress of islet transplantation as a new therapy for patients with diabetes mellitus depends directly upon the development of efficient and practical immunoisolation methods for the supply of sufficient quantities of islet cells. Without these methods, large scale clinical application of this therapy would be impossible. Two eras of advances can be identified in the development of islet transplantation. The first was an era of experimental animal and human research that centered on islet isolation procedures and transplantation in different species as evidence that transplanted islets have the capability to reverse diabetes. The second was the era of Edmonton protocol, when the focus became the standardization of isolation procedures and introduction of new immunosuppressive drugs to maintain human allograft transplantation. The quest for an alternative source for islets (xenographs, stem cells and cell cultures) to overcome the shortage of human islets was an important issue during these eras. This paper reviews the history of islet transplantation and the current procedures in human allotransplantation, as well as different types of immunoisolation methods. It explores novel approaches to enhancing transplantation site vascularity and islet cell function, whereby future immunoisolation technology could offer additional therapeutic advantages to human islet allotransplantation. (author)

  15. Rat pancreatic islet size standardization by the "hanging drop" technique.

    Science.gov (United States)

    Cavallari, G; Zuellig, R A; Lehmann, R; Weber, M; Moritz, W

    2007-01-01

    Rejection and hypoxia are the main factors that limit islet engraftment in the recipient liver in the immediate posttransplant period. Recently authors have reported a negative relationship of graft function and islet size, concluding that small islets are superior to large islets. Islets can be dissociated into single cells and reaggregated into so called "pseudoislets," which are functionally equivalent to intact islets but exhibit reduced immunogenicity. The aim of our study was develop a technique that enabled one to obtain pseudoislets of defined, preferably small, dimensions. Islets were harvested from Lewis rats by the collagenase digestion procedure. After purification, the isolated islets were dissociated into single cells by trypsin digestion. Fractions with different cell numbers were seeded into single drops onto cell culture dishes, which were inverted and incubated for 5 to 8 days under cell culture conditions. Newly formed pseudoislets were analyzed for dimension, morphology, and cellular composition. The volume of reaggregated pseudoislets strongly correlated with the cell number (r(2) = .995). The average diameter of a 250-cell aggregate was 95 +/- 8 microm (mean +/- SD) compared with 122 +/- 46 microm of freshly isolated islets. Islet cell loss may be minimized by performing reaggregation in the presence of medium glucose (11 mmol/L) and the GLP-1 analogue Exendin-4. Morphology, cellular composition, and architecture of reaggregated islets were comparable to intact islets. The "hanging drop" culture method allowed us to obtain pseudoislets of standardized size and regular shape, which did not differ from intact islets in terms of cellular composition or architecture. Further investigations are required to minimize cell loss and test in vivo function of transplanted pseudoislets.

  16. Sequential kidney/islet transplantation using prednisone-free immunosuppression.

    Science.gov (United States)

    Kaufman, Dixon B; Baker, Marshall S; Chen, Xiaojuan; Leventhal, Joseph R; Stuart, Frank P

    2002-08-01

    Islet transplantation is becoming established as a treatment option for type I diabetes in select patients. Individuals with type I diabetes who have previously received a successful kidney allograft may be good candidates for islet transplantation. They have already assumed the risks of chronic immunosuppression, so the added procedural risk of a subsequent islet transplant would be minimal. Furthermore, because of the preimmunosuppressed state it is possible that islet-after-kidney transplantation may result in a more efficient early islet engraftment. Consequently, insulin independence might be achieved with significantly fewer islets than the approximately 8-10,000 islet equivalents/kg/b.w. currently required. A mass that usually demands two or more cadaveric donors. A case of successful islet-after-kidney transplantation is described using the steroid-free Edmonton immunosuppression protocol. Characteristics of the final islet product are: a) islet equivalents: 265,888 (4100 islet equivalents/kg/b.w.); b) islet purity: 75-80%; c) viability: >95% (trypan blue exclusion); and d) mean islet potency (static low-high glucose challenge): 4.16 +/- 1.91-fold increase. Post-transplant the patient's hypoglycemic episodes abated. Exogenous insulin requirements were eliminated at week 12 post-transplant as basal and Ensure (Abbott Laboratories, Abbott Park, IL, USA) oral glucose stimulated C-peptide levels peaked and stabilized. Twenty-four-hour continuous glucose monitoring confirmed moment-to-moment glycemic control, and periodic nonfasting finger stick glucose determinations over the next month confirmed glycemia was controlled. Hemoglobin A1c levels declined from a pretransplant level of 6.9% to 5.3%. Renal allograft function remained changed.

  17. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    2008-06-01

    Full Text Available Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular

  18. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Science.gov (United States)

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  19. Islet transplantation using donors after cardiac death: report of the Japan Islet Transplantation Registry.

    Science.gov (United States)

    Saito, Takuro; Gotoh, Mitsukazu; Satomi, Susumu; Uemoto, Shinji; Kenmochi, Takashi; Itoh, Toshinori; Kuroda, Yoshikazu; Yasunami, Youichi; Matsumoto, Shnichi; Teraoka, Satoshi

    2010-10-15

    This report summarizes outcomes of islet transplantation employing donors after cardiac death (DCD) between 2004 and 2007 as reported to the Japan Islet Transplantation Registry. Sixty-five islet isolations were performed for 34 transplantations in 18 patients with insulin-dependent diabetes mellitus, including two patients who had prior kidney transplantation. All but one donor (64/65) was DCD at the time of harvesting. Factors influencing criteria for islet release included duration of low blood pressure of the donor, cold ischemic time, and usage of Kyoto solution for preservation. Multivariate analysis selected usage of Kyoto solution as most important. Of the 18 recipients, 8, 4, and 6 recipients received 1, 2, and 3 islet infusions, respectively. Overall graft survival defined as C-peptide level more than or equal to 0.3 ng/mL was 76.5%, 47.1%, and 33.6% at 1, 2, and 3 years, respectively, whereas corresponding graft survival after multiple transplantations was 100%, 80.0%, and 57.1%, respectively. All recipients remained free of severe hypoglycemia while three achieved insulin independence for 14, 79, and 215 days. HbA1c levels and requirement of exogenous insulin were significantly improved in all patients. Islet transplantation employing DCD can ameliorate severe hypoglycemic episodes, significantly improve HbA1c levels, sustain significant levels of C-peptide, and achieve insulin independence after multiple transplantations. Thus, DCD can be an important resource for islet transplantation if used under strict releasing criteria and in multiple transplantations, particularly in countries where heart-beating donors are not readily available.

  20. Preserved GLP-1 and exaggerated GIP secretion in type 2 diabetes and relationships with triglycerides and ALT

    DEFF Research Database (Denmark)

    Alssema, Marjan; Rijkelijkhuizen, Josina M; Holst, Jens Juul

    2013-01-01

    OBJECTIVE: To i) compare incretin responses to oral glucose and mixed meal of diabetic patients with the normoglycaemic population and ii) to investigate whether incretin responses are associated with hypertriglyceridaemia and alanine aminotransferase (ALT) as liver fat marker. DESIGN: A population......-based study. METHODS: A total of 163 persons with normal glucose metabolism (NGM), 20 with intermediate hyperglycaemia and 20 with type 2 diabetes aged 40-65 years participated. Participants received a mixed meal and oral glucose load on separate occasions. Glucagon-like peptide 1 (GLP-1), glucose......-dependent insulinotropic polypeptide (GIP) and glucagon profiles were analysed as total area under the curve (tAUC) and incremental area under the curve. RESULTS: In diabetic patients compared with persons with NGM, we found increased GLP-1 secretion (tAUC per hour) following oral glucose (23.2 pmol/l (95% CI 17...

  1. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Engelstoft, Maja Storm; Grunddal, Kaare Villum

    2012-01-01

    Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing...... enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive...... to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity....

  2. Effect of the Diabetic State on Islet Engraftment and Function in a Large Animal Model of Islet-Kidney Transplantation.

    Science.gov (United States)

    Vallabhajosyula, Prashanth; Hirakata, Atsushi; Weiss, Matthew; Griesemer, Adam; Shimizu, Akira; Hong, Hanzhou; Habertheuer, Andreas; Tchipashvili, Vaja; Yamada, Kazuhiko; Sachs, David H

    2017-11-01

    In islet transplantation, in addition to immunologic and ischemic factors, the diabetic/hyperglycemic state of the recipient has been proposed, although not yet validated, as a possible cause of islet toxicity, contributing to islet loss during the engraftment period. Using a miniature swine model of islet transplantation, we have now assessed the effect of a persistent state of hyperglycemia on islet engraftment and subsequent function. An islet-kidney (IK) model previously described by our laboratory was utilized. Three experimental donor animals underwent total pancreatectomy and autologous islet transplantation underneath the renal capsule to prepare an IK at a load of ≤1,000 islet equivalents (IE)/kg donor weight, leading to a chronic diabetic state during the engraftment period (fasting blood glucose >250 mg/dL). Three control donor animals underwent partial pancreatectomy (sufficient to maintain normoglycemia during islet engraftment period) and IK preparation. As in vivo functional readout for islet engraftment, the IKs were transplanted across an immunologic minor or class I mismatch barrier into diabetic, nephrectomized recipients at an islet load of ∼4,500 IE/kg recipient weight. A 12-d course of cyclosporine was administered for tolerance induction. All experimental donors became diabetic and showed signs of end organ injury, while control donors maintained normoglycemia. All recipients of IK from both experimental and control donors achieved glycemic control over long-term follow-up, with reversal of diabetic nephropathy and with similar glucose tolerance tests. In this preclinical, large animal model, neither islet engraftment nor subsequent long-term islet function after transplantation appear to be affected by the diabetic state.

  3. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  4. Beneficial effect of 17β-estradiol on hyperglycemia and islet β-cell functions in a streptozotocin-induced diabetic rat model

    International Nuclear Information System (INIS)

    Yamabe, Noriko; Kang, Ki Sung; Zhu Baoting

    2010-01-01

    The modulating effect of estrogen on glucose homeostasis remains a controversial issue at present. In this study, we sought to determine the beneficial effect of 17β-estradiol (E 2 ) on hyperglycemia and islet β-cell functions in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected i.p. with STZ to induce a relatively mild diabetic condition. The rats were then treated with E 2 orally at 500 μg/kg body weight/day for 15 days to evaluate the modulating effect on hyperglycemia, insulin secretion, and islet β-cell proliferation. E 2 administration for 10 days significantly lowered plasma glucose levels, increased plasma insulin levels, and improved glucose tolerance by attenuating insulin response to oral glucose loading. These beneficial effects of E 2 were accompanied by increases in islet number and volume, rate of islet cell proliferation, and the amount of insulin secreted. The growth-stimulatory effect of E 2 on islet cells was linked to the functions of the estrogen receptor α. Notably, these protective effects of E 2 on diabetic conditions were basically not observed when the STZ-treated rats had a more severe degree of islet damage and hyperglycemia. Taken together, we conclude that E 2 can promote the regeneration of damaged pancreatic islets by stimulating β-cell proliferation in diabetic rats, and this effect is accompanied by improvements in glucose tolerance and a decrease in plasma glucose levels. These findings suggest that oral administration of E 2 may be beneficial in diabetic patients with an accelerated loss of islet β-cells.

  5. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  6. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  7. Tacrolimus inhibits the revascularization of isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishimura

    Full Text Available AIMS: Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS: Islets isolated from C57BL/6-Tg (CAG-EGFP mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9 and tacrolimus-treated group (n = 7. The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS: The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05. Although the expression of Vegfa (p<0.05 and Ccnd1 (p<0.05 was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS: The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.

  8. Islet grafting and imaging in a bioengineered intramuscular space.

    Science.gov (United States)

    Witkowski, Piotr; Sondermeijer, Hugo; Hardy, Mark A; Woodland, David C; Lee, Keagan; Bhagat, Govind; Witkowski, Kajetan; See, Fiona; Rana, Abbas; Maffei, Antonella; Itescu, Silviu; Harris, Paul E

    2009-11-15

    Because the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here, we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and we demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real-time noninvasive manner by positron emission tomography (PET) imaging. Streptozotocin-induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was performed using insulin staining and evaluation of microvasularity. Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors when compared with those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining, and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia. Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared with controls. The use of a nonhepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta cell mass in real time. These findings have important implications for effective islet implantation outside of the liver and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss.

  9. Hemiptera community and species responses to grassland sward islets

    OpenAIRE

    Helden, Alvin J.; Dittrich, Alex D. K.

    2016-01-01

    Sward islet is a term that has been used to describe a patch of longer vegetation in a pasture produced by a reduction in cattle grazing around their dung. They are known to affect the abundance and distribution of grassland arthropods. Hemiptera, like other groups, are found in higher densities within islets than the surrounding sward. Does this modify the community composition or is there just a density effect? Evidence from a paired (islets, non-islets) study at an Irish cattle-grazed site...

  10. Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010

    Science.gov (United States)

    Barton, Franca B.; Rickels, Michael R.; Alejandro, Rodolfo; Hering, Bernhard J.; Wease, Stephen; Naziruddin, Bashoo; Oberholzer, Jose; Odorico, Jon S.; Garfinkel, Marc R.; Levy, Marlon; Pattou, Francois; Berney, Thierry; Secchi, Antonio; Messinger, Shari; Senior, Peter A.; Maffi, Paola; Posselt, Andrew; Stock, Peter G.; Kaufman, Dixon B.; Luo, Xunrong; Kandeel, Fouad; Cagliero, Enrico; Turgeon, Nicole A.; Witkowski, Piotr; Naji, Ali; O’Connell, Philip J.; Greenbaum, Carla; Kudva, Yogish C.; Brayman, Kenneth L.; Aull, Meredith J.; Larsen, Christian; Kay, Tom W.H.; Fernandez, Luis A.; Vantyghem, Marie-Christine; Bellin, Melena; Shapiro, A.M. James

    2012-01-01

    OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P islet graft function (P islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient. PMID:22723582

  11. Islet transplantation in multicenter networks: the GRAGIL example

    International Nuclear Information System (INIS)

    Thierry Berney; Pierre-Yves Benhamou; Laurence Kessler; Philippe Morel

    2006-01-01

    Purpose of review: The enthusiasm generated by the results of the Edmonton protocol of islet transplantation is inciting a great number of institutions to start such programs. However, the procedure of islet isolation and purification is costly, complex and technically challenging. In order to share costs and to avoid facing the steep learning curve of the procedure, many centers interested in islet transplantation have looked into collaborating with experienced groups serving as core islet isolation facilities. Recent findings: The proof of principle that remote islet processing and shipment could be successfully implemented with obtainng the Portland/Minneapolis, Huddinge/Giessen and Houston/Miami partnerships. Moreover, in order to increase both the donor pool and the number of patients gaining access to islet transplantation, multicenter networks, such as the Swiss-French GRAGIL consortium and the 4-country Nordic Network in Scandinavia have been built. The GRAGIL group has been fully operational since 1999, allowing the transplantation of 27 islet preparations processed in Geneva, Switzerland into 20 recipients in France over the course of 4.5 years. Organizational issues in the design of such networks are discussed based on the example of the GRAGIL experience. Summary: The feasibility and the efficiency of islet transplantation in multicenter networks have been demonstrated. This strategy allows to increase the donor pool and the accessibility to islet transplantation in an extended population area. (authors)

  12. Salvage Islet Auto Transplantation After Relaparatomy.

    Science.gov (United States)

    Balzano, Gianpaolo; Nano, Rita; Maffi, Paola; Mercalli, Alessia; Melzi, Raffaelli; Aleotti, Francesca; Gavazzi, Francesca; Berra, Cesare; De Cobelli, Francesco; Venturini, Massimo; Magistretti, Paola; Scavini, Marina; Capretti, Giovanni; Del Maschio, Alessandro; Secchi, Antonio; Zerbi, Alessandro; Falconi, Massimo; Piemonti, Lorenzo

    2017-10-01

    To assess feasibility, safety, and metabolic outcome of islet auto transplantation (IAT) in patients undergoing completion pancreatectomy because of sepsis or bleeding after pancreatic surgery. From November 2008 to October 2016, approximately 22 patients were candidates to salvage IAT during emergency relaparotomy because of postpancreatectomy sepsis (n = 11) or bleeding (n = 11). Feasibility, efficacy, and safety of salvage IAT were compared with those documented in a cohort of 36 patients who were candidate to simultaneous IAT during nonemergency preemptive completion pancreatectomy through the pancreaticoduodenectomy. The percentage of candidates that received the infusion of islets was significantly lower in salvage IAT than simultaneous IAT (59.1% vs 88.9%, P = 0.008), mainly because of a higher rate of inadequate islet preparations. Even if microbial contamination of islet preparation was significantly higher in candidates to salvage IAT than in those to simultaneous IAT (78.9% vs 20%, P < 0.001), there was no evidence of a higher rate of complications related to the procedure. Median follow-up was 5.45 ± 0.52 years. Four (36%) of 11 patients reached insulin independence, 6 patients (56%) had partial graft function, and 1 patient (9%) had primary graft nonfunction. At the last follow-up visit, median fasting C-peptide was 0.43 (0.19-0.93) ng/mL; median insulin requirement was 0.38 (0.04-0.5) U/kg per day, and median HbA1c was 6.6% (5.9%-8.1%). Overall mortality, in-hospital mortality, metabolic outcome, graft survival, and insulin-free survival after salvage IAT were not different from those documented after simultaneous IAT. Our data demonstrate the feasibility, efficacy, and safety of salvage IAT after relaparotomy.

  13. Inhibition of carbachol-induced formation of inositolphosphates in isolated pancreatic islets

    DEFF Research Database (Denmark)

    Kardasz, A.M.J.; Capito, Kirsten; Hansen, Svend Erik

    1991-01-01

    Medicinsk biokemi, feed-back inhibition, phospholipase C, pancreatic islets, Calcium, proteinkinase C......Medicinsk biokemi, feed-back inhibition, phospholipase C, pancreatic islets, Calcium, proteinkinase C...

  14. CT features of nonfunctioning islet cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Eelkema, E.A.; Stephens, D.H.; Ward, E.M.; Sheedy, P.F. II

    1984-11-01

    To determine the computed tomographic (CT) characteristics of nonfunctioning islet cell carcinoma of the pancreas, the CT scans of 27 patients with that disease were reviewed. The pancreatic tumor was identified as a mass in 26 patients (96%) Of the 25 tumors evaluated with contrast enhancement, 20 became partially diffusely hyperdense relative to nearby normal pancreatic tissue. Hepatic metastases were identified in 15 patients (56%), regional lymphadenopathy in 10 (37%), atrophy of the gland proximal to the tumor in six (22%), dilatation of the biliary ducts in five (19%), and dilatation of the pancreatic duct in four (15%). The CT appearances of the nonfunctioning islet cell tumors were compared with those of 100 ordinary (ductal) pancreatic adenocarcinomas. Although the two types of tumors were sometimes indistinguishable, features found to be more characteristic of islet cell carcinoma included a pancreatic mass of unusually large size, calcification within the tumor, and contrast enhancement of either the primary tumor or hepatic metastases. Involvement of the celiac axis or proximal superior mesenteric artery was limited to ductal carcinoma.

  15. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Kawata, Sumio, E-mail: Sumio_Kawata@pref.hyogo.lg.jp [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya 662-0918 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  16. Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation

    International Nuclear Information System (INIS)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-01-01

    Highlights: ► Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. ► Proliferation of islet β-cells was upregulated in lymph duct-ligated rats. ► Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats. Methods: Male Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of

  17. Third Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance.

    Science.gov (United States)

    Lin, Po-Ju; Borer, Katarina T

    2016-01-01

    Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to

  18. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  19. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets.

    Science.gov (United States)

    Wang, Xinhui; Yun, Jun-Won; Lei, Xin Gen

    2014-01-10

    Glutathione peroxidase (GPX) mimic ebselen and superoxide dismutase (SOD) mimic copper diisopropylsalicylate (CuDIPs) were used to rescue impaired glucose-stimulated insulin secretion (GSIS) in islets of GPX1 and(or) SOD1-knockout mice. Ebselen improved GSIS in islets of all four tested genotypes. The rescue in the GPX1 knockout resulted from a coordinated transcriptional regulation of four key GSIS regulators and was mediated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-mediated signaling pathways. In contrast, CuDIPs improved GSIS only in the SOD1 knockout and suppressed gene expression of the PGC-1α pathway. Islets from the GPX1 and(or) SOD1 knockout mice provided metabolically controlled intracellular hydrogen peroxide (H2O2) and superoxide conditions for the present study to avoid confounding effects. Bioinformatics analyses of gene promoters and expression profiles guided the search for upstream signaling pathways to link the ebselen-initiated H2O2 scavenging to downstream key events of GSIS. The RNA interference was applied to prove PGC-1α as the main mediator for that link. Our study revealed a novel metabolic use and clinical potential of ebselen in rescuing GSIS in the GPX1-deficient islets and mice, along with distinct differences between the GPX and SOD mimics in this regard. These findings highlight the necessities and opportunities of discretional applications of various antioxidant enzyme mimics in treating insulin secretion disorders. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Regina Brigelius-Flohe, Vadim Gladyshev, Dexing Hou, and Holger Steinbrenner.

  20. Transplanted human pancreatic islets after long-term insulin independence

    DEFF Research Database (Denmark)

    Muller, Y D; Gupta, Shashank; Morel, P

    2013-01-01

    Long-term insulin independence after islets of Langerhans transplantation is rarely achieved. The aims of this study were to identify the histological and immunological features of islets transplanted in a type 1 diabetic patient who died of a cerebral hemorrhage after >13 years insulin independe...

  1. Autologous Pancreatic Islet Transplantation in Human Bone Marrow

    Science.gov (United States)

    Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196

  2. Prediction of Marginal Mass Required for Successful Islet Transplantation

    Science.gov (United States)

    Papas, Klearchos K.; Colton, Clark K.; Qipo, Andi; Wu, Haiyan; Nelson, Rebecca A.; Hering, Bernhard J.; Weir, Gordon C.; Koulmanda, Maria

    2013-01-01

    Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range. The probability of DR increased with increasing transplanted OCR and OCR/DNA. On coordinates of OCR versus OCR/DNA, data fell into regions in which DR occurred in all, some, or none of the animals with a sharp threshold of around 150-nmol/min mg DNA. A model incorporating both parameters predicted transplantation outcome with sensitivity and specificity of 93% and 94%, respectively. Marginal mass was not constant, depended on OCR/DNA, and increased from 2,800 to over 100,000 islet equivalents/kg body weight as OCR/DNA decreased. We conclude that measurements of OCR and OCR/DNA are useful for predicting transplantation outcome in this model system, and OCR/DNA can be used to estimate the marginal mass required for reversing diabetes. Because human clinical islet preparations in a previous study had OCR/DNA values in the range of 100–150-nmol/min mg DNA, our findings suggest that substantial improvement in transplantation outcome may accompany increasedOCR/DNAin clinical islet preparations. PMID:20233002

  3. Induction of Protective Genes Leads to Islet Survival and Function

    Directory of Open Access Journals (Sweden)

    Hongjun Wang

    2011-01-01

    Full Text Available Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1, A20/tumor necrosis factor alpha inducible protein3 (tnfaip3, biliverdin reductase (BVR, Bcl2, and others or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.

  4. Islet and Stem Cell Encapsulation for Clinical Transplantation

    Science.gov (United States)

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  5. Pancreatic Islet Cell Transplantation: A new era in transplantation

    OpenAIRE

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence.

  6. Approaches for imaging islets: recent advances and future prospects.

    NARCIS (Netherlands)

    Ahlgren, U.; Gotthardt, M.

    2010-01-01

    The establishment of improved technologies for imaging of the pancreas is a key element in addressing several aspects of diabetes pathogenesis. In this respect, the development of a protocol that allows for non-invasive scoring of human islets, or islet beta-cells, is of particular importance. The

  7. Islet cytotoxicity of interleukin 1. Influence of culture conditions and islet donor characteristics

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Spinas, G A; Prowse, S J

    1987-01-01

    We recently demonstrated that the macrophage product interleukin 1 (IL-1) is cytotoxic to isolated pancreatic islets and hypothesized that IL-1 is responsible for beta-cell destruction in insulin-dependent diabetes mellitus (IDDM). We studied whether the variation in IDDM preponderance with age, ...

  8. Encapsulation of pancreatic islets for transplantation in diabetes : the untouchable islets

    NARCIS (Netherlands)

    de Vos, P; Marchetti, P

    The aim of encapsulation of pancreatic islets is to transplant in the absence of immunosuppression. It is based on the principle that transplanted tissue is protected from the host immune system by an artificial membrane. Encapsulation allows for application of insulin-secreting cells of animal or

  9. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H

    2016-01-01

    cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...... pancreases, correlating with a decrease in insulin and glucagon release. The inhibition of insulin secretion by ghrelin was prevented by somatostatin receptor antagonism. CONCLUSIONS/INTERPRETATION: Our transcriptomic database of genes expressed in the principal islet cell populations will facilitate...

  10. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion

    Directory of Open Access Journals (Sweden)

    Caroline Giezenaar

    2017-12-01

    Full Text Available Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein—although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m2 and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m2 adults were studied on three occasions in which they ingested 30 g (120 kcal or 70 g (280 kcal whey protein, or a flavored-water control drink (~2 kcal. At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK, gastric inhibitory peptide (GIP, and glucagon-like peptide-1 (GLP-1 concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.

  11. Is islet transplantation a realistic approach to curing diabetes?

    Science.gov (United States)

    Jin, Sang-Man; Kim, Kwang-Won

    2017-01-01

    Since the report of type 1 diabetes reversal in seven consecutive patients by the Edmonton protocol in 2000, pancreatic islet transplantation has been reappraised based on accumulated clinical evidence. Although initially expected to therapeutically target long-term insulin independence, islet transplantation is now indicated for more specific clinical benefits. With the long-awaited report of the first phase 3 clinical trial in 2016, allogeneic islet transplantation is now transitioning from an experimental to a proven therapy for type 1 diabetes with problematic hypoglycemia. Islet autotransplantation has already been therapeutically proven in chronic pancreatitis with severe abdominal pain refractory to conventional treatments, and it holds promise for preventing diabetes after partial pancreatectomy due to benign pancreatic tumors. Based on current evidence, this review focuses on islet transplantation as a realistic approach to treating diabetes.

  12. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Krarup, Thure; Madsbad, Sten

    2003-01-01

    was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP......-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min...... and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP...

  13. Effects of fat supplementation on postprandial GIP, GLP-1, ghrelin and IGFBP-1 levels: a pilot study on adolescents with type 1 diabetes

    DEFF Research Database (Denmark)

    Lodefalk, M; Carlsson-Skwirut, C; Holst, Jens Juul

    2010-01-01

    Aims: To compare the responses of GIP, GLP-1, ghrelin and IGFBP-1 between meals with different fat and energy content in adolescents with type 1 diabetes (T1DM) and to relate them to gastric emptying and glycaemia. Methods: On different days and in a random order, 7 adolescents with T1DM ingested...... by the paracetamol absorption method. Results: The area under the curve (AUC) for GIP(0-240 min) and for GLP-1(0-120 min) was larger, but smaller for relative ghrelin(0-240 min), after the high-fat meal (p = 0.002, 0.030 and 0.043, respectively). IGFBP-1 decreased significantly, but not differently, after the meals....... Larger GLP-1 secretion correlated with slower gastric emptying (p = 0.029) and higher fasting ghrelin levels correlated with lower postprandial glycaemia (p = 0.007). Conclusion: In adolescents with T1DM, the postprandial responses of GIP, GLP-1 and ghrelin, but not that of IGFBP-1, depend more on meal...

  14. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  15. Supravital dithizone staining in the isolation of human and rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, W A; Christie, M R; Kahn, R

    1989-01-01

    Dithizone, a zinc chelating agent, is known to selectively stain the islets of Langerhans in the pancreas. In the present study, we have used this stain to aid the identification of islets in material obtained by collagenase digestion of human pancreas. Islets were shown to rapidly and reversibly...... techniques for the large scale isolation of functionally intact human islets....

  16. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  17. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...

  18. Intra- and Inter-islet Synchronization of Metabolically Driven Insulin Secretion

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver......,'' which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter...

  19. A case-control analysis of common variants in GIP with type 2 diabetes and related biochemical parameters in a South Indian population

    Directory of Open Access Journals (Sweden)

    Kumar Harish

    2010-07-01

    Full Text Available Abstract Background Glucose-dependent insulinotropic polypeptide (GIP is one of the incretins, which plays a crucial role in the secretion of insulin upon food stimulus and in the regulation of postprandial glucose level. It also exerts an effect on the synthesis and secretion of lipoprotein lipase, from adipocytes, important for lipid metabolism. The aim of our study was to do a case-control association analysis of common variants in GIP in association with type 2 diabetes and related biochemical parameters. Method A total of 2000 subjects which includes 1000 (584M/416F cases with type 2 diabetes and 1000 (470M/530F normoglycemic control subjects belonging to Dravidian ethnicity from South India were recruited to assess the effect of single nucleotide polymorphisms (SNPs in GIP (rs2291725, rs2291726, rs937301 on type 2 diabetes in a case-control manner. The SNPs were genotyped by using tetra primer amplification refractory mutation system-PCR (ARMS PCR. For statistical analysis, our study population was divided into sub-groups based on gender (male and female. Association analysis was carried out using chi-squared test and the comparison of biochemical parameters among the three genotypes were performed using analysis of covariance (ANCOVA. Result Initial analysis revealed that, out of the total three SNPs selected for the present study, two SNPs namely rs2291726 and rs937301 were in complete linkage disequilibrium (LD with each other. Therefore, only two SNPs, rs2291725 and rs2291726, were genotyped for the association studies. No significant difference in the allele frequency and genotype distribution of any of the SNPs in GIP were observed between cases and controls (P > 0.05. Analysis of biochemical parameters among the three genotypes showed a significant association of total cholesterol (P = 0.042 and low density lipoprotein (LDL with the G allele of the SNP rs2291726 in GIP (P = 0.004, but this was observed only in the case of female

  20. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Directory of Open Access Journals (Sweden)

    L. R. Cataldo

    2016-01-01

    Full Text Available High circulating nonesterified fatty acids (NEFAs concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p<0.0001 and oleate (−43%; p<0.0001 were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  1. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    Science.gov (United States)

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  2. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival.

    Science.gov (United States)

    Mao, Duo; Zhu, Meifeng; Zhang, Xiuyuan; Ma, Rong; Yang, Xiaoqing; Ke, Tingyu; Wang, Lianyong; Li, Zongjin; Kong, Deling; Li, Chen

    2017-09-01

    Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical islet transplantation is limited by long-term graft dysfunction and attrition. We have investigated the therapeutic potential of a silk fibroin macroporous (SF) scaffold for syngeneic islet transplantation in diabetic mice. The SF scaffold was prepared via lyophilisation, which enables incorporation of active compounds including cytokines, peptide and growth factors without compromising their biological activity. For the present study, a heparin-releasing SF scaffold (H-SF) in order to evaluate the versatility of the SF scaffold for biological functionalisation. Islets were then co-transplanted with H-SF or SF scaffolds in the epididymal fat pad of diabetic mice. Mice from both H-SF and SF groups achieved 100% euglycaemia, which was maintained for 1year. More importantly, the H-SF-islets co-transplantation led to more rapid reversal of hyperglycaemia, complete normalisation of glucose responsiveness and lower long-term blood glucose levels. This superior transplantation outcome is attributable to H-SF-facilitated islet revascularisation and cell proliferation since significant increase of islet endocrine and endothelial cells proliferation was shown in grafts retrieved from H-SF-islets co-transplanted mice. Better intra-islet vascular reformation was also evident, accompanied by VEGF upregulation. In addition, when H-SF was co-transplanted with islets extracted from vegfr2-luc transgenic mice in vivo, sustained elevation of bioluminescent signal that corresponds to vegfr2 expression was collected, implicating a role of heparin-dependent activation of endogenous VEGF/VEGFR2 pathway in promoting islet revascularisation and proliferation. In summary, the SF scaffolds provide an open platform as scaffold development for islet transplantation. Furthermore, given the pro-angiogenic, pro-survival and minimal post

  3. Photoacoustic imaging of angiogenesis in subdermal islet transplant sites

    Science.gov (United States)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-03-01

    Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.

  4. Effect of oxygenated perfluorocarbon on isolated islets during transportation.

    Science.gov (United States)

    Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson

    2010-08-01

    Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Has the gap between pancreas and islet transplantation closed?

    Science.gov (United States)

    Niclauss, Nadja; Morel, Philippe; Berney, Thierry

    2014-09-27

    Both pancreas and islet transplantations are therapeutic options for complicated type 1 diabetes. Until recent years, outcomes of islet transplantation have been significantly inferior to those of whole pancreas. Islet transplantation is primarily performed alone in patients with severe hypoglycemia, and recent registry reports have suggested that results of islet transplantation alone in this indication may be about to match those of pancreas transplant alone in insulin independence. Figures of 50% insulin independence at 5 years for either procedure have been cited. In this article, we address the question whether islet transplantation has indeed bridged the gap with whole pancreas. Looking at the evidence to answer this question, we propose that although pancreas may still be more efficient in taking recipients off insulin than islets, there are in fact numerous "gaps" separating both procedures that must be taken into the equation. These "gaps" relate to organ utilization, organ allocation, indication for transplantation, and morbidity. In-depth analysis reveals that islet transplantation, in fact, has an edge on whole pancreas in some of these aspects. Accordingly, attempts should be made to bridge these gaps from both sides to achieve the same level of success with either procedure. More realistically, it is likely that some of these gaps will remain and that both procedures will coexist and complement each other, to ensure that β cell replacement can be successfully implemented in the greatest possible number of patients with type 1 diabetes.

  6. Islet Microencapsulation: Strategies and Clinical Status in Diabetes.

    Science.gov (United States)

    Omami, Mustafa; McGarrigle, James J; Reedy, Mick; Isa, Douglas; Ghani, Sofia; Marchese, Enza; Bochenek, Matthew A; Longi, Maha; Xing, Yuan; Joshi, Ira; Wang, Yong; Oberholzer, José

    2017-07-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.

  7. Islet grafting and imaging in a bioengineered intramuscular space†

    Science.gov (United States)

    Witkowski, Piotr; Sondermeijer, Hugo; Hardy, Mark A.; Woodland, David C.; Lee, Keagan; Bhagat, Govind; Witkowski, Kajetan; See, Fiona; Rana, Abbas; Maffei, Antonella; Itescu, Silviu; Harris, Paul E.

    2011-01-01

    Background Since the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real time non-invasive manner by PET imaging. Methods Streptozotocin induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was done using insulin staining and evaluation of microvasularity. Results Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors as compared to those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia. Conclusions Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared to controls. The use of a non hepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta-cell mass in real time. These findings have important implications for effective islet implantation outside of the liver, and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss. PMID:19898201

  8. Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy.

    Science.gov (United States)

    Wang, Hongjun; Strange, Charlie; Nietert, Paul J; Wang, Jingjing; Turnbull, Taylor L; Cloud, Colleen; Owczarski, Stefanie; Shuford, Betsy; Duke, Tara; Gilkeson, Gary; Luttrell, Louis; Hermayer, Kathie; Fernandes, Jyotika; Adams, David B; Morgan, Katherine A

    2018-01-01

    Islet engraftment after transplantation is impaired by high rates of islet/β cell death caused by cellular stressors and poor graft vascularization. We studied whether cotransplantation of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (MSCs) with islets is safe and beneficial in chronic pancreatitis patients undergoing total pancreatectomy with islet autotransplantation. MSCs were harvested from the bone marrow of three islet autotransplantation patients and expanded at our current Good Manufacturing Practices (cGMP) facility. On the day of islet transplantation, an average dose of 20.0 ± 2.6 ×10 6 MSCs was infused with islets via the portal vein. Adverse events and glycemic control at baseline, 6, and 12 months after transplantation were compared with data from 101 historical control patients. No adverse events directly related to the MSC infusions were observed. MSC patients required lower amounts of insulin during the peritransplantation period (p = .02 vs. controls) and had lower 12-month fasting blood glucose levels (p = .02 vs. controls), smaller C-peptide declines over 6 months (p = .01 vs. controls), and better quality of life compared with controls. In conclusion, our pilot study demonstrates that autologous MSC and islet cotransplantation may be a safe and potential strategy to improve islet engraftment after transplantation. (Clinicaltrials.gov registration number: NCT02384018). Stem Cells Translational Medicine 2018;7:11-19. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas

    Science.gov (United States)

    Opara, Emmanuel C.; McQuilling, John P.; Farney, Alan C.

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process. PMID:23494435

  10. Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory.

    Science.gov (United States)

    Rheinheimer, Jakeline; Bauer, Andrea C; Silveiro, Sandra P; Estivalet, Aline A F; Bouças, Ana P; Rosa, Annelise R; Souza, Bianca M de; Oliveira, Fernanda S de; Cruz, Lavínia A; Brondani, Letícia A; Azevedo, Mirela J; Lemos, Natália E; Carlessi, Rodrigo; Assmann, Taís S; Gross, Jorge L; Leitão, Cristiane B; Crispim, Daisy

    2015-04-01

    Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil.

  11. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  12. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i and insulin rhythms in mouse islets.

    Directory of Open Access Journals (Sweden)

    Craig S Nunemaker

    2009-12-01

    Full Text Available We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J as well as outbred mouse strains (Swiss-Webster; CD1. Second, imprinting was observed in NAD(PH oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a K(ATP-channel opener that blocks [Ca2+](i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i oscillations. Lastly, to test whether the imprinted [Ca2+](i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

  13. Islet alloautotransplantation: Allogeneic pancreas transplantation followed by transplant pancreatectomy and islet transplantation.

    Science.gov (United States)

    Nijhoff, M F; Dubbeld, J; van Erkel, A R; van der Boog, P J M; Rabelink, T J; Engelse, M A; de Koning, E J P

    2018-04-01

    Simultaneous pancreas-kidney (SPK) transplantation is an important treatment option for patients with type 1 diabetes (T1D) and end-stage renal disease (ESRD). Due to complications, in up to 10% of patients, allograft pancreatectomy is necessary shortly after transplantation. Usually the donor pancreas is discarded. Here, we report on a novel procedure to rescue endocrine tissue after allograft pancreatectomy. A 39-year-old woman with T1D and ESRD who had undergone SPK transplantation required emergency allograft pancreatectomy due to bleeding at the vascular anastomosis. Islets were isolated from the removed pancreas allograft, and almost 480 000 islet equivalents were infused into the portal vein. The patient recovered fully. After 3 months, near-normal mixed meal test (fasting glucose 7.0 mmol/L, 2-hour glucose 7.5 mmol/L, maximal stimulated C-peptide 3.25 nmol/L, without insulin use in the preceding 36 hours) was achieved. Glycated hemoglobin while taking a low dose of long-acting insulin was 32.7 mmol/mol hemoglobin (5.3%). When a donor pancreas is lost after transplantation, rescue β cell therapy by islet alloautotransplantation enables optimal use of scarce donor pancreata to optimize glycemic control without additional HLA alloantigen exposure. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  15. A 3D map of the islet routes throughout the healthy human pancreas

    Science.gov (United States)

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  16. Islet Cell Transplantation: MedlinePlus Health Topic

    Science.gov (United States)

    ... and Kidney Diseases) Learn More Beta Cell Breakthroughs (American Diabetes Association) Innovative Approaches to Treating Type 1 Diabetes Addressed in Beta-Cell Replacement Presentations (American Diabetes Association) Islet Transplantation (American Diabetes Association) Also in Spanish ...

  17. MULTIHORMONAL ISLET CELL CARCINOMAS IN THREE KOMODO DRAGONS (VARANUS KOMODOENSIS).

    Science.gov (United States)

    Eustace, Ronan; Garner, Michael M; Cook, Kimberly; Miller, Christine; Kiupel, Matti

    2017-03-01

      Multihormonal pancreatic islet cell carcinomas were found in one female and two male captive geriatric Komodo dragons (Varanus komodoensis). Gross changes in the pancreas were visible in two of the cases. Clinical signs noted in the Komodo dragons were lethargy, weakness, and anorexia. Histologically, the tumors were comprised of nests and cords of well-differentiated neoplastic islet cells with scant amounts of eosinophilic cytoplasm and round, euchromatic nuclei, with rare mitoses. Infiltration by the islet cell tumor into the surrounding acinar tissue was observed in all cases, but no metastatic foci were seen. Multihormone expression was observed in all tumors, which labeled strongly positive for glucagon and somatostatin and focally positive for polypeptide. Pancreatic islet cell neoplasms should be considered in the differential diagnosis for geriatric Komodo dragons presenting with weakness, lethargy, and poor appetite.

  18. mTOR Inhibition and Clinical Transplantation: Pancreas and Islet.

    Science.gov (United States)

    Berney, Thierry; Andres, Axel; Toso, Christian; Majno, Pietro; Squifflet, Jean-Paul

    2018-02-01

    This brief overview discusses the beneficial and deleterious effects of mammalian target of rapamycin (mTOR) inhibitors on β cells, and how sirolimus- and everolimus-based immunosuppression have impacted on practices and outcomes of pancreas and islet transplantation. Sirolimus was the cornerstone of immunosuppressive regimens in islet transplantation at the turn of the millenium, but utilization of mTOR inhibitors has progressively decreased from greater than 80% to less than 50% of islet transplant recipients in more recent years. For whole pancreas transplantation, mTOR inhibitors were used in approximately 20% of patients in the early 2000s, but this dropped over the years to less than 10% currently. This decrease is arguably due to less well-tolerated side effects without the advantage of better outcomes. Nonetheless, mTOR inhibitors remain extremely valuable as second-line immunosuppressants in pancreas and islet transplantation.

  19. OBSTACLES IN THE APPLICATION OF MICROENCAPSULATION IN ISLET TRANSPLANTATION

    NARCIS (Netherlands)

    DEVOS, P; WOLTERS, GHJ; FRITSCHY, WM; VANSCHILFGAARDE, R

    Several factors stand in the way of successful clinical transplantation of alginate-polylysine-alginate microencapsulated pancreatic islets. These obstacles can be classified into three categories. The first regards the technical aspects of the production process. Limiting factors are the

  20. Assimilating Dokdo: The Islets in Korean Everyday Life

    Directory of Open Access Journals (Sweden)

    Brandon Palmer

    2016-03-01

    Full Text Available Sovereignty over the Tokto Islets is heatedly contested between South Korea and Japan. The Korean government and citizenry have responded to this dispute by inserting the islets into their national collective memory in multifarious ways in an attempt to strengthen their nation’s claim to Tokto. The islets are included in the material culture and public memory of the nation in ways that make them part of everyday life for millions of Koreans. Korea’s claim to Tokto is currently taught in schools, presented in museums, found in popular songs, and exploited by businesses for profit. The deeper Tokto becomes entrenched in Korean society, the less likely a compromise can be reached with Japan over the islets.

  1. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  2. A novel subcutaneous site of islet transplantation superior to the liver.

    Science.gov (United States)

    Yasunami, Yohichi; Nakafusa, Yuki; Nitta, Naoyoshi; Nakamura, Masafumi; Goto, Masafumi; Ono, Junko; Taniguchi, Masaru

    2018-03-08

    Islet transplantation is an attractive treatment for patients with insulin-dependent diabetes mellitus, and currently the liver is the favored transplantation site. However, an alternative site is desirable because of the low efficiency of hepatic transplantation, requiring 2-3 donors for a single recipient, and because the transplanted islets cannot be accessed or retrieved. We developed a novel procedure of islet transplantation to the inguinal subcutaneous white adipose tissue (ISWAT) of mice and described functional and morphological characteristics of transplanted syngeneic islets. Also, it was determined whether islet allograft rejection in the ISWAT can be prevented by immunosuppressive agents. Furthermore, it was examined whether human islets function when grafted in this particular site of immune-deficient mice. In this site, transplanted islets are engrafted as clusters and function to reverse STZ-induced diabetes in mice. Importantly, transplanted islets can be visualized by CT and are easily retrievable, and allograft rejection is preventable by blockade of co-stimulatory signals. Of much importance, the efficiency of islet transplantation in this site is superior to the liver, in which hyperglycemia of diabetic recipient mice is ameliorated after transplantation of 200 syngeneic islets (the islet number yielded from 1 mouse pancreas) to the ISWAT but not to the liver. Furthermore, human islets transplanted in this particular site function to reverse diabetes in immune-deficient mice. Thus, the ISWAT is superior to the liver as the site of islet transplantation, which may lead to improved outcome of clinical islet transplantation.

  3. Entrapment of cultured pancreas islets in three-dimensional collagen matrices.

    Science.gov (United States)

    Chao, S H; Peshwa, M V; Sutherland, D E; Hu, W S

    1992-01-01

    In vitro culture of islets of Langerhans decreases their immunogenicity, presumably by eliminating passenger leukocytes and other Ia+ presenting cells within the islets. Islets cultivated in petri dishes either at 37 degrees C or at 25 degrees C gradually disintegrate during culture in a time-dependent manner which is related to the free-floating condition of the islets. Also, a fraction of the islets disperse as single cells and beta-cell aggregates or adhere to the bottom of the culture dishes. Thus, the retrieval rate of transplantable islets is dampened due to their disintegration and spontaneous dispersion in conventional petri dish cultures. Entrapment of freshly harvested islets of Langerhans in a three-dimensional collagen matrix was studied as an alternative method for islet cultivation. The contraction of collagen fibrils during in vitro culture counteracts the dispersion of islets and helps in maintaining their integrity while in culture. It was observed that the entrapped islets maintain satisfactory morphology, viability, and capability of glucose-dependent insulin secretion for over 2 wk. The oxygen consumption rate and glucose metabolism of these islets was not deranged when entrapped in collagen. Also, the retrieval of islets is easier and more efficient than that observed in conventional culture systems. Our results indicate that culture of islets in three-dimensional collagen gels can potentially develop into an ideal system applicable to clinical transplantation of cultured islets or beta-cell aggregates.

  4. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.

  5. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  6. Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

    Czech Academy of Sciences Publication Activity Database

    Habart, D.; Švihlík, J.; Schier, Jan; Cahová, M.; Girman, P.; Zacharovová, K.; Berková, Z.; Kříž, J.; Fabryová, E.; Kosinová, L.; Papáčková, Z.; Kybic, J.; Saudek, F.

    2016-01-01

    Roč. 25, č. 12 (2016), s. 2145-2156 ISSN 0963-6897 Grant - others:GA ČR(CZ) GA14-10440S Institutional support: RVO:67985556 Keywords : enumeration of islets * image processing * image segmentation * islet transplantation * machine-learning * quality control Subject RIV: IN - Informatics, Computer Science Impact factor: 3.006, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/schier-0465945.pdf

  7. A preclinical evaluation of alternative site for islet allotransplantation.

    Directory of Open Access Journals (Sweden)

    Chengshi Wang

    Full Text Available The bone marrow cavity (BMC has recently been identified as an alternative site to the liver for islet transplantation. This study aimed to compare the BMC with the liver as an islet allotransplantation site in diabetic monkeys. Diabetes was induced in Rhesus monkeys using streptozocin, and the monkeys were then divided into the following three groups: Group1 (islets transplanted in the liver with immunosuppressant, Group 2 (islets transplanted in the tibial BMC, and Group 3 (islets transplanted in the tibial BMC with immunosuppressant. The C-peptide and blood glucose levels were preoperatively measured. An intravenous glucose tolerance test (IVGTT was conducted to assess graft function, and complete blood cell counts were performed to assess cell population changes. Cytokine expression was measured using an enzyme-linked immune sorbent assay (ELISA and MILLIPLEX. Five monkeys in Group 3 exhibited a significantly increased insulin-independent time compared with the other groups (Group 1: 78.2 ± 19.0 days; Group 2: 58.8 ± 17.0 days; Group 3: 189.6 ± 26.2 days and demonstrated increases in plasma C-peptide 4 months after transplantation. The infusion procedure was not associated with adverse effects. Functional islets in the BMC were observed 225 days after transplantation using the dithizone (DTZ and insulin/glucagon stains. Our results showed that allogeneic islets transplanted in the BMC of diabetic Rhesus monkeys remained alive and functional for a longer time than those transplanted in the liver. This study was the first successful demonstration of allogeneic islet engraftment in the BMC of non-human primates (NHPs.

  8. Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates

    Science.gov (United States)

    Berman, Dora M.; Willman, Melissa A.; Han, Dongmei; Kleiner, Gary; Kenyon, Norman M.; Cabrera, Over; Karl, Julie A.; Wiseman, Roger W.; O'Connor, David H.; Bartholomew, Amelia M.; Kenyon, Norma S.

    2010-01-01

    OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy. PMID:20622174

  9. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    Science.gov (United States)

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Phosphatidylcholine (PC) biosynthesis in pancreatic islets of Langerhans

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Laychock, S.G.

    1986-01-01

    Islets of Langerhans isolated from rat pancreata were incubated with [ 14 C]choline to determine the biosynthesis of PC by the CDP choline to determine the biosynthesis of PC by the CDPcholine pathway. Recovery of [ 14 C]PC in islet membranes was time-related, and stimulated by glucose (17mM) during 60 min. The rate of PC synthesis was constant during 60 min with glucose stimulation. In contrast, the sulfonylurea tolbutamide (2 mM) reduced the recovery of [ 14 C]choline in PC, and 8-bromo-cyclic AMP (5 mM) did not significantly affect [ 14 C]PC recovery. Incubation of islets in Ca 2+ -free medium enhanced glucose-stimulated recovery of [ 14 C]choline-labeled PC due to the inhibition of phospholipase and phospholipid hydrolysis. Inhibition of CTP:phosphocholine cytidylyltransferase with 5-deoxy-5'-isobutylthioadenosine (SIBA) reduced [ 14 C]PC levels and insulin release in a concentration dependent manner. Treatment with SIBA also reduced Mg 2+ -dependent Ca 2+ -ATPase activity in islet microsomes. Quantitation of membrane PC showed that glucose stimulation did not alter islet P levels. Thus, islet PC biosynthesis is linked to glucose stimulation and contributes to the maintenance of PC levels in membranes undergoing exocytosis and phospholipid hydrolysis. Adequate PC levels support Ca 2+ pump activity and secretory mechanisms

  11. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  12. Intraportal islet transplantation: the impact of the liver microenvironment.

    Science.gov (United States)

    Delaune, Vaihere; Berney, Thierry; Lacotte, Stéphanie; Toso, Christian

    2017-03-01

    The portal vein remains the preferred site for pancreatic islet transplantation due to its easy access and low morbidity. However, despite great progress in isolation and transplantation protocols over the past few years, it is still associated with the early loss of some 50-70% of transplanted islets. The complex liver microenvironment itself presumably plays an important role in this loss. The present review focuses on the specifics of the liver microenvironment, notably the localized hepatic ischemia/reperfusion injury following transplantation, the low oxygenation of the portal vein, the instant blood-mediated inflammatory reaction, the endogenous liver immune system, and the gut-liver axis, and how they can each have an impact on the transplanted islets. It identifies the potential, or already applied, clinical interventions for improving intraportal islet survival, and pinpoints those promising areas still lacking preclinical research. Future interventions on clinical intraportal islet transplantation need to take into account the global context of the liver microenvironment, with multi-point interventions being most likely to improve early islet survival and engraftment. © 2017 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  13. Redox-Dependent Inflammation in Islet Transplantation Rejection

    Directory of Open Access Journals (Sweden)

    Jessie M. Barra

    2018-04-01

    Full Text Available Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.

  14. Who Should Be Considered for Islet Transplantation Alone?

    Science.gov (United States)

    Othonos, Nantia; Choudhary, Pratik

    2017-04-01

    Episodic hypoglycemia is an almost inevitable consequence of exogenous insulin treatment of type 1 diabetes, and in up to 30% of patients, this can lead to impaired awareness of hypoglycemia. This predisposes to recurrent severe hypoglycemia and has a huge impact on quality of life. Although many patients can get resolution of severe hypoglycemia through novel education and technology, some patients continue to have ongoing life-threatening hypoglycemia. Islet transplantation offers an alternative therapeutic option for these patients, in whom these conventional approaches have been unsuccessful. This review discusses the selection process of identifying suitable candidates based on recent clinical data. Results from studies of islet transplantation suggest the optimal recipient characteristics for successful islet transplantation include age >35 years, insulin requirements 85 kg. Islet transplantation can completely resolve hypoglycemia and near-normalize glucose levels, achieving insulin independence for a limited period of time in up to 40% of patients. The selection of appropriate candidates, optimizing donor selection, the use of an optimized protocol for islet cell extraction, and immunosuppression therapy have been proved to be the key criteria for a favorable outcome in islet transplantation.

  15. Redox-Dependent Inflammation in Islet Transplantation Rejection

    Science.gov (United States)

    Barra, Jessie M.; Tse, Hubert M.

    2018-01-01

    Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation. PMID:29740396

  16. Zinc as a paracrine effector in pancreatic islet cell death.

    Science.gov (United States)

    Kim, B J; Kim, Y H; Kim, S; Kim, J W; Koh, J Y; Oh, S H; Lee, M K; Kim, K W; Lee, M S

    2000-03-01

    Because of a huge amount of Zn2+ in secretory granules of pancreatic islet beta-cells, Zn2+ released in certain conditions might affect the function or survival of islet cells. We studied potential paracrine effects of endogenous Zn2+ on beta-cell death. Zn2+ induced insulinoma/islet cell death in a dose-dependent manner. Chelation of released endogenous Zn2+ by CaEDTA significantly decreased streptozotocin (STZ)-induced islet cell death in an in vitro culture system simulating in vivo circumstances but not in the conventional culture system. Zn2+ chelation in vivo by continuous CaEDTA infusion significantly decreased the incidence of diabetes after STZ administration. N-(6-methoxy-quinolyl)-para-toluene-sulfonamide staining revealed that Zn2+ was densely deposited in degenerating islet cells 24 h after STZ treatment, which was decreased by CaEDTA infusion. We show here that Zn2+ is not a passive element for insulin storage but an active participant in islet cell death in certain conditions, which in time might contribute to the development of diabetes in aged people.

  17. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets. These e......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  18. Lower glucose-dependent insulinotropic polypeptide (GIP) response but similar glucagon-like peptide 1 (GLP-1), glycaemic, and insulinaemic response to ancient wheat compared to modern wheat depends on processing

    DEFF Research Database (Denmark)

    Bakhøj, S; Flint, A.; Holst, Jens Juul

    2003-01-01

    with honey-salt added, leavening crushed whole grain, and conventional leavening with yeast added. Bread made from modern wheat was prepared by conventional leavening with yeast added. SUBJECTS: A total of 11 healthy young men. RESULTS: The postprandial GIP response was significantly (P... by the Einkorn breads processed with honey-salt leavening and by using crushed whole grain bread compared to the yeast leavened bread made from modern wheat or from Einkorn. No significant differences were found in the responses of GLP-1, insulin or glucose. CONCLUSION: Einkorn honey-salt leavened and Einkorn...... whole grain bread elicit a reduced gastrointestinal response of GIP compared to conventional yeast bread. No differences were found in the glycaemic, insulinaemic and GLP-1 responses. Processing of starchy foods such as wheat may be a powerful tool to modify the postprandial GIP response....

  19. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    Science.gov (United States)

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Park, Won-Mee; Sakata, Ichiro

    2013-01-01

    The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro......, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi....../o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi...

  1. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Nauck, Michael A; El-Ouaghlidi, Andrea; Gabrys, Bartholomäus

    2004-01-01

    ) and an "isoglycaemic" intravenous glucose infusion. Blood was drawn over 240 min for plasma glucose (glucose oxidase), insulin, C-peptide, GIP and glucagon-like peptide 1 (GLP-1; specific immunoassays). RESULTS: The pattern of glucose concentrations could precisely be copied by the intravenous glucose infusion (p=0......AIMS/HYPOTHESIS: Since insulin secretion in response to exogenous gastric inhibitory polypeptide (GIP) is diminished not only in patients with type 2 diabetes, but also in their normal glucose-tolerant first-degree relatives, it was the aim to investigate the integrity of the entero-insular axis...... in such subjects. METHODS: Sixteen first-degree relatives of patients with type 2 diabetes (4 male, 12 female, age 50+/-12 years, BMI 26.1+/-3.8 kg/m(2)) and 10 matched healthy controls (negative family history, 6 male, 4 female, 45+/-13 years, 26.1+/-4.2 kg/m(2)) were examined with an oral glucose load (75 g...

  2. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1–5-HT axis

    Directory of Open Access Journals (Sweden)

    Fang-Xu Jiang

    2015-08-01

    Full Text Available Bone morphogenetic protein (BMP signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3 months, and were more severely affected at 12 months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of β-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1, encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from β cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1–5-HT axis on glucose homeostasis.

  3. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta).

    NARCIS (Netherlands)

    Drake, P.G.; Peters, G.H.; Andersen, H.S.; Hendriks, W.J.A.J.; Moller, N.P.

    2003-01-01

    Islet-cell antigen 512 (IA-2) and phogrin (IA-2beta) are atypical members of the receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent

  4. Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets

    NARCIS (Netherlands)

    van Schilfgaarde, R; de Vos, P

    There are several approaches of immunoprotection of pancreatic islets for the purpose of successful allo- or xenotransplantation in the absence of immunosuppressive medication. Extravasculair approaches are either mac roencapsulation (large numbers of islets together in one device) or

  5. Preservation of beta cell function in adult human pancreatic islets for several months in vitro

    DEFF Research Database (Denmark)

    Brunstedt, J; Andersson, A; Frimodt-Møller, C

    1979-01-01

    Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more tha...... technique presents a valuable tool for studying chronic effects of metabolites and hormones on islet function, as well as for islet storage prior to transplantation into humans.......Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more than...

  6. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  7. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  8. Occurance of apoptosis during ischemia in porcine pancreas islet cells.

    Science.gov (United States)

    Stadlbauer, V; Schaffellner, S; Iberer, F; Lackner, C; Liegl, B; Zink, B; Kniepeiss, D; Tscheliessnigg, K H

    2003-03-01

    Pancreas islet transplantation is a potential treatment of diabetes mellitus and porcine organs provide an easily available source of cells. Unfortunately quality and quantity of isolated islets are still not satisfactory. Apoptosis occurs in freshly isolated islets and plays a significant role in early graft loss. We evaluated the influence of four storage solutions on porcine pancreas islets. After warm ischemia of 15-20 minutes 12 organs were stored in 4 cold preservation solutions: Histidine-Tryptophan-Ketoglutarate solution (HTK), Hank's buffered saline solution (HBSS), University of Wisconsin (UW) solution and Ringer-Lactate (R). After cold ischemia for 100 minutes, organs were fixed in 3% formalin. Apoptotic cells were counted on hematocylin-eosin stainings. Most apoptotic cells were found in organs stored in R. Low numbers were found in the other groups. The difference between organs stored in R and organs stored in UW, HTK, or HBSS was highly significant. No significant difference could be found between UW, HTK and HBSS. Cold and warm ischemia of the pancreas seems to induce apoptosis in islet cells. Preservation solutions cause less apoptosis than electrolyte solution. No significant differences could be found among the preservation solutions.

  9. Protein-Mediated Interactions of Pancreatic Islet Cells

    Directory of Open Access Journals (Sweden)

    Paolo Meda

    2013-01-01

    Full Text Available The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins and paracrine communications (pannexins between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β-cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.

  10. Successful pregnancy and delivery after simultaneous islet-kidney transplantation.

    Science.gov (United States)

    Assalino, Michela; Podetta, Michele; Demuylder-Mischler, Sandrine; Francini, Katyuska; Pernin, Nadine; Randin, Jean-Pierre; Bosco, Domenico; Andres, Axel; Berney, Thierry

    2018-04-19

    Allogeneic islet of Langerhans transplantation is a recognized beta-cell replacement therapy for patients affected by type 1 diabetes mellitus. Type 1 diabetes mellitus is a condition associated with an increased risk of adverse outcomes for pregnant women and fetuses. We report the case of a 29-year-old woman with type 1 diabetes mellitus, who underwent successful allogeneic islet transplantation with simultaneous kidney transplantation. She achieved durable insulin independence after 2 islet infusions. Pregnancy was desired and planned 2 years after the last islet infusion. Multidisciplinary monitoring of pregnancy was carried out and the immunosuppressive regimen was adapted. Euglycemia was maintained throughout pregnancy without the need for exogenous insulin. After an uneventful pregnancy, she delivered on term an otherwise healthy male child with imperforate anus that was immediately surgically corrected. In conclusion, allogeneic islet transplantation is a suitable treatment for women of childbearing age with complicated type 1 diabetes mellitus, allowing physiologic glycemic control during pregnancy with a low risk of graft loss. This target can be achieved only by a tight multidisciplinary follow-up, including immunosuppressive therapy adaptation and adequate diabetes and obstetrical monitoring. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Origin of induced pancreatic islet tumors: a radioautographic study

    International Nuclear Information System (INIS)

    Michels, J.E.; Bauer, G.E.; Dixit, P.K.

    1987-01-01

    Endocrine tumors of the pancreas are induced in a high percentage of young rats by injections of streptozotocin and nicotinamide (SZ/NA). Benign tumors first appear 20 to 36 weeks after drug injections. To determine the possible site of their origin, the incorporation of [ 3 H]thymidine into islets, ducts, acini, microtumors, and gross tumors was examined by radioautography of histologic sections at 1 to 36 weeks after drug injection. Drug treatment led to early (1- to 6-week) increases in nuclear 3 H labeling of exocrine pancreatic structures (ductal and acinar cells), which may involve DNA repair processes. A secondary increase in labeling of duct cells during the period of tumor emergence supports the assumption that SZ/NA-induced tumors are of ductal origin. Microtumors and gross tumors also exhibited markedly elevated rates of [ 3 H]thymidine incorporation compared to control islets. Nontumorous islet tissue, which exhibited a gradual decrease in volume due to B-cell destruction by the drug injection, showed about 10-fold higher 3 H labeling than islets of controls at all time points. The results suggest that in addition to ductal precursors, islets that survive SZ/NA-induced injury may also provide sites of focal endocrine cell differentiation to tumor tissue. Once established, both microtumors and gross tumors continue to grow by accelerated cell division

  12. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  13. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Haruyuki Tsuchiya

    Full Text Available The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM and growth factors in intramuscular islet transplantation.Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group, islets embedded in ECM with growth factors (Matrigel group, and islets embedded in ECM without growth factors [growth factor-reduced (GFR Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  14. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  15. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Science.gov (United States)

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  16. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes

    NARCIS (Netherlands)

    van der Torren, Cornelis R; Verrijn Stuart, Annemarie A; Lee, DaHae; Meerding, Jenny; van de Velde, Ursule; Pipeleers, Daniel; Gillard, Pieter; Keymeulen, Bart; de Jager, Wilco; Roep, Bart O

    2016-01-01

    BACKGROUND: Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet

  17. Prolonged survival of isolated rat islet allografts pre-irradiated with X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Toshihisa; Note, Masayuki; Nakagawara, Gizo (Fukui Medical School, Matsuoka (Japan)); Kojima, Yasuhiko

    1994-04-01

    Prior to transplantation of islets, pre-incubation, or pre-irradiation may suppress the immunogenicity of islet cells without suppressing islet function. In the presently described experiments we investigated the use of X-ray irradiation prior to transplantation to reduce islet immunogenicity. To determine whether or not the islet function was reduced after irradiation, ACI rat islets were transplanted into the subrenal capsules of isogeneic rats which had been diabetic and examined the blood glucose level over a period of 40 days. The results indicated that irradiation injury was dose-dependent and that islets irradiated with over 80 Gy lost their function. Next, allogeneic transplantation was performed using the model of ACI rats to Lewis rats without the use of any immunosuppressive agent. Non-irradiated islets were rejected within 7 days. However 20 Gy or 40 Gy irradiated islets prolonged survival (18.7[+-]5.8 days (n=6) and 26.7[+-]10.0 days (n=6), respectively). To determine the basis for this effect, MHC expression of islets was examined by the immunoperoxidase technique. Immunohistologic studies showed that 40 Gy-irradiated islets were depleted of Class II antigen positive cells while Class I antigen expression was unchanged. These results suggest that the prolongation of islets survival by X-ray irradiation may possibly be due to, in part, the depletion of donor Class II antigen positive cells. (author).

  18. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Science.gov (United States)

    Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N

    2015-01-01

    Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, Pcanines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.

  19. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

  20. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A central role for GRB10 in regulation of islet function in man.

    Directory of Open Access Journals (Sweden)

    Inga Prokopenko

    2014-04-01

    Full Text Available Variants in the growth factor receptor-bound protein 10 (GRB10 gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.

  2. Identifying Effective Enzyme Activity Targets for Recombinant Class I and Class II Collagenase for Successful Human Islet Isolation

    OpenAIRE

    Balamurugan, Appakalai N.; Green, Michael L.; Breite, Andrew G.; Loganathan, Gopalakrishnan; Wilhelm, Joshua J.; Tweed, Benjamin; Vargova, Lenka; Lockridge, Amber; Kuriti, Manikya; Hughes, Michael G.; Williams, Stuart K.; Hering, Bernhard J.; Dwulet, Francis E.; McCarthy, Robert C.

    2015-01-01

    Isolation following a good manufacturing practice-compliant, human islet product requires development of a robust islet isolation procedure where effective limits of key reagents are known. The enzymes used for islet isolation are critical but little is known about the doses of class I and class II collagenase required for successful islet isolation.

  3. Rituximab selectively suppresses specific islet antibodies.

    Science.gov (United States)

    Yu, Liping; Herold, Kevan; Krause-Steinrauf, Heidi; McGee, Paula L; Bundy, Brian; Pugliese, Alberto; Krischer, Jeff; Eisenbarth, George S

    2011-10-01

    The TrialNet Study Group evaluated rituximab, a B-cell-depleting monoclonal antibody, for its effect in new-onset patients with type 1A diabetes. Rituximab decreased the loss of C-peptide over the first year of follow-up and markedly depleted B lymphocytes for 6 months after administration. This article analyzes the specific effect of rituximab on multiple islet autoantibodies. A total of 87 patients between the ages of 8 and 40 years received either rituximab or a placebo infusion weekly for four doses close to the onset of diabetes. Autoantibodies to insulin (IAAs), GAD65 (GADAs), insulinoma-associated protein 2 (IA2As), and ZnT8 (ZnT8As) were measured with radioimmunoassays. The primary outcome for this autoantibody analysis was the mean level of autoantibodies during follow-up. Rituximab markedly suppressed IAAs compared with the placebo injection but had a much smaller effect on GADAs, IA2As, and ZnT8As. A total of 40% (19 of 48) of rituximab-treated patients who were IAA positive became IAA negative versus 0 of 29 placebo-treated patients (P 1 year in insulin-treated patients. For the patients receiving insulin for >2 weeks prior to rituximab administration, we cannot assess whether rituximab not only blocks the acquisition of insulin antibodies induced by insulin administration and/or also suppresses preformed insulin autoantibodies. Studies in prediabetic non-insulin-treated patients will likely be needed to evaluate the specific effects of rituximab on levels of IAAs.

  4. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    Science.gov (United States)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-04-18

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  5. Antigen-Encoding Bone Marrow Terminates Islet-Directed Memory CD8+ T-Cell Responses to Alleviate Islet Transplant Rejection

    DEFF Research Database (Denmark)

    Coleman, Miranda; Jessup, Claire F.; Bridge, Jennifer A.

    2016-01-01

    in islet transplantation, and this will extend to application of personalized approaches using stem cell–derived replacement β-cells. New approaches are required to limit memory autoimmune attack of transplanted islets or replacement β-cells. Here, we show that transfer of bone marrow encoding cognate......Islet-specific memory T cells arise early in type 1 diabetes (T1D), persist for long periods, perpetuate disease, and are rapidly reactivated by islet transplantation. As memory T cells are poorly controlled by “conventional” therapies, memory T cell–mediated attack is a substantial challenge......-cell responses, and this can alleviate destruction of antigen-expressing islets. This addresses a key challenge facing islet transplantation and, importantly, the clinical application of personalized β-cell replacement therapies using patient-derived stem cells....

  6. A simple assay for the detection of antibodies to endocrine islet cell surface antigens

    International Nuclear Information System (INIS)

    Contreas, G.; Madsen, O.D.; Vissing, H.; Lernmark, Aa.

    1986-01-01

    A simple and sensitive immunoradiometric assay for the detection of islet cell surface antibodies (CIRMA) has been developed. Live, transformed islet cells derived from a liver metastasis of a transplantable islet cell tumor were grown in removable microtiter wells and incubated with antibody. Cell-bound antibodies were quantitated using 125 I-labelled second antibodies. The assay was used to detect islet cell antibodies present in sera from non-diabetic and diabetic BB rats and proved to be particularly effective for screening hybridoma supernatants in order to identify monoclonal antibodies recognizing islet cell surface antigens. (Auth.)

  7. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.

    Directory of Open Access Journals (Sweden)

    Marcos Perez-Basterrechea

    Full Text Available Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.

  8. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.

    Science.gov (United States)

    Perez-Basterrechea, Marcos; Esteban, Manuel Martinez; Alvarez-Viejo, Maria; Fontanil, Tania; Cal, Santiago; Sanchez Pitiot, Marta; Otero, Jesus; Obaya, Alvaro Jesus

    2017-01-01

    Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.

  9. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  10. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    International Nuclear Information System (INIS)

    Dumpala, Pradeep R.; Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A.; Parker, Thomas S.; Levine, Daniel M.; Smith, Barry H.; Gazda, Lawrence S.

    2016-01-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  11. On the use of [18F]DOPA as an imaging biomarker for transplanted islet mass

    International Nuclear Information System (INIS)

    Eriksson, Olof; Mintz, Akiva; Liu, Chengyang; Yu, Ming; Naji, Ali; Alavi, Abass

    2014-01-01

    Islet transplantation is being developed as a potential cure for patients with type 1 diabetes. There is a need for non-invasive imaging techniques for the quantification of transplanted islets, as current transplantation sites are associated with a substantial loss of islet viability. The dopaminergic metabolic pathway is present in the islets; therefore, we propose Fluorine-18 labeled L-3,4-dihydroxyphenylalanine ([ 18 F]DOPA) as a biomarker for transplanted islet mass. The expression of enzymes involved in the dopaminergic metabolic pathway was investigated in both native and transplanted human islets. The specific uptake of [ 18 F]DOPA in islets and immortalized beta cells was studied in vitro by selective blocking of dopa decarboxylase (DDC). Initial in vivo positron emission tomography (PET) imaging of viable subcutaneous human islets was performed using [ 18 F]DOPA. DDC and vesicular monoamine transporter 2 are co-localized with insulin in the native human pancreas, and the expression is retained after transplantation. Islet uptake of the [ 18 F]DOPA could be modulated by inhibiting DDC, indicating that the uptake followed the normal dopaminergic metabolic pathway. In vivo imaging revealed [ 18 F]DOPA uptake at the site of the functional islet graft. Based on the in vitro and in vivo results presented in this study, we propose to further validate [ 18 F]DOPA-PET as a sensitive imaging modality for imaging extrahepatically transplanted islets. (author)

  12. Inactivation of p27kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation.

    Science.gov (United States)

    Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun

    2016-11-01

    Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.

  13. Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice.

    Science.gov (United States)

    Pepper, Andrew R; Pawlick, Rena; Bruni, Antonio; Gala-Lopez, Boris; Wink, John; Rafiei, Yasmin; Bral, Mariusz; Abualhassan, Nasser; Shapiro, A M James

    2016-07-01

    Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. However, despite early insulin independence, long-term graft attrition gradually reverts recipients to exogenous insulin dependency. Undoubtedly, as insulin producing stem cell therapies progress, a transplant site that is retrievable is desirable. This prerequisite is currently incompatible with intrahepatic islet transplantation. Herein, we evaluate the functional capacity of a prevascularized subcutaneous site to accommodate marginal islet mass transplantation in mice. Syngeneic mouse islets (150) were transplanted either under the kidney capsule (KC), into a prevascularized subcutaneous device-less (DL) site, or into the unmodified subcutaneous (SC) tissue. The DL site was created 4 weeks before diabetes induction and islet transplantation through the transient placement of a 5-Fr vascular catheter. Recipient mice were monitored for glycemic control and intraperitoneal glucose tolerance. A marginal islet mass transplanted into the DL site routinely reversed diabetes (n = 13 of 18) whereas all SC islet recipients failed to restore glycemic control (n = 0 of 10, P islet-KC mice (n = 15 of 16) became euglycemic posttransplant. The DL recipients' glucose profiles were comparable to KC islet grafts, postintrapertioneal glucose tolerance testing, whereas SC recipients remained hyperglycemic postglucose challenge. All normoglycemic mice maintained graft function for 100 days until graft retrieval. DL and KC islet grafts stained positively for insulin, microvessels, and a collagen scaffold. The device-less prevascularized approach supports marginal mass islet engraftment in mice.

  14. Training for the seismic qualification utility group (SQUG) generic implementation procedure (GIP) for verification of seismic effects on nuclear power plant equipment

    International Nuclear Information System (INIS)

    Schaffstall, R.E.; Smith, N.P.; Baker, K.M.

    1993-01-01

    Resolution of USI A-46 was accomplished May, 1992 with the issuance of the SER for the GIP, Revision 2. The implementation of the resolution for the SQUG plants will be completed by 1996. Both the USNRC and the SQUG utilities have expended considerable resources to effect a common understanding that the effort has been worth the price. The Training Program developed to ensure that the efforts expended by the SQUG was indeed worth the price will be a major contributor in the success of the implementation. All of the older nuclear power plants in the United States now have an alternative standard to determine seismic resistance using experience data- a standard against which they can be evaluated and found seismically adequate to achieve and maintain a safe and reliable shutdown when subjected to strong motion earthquakes

  15. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Supernatants of peripheral blood mononuclear cells from healthy human donors stimulated with recall antigen (purified protein derivative of tuberculin) or lectin (phytohaemagglutinin) markedly inhibited the insulin release from isolated human and rat islets of Langerhans, and decreased rat islet...... reconstituted with tuberculin or phytohaemagglutinin did not impair islet function. Electron microscopy demonstrated that supernatants were cytotoxic to islet cells. The cytotoxic mononuclear cell mediator(s) was non-dialysable, sensitive to heating to 56 degrees C, labile even when stored at -70 degrees C...

  16. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation: studies in a rodent model.

    Science.gov (United States)

    Sörenby, Anne K; Kumagai-Braesch, Makiko; Sharma, Amit; Hultenby, Kjell R; Wernerson, Annika M; Tibell, Annika B

    2008-07-27

    Islet graft survival inside macroencapsulation devices is suboptimal. We hypothesized that induction of neovascularization by preimplantation of devices would improve the physiological conditions, thereby lowering the number of islets required for cure. Several rat islets were transplanted to TheraCyte immunoprotective devices implanted subcutaneously in diabetic athymic mice. Cure rates in the groups with preimplanted devices were significantly better than in those with freshly implanted devices (375 islets: 8/8 vs. 1/6, P=0.003; 125 islets: 6/6 vs. 0/7, P=0.001). Morphometric evaluations of the 125 islet groups showed higher fractional and absolute volumes of endocrine tissue in the group with preimplanted devices (P<0.001 and P=0.035, respectively). In the following dose titration study, using preimplanted devices, as low as 50 islets cured diabetic mice (100% cure, n=6). We conclude that preimplantation significantly lowers the curative dose of macroencapsulated islets to levels resembling those of free islets transplanted under the renal capsule.

  17. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    Directory of Open Access Journals (Sweden)

    Shifra Ken Dror

    Full Text Available Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP (Savyon Diagnostics, Ashdod, IL, a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland. This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory.

  18. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans.

    Science.gov (United States)

    Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G

    2003-12-15

    It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.

  19. Considerations for successful transplantation of encapsulated pancreatic islets

    NARCIS (Netherlands)

    de Vos, P; Hamel, AF; Tatarkiewicz, K

    Encapsulation of pancreatic islets allows for transplantion in the absence of immunosuppression. The technology is based on the principle that transplanted tissue is protected for the host immune system by an artificial membrane. Encapsulation offers a solution to the shortage of donors in clinical

  20. Pancreatic islet regeneration: Therapeutic potential, unknowns and controversy

    Directory of Open Access Journals (Sweden)

    Ingrid L. Cockburn

    2015-07-01

    Full Text Available Glucose homeostasis in mammals is primarily maintained by the insulin-secreting β-cells contained within pancreas-resident islets of Langerhans. Gross disruption of this glucose regulation as a result of pancreatic dysfunction frequently results in diabetes, which is currently a major health concern in South Africa, as well as globally. For many years, researchers have realised that the pancreas, and specifically the islets of Langerhans, have a regenerative capacity, as islet mass has frequently been shown to increase following induced pancreatic injury. Given that gross β-cell loss contributes significantly to the pathogenesis of both type 1 and type 2 diabetes, endogenous pancreatic islet regeneration has been investigated extensively as a potential β-cell replacement therapy for diabetes. From the extensive research conducted on pancreatic regeneration, opposing findings and opinions have arisen as to how, and more recently even if, pancreatic regeneration occurs following induced injury. In this review, we outline and discuss the three primary mechanisms by which pancreatic regeneration is proposed to occur: neogenesis, β-cell replication and transdifferentiation. We further explain some of the advanced techniques used in pancreatic regeneration research, and conclude that despite the technologically advanced research tools available to researchers today, the mechanisms governing pancreatic regeneration may remain elusive until more powerful techniques are developed to allow for real-time, live-cell assessment of morphology and gene expression within the pancreas.

  1. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  2. Beating diabetes: strategies to improve pancreatic islet transplantation

    NARCIS (Netherlands)

    Hilderink, J.

    2013-01-01

    Type 1 diabetes is a chronic disease that is caused by nearly complete destruction of insulin producing beta-cells in the islets of Langerhans, affecting approximately 25 million people worldwide. Prior to the discovery of insulin, diabetes most certainly led to death. To date, patients with type 1

  3. In vitro assessment of pancreatic islet vitality by oxymetry

    Czech Academy of Sciences Publication Activity Database

    Zacharovová, K.; Berková, Z.; Špaček, Tomáš; Kříž, J.; Dovolilová, E.; Girman, P.; Koblas, T.; Ježek, Petr; Saudek, F.

    2005-01-01

    Roč. 37, č. 8 (2005), s. 3454-3456 ISSN 0041-1345 R&D Projects: GA MZd(CZ) NR7917 Institutional research plan: CEZ:AV0Z50110509 Keywords : pancreatic islet viability * polarographic oxymetry Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.799, year: 2005

  4. Islet neogenesis is stimulated by brief occlusion of the main ...

    African Journals Online (AJOL)

    Islet neogenesis is stimulated by brief occlusion of the main pancreatic duct. ... South African Medical Journal ... where the initial events that culminate in increased pancreatic endocrine mass caube studied. ... The animals were killed 56 days post .occlusion, and the pancreata excised and fiXed tor histological analysis.

  5. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin.

    Science.gov (United States)

    Mueller, Kate R; Balamurugan, A N; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K

    2013-01-01

    Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue. Islets isolated from human (n = 3), NHP (n = 2), adult pig (AP, n = 3), and juvenile pig (JP, n = 4) pancreata were perifused with medium at basal glucose (2.5 mm) followed by high glucose (16.7 mm) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Nonhuman primate islets exhibited GSIS 3-fold higher than AP islets, while AP and JP islets exhibited GSIS 1/3 and 1/30 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/5 of human islets. Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation. Porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. © 2013 John Wiley & Sons A/S.

  6. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation.

    Science.gov (United States)

    Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo

    2016-01-01

    We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more

  7. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets.

    Science.gov (United States)

    Kreutter, Guillaume; Kassem, Mohamad; El Habhab, Ali; Baltzinger, Philippe; Abbas, Malak; Boisrame-Helms, Julie; Amoura, Lamia; Peluso, Jean; Yver, Blandine; Fatiha, Zobairi; Ubeaud-Sequier, Geneviève; Kessler, Laurence; Toti, Florence

    2017-11-01

    Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H 2 O 2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eM aPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H 2 O 2 -treated rat islets with increased viability (62% versus 48% H 2 O 2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  9. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also...

  10. Glycemia, Hypoglycemia, and Costs of Simultaneous Islet-Kidney or Islet After Kidney Transplantation Versus Intensive Insulin Therapy and Waiting List for Islet Transplantation.

    Science.gov (United States)

    Gerber, Philipp A; Locher, Rebecca; Zuellig, Richard A; Tschopp, Oliver; Ajdler-Schaeffler, Evelyne; Kron, Philipp; Oberkofler, Christian; Brändle, Michael; Spinas, Giatgen A; Lehmann, Roger

    2015-10-01

    Long-term data of patients with type 1 diabetes mellitus (T1D) after simultaneous islet-kidney (SIK) or islet-after-kidney transplantation (IAK) are rare and have never been compared to intensified insulin therapy (IIT). Twenty-two patients with T1D and end-stage renal failure undergoing islet transplantation were compared to 70 patients matched for age and diabetes duration treated with IIT and to 13 patients with kidney transplantation alone or simultaneous pancreas-kidney after loss of pancreas function (waiting list for IAK [WLI]). Glycemic control, severe hypoglycemia, insulin requirement, and direct medical costs were analyzed. Glycated hemoglobin decreased significantly from 8.2 ± 1.5 to 6.7 ± 0.9% at the end of follow-up (mean 7.2 ± 2.5 years) in the SIK/IAK and remained constant in IIT (7.8 ± 1.0% and 7.6 ± 1.0) and WLI (7.8 ± 0.8 and 7.9 ± 1.0%). Daily insulin requirement decreased from 0.53 ± 0.15 to 0.29 ± 0.26 U/kg and remained constant in IIT (0.59 ± 0.19 and 0.58 ± 0.23 U/kg) and in WLI (0.76 ± 0.28 and 0.73 ± 0.11 U/kg). Severe hypoglycemia dropped in SIK/IAK from 4.5 ± 9.7 to 0.3 ± 0.7/patient-year and remained constant in IIT (0.1 ± 0.7 and 0.2 ± 0.8/patient-year). Detailed cost analysis revealed US $57,525 of additional cost for islet transplantation 5 years after transplantation. Based on a 5- and 10-year analysis, cost neutrality is assumed to be achieved 15 years after transplantation. This long-term cohort with more than 7 years of follow-up shows that glycemic control in patients with T1D after SIK/IAK transplantation improved, and the rate of severe hypoglycemia decreased significantly as compared to control groups. Cost analysis revealed that islet transplantation is estimated to be cost neutral at 15 years after transplantation.

  11. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets.

    Science.gov (United States)

    Vlahos, Alexander E; Cober, Nicholas; Sefton, Michael V

    2017-08-29

    The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206 + MHCII - (M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.

  12. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  13. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Directory of Open Access Journals (Sweden)

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.

  14. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    Science.gov (United States)

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  15. The Spleen Is an Ideal Site for Inducing Transplanted Islet Graft Expansion in Mice.

    Directory of Open Access Journals (Sweden)

    Takeshi Itoh

    Full Text Available Alternative islet transplantation sites have the potential to reduce the marginal number of islets required to ameliorate hyperglycemia in recipients with diabetes. Previously, we reported that T cell leukemia homeobox 1 (Tlx1+ stem cells in the spleen effectively regenerated into insulin-producing cells in the pancreas of non-obese diabetic mice with end-stage disease. Thus, we investigated the spleen as a potential alternative islet transplantation site. Streptozotocin-induced diabetic C57BL/6 mice received syngeneic islets into the portal vein (PV, beneath the kidney capsule (KC, or into the spleen (SP. The marginal number of islets by PV, KC, or SP was 200, 100, and 50, respectively. Some plasma inflammatory cytokine levels in the SP group were significantly lower than those of the PV group after receiving a marginal number of islets, indicating reduced inflammation in the SP group. Insulin contents were increased 280 days after islet transplantation compared with those immediately following transplantation (p<0.05. Additionally, Tlx1-related genes, including Rrm2b and Pla2g2d, were up-regulated, which indicates that islet grafts expanded in the spleen. The spleen is an ideal candidate for an alternative islet transplantation site because of the resulting reduced inflammation and expansion of the islet graft.

  16. Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats.

    Science.gov (United States)

    Pan, Xiaoming; Xue, Wujun; Li, Yang; Feng, Xinshun; Tian, Xiaohui; Ding, Chenguang

    2011-12-15

    Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (Ptransplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (Pislet group (P=0.04). Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.

  17. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content

    International Nuclear Information System (INIS)

    Figlewicz, D.P.; Forhan, S.E.; Hodgson, A.T.; Grodsky, G.M.

    1984-01-01

    Uptake of 65 Zn and distribution of 65 Zn, total zinc, and insulin were measured in rat islets and islet granules under different conditions of islet culture. Specific activity of islet zinc ( 65 Zn/zinc) was less than 15% that of extracellular zinc even after 48 h. In contrast, once in the islet, 65 Zn approached 70% of equilibrium with granular zinc in 24 h and apparent equilibrium by 48 h. During a 24-h culture, at either high or low glucose, reduction of both islet zinc and insulin occurred. However, zinc depletion was greater than that predicted if zinc loss was proportional to insulin depletion and occurred only from the granular compartment, which represents only one third of the total islet zinc. Extension of culture to 48 h caused additional insulin depletion, but islet zinc was unchanged. Omission of calcium during the 48-h culture caused a predicted increase in insulin retention, presumably by inhibiting secretion; however, zinc retention was not increased proportionately. Pretreatment of rats with tolbutamide caused a massive depletion of insulin stored in isolated islets, with little change in total islet zinc; subsequent culture of these islets resulted in a greater loss of granular zinc than predicted from the small loss of granular insulin. None of the conditions tested affected the percentage of either 65 Zn or total zinc that was distributed in the islet granules. Results show that zinc exists in a metabolically labile islet compartment(s) as well as in secretory granules; and extra-granular zinc, although not directly associated with insulin storage, may act as a reservoir for granular zinc and may regulate insulin synthesis, storage, and secretion in ways as yet unknown

  18. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  19. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice

    Directory of Open Access Journals (Sweden)

    Sytwu Huey-Kang

    2009-08-01

    Full Text Available Abstract Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD mice. Methods Islets were isolated from NOD mice and transduced with lentivirus carrying TRX (Lt-TRX or enhanced green fluorescence protein (Lt-eGFP, respectively. Transduced islets were transplanted under the left kidney capsule of female diabetic NOD mice, and blood glucose concentration was monitored daily after transplantation. The histology of the islet graft was assessed at the end of the study. The protective effect of TRX on islets was investigated. Results The lentiviral vector effectively transduced islets without altering the glucose-stimulating insulin-secretory function of islets. Overexpression of TRX in islets reduced hydrogen peroxide-induced cytotoxicity in vitro. After transplantation into diabetic NOD mice, euglycemia was maintained for significantly longer in Lt-TRX-transduced islets than in Lt-eGFP-transduced islets; the mean graft survival was 18 vs. 6.5 days (n = 9 and 10, respectively, p Conclusion We successfully transduced the TRX gene into islets and demonstrated that these genetically modified grafts are resistant to inflammatory insult and survived longer in diabetic recipients. Our results further support the concept that the reactive oxygen species (ROS scavenger and antiapoptotic functions of TRX are critical to islet survival after

  20. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  1. Nonhuman Primate Models of Type 1 Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Islet transplantation is an attractive treatment of type 1 diabetes mellitus (T1DM. Animal models of diabetes mellitus (DM contribute a lot to the experimental studies of islet transplantation and to evaluations of isolated islet grafts for future clinical applications. Diabetic nonhuman primates (NHPs represent the suitable models of DMs to better evaluate the effectiveness of islet transplantation, to assess new strategies for controlling blood glucose (BG, relieving immune rejection, or prolonging islet survival, and eventually to translate the preclinical data into tangible clinical practice. This review introduces some NHP models of DM, clarifies why and how the models should be used, and elucidates the usefulness and limitations of the models in islet transplantation.

  2. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    Science.gov (United States)

    Chhabra, Preeti; Brayman, Kenneth L.

    2011-01-01

    Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells. PMID:22046502

  3. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Preeti Chhabra

    2011-01-01

    Full Text Available Clinical islet transplantation is a -cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the -cells regenerative capacity of stem cells.

  4. Design of bioartificial pancreas with functional micro/nano-based encapsulation of islets.

    Science.gov (United States)

    Kepsutlu, Burcu; Nazli, Caner; Bal, Tugba; Kizilel, Seda

    2014-01-01

    Type I diabetes mellitus (TIDM), a devastating health issue in all over the world, has been treated by successful transplantation of insulin secreting pancreatic islets. However, serious limitations such as the requirement of immunosuppressive drugs for recipient patients, side effects as a result of long-term use of drugs, and reduced functionality of islets at the transplantation site remain. Bioartificial pancreas that includes islets encapsulated within semi-permeable membrane has been considered as a promising approach to address these requirements. Many studies have focused on micro or nanobased islet immunoisolation systems and tested the efficacy of encapsulated islets using in vitro and in vivo platforms. In this review, we address current progress and obstacles for the development of a bioartificial pancreas using micro/nanobased systems for encapsulation of islets.

  5. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  6. Sympathetic Innervation during Development Is Necessary for Pancreatic Islet Architecture and Functional Maturation

    Directory of Open Access Journals (Sweden)

    Philip Borden

    2013-07-01

    Full Text Available Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a β-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.

  7. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    International Nuclear Information System (INIS)

    Xia, Bing; Zhan, Xiao-Rong; Yi, Ran; Yang, Baofeng

    2009-01-01

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in type 1 diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet β-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as an in vivo progenitor for

  8. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Zhan, Xiao-Rong, E-mail: xiaorongzhan@sina.com [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yi, Ran [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yang, Baofeng [Department of Pharmacology, State Key Laboratory of Biomedicine and Pharmacology, Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China)

    2009-06-12

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing {beta}-cells. The functional mass of {beta}-cells is decreased in type 1 diabetes, so replacing missing {beta}-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the {beta}-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding {beta}-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet {beta}-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal

  9. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    Science.gov (United States)

    Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  10. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  11. Phosphatidylcholine biosynthesis and insulin release in rat islets of Langerhans

    International Nuclear Information System (INIS)

    Hoffman, J.M.

    1988-01-01

    Turnover of phosphatidylcholine (PC) has been demonstrated to play a role in glucose stimulation of insulin release by pancreatic islets of Langerhans. The activity of the islet CDP-choline pathway of PC synthesis was determined by measuring the incorporation of radiolabeled choline or 32 PO 4 into PC, phosphorylcholine and CDP-choline. Concurrently, insulin release was measured by radioimmunoassay to correlate insulin release and PC synthesis. Glucose concentrations greater than 8.5 mM stimulated CDP-choline pathway activity. However, measurement of PC lipid phosphorus tended to decrease, suggesting that stimulation of the CDP-choline pathway was a means of replenishing PC pools diminished by hydrolysis of PC. Inhibition of glucose oxidation by mannoheptulose or incubations under hypoxic conditions prevented stimulation of the CDP-choline pathway, while inhibition of phospholipase A 2 (PLA 2 ) and secretion by the removal of extracellular Ca 2+ potentiated the stimulation seen with glucose

  12. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  13. Islet β cell failure in type 2 diabetes

    Science.gov (United States)

    Prentki, Marc; Nolan, Christopher J.

    2006-01-01

    The major focus of this Review is on the mechanisms of islet β cell failure in the pathogenesis of obesity-associated type 2 diabetes (T2D). As this demise occurs within the context of β cell compensation for insulin resistance, consideration is also given to the mechanisms involved in the compensation process, including mechanisms for expansion of β cell mass and for enhanced β cell performance. The importance of genetic, intrauterine, and environmental factors in the determination of “susceptible” islets and overall risk for T2D is reviewed. The likely mechanisms of β cell failure are discussed within the two broad categories: those with initiation and those with progression roles. PMID:16823478

  14. Abnormal islet sphingolipid metabolism in type 1 diabetes

    DEFF Research Database (Denmark)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P

    2018-01-01

    AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis....... Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we...... diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1...

  15. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  16. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  17. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    Science.gov (United States)

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  18. Effect of gamma-irradiation on mouse pancreatic islet-allograft survival

    International Nuclear Information System (INIS)

    Kanai, T.; Porter, J.; Gotoh, M.; Monaco, A.P.; Maki, T.

    1989-01-01

    Elimination or inactivation of lymphoid tissue in the pancreatic islet preparation achieves prolongation of islet-allograft survival. In this study we examined the effect of gamma-irradiation on mouse islet-allograft survival. In a B6AF1 isograft model, irradiation up to 2400 rad did not induce deterioration of islet function over 200 days, but greater doses caused cessation of graft function between 83 and 186 days. When DBA/2 crude islets were transplanted into B6AF1 recipients, all nonirradiated allografts were acutely rejected. Marked prolongation of allograft survival was achieved by islet irradiation with doses between 800 and 12,000 rad. With higher doses, significant numbers of allografts survived beyond the controls, but many lost function between 78 and 180 days, with none surviving greater than 200 days. Irradiation with 16,000 rad caused acute radiation damage. Because most secondary islet allografts in recipient mice that lost primary islet-graft function between 84 and 195 days survived greater than 100 days, late functional loss was probably due to the radiation injury. Combined use of recipient treatment with cyclosporin A and graft irradiation (2400 rad) achieved prolongation of DBA/2 islets in B6AF1 mice

  19. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  20. Impact of adverse pancreatic injury at surgical procurement upon islet isolation outcome.

    Science.gov (United States)

    Andres, Axel; Kin, Tatsuya; O'Gorman, Doug; Bigam, David; Kneteman, Norman; Senior, Peter; Shapiro, Am James

    2014-11-01

    The consequence of a pancreas injury during the procurement for islet isolation purpose is unknown. The goal of this work was to assess the injuries of the pancreata procured for islet isolation, and to determine their effect on the islet yield. Between January 2007 and October 2013, we prospectively documented every injury of the pancreata processed in our centre for islet isolation. Injuries involving the main duct were classified as major, the others as minor. Donors' characteristics and islet yields were compared between the groups of injuries. A pancreas injury was identified in 42 of 452 pancreata received for islet isolation (9.3%). In 15 cases, the injury was major (3.3% of all pancreata). Although a minor injury did not affect the islet yield, a major injury was significantly associated with unfavourable outcomes (postpurification mean islet equivalent of 364 ± 181, 405 ± 190 and 230 ± 115 × 10(3) for absence of injury, minor injury and major injury, respectively). A major injury was significantly more prevalent in lean and short donors. We recommend assessing the quality of the pancreas in the islet isolation centre before starting the isolation procedure. Each centre should determine its own policy based on its financial resources and on the wait list. © 2014 Steunstichting ESOT.

  1. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  2. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  3. Enhancing engraftment of islets using perioperative sodium 4-phenylbutyrate.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Chen, Szu-Tah; Fu, Shin-Huei

    2006-12-20

    Primary nonfunction (PNF) adversely impacts islet transplantation. In addition to determining whether sodium 4-phenylbutyrate (4-SPB), an anti-inflammatory agent, reduces PNF, this study investigates how 4-SPB affects PNF. Streptozotocin-induced diabetic C57BL/6 mice, that received 75 syngeneic islets underneath left subrenal space, were fed twice daily of either 4-SPB at 500 mg/kg body weight or isotonic saline (NaCl) from 2 days before through 7 days after transplantation. The graft was removed at days 3, 10 and 84 following transplantation. At 68 h following transplantation, serum levels of interleukin-1beta (IL-1beta) were 2.2+/-0.4 and 0.4+/-0.2 pmol/L (n=6, p<0.005) for NaCl and 4-SPB groups, respectively. Graft genetic expression of IL-1beta was significantly suppressed in 4-SPB group (p<0.01). At day 10, the blood glucose levels were 22.7+/-1.0 and 17.1+/-1.7 mmol/L (n=12, p<0.05) and graft insulin contents (IC) were 35.0+/-8.3 and 107.6+/-29.7 pmol (n=12, p<0.05) for NaCl and 4-SPB groups, respectively. Moreover, the 4-SPB group had a shorter temporary hyperglycemia (15+/-2, n=21 vs. 25+/-2 days, n=19, p=0.001) and a higher cumulative cure rate of diabetes (p<0.001) than the NaCl group. In-vitro studies indicated that 4-SPB did not impact the islets function. These experimental results demonstrated that perioperative administration of 4-SPB decreased serum level and graft genetic expression of IL-1beta and attenuated PNF, which enhanced islet engraftment in a syngeneic transplantation mouse model.

  4. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  5. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  6. Type 1 diabetes : The autoimmune process and islet transplantation

    OpenAIRE

    Jacobson, Stella

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by the selective loss of the insulin-producing β-cells residing in the islets of Langerhans in the pancreas. Cytokines are involved in diabetes development in the nonobese diabetic (NOD) mouse model. NOD mice over-expressing the suppressor of cytokine signaling (SOCS-1) specifically in the β-cells are protected from T1D. Previous studies showed that immune cells infiltrated the pancreas of SOCS-1-transgenic (tg)...

  7. Lattice of optical islets: a novel treatment modality in photomedicine

    International Nuclear Information System (INIS)

    Altshuler, Gregory; Smirnov, Mikhail; Yaroslavsky, Ilya

    2005-01-01

    A majority of photothermal applications of laser and non-laser light sources in medicine (in particular, in dermatology) are based on the paradigm of (extended) selective photothermolysis. However, realization of this principle in its strict form may not always be possible and/or practical. Spatial (or geometric) selectivity (as opposed to wavelength and temporal selectivity) can provide an alternative approach delivering effective and safe treatment techniques. A method of creating a lattice of localized areas of light-tissue interaction (optical islets) is an example of this 'spatially confined' approach. The lattice of optical islets can be formed using a variety of energy sources and delivery optics, including application of lenslet arrays, phase masks and matrices of exogenous chromophores. Using a state-of-the-art theory of optical and thermal light-tissue interactions and a comprehensive computer model of skin, we have conducted a theoretical and numerical analysis of the process of formation of such a lattice in human tissue. Effects of the wavelength, beam geometry, pulsewidth and physical properties of tissues have been considered. Conditions for obtaining optical, thermal and damage islet lattices in the human skin without inducing adverse side effects (e.g. bulk damage) have been established

  8. Factors influencing the adequacy of microencapsulation of rat pancreatic islets.

    Science.gov (United States)

    De Vos, P; De Haan, B; Wolters, G H; Van Schilfgaarde, R

    1996-10-15

    The observation that only a portion of all alginate-polylysine microcapsules are overgrown after implantation suggests that physical imperfections of individual capsules, rather than the chemical composition of the material applied, are responsible for inducing insufficient biocompatibility and thereby fibrotic overgrowth of those capsules. We recently developed a lectin binding assay that allows for quantifying the portion of inadequately encapsulated islets, and demonstrated that inadequately encapsulated islets induce a fibrotic response associated with graft failure. The present study investigates factors influencing the adequacy of encapsulation of pancreatic islets. We applied our lectin binding assay and found that the number of inadequate, and particularly incomplete, capsules is influenced by the following factors. (1) A capsule diameter of 800 micrometers is associated with a lower percentage of inadequate capsules than smaller (500 micrometers and 600 micrometers) or larger (1800 micrometers) capsules. (2) A high rather than low guluronic acid content of the alginate is associated with a lower percentage of inadequate capsules. This can be explained, at least in part, by smaller ranges of swelling and subsequent shrinkage during the encapsulation procedure. (3) An increase in viscosity caused by applying a higher alginate concentration compensates for a low guluronic acid content. This effect of increased viscosity cannot be explained by a reduced range of swelling and shrinkage during the encapsulation procedure. We conclude that alginates with a high guluronic acid content and a viscosity near the filtration limit are preferable in order to minimize the number of inadequate capsules.

  9. Pediatric pancreas transplantation, including total pancreatectomy with islet autotransplantation.

    Science.gov (United States)

    Bondoc, Alexander J; Abu-El-Haija, Maisam; Nathan, Jaimie D

    2017-08-01

    Unlike other solid-organ transplants, whole pancreas transplantation in children is relatively rare, and it occurs more frequently in the context of multivisceral or composite organ transplantation. Because children only infrequently suffer severe sequelae of type 1 diabetes mellitus, pancreas transplantation is rarely indicated in the pediatric population. More commonly, pediatric pancreas transplant occurs in the setting of incapacitating acute recurrent or chronic pancreatitis, specifically islet autotransplantation after total pancreatectomy. In this clinical scenario, total pancreatectomy removes the nidus of chronic pain and debilitation, while autologous islet transplantation aims to preserve endocrine function. The published experiences with pediatric total pancreatectomy with islet autotransplantation (TPIAT) in children has demonstrated excellent outcomes including liberation from chronic opioid use, as well as improved mental and physical quality of life with good glycemic control. Given the complexity of the operation, risk of postoperative complication, and long-term physiologic changes, appropriate patient selection and comprehensive multidisciplinary care teams are critical to ensuring optimal outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. IL-10 Induction from Implants Delivering Pancreatic Islets and Hyaluronan

    Directory of Open Access Journals (Sweden)

    Paul L. Bollyky

    2013-01-01

    Full Text Available Local induction of pro-tolerogenic cytokines, such as IL-10, is an appealing strategy to help facilitate transplantation of islets and other tissues. Here, we describe a pair of implantable devices that capitalize on our recent finding that hyaluronan (HA promotes IL-10 production by activated T cells. The first device is an injectable hydrogel made of crosslinked HA and heparan sulfate loaded with anti-CD3/anti-CD28 antibodies and IL-2. T cells embedded within this hydrogel prior to polymerization go on to produce IL-10 in vivo. The second device is a bioengineered implant consisting of a polyvinyl alcohol sponge scaffold, supportive collagen hydrogel, and alginate spheres mediating sustained release of HA in fluid form. Pancreatic islets that expressed ovalbumin (OVA antigen were implanted within this device for 14 days into immunodeficient mice that received OVA-specific DO.11.10 T cells and a subsequent immunization with OVA peptide. Splenocytes harvested from these mice produced IL-10 upon re-challenge with OVA or anti-CD3 antibodies. Both of these devices represent model systems that will be used, in future studies, to further evaluate IL-10 induction by HA, with the objective of improving the survival and function of transplanted islets in the setting of autoimmune (type 1 diabetes.

  11. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Directory of Open Access Journals (Sweden)

    Orison O Woolcott

    Full Text Available Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.Dogs were fed a high-fat diet (n = 9 for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7.Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01. In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05, concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg, islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705. No differences in gene expression of CB1R or CB2R between groups were found.In canines, high-fat diet

  12. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiroko; Ohta, Yasuharu; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-01-01

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1 −/− A y /a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt

  13. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  14. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    Science.gov (United States)

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  15. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.

    Directory of Open Access Journals (Sweden)

    Saida Abdelli

    Full Text Available Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination.

  16. Construction of RNAi lentiviral vector targeting mouse Islet-1 gene

    Directory of Open Access Journals (Sweden)

    Shen-shen ZHI

    2011-02-01

    Full Text Available Objective To construct and select RNAi lentiviral vectors that can silence mouse Islet-1 gene effectively.Methods Three groups of RNAi-target of mouse Islet-1 gene were designed,and corresponding shRNA oligo(sh1,sh2 and sh3 were synthesized,and then they were respectively inserted to the PLVTHM vector that had been digested by endonuclease.Agarose gel electrophoresis and sequencing were used to select and indentify the positive clones.The positive clones were extracted and then mixed with E.coli to amplify positive clones.The amplified clones were then infected into 293T along with the other 3 helper plasmids to produce lentiviral vector.After the construction of the lentiviral vector,plaque formation test was performed to determine the titer of lentiviral vector.The lentiviral vectors were then infected into C3H10T1/2 cells.The transfect efficiency of the lentiviral vectors was determined with flow cytometry with detection of green fluorescent protein(GFP.Q-PCR was employed to detect the RNAi efficiency of the lentiviral vectors.Results Agarose gel electrophoresis analysis showed that the clones with right gene at the target size were successfully established;gene sequencing showed that the right DNA fragments had been inserted;plaque formation test showed that the titer of the virus solution was 3.87×108TU/ml;the transfect efficiency of the lentiviral vector infected into C3H10T1/2 cells was 90.36%.All the 3 groups of shRNA targets(sh1,sh2 and sh3 showed an inhibitory effect on Islet-1 gene,and the sh1 showed the highest inhibitory effect(76.8%,as compared with that of normal cells(P < 0.05.Conclusion The RNAi lentiviral vector that can effectively silence the mouse Islet-1 gene has been constructed successfully,which may lay a foundation for further investigation of Islet-1 gene.

  17. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    Full Text Available Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets.Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide, increases were observed in all cases (n = 6, and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process.An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other

  18. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.

    Science.gov (United States)

    Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven

    2017-06-01

    Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.

  19. Transplantation of islet allografts and xenografts in totally pancreatectomized diabetic dogs using the hybrid artificial pancreas.

    Science.gov (United States)

    Monaco, A P; Maki, T; Ozato, H; Carretta, M; Sullivan, S J; Borland, K M; Mahoney, M D; Chick, W L; Muller, T E; Wolfrum, J

    1991-01-01

    Previously the authors reported on a Hybrid Artificial Pancreas device that maintained patent vascular anastomoses in normal dogs and, when seeded with allogeneic canine islets, maintained normal fasting blood sugars (FBS) in diabetic pancreatectomized dogs. Eventual failure of these devices was believed to be related to loss of islet viability and/or insufficient islet mass. The current study evaluates the effect of increased islet mass produced by implantation of two islet-seeded devices in pancreatectomized dogs and compares the results with those from dogs that received a single device. Twelve of fifteen dogs receiving single devices showed initial function as determined by elimination or reduction of exogenous insulin requirement; four showed initial function and seven showed extended function (100 to 284 days). Excessive weight loss (more than 20%), despite normal FBS and insulin dependence, required that four animals in this latter group be killed. Devices seeded with xenogeneic islets have met with limited success. One dog that received two bovine islet-seeded devices achieved function for more than 100 days; the remaining bovine-seeded devices (n = 8) functioned for only 3 to 16 days. Porcine islet-seeded devices were assessed by intravenous glucose tolerance tests (IVGTT). Recipients of two devices seeded with allogeneic islets demonstrated improved IVGTT results when compared to those from pancreatectomized dogs and recipients of single devices but were abnormal when compared to intact animals. Histologic examination of device and autopsy material from all failed experiments was performed and showed no mononuclear cell infiltration of the islet chamber or vascular graft material, only a few incidence of device thrombosis, and varying degrees of islet viability as judged by morphologic and immunohistochemical evaluation. The authors believe they have demonstrated progress toward the development and clinical applicability of the Hybrid Artificial Pancreas

  20. Microencapsulated 3-Dimensional Sensor for the Measurement of Oxygen in Single Isolated Pancreatic Islets

    Science.gov (United States)

    Khalil, Gamal; Sweet, Ian R.; Shen, Amy Q.

    2012-01-01

    Background Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. Methodology/Principal Findings Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2–48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. Conclusions/Significance An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be

  1. Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets.

    Science.gov (United States)

    Komatsu, Hirotake; Barriga, Alyssa; Medrano, Leonard; Omori, Keiko; Kandeel, Fouad; Mullen, Yoko

    2017-05-06

    Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism

  2. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model.

    Directory of Open Access Journals (Sweden)

    Goichi Yanai

    Full Text Available Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes

  3. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys.

    Directory of Open Access Journals (Sweden)

    Lindsey E Nicol

    Full Text Available Polycystic ovary syndrome (PCOS is prevalent in reproductive-aged women and confounded by metabolic morbidities, including insulin resistance and type 2 diabetes. Although the etiology of PCOS is undefined, contribution of prenatal androgen (PA exposure has been proposed in a rhesus monkey model as premenopausal PA female adults have PCOS-like phenotypes in addition to insulin resistance and decreased glucose tolerance. PA female infants exhibit relative hyperinsulinemia, suggesting prenatal sequelae of androgen excess on glucose metabolism and an antecedent to future metabolic disease. We assessed consequences of PA exposure on pancreatic islet morphology to identify evidence of programming on islet development. Islet counts and size were quantified and correlated with data from intravenous glucose tolerance tests (ivGTT obtained from dams and their offspring. Average islet size was decreased in PA female infants along with corresponding increases in islet number, while islet fractional area was preserved. Infants also demonstrated an increase in both the proliferation marker Ki67 within islets and the beta to alpha cell ratio suggestive of enhanced beta cell expansion. PA adult females have reduced proportion of small islets without changes in proliferative or apoptotic markers, or in beta to alpha cell ratios. Together, these data suggest in utero androgen excess combined with mild maternal glucose intolerance alter infant and adult islet morphology, implicating deviant islet development. Marked infant, but subtle adult, morphological differences provide evidence of islet post-natal plasticity in adapting to changing physiologic demands: from insulin sensitivity and relative hypersecretion to insulin resistance and diminished insulin response to glucose in the mature PCOS-like phenotype.

  4. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice.

    Science.gov (United States)

    Wang, Xi; Wang, Kai; Zhang, Wei; Qiang, Ming; Luo, Ying

    2017-09-01

    Ectopic transplantation of islets provides a beta cell-replacement approach that may allow the recovery of physiological regulation of the blood sugar level in patients with Type I diabetes (T1D). In development of new extrahepatic islet transplantation protocols in support of the islet engraftment, it is pivotal to develop scaffold materials with multifaceted functions to provide beneficial microenvironment, mediate host response in favor of vascularization/islet integration and maintain long-term islet function at the transplantation site. In this study, a new composite bilaminar decellularized scaffold (CDS) was fabricated with differential structural, degradation and mechanical properties by the combination of a fast-degrading porous collagen matrix and a mechanically supportive porcine pericardium. When investigated in the epididymal fat pad in syngeneic mouse models, it was shown that CDS could serve as superior scaffolds to promote islet adhesion and viability, and islet-CDS constructs also allowed rapid reversal of the hyperglycemic condition in the host. The engraftment and effects of islets were achieved at low islet numbers, accompanied by minimal adverse tissue reactions and optimal islet integration with the surrounding fat tissue. The bioactive surface, mechanical/chemical durability and biocompatibility of the CDS may all have played important roles in facilitating the engraftment of islets. Our study provided new insights into scaffold's function in the interplay of cells, materials and host tissue and the extracellular matrix-based scaffolds have potential for clinical translation in the beta cell-replacement therapy to treat T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children

    OpenAIRE

    Ziegler, Anette-G.; Pflueger, Maren; Winkler, Christiane; Achenbach, Peter; Akolkar, Beena; Krischer, Jeffrey P.; Bonifacio, Ezio

    2011-01-01

    The incidence of type 1 diabetes is rising worldwide, particularly in young children. Since type 1 diabetes is preceded by autoimmunity to islet antigens, there must be a consequent increase in the incidence of islet autoimmunity in young children or a more rapid rate of progression to diabetes once islet autoimmunity initiates. This study was to determine whether the incidence of islet autoimmunity or the rate of progression from autoimmunity to diabetes onset has changed over a 20-year peri...

  6. Engraftment Site and Effectiveness of the Pan-Caspase Inhibitor F573 to Improve Engraftment in Mouse and Human Islet Transplantation in Mice.

    Science.gov (United States)

    Pepper, Andrew R; Bruni, Antonio; Pawlick, Rena; Wink, John; Rafiei, Yasmin; Gala-Lopez, Boris; Bral, Mariusz; Abualhassan, Nasser; Kin, Tatsuya; Shapiro, A M James

    2017-10-01

    Islet transplantation is an effective therapy in type 1 diabetes and recalcitrant hypoglycemia. However, there is an ongoing need to circumvent islet loss posttransplant. We explore herein the potential of the pan-caspase inhibitor F573 to mitigate early apoptosis-mediated islet death within portal and extrahepatic portal sites in mice. Mouse or human islets were cultured in standard media ±100 μM F573 and subsequently assessed for viability and apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining and caspase-3 activation. Diabetic mice were transplanted with syngeneic islets placed under the kidney capsule (KC) or into the subcutaneous deviceless (DL) site at a marginal islet dose (150 islets), or into the portal vein (PV) at a full dose (500 islets). Human islets were transplanted under the KC of diabetic immunodeficient mice at a marginal dose (500 islet equivalents). Islets were cultured in the presence of F573, and F573 was administered subcutaneously on days 0 to 5 posttransplant. Control mice were transplanted with nontreated islets and were injected with saline. Graft function was measured by nonfasting blood glucose and glucose tolerance testing. F573 markedly reduced human and mouse islet apoptosis after in vitro culture (P islet function when transplanted under the KC (P islet marginal KC transplants. Conversely, F573 significantly improved mouse islet engraftment in the PV and DL site (P islet apoptosis and improves engraftment most effectively in the portal and DL subcutaneous sites.

  7. LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro.

    Science.gov (United States)

    Halvorsen, Bente; Santilli, Francesca; Scholz, Hanne; Sahraoui, Afaf; Gulseth, Hanne L; Wium, Cecilie; Lattanzio, Stefano; Formoso, Gloria; Di Fulvio, Patrizia; Otterdal, Kari; Retterstøl, Kjetil; Holven, Kirsten B; Gregersen, Ida; Stavik, Benedicte; Bjerkeli, Vigdis; Michelsen, Annika E; Ueland, Thor; Liani, Rossella; Davi, Giovanni; Aukrust, Pål

    2016-10-01

    Activation of inflammatory pathways is involved in the pathogenesis of type 2 diabetes mellitus. On the basis of its role in vascular inflammation and in metabolic disorders, we hypothesised that the TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) could be involved in the pathogenesis of type 2 diabetes mellitus. Plasma levels of LIGHT were measured in two cohorts of type 2 diabetes mellitus patients (191 Italian and 40 Norwegian). Human pancreatic islet cells and arterial endothelial cells were used to explore regulation and relevant effects of LIGHT in vitro. Our major findings were: (1) in both diabetic cohorts, plasma levels of LIGHT were significantly raised compared with sex- and age-matched healthy controls (n = 32); (2) enhanced release from activated platelets seems to be an important contributor to the raised LIGHT levels in type 2 diabetes mellitus; (3) in human pancreatic islet cells, inflammatory cytokines increased the release of LIGHT and upregulated mRNA and protein levels of the LIGHT receptors lymphotoxin β receptor (LTβR) and TNF receptor superfamily member 14 (HVEM/TNFRSF14); (4) in these cells, LIGHT attenuated the insulin release in response to high glucose at least partly via pro-apoptotic effects; and (5) in human arterial endothelial cells, glucose boosted inflammatory response to LIGHT, accompanied by an upregulation of mRNA levels of HVEM (also known as TNFRSF14) and LTβR (also known as LTBR). Our findings show that patients with type 2 diabetes mellitus are characterised by increased plasma LIGHT levels. Our in vitro findings suggest that LIGHT may contribute to the progression of type 2 diabetes mellitus by attenuating insulin secretion in pancreatic islet cells and by contributing to vascular inflammation.

  8. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    -Tdr incorporation. However, long-term exposure to IBMX did not result in increased DNA content of the islets. Inhibition of the DNA synthesis by 5 mM hydroxyurea resulted in a marked reduction in DNA content of the islets but no decrease in either insulin release or insulin content when expressed per ng DNA...

  9. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    Science.gov (United States)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  10. Wave-Block Due to a Threshold Gradient Underlies Limited Coordination in Pancreatic Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Sørensen, Mads Peter

    2008-01-01

    Two models for coupled pancreatic β cells are used to investigate excited wave propagation in spatially inhomogeneous islets of Langerhans. The application concerns spatial variation of glucose concentration across the islet. A comprehensive model of coupled cells shows that wave blocking occurs ...

  11. Immunohistochemical and morphometric study of the development of fetal and newborn rat pancreatic islets

    International Nuclear Information System (INIS)

    Badawoud, Mohammed H.

    2003-01-01

    Aim of this study is to perform a detailed morphometric immunohistochemichal study of develpment of fetal and newborn rat pancreatic islets. 24 pancreas were obtained from 19 and 21-day-old fetal rats,1 and 4-day-old newborn rats. They were fixed in a buffered neutral formalin ,dehydrated and embedded in paraplast. Sections were stained with anti-insulin antibodies. Study was performed at Department of Anatomy, King Abdul-Aziz University, Jeddah,Kingdom of Saudi Arabia, between 2001 and 2002. The volume density of B cells showed a grdual increase during the last days of gestation and a slight increase during the first 4 days after birth. All the other morphometric parameters showed a gradual increase during the last days of gestation and during the first days after birth.The B cell nuclear diameter and volume showed a slight increase after birth. B cells were stained and present in the central part of of fetal and new born islets,while the other islet cells were present in the periphery of the islets. The size of endocrine tissue, which was represented by the islet diameter, islet volume, islet volume density, total number of islet cells,number of B cells and volume density of B cells showed a progressive increase during the prenatal period. (author)

  12. Successful suppression of the early rejection of pig islets in monkeys

    NARCIS (Netherlands)

    Rijkelijkhuizen, JKRA; Bouwman, E; van der Burg, MPM; Ringers, J; Ossevoort, MA; Kuhn, EM; Frost, P; Jonker, M

    2000-01-01

    Primary nonfunction (PNF) is seen very frequently after xenogeneic transplantation of islets of Langerhans. In a pig-to-rat model we recently observed that no PNF occurs when the islets are kept in culture at 37 degreesC fur 1-2 weeks prior to transplantation. In order to investigate the rejection

  13. Prolongation of rat islet allograft survival by direct ultraviolet irradiation of the graft

    International Nuclear Information System (INIS)

    Lau, H.; Reemtsma, K.; Hardy, M.A.

    1984-01-01

    Ultraviolet irradiation of rat dendritic cells completely abrogated their allostimulatory capacity in a mixed lymphocyte reaction. Rat islets of Langerhans similarly irradiated remained hormonally functional when transplanted into syngeneic diabetic rats. Allogeneic transplantation across a major histocompatibility barrier of islets initially treated in vitro with ultraviolet irradiation resulted in prolonged allograft survival without the use of any immunosuppressive agents

  14. A novel method for murine intrahepatic islet transplantation via cecal vein.

    Science.gov (United States)

    Byun, Nari; Kim, Hyun-Je; Min, Byoung-Hoon; Shin, Jun-Seop; Yoon, Il-Hee; Kim, Jong-Min; Kim, Yong-Hee; Park, Chung-Gyu

    2015-12-01

    Islet transplantation is one of the most beneficial treatment modality to treat type 1 diabetic patients with frequent hypoglycemic unawareness. In clinical setting, human islets are infused via portal vein and are settled in the end-portal venules in the liver. However, mouse islets are transplanted into kidney subcapsule or liver through direct portal vein. These conventional transplantation methods have several drawbacks such as different physiological environments around the transplanted islets in kidney subcapsule from the liver and high mortality rate in direct portal vein approach. In this study, we introduced murine intrahepatic islet transplantation method via cecal vein to have the same surgical operation route in humans as well as guaranteeing low mortality rate after islet transplantation. With this protocol, consistent normoglycemia can be obtained in diabetic mice, while keeping operation-related mortality extremely low. This approach with easier accessibility and low mortality will make murine intrahepatic islet transplantation a useful model for studying immunological mechanisms such as strong innate and adaptive immune responses that occur in human islet transplantation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cost and clinical outcome of islet transplantation in Norway 2010-2015.

    Science.gov (United States)

    Schive, Simen W; Foss, Aksel; Sahraoui, Afaf; Kloster-Jensen, Kristine; Hafsahl, Geir; Kvalheim, Gunnar; Lundgren, Torbjørn; von Zur-Mühlen, Bengt; Felldin, Marie; Rafael, Ehab; Lempinen, Marko; Korsgren, Olle; Jenssen, Trond G; Mishra, Vinod; Scholz, Hanne

    2017-01-01

    Islet transplantation is a minimally invasive β-cell replacement strategy. Islet transplantation is a reimbursed treatment in Norway. Here, we summarize the cost and clinical outcome of 31 islet transplantations performed at Oslo University Hospital (OUS) from January 2010 to June 2015. Patients were retrospectively divided into three groups. Thirteen patients received either one or two islet transplantation alone (ITA), while five patients received islet transplantation after previous solid organ transplantation. For the group receiving 2 ITA, Kaplan-Meier estimates show an insulin independence of 20% more than 4 years after their last transplantation. An estimated 70% maintain at least partial graft function, defined as fasting C-peptide >0.1 nmol L -1 , and 47% maintain a HbA1c below 6.5% or 2 percent points lower than before ITA. For all groups combined, we estimate that 44% of the patients have a 50% reduction in insulin requirement 4 years after the initial islet transplantation. The average cost for an islet transplantation procedure was 347 297±60 588 NOK, or 35 424±6182 EUR, of which isolation expenses represent 34%. We hereby add to the common pool of growing experience with islet transplantation and also describe the cost of the treatment at our center. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.

    Science.gov (United States)

    Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I

    2016-09-28

    Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification of transplanted pancreatic islet cells by radioactive Dithizone-[131I]-Histamine conjugate. Preliminary report

    International Nuclear Information System (INIS)

    Garnuszek, P.; Licinska, I.; Mazurek, A.P.; Mrozek, A.; Wardawa, A.; Fiedor, P.S.

    2000-01-01

    Background: The unique mechanism of dithizone action in the interior of the viable pancreatic islet suggests the possible development of a specific radiopharmaceutical that may have a potential clinical application in the diagnosis of the pancreatic organ allografts or islets rejection. The radiodiagnostic properties of the newly developed radioactive analogue of dithizone, i.e. Dithizone-[131I]-Histamine conjugate have been evaluated in the present study. METHODS: The four islet cells transplantation models were chosen for this purpose. The most important feature of the Dithizone-[131I]-Histamine conjugate is its possessed ability of zinc chelation. As was presented in the recent study, the conjugate stains pink-reddish the isolated pancreatic islets in vitro. Among the studied transplantation models, only the islets grafting under testis capsule enabled determination of the pancreatic islets in rats by radioactive Dithizone-[131I]-Histamine conjugate. The level of the radioactivity in the recipient testis (right) was almost two times higher compared to the controls (0.24 v. 0.13% ID/g, respectively). CONCLUSIONS: These preliminary data demonstrate the ability of the developed radioactive analogue of dithizone for in vivo identification of transplanted pancreatic islets, and suggests a potential clinical application of the radiodithizone in the diagnosis of the pancreatic islet rejection. (author)

  18. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds.

    Science.gov (United States)

    Hlavaty, K A; Gibly, R F; Zhang, X; Rives, C B; Graham, J G; Lowe, W L; Luo, X; Shea, L D

    2014-07-01

    Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Transplantation of co-aggregates of Sertoli cells and islet cells into liver without immunosuppression.

    Science.gov (United States)

    Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo

    2014-02-15

    Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.

  20. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    NARCIS (Netherlands)

    Hilderink, J.; Otto, Cornelis; Slump, Cornelis H.; Lenferink, Aufrid T.M.; Engelse, M.A.; van Blitterswijk, Clemens; de Koning, E.J.P.; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and

  1. Endothelial chimerism and vascular sequestration protect pancreatic islet grafts from antibody-mediated rejection

    Science.gov (United States)

    Chen, Chien-Chia; Pouliquen, Eric; Broisat, Alexis; Andreata, Francesco; Racapé, Maud; Bruneval, Patrick; Kessler, Laurence; Ahmadi, Mitra; Bacot, Sandrine; Saison-Delaplace, Carole; Marcaud, Marina; Van Huyen, Jean-Paul Duong; Loupy, Alexandre; Villard, Jean; Demuylder-Mischler, Sandrine; Morelon, Emmanuel; Tsai, Meng-Kun; Kolopp-Sarda, Marie-Nathalie; Koenig, Alice; Mathias, Virginie; Ghezzi, Catherine; Dubois, Valerie; Defrance, Thierry

    2017-01-01

    Humoral rejection is the most common cause of solid organ transplant failure. Here, we evaluated a cohort of 49 patients who were successfully grafted with allogenic islets and determined that the appearance of donor-specific anti-HLA antibodies (DSAs) did not accelerate the rate of islet graft attrition, suggesting resistance to humoral rejection. Murine DSAs bound to allogeneic targets expressed by islet cells and induced their destruction in vitro; however, passive transfer of the same DSAs did not affect islet graft survival in murine models. Live imaging revealed that DSAs were sequestrated in the circulation of the recipients and failed to reach the endocrine cells of grafted islets. We used murine heart transplantation models to confirm that endothelial cells were the only accessible targets for DSAs, which induced the development of typical microvascular lesions in allogeneic transplants. In contrast, the vasculature of DSA-exposed allogeneic islet grafts was devoid of lesions because sprouting of recipient capillaries reestablished blood flow in grafted islets. Thus, we conclude that endothelial chimerism combined with vascular sequestration of DSAs protects islet grafts from humoral rejection. The reduced immunoglobulin concentrations in the interstitial tissue, confirmed in patients, may have important implications for biotherapies such as vaccines and monoclonal antibodies. PMID:29202467

  2. A VERSATILE ALGINATE DROPLET GENERATOR APPLICABLE FOR MICROENCAPSULATION OF PANCREATIC-ISLETS

    NARCIS (Netherlands)

    WOLTERS, GHJ; FRITSCHY, WM; GERRITS, D; VANSCHILFAGAARDE, R

    1992-01-01

    Alginate beads for immunoisolation of pancreatic islets by microencapsulation should be small, smooth, and spherical in order to ensure that around the islets a strong alginate-polylysine-alginate capsule will be formed with optimal biocompatibility and diffusion of nutrients and hormones. However,

  3. Detection of Islet Cell Immune Reactivity with Low Glycemic Index Foods: Is This a Concern for Type 1 Diabetes?

    Directory of Open Access Journals (Sweden)

    Datis Kharrazian

    2017-01-01

    Full Text Available Dietary management of autoimmune diabetes includes low glycemic foods classified from the glycemic index, but it does not consider the role that immunoreactive foods may play with the immunological etiology of the disease. We measured the reactivity of either monoclonal or polyclonal affinity-purified antibodies to insulin, insulin receptor alpha, insulin receptor beta, zinc transporter 8 (ZnT8, tyrosine phosphatase-based islet antigen 2 (IA2, and glutamic acid decarboxylase (GAD 65 and 67 against 204 dietary proteins that are commonly consumed. Dietary protein determinants included unmodified (raw and modified (cooked and roasted foods, herbs, spices, food gums, brewed beverages, and additives. There was no immune reactivity between insulin or insulin receptor beta and dietary proteins. However, we identified strong to moderate immunological reactivity with antibodies against insulin receptor alpha, ZnT8, IA2, GAD-65, and GAD-67 with several dietary proteins. We also identified 49 dietary proteins found in foods classified as low glycemic foods with immune reactivity to autoimmune target sites. Laboratory analysis of immunological cross-reactivity between pancreas target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune diabetes.

  4. Glucose cycling is markedly enhanced in pancreatic islets of obese hyperglycemic mice

    International Nuclear Information System (INIS)

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Berggren, P.O.; Loew, H.L.; Landau, B.R.; Efendic, S.

    1990-01-01

    Pancreatic islets from fed 7-month old lean and obese hyperglycemic mice (ob/ob) were incubated with 3H2O and 5.5 mM or 16.7 mM glucose. Incorporation of 3H into the medium glucose was taken as the measure of glucose-6-P hydrolysis to glucose. Glucose utilization was measured from the yield of 3H2O from [5-3H]glucose. Only 3-4% of the glucose phosphorylated was dephosphorylated by the lean mouse islets irrespective of the glucose concentration. In contrast, the ob/ob mouse islets at 5.5 mM glucose dephosphorylated 18% of the glucose phosphorylated and 30% at 16.7 mM. Thus, the islets of hyperglycemic mice demonstrate increased glucose cycling as compared to the islets of normoglycemic lean mice

  5. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Brunak, Søren

    2017-01-01

    Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes...... by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential...... to unveil the full potential of person-specific profiles. Here we identify 3,692 overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating islet gene and protein expression data with protein interactions. We found 24 of these complexes to be significantly enriched for genes...

  6. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Science.gov (United States)

    Hals, I. K.; Rokstad, A. M.; Strand, B. L.; Oberholzer, J.; Grill, V.

    2013-01-01

    Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation. PMID:24364039

  7. Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance.

    Science.gov (United States)

    Watanabe, Masaaki; Yamashita, Kenichiro; Kamachi, Hirofumi; Kuraya, Daisuke; Koshizuka, Yasuyuki; Shibasaki, Susumu; Asahi, Yoh; Ono, Hitoshi; Emoto, Shin; Ogura, Masaomi; Yoshida, Tadashi; Ozaki, Michitaka; Umezawa, Kazuo; Matsushita, Michiaki; Todo, Satoru

    2013-09-15

    Long-term graft deterioration remains a major obstacle in the success of pancreatic islet transplantation (PITx). Antigen-independent inflammatory and innate immune responses strengthen subsequent antigen-dependent immunity; further, activation of nuclear factor (NF)-κB plays a key role during these responses. In this study, we tested our hypothesis that, by the inhibition of NF-κB activation, the suppression of these early responses after PITx could facilitate graft acceptance. Full major histocompatibility complex (MHC)-mismatched BALB/c (H-2) mice islets were transplanted into streptozotocin-induced diabetic C57BL/6 (B6: H-2) mice. The NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) was administered for either 3 or 14 days after PITx. To some PITx recipients, tacrolimus was also administered. Islet allograft survival, alloimmune responses, and in vitro effects of DHMEQ on dendritic cells (DCs) were assessed. With a vehicle treatment, 600 islet allografts were promptly rejected after PITx. In contrast, 3-day treatment with DHMEQ, followed by 2-week treatment with tacrolimus, allowed permanent acceptance of islet allografts. The endogenous danger-signaling molecule high mobility group complex 1 (HMGB1) was elevated in sera shortly after PITx, whereas DHMEQ administration abolished this elevation. DHMEQ suppressed HMGB1-driven cellular activation and proinflammatory cytokine secretion in mouse bone marrow-derived DCs and significantly reduced the capacity of DCs to prime allogeneic T-cell proliferation in vitro. Finally, the DHMEQ plus tacrolimus regimen reverted the diabetic state with only 300 islet allografts. Inhibition of NF-κB activation by DHMEQ shortly after PITx suppresses HMGB1, which activates DCs and strengthens the magnitude of alloimmune responses; this permits long-term islet allograft acceptance, even in case of fewer islet allografts.

  8. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  9. Impact of Procedure-Related Complications on Long-term Islet Transplantation Outcome.

    Science.gov (United States)

    Caiazzo, Robert; Vantyghem, Marie-Christine; Raverdi, Violeta; Bonner, Caroline; Gmyr, Valery; Defrance, Frederique; Leroy, Clara; Sergent, Geraldine; Hubert, Thomas; Ernst, Oliver; Noel, Christian; Kerr-Conte, Julie; Pattou, François

    2015-05-01

    Pancreatic islet transplantation offers a promising biotherapy for the treatment of type 1 diabetes, but this procedure has met significant challenges over the years. One such challenge is to address why primary graft function still remains inconsistent after islet transplantation. Several variables have been shown to affect graft function, but the impact of procedure-related complications on primary and long-term graft functions has not yet been explored. Twenty-six patients with established type 1 diabetes were included in this study. Each patient had two to three intraportal islet infusions to obtain 10,000 islet equivalent (IEQ)/kg in body weight, equaling a total of 68 islet infusions. Islet transplantation consisted of three sequential fresh islet infusions within 3 months. Islet infusions were performed surgically or under ultrasound guidance, depending on patient morphology, availability of the radiology suite, and patient medical history. Prospective assessment of adverse events was recorded and graded using "Common Terminology Criteria for adverse events in Trials of Adult Pancreatic Islet Transplantation." There were no deaths or patients dropouts. Early complications occurred in nine of 68 procedures. β score 1 month after the last graft and optimal graft function (β score ≥7) rate were significantly lower in cases of procedure-related complications (P = 0.02, P = 0.03). Procedure-related complications negatively impacted graft function (P = 0.009) and was an independent predictive factor of long-term graft survival (P = 0.033) in multivariate analysis. Complications occurring during radiologic or surgical intraportal islet transplantation significantly impair primary graft function and graft survival regardless of their severity.

  10. Gamma irradiation of isolated rat islets pretransplantation produces indefinite allograft survival in cyclosporine-treated recipients

    International Nuclear Information System (INIS)

    James, R.F.; Lake, S.P.; Chamberlain, J.; Thirdborough, S.; Bassett, P.D.; Mistry, N.; Bell, P.R.

    1989-01-01

    In this study we have examined the use of low-dose gamma-irradiation for the reduction of islet immunogenicity in the strong allogeneic combination of WAG rat islets transplanted into diabetic AUG recipients. First, we determined that gamma-irradiation reduced immunogenicity in vitro by use of a modified MLR with WAG islets as stimulators and AUG splenocytes as responders. We then determined the maximum dose of gamma-irradiation that could be used (250 rads) before islet function was affected. As 250 rads islet pretreatment alone was ineffective in prolonging allograft survival, we combined the pretreatment with a short course (days 0, 1, 2; 30 mg/kg) of cyclosporine. We found that CsA was only effective in significantly prolonging allograft survival when given subcutaneously in olive oil. The CsA treatment alone gave a significantly prolonged survival time for the islet allografts (median, 37 days vs. 6 days for controls), but when combined with the 250 rads islet pretreatment a synergistic effect was seen with 100% becoming long-term survivors (greater than 100 days). The long-term surviving AUG rats from both the CsA alone group and the CsA plus 250 rads pretreated islets group were challenged with WAG dendritic cells (DC). The islets from the 250 rads pretreated group were subsequently rejected (day 6) while the CsA alone group were not affected. The role of low dose gamma-irradiation when combined with CsA treatment of islet graft recipients in inducing specific unresponsiveness will be discussed

  11. Gamma irradiation of isolated rat islets pretransplantation produces indefinite allograft survival in cyclosporine-treated recipients

    Energy Technology Data Exchange (ETDEWEB)

    James, R.F.; Lake, S.P.; Chamberlain, J.; Thirdborough, S.; Bassett, P.D.; Mistry, N.; Bell, P.R.

    1989-06-01

    In this study we have examined the use of low-dose gamma-irradiation for the reduction of islet immunogenicity in the strong allogeneic combination of WAG rat islets transplanted into diabetic AUG recipients. First, we determined that gamma-irradiation reduced immunogenicity in vitro by use of a modified MLR with WAG islets as stimulators and AUG splenocytes as responders. We then determined the maximum dose of gamma-irradiation that could be used (250 rads) before islet function was affected. As 250 rads islet pretreatment alone was ineffective in prolonging allograft survival, we combined the pretreatment with a short course (days 0, 1, 2; 30 mg/kg) of cyclosporine. We found that CsA was only effective in significantly prolonging allograft survival when given subcutaneously in olive oil. The CsA treatment alone gave a significantly prolonged survival time for the islet allografts (median, 37 days vs. 6 days for controls), but when combined with the 250 rads islet pretreatment a synergistic effect was seen with 100% becoming long-term survivors (greater than 100 days). The long-term surviving AUG rats from both the CsA alone group and the CsA plus 250 rads pretreated islets group were challenged with WAG dendritic cells (DC). The islets from the 250 rads pretreated group were subsequently rejected (day 6) while the CsA alone group were not affected. The role of low dose gamma-irradiation when combined with CsA treatment of islet graft recipients in inducing specific unresponsiveness will be discussed.

  12. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Weinberger, Florian; Mehrkens, Dennis; Starbatty, Jutta; Nicol, Philipp; Eschenhagen, Thomas

    2015-01-01

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1 + ) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1 + cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ( 3 H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3 H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1 + cells. Whereas Islet − non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1 + cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  13. Spontaneous Hypoglycemia After Islet Autotransplantation for Chronic Pancreatitis.

    Science.gov (United States)

    Lin, Yu Kuei; Faiman, Charles; Johnston, Philip C; Walsh, R Matthew; Stevens, Tyler; Bottino, Rita; Hatipoglu, Betul A

    2016-10-01

    Spontaneous hypoglycemia has been reported in patients after total pancreatectomy (TP) and islet autotransplantation (IAT) with maintained insulin independence. Details surrounding these events have not been well described. The objective of the study was to determine the frequency and characteristics of spontaneous hypoglycemia in patients undergoing TP-IAT and/or to ascertain predictive or protective factors of its development. This was an observational cohort study in 40 patients who underwent TP-IAT from August 2008 to May 2014, with a median follow-up of 34 months. The study was conducted at a single institution (Cleveland Clinic). Patients included recipients of TP-IAT. The intervention included small, frequent meals in those patients who developed spontaneous hypoglycemia. Incidence of spontaneous hypoglycemia development, characteristics of the patients developing hypoglycemia, and their response to small, frequent meals were measured. Six of 12 patients, who maintained insulin independence, developed spontaneous hypoglycemia. The episodes could be fasting, postprandial, and/or exercise associated, with the frequency ranging from two to three times daily to once every 1-2 weeks. All patients experienced at least one episode that required external assistance, glucagon administration, and/or emergent medical attention. Patients who developed hypoglycemia had a lower median age and tended to have a lower median islet equivalent/kg body weight but a higher median total islet equivalent, body mass index, and homeostatic model assessment for insulin resistance score. All patients who received small, frequent meal intervention had improvement in severity and/or frequency of the hypoglycemic episodes. Spontaneous hypoglycemia is prevalent after TP-IAT. Although the underlying pathophysiology responsible for these hypoglycemia events remains to be elucidated, small, frequent meal intervention is helpful in ameliorating this condition.

  14. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    description of these processes and their interactions would provide important input in the search for a better treatment of the disease. The thesis describes several aspects of mathematical modeling of beta-cells relevant for the understanding of glucose stimulated insulin secretion. It consists...... and the synchronized behavior of many coupled beta-cells as well as to the synchrony of islets. Rather than developing new biophysical models, the thesis investigates existing models, their integration and simplifications, and analyzed the corresponding dynamics, in order to use these models for investigating...

  15. Islet cell transplant: Update on current clinical trials

    Science.gov (United States)

    Schuetz, Christian; Markmann, James F.

    2016-01-01

    In the last 15 years clinical islet transplantation has made the leap from experimental procedure to standard of care for a highly selective group of patients. Due to a risk-benefit calculation involving the required systemic immunosuppression the procedure is only considered in patients with type 1 diabetes, complicated by severe hypoglycemia or end stage renal disease. In this review we summarize current outcomes of the procedure and take a look at ongoing and future improvements and refinements of beta cell therapy. PMID:28451515

  16. Mitis group streptococci express variable pilus islet 2 pili.

    Science.gov (United States)

    Zähner, Dorothea; Gandhi, Ashish R; Yi, Hong; Stephens, David S

    2011-01-01

    Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits

  17. Total pancreatectomy and islet autotransplantation for chronic pancreatitis.

    Science.gov (United States)

    Sutherland, David E R; Radosevich, David M; Bellin, Melena D; Hering, Bernard J; Beilman, Gregory J; Dunn, Ty B; Chinnakotla, Srinath; Vickers, Selwyn M; Bland, Barbara; Balamurugan, A N; Freeman, Martin L; Pruett, Timothy L

    2012-04-01

    Total pancreatectomy (TP) with intraportal islet autotransplantation (IAT) can relieve pain and preserve β-cell mass in patients with chronic pancreatitis (CP) when other therapies fail. We report on a >30-year single-center series. Four hundred and nine patients (including 53 children, 5 to 18 years) with CP underwent TP-IAT from February 1977 to September 2011 (etiology: idiopathic, 41%; Sphincter of Oddi dysfunction/biliary, 9%; genetic, 14%; divisum, 17%; alcohol, 7%; and other, 12%; mean age was 35.3 years, 74% were female; 21% has earlier operations, including 9% Puestow procedure, 6% Whipple, 7% distal pancreatectomy, and 2% other). Islet function was classified as insulin independent for those on no insulin; partial, if known C-peptide positive or euglycemic on once-daily insulin; and insulin dependent if on standard basal-bolus diabetic regimen. A 36-item Short Form (SF-36) survey for quality of life was completed by patients before and in serial follow-up since 2007, with an integrated survey that was added in 2008. Actuarial patient survival post TP-IAT was 96% in adults and 98% in children (1 year) and 89% and 98% (5 years). Complications requiring relaparotomy occurred in 15.9% and bleeding (9.5%) was the most common complication. IAT function was achieved in 90% (C-peptide >0.6 ng/mL). At 3 years, 30% were insulin independent (25% in adults, 55% in children) and 33% had partial function. Mean hemoglobin A1c was 5,000/kg [24%]) correlated with degree of function with insulin-independent rates at 3 years of 12%, 22%, and 72%, and rates of partial function 33%, 62%, and 24%. All patients had pain before TP-IAT and nearly all were on daily narcotics. After TP-IAT, 85% had pain improvement. By 2 years, 59% had ceased narcotics. All children were on narcotics before, 39% at follow-up; pain improved in 94%; and 67% became pain-free. In the SF-36 survey, there was significant improvement from baseline in all dimensions, including the Physical and Mental

  18. Mitis group streptococci express variable pilus islet 2 pili.

    Directory of Open Access Journals (Sweden)

    Dorothea Zähner

    Full Text Available Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2-encoded pili to facilitate adhesion to eukaryotic cells.PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains.This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with

  19. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Eliete Dalla Corte Frantz

    Full Text Available BACKGROUND: The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF diet. METHODS: C57BL/6 mice fed a HF diet (8 weeks were treated with aliskiren (50 mg/kg/day, enalapril (30 mg/kg/day or losartan (10 mg/kg/day for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis. RESULTS: All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression. CONCLUSION: Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7 /Mas receptor axis and adiponectin levels.

  20. Streptozotocin Diabetes CORRELATION WITH EXTENT OF DEPRESSION OF PANCREATIC ISLET NICOTINAMIDE ADENINE DINUCLEOTIDE

    Science.gov (United States)

    Anderson, Tom; Schein, Philip S.; McMenamin, Mary G.; Cooney, David A.

    1974-01-01

    The diabetogenic activity of streptozotocin has been correlated with a reduction in pyridine nucleotide synthesis in the mouse pancreatic islet. To determine the specificity of this reduction for diabetogenicity, a comparative study of streptozotocin, its cytotoxic moiety, 1-methyl-1-nitrosourea, and alloxan was performed. Streptozotocin administered intraperitoneally (i.p.) producd a dose-related reduction in islet NAD which was proportional to the degree of diabetogenicity. A diabetogenic dose, 200 mg/kg, attained a peak plasma N-nitroso intact streptozotocin concentration of 0.224 μmol/ml and reduced the mean islet NAD from a control of 0.78 to 0.15 pmol. At borderline, 150 mg/kg, and nondiabetogenic, 100 mg/kg, doses, plasma concentrations reached 0.161 and 0.136 μmol/ml, and NAD was 0.36 and 0.86 pmol/islet, respectively. 1-Methyl-1-nitrosourea, 100 mg/kg, attained a maximum N-nitroso intact 1-methyl-1-nitrosourea concentration of 0.162 μmol/ml and reduced the mean NAD to 0.58 pmol/islet, and was nondiabetogenic; 200 mg/kg attained a peak plasma concentration of 0.344 μmol/ml and depressed NAD to 0.38 pmol/islet, and was inconsistently diabetogenic. Islet NAD of 0.4 pmol/islet or greater is required for integrity of the beta cell. A diabetogenic dose of alloxan, 500 mg/kg, did not depress NAD, 0.85 pmol/islet, therefore confirming that its mechanism of diabetogenicity differs from that of streptozotocin. In vivo uptake of [methyl-14C]streptozotocin by islets was 3.8 times that of [methyl-14C]-1-methyl-1-nitrosourea, whereas uptake by the exocrine pancreas favored 1-methyl-1-nitrosourea over streptozotocin 2.4:1. The decreased islet uptake of 1-methyl-1-nitrosourea correlates with the 3.5 times increased molar dosage required to produce islet NAD depression comparable to that of streptozotocin, 150 mg/kg. These studies indicate that the glucose carrier of streptozotocin facilitates uptake of its cytotoxic group, 1-methyl-1-nitrosourea, into islets. PMID

  1. The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human

    DEFF Research Database (Denmark)

    Korpos, Eva; Kadri, Nadir; Kappelhoff, Reinhild

    2013-01-01

    We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstr...... IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.......We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data...... demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte...

  2. The semidry acid-anhydrite process (the use of flue gas desulphurization (FGD) gypsum by development of a new process for the production of FGD anhydrite); Das quasitrockene Saeure-Anhydrit-Verfahren (Erweiterung der Verwendungsmoeglichkeiten von REA-Gips durch Entwicklung eines Verfahrens zur Herstellung von REA-Anhydrit aus REA-Gips)

    Energy Technology Data Exchange (ETDEWEB)

    Wirsching, F. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany); Hueller, R. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany); Limmer, B. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany)

    1994-10-01

    A completely new reaction for conversion of FGD gypsum into FGD anhydrite was investigated in the research project which forms the basis for this article. The reaction takes place with moist, finely divided, FGD gypsum with the catalytic action of small quantities of sulphuric acid at temperatures around 100 to 200 C. Moisture-free FGD anhydrite with an orthorhombic crystalline structure ist obtained. The conversion of the crystalline lattice of calcium sulphate dihydrate into calcium anhydrite II takes place directly through neoformation. This conversion is developed into a new process called the `Semidry Acid-Anhydrite Process`. The reaction and its mechanism were first investigated in laboratory trials. Any finely divided calcium sulphate dihydrate is suitable as the starting material. The FGD gypsum with 10% residual moisture, which is already in a finely divided crystalline state when it is generated in the power station, is particularly advantageous as for this application it does not have to be dried or ground first. The process development was carried out up to a semi-industrial scale and the design principles were worked out for large-scale plants at power station sites. The directly heated rotary tube kiln proved to be a suitable reaction unit. The FGD anhydrite is obtained in this process as a dry, finely divided, product with reproducible properties. Investigations were carried out into its potential applications for the cement industry and as a raw material for producing fillers. In principle it is suitable for the cement industry. Applications as a filler allows the FGD gypsum to extend its uses outside the traditional areas of the gypsum industry. Initial trials indicate that after a processing procedure, which was also newly developed in the laborator, FGD anhydrite processes the characteristic features necessary for a high grade filler. (orig.) [Deutsch] In dem Forschungsprojekt wurde eine voellig neue Umwandlungsreaktion von REA-Gips in REA

  3. Cooperation between brain and islet in glucose homeostasis and diabetes

    Science.gov (United States)

    Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David

    2014-01-01

    Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279

  4. Islet-1 is required for ventral neuron survival in Xenopus

    International Nuclear Information System (INIS)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-01-01

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  5. Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.

    Science.gov (United States)

    Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund

    2017-04-01

    Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    Full Text Available To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO nanoparticles.After being incubated with and without CSPIO (10 µg/ml, C57BL/6 mouse islets were examined under transmission electron microscope (TEM and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1 and β (NIT-1 and βTC cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies.After incubation of mouse islets with CSPIO (10 µg/mL, TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure.Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.

  7. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  8. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Science.gov (United States)

    Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  9. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    Science.gov (United States)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  10. Pig Pancreas Anatomy: Implications for Pancreas Procurement, Preservation, and Islet Isolation

    Science.gov (United States)

    Ferrer, Joana; Scott, William E; Weegman, Bradley P; Suszynski, Thomas M; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2009-01-01

    Background Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. The limited human islet supply from cadavers and poor islet yield and quality remain substantial impediments to progress in the field. Use of porcine islets holds great promise for large-scale application of islet transplantation. Consistent isolation of porcine islets is dependent on advances in pancreas procurement and preservation, and islet isolation requiring detailed knowledge of the porcine pancreatic anatomy. The primary aim of this study was to describe the vascular and ductal anatomy of the porcine pancreas in order to guide and improve organ preservation and enzyme perfusion. Methods Pancreata were removed by en bloc viscerectomy from 65 female Landrace pigs. Results 15% of organs exhibited inconsistent vascular branching from the celiac trunk. All organs had uniform patterns of branching at the superior mesenteric artery. The superior and inferior mesenteric veins (IMV) merged to become the portal vein in all but one case in which the IMV drained into the splenic vein. 97% of pancreata had three lobes: duodenal (DL), connecting (CL), and splenic (SL); 39% demonstrated ductal communication between the CL and the other two lobes; 50% had ductal communication only between the CL and DL; and 11% presented other types of ductal delineation. Conclusions Accounting for the variations in vascular and ductal anatomy, as detailed in this study, will facilitate development of protocols for preservation, optimal enzyme administration, and pancreas distention and digestion, and ultimately lead to substantial improvements in isolation outcomes. PMID:19077881

  11. Effects of Energy Dissipation Rate on Islets of Langerhans: Implications for Isolation and Transplantation

    Science.gov (United States)

    Shenkman, Rustin M.; Godoy-Silva, Ruben; Papas, Klearchos K.; Chalmers, Jeffrey J.

    2010-01-01

    Acute physical stresses can occur in the procurement and isolation process and potentially can contribute to islet death or malfunction upon transplantation. A contractional flow device, previously used to subject suspended cells to well-defined hydrodynamic forces, has been modified and used to assess the vulnerability of porcine islets of Langerhans to hydrodynamic forces. The flow profiles and velocity gradients in this modified device were modeled using commercial CFD software and characterized, as in previous studies, with the scalar parameter, energy dissipation rate (EDR). Porcine islets were stressed in a single pass at various stress levels (i.e., values of EDR). Membrane integrity, oxygen uptake rate, caspase 3/7 activity, and insulin release were not affected by the levels of fluid stress tested up to an EDR of 2 × 103 W/m3. Visual observation of the stressed islets suggested that cells at the islet exterior were peeled away at EDR greater than 10,000 W/m3, however, this observation could not be confirmed using image analysis software, which determined the ratio of surface perimeter to total area. The result of this study suggests an upper limit in fluid stress to which islets can be subjected. Such upper limits assist in the design and operation of future islet processing equipment and processes. PMID:19191351

  12. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum.

    Science.gov (United States)

    Avgoustiniatos, Efstathios S; Scott, William E; Suszynski, Thomas M; Schuurman, Henk-Jan; Nelson, Rebecca A; Rozak, Phillip R; Mueller, Kate R; Balamurugan, A N; Ansite, Jeffrey D; Fraga, Daniel W; Friberg, Andrew S; Wildey, Gina M; Tanaka, Tomohiro; Lyons, Connor A; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2012-01-01

    Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.

  13. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response.

    Science.gov (United States)

    Adin, Christopher A; VanGundy, Zachary C; Papenfuss, Tracey L; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A

    2017-01-24

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.

  14. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges

    Directory of Open Access Journals (Sweden)

    Bruni A

    2014-06-01

    Full Text Available Anthony Bruni, Boris Gala-Lopez, Andrew R Pepper, Nasser S Abualhassan, AM James Shapiro Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada Abstract: Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. Keywords: islet transplantation, type I diabetes mellitus, Edmonton Protocol, engraftment, immunosuppression

  15. Prolonged Survival of Subcutaneous Allogeneic Islet Graft by Donor Chimerism without Immunosuppressive Treatment

    Directory of Open Access Journals (Sweden)

    Brend Ray-Sea Hsu

    2017-01-01

    Full Text Available The aim of this study was to investigate whether tolerance-induced protection of islets in the renal subcapsular space can also prevent subcutaneous allogeneic islets from being rejected. We used bone marrow stem cells from C57BL/6 (H2b mice to construct donor chimerism in conditioned diabetic BALB/c (H2d mice and investigated the effect of donor chimerism on engraftment and survival of subcutaneously transplanted allogeneic islets in streptozotocin-induced diabetic mice. We also studied the anti-inflammatory effect of mesenchymal stem cell on islet engraftment. Full but not low-grade or no donor chimerism was associated with successful engraftment of allogeneic islets and restoration of normoglycemia in the treated diabetic mice. The temporary hyperglycemia was 11 ± 1 versus 19 ± 5 days (p<0.05 for the mice with full donor chimerism with transplanted islets in the renal subcapsular space versus the subcutaneous space, respectively. Cotransplantation of mesenchymal stem cell did not enhance alloislet engraftment. Full multilineage donor chimerism was associated with a higher transient expansion of CD11b+ and Gr-1+ myeloid progenitor cells and effector memory CD4 and CD8 T cells. In conclusion, full donor chimerism protected both renal subcapsular and subcutaneous allogeneic islets in this rodent transplantation model.

  16. New stepwise cooling system for short-term porcine islet preservation.

    Science.gov (United States)

    Ikemoto, Tetsuya; Noguchi, Hirofumi; Fujita, Yasutaka; Takita, Morihito; Shimoda, Masayuki; Sugimoto, Koji; Jackson, Andrew; Naziruddin, Bashoo; Shimada, Mitsuo; Levy, Marlon F; Matsumoto, Shinichi

    2010-10-01

    Porcine islets are the most suitable for xeno-islet transplantation. However, it is necessary to establish an effective preservation method against its fragility. Recently, we developed a new cooling and preservation (Keep and Fresh [KFC]; FUJIYA Co, Tokushima, Japan) system, which can maintain viability of hepatocyte. In this study, we examined the KFC for porcine islet preservation. Isolated porcine islets were preserved in CMRL 1066 culture media with bovine serum at 37°C, 22°C, and 4°C and KFC for 24, 48, and 72 hours. Islet recovery rate, purity, and viability were evaluated. After 24-hour preservation, the recovery rate was the highest in the KFC, but no significant difference was found. After 48-hour preservation, the recovery rate by the KFC was 73.9% ± 17.3%, which was significantly higher than the other groups (48.7% ± 28.6% at 37°C, P KFC group, purities and viabilities were the highest among the groups after 24-, 48-, and 72-hour preservation. The KFC system significantly improved porcine islet preservation; therefore, the KFC might be useful for porcine islet preservation.

  17. Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles.

    Science.gov (United States)

    Berkova, Z; Kriz, J; Girman, P; Zacharovova, K; Koblas, T; Dovolilova, E; Saudek, F

    2005-10-01

    We previously described an in vivo method for pancreatic islet visualization using magnetic resonance imaging with the aid of superparamagnetic nanoparticles of iron oxide (Resovist) or by magnetic beads precoated with antibodies (Dynabeads). The aim of this study was to investigate the in vitro effect of islet labeling on their quality. Isolated rat islets were cultivated for 48 hours with a contrast agent or, in the case of magnetic antibody-coated beads, for only 2 hours. The ability to secrete insulin was tested by a static insulin release assay and the results were expressed as a stimulation index. Staining with propidium iodide and acridine orange was performed to determine the ratio of live to dead cells. Stimulation indices in the Resovist islets (n = 23) vs controls (n = 14) were 15.3 and 15.0, respectively, and in the Dynabeads islets (n = 15) vs controls (n = 12) 21.3 and 19.9, respectively. The vitality of the Resovist islets vs controls determined by live/dead cells ratio was 90.8% and 91.1%, respectively (n = 20), and in the Dynabeads islets vs controls was 89.4% and 91.8%, respectively (n = 11). Islet labeling with the contrast agent as well as with specific antibodies with iron beads did not change the vitality and insulin-secreting capacity assessed in vitro (P > .05). Magnetic resonance using iron nanoparticles represents the only method for in-vivo visualization of transplanted islets so far. Our data represent an important contribution for its clinical use.

  18. Islet Transplantation in Type 1 Diabetes: Ongoing Challenges, Refined Procedures, and Long-Term Outcome

    Science.gov (United States)

    Shapiro, A.M. James

    2012-01-01

    Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp. PMID:23804275

  19. Ultraviolet light immunomodulation of canine islets for prolongation of allograft survival

    International Nuclear Information System (INIS)

    Kenyon, N.S.; Strasser, S.; Alejandro, R.

    1990-01-01

    Ultraviolet (UV) light treatment of donor islets has been shown to be effective for the prolongation of islet allograft survival in rodent models. This study evaluated UV as an immunomodulator of canine islets. The effects of UV irradiation on islet secretory function in vitro revealed a trend of increasing basal insulin release with increasing doses of UV and a corresponding significant decrease in glucose-mediated insulin release (expressed as percentage of basal fractional insulin release) beginning at UV light exposures of 200-300 J/m2 (n = 3, P less than 0.05). Proliferative responses to UV-irradiated allogeneic peripheral blood leukocytes and islets were significantly decreased by 53-112% (P less than 0.05) in 27 of 29 mixed-lymphocyte cultures and by 35-74% (P less than 0.05) in 4 of 5 mixed-lymphocyte islet culture experiments, respectively, beginning at 200-600 J/m2. Autotransplantation of nonirradiated (n = 8) and irradiated islets (600 J/m2, n = 6) resulted in a 1-mo graft survival rate of 75% for the control group and 50% for the irradiated group. Allotransplantation of irradiated islets (600 J/m2) into either nonimmunosuppressed recipients (1 donor to 1 recipient, n = 8) or recipients of subimmunosuppressive doses of cyclosporin (2 donors to 1 recipient, n = 4) resulted in 100% rejection by day 10. In contrast, when islets were cultured for 24 h postirradiation and transplanted into cyclosporin-treated pancreatectomized recipients (2 donors to 1 recipient), 3 of 7 grafts were prolonged beyond day 10 to days 16, 26, and greater than 100

  20. Engraftment versus immunosuppression: cost-benefit analysis of immunosuppression after intrahepatic murine islet transplantation.

    Science.gov (United States)

    Marzorati, Simona; Melzi, Raffaella; Citro, Antonio; Cantarelli, Elisa; Mercalli, Alessia; Scavini, Marina; Piemonti, Lorenzo

    2014-05-27

    Immunosuppression (IS) in islet transplantation (Tx) is a double-edged sword: it prevents immunoreaction but has the potential to impair islet engraftment. The aim of this study was to identify in murine animal models the IS platform with the best balance between these two opposite effects. To study the impact of IS on islet engraftment diabetic C57BL/6 mice were transplanted with 350 syngeneic islets through the portal vein and treated once-daily with either rapamycin (RAPA; 0.1-0.5-1 mg/kg ip), tacrolimus (FK506; 0.1-0.5-1 mg/kg ip), mycophenolate mofetil (MMF; 60-120-300 mg/kg oral) or vehicle for 14 days. Islet function was evaluated by measuring not-fasting glycemia and by performing an IVGTT on days 15 and 30 post-Tx. RAPA ≥0.5 mg/Kg, FK506 ≥0.5 mg/Kg, and MMF ≥120 mg/kg had detrimental effects on islet engraftment but not on the function of islets already engrafted in the liver. The effect on engraftment was irreversible and persisted even after IS withdrawal. The lower dose of IS that did not affect engraftment was tested for preventing rejection in the full mismatch allogeneic Tx BALB/c to C57BL/6 model. RAPA and/or FK506 were inefficient in preventing rejection, even when anti-IL2R mAb was added to the IS regimen. On the other hand, MMF alone or in association with FK506 significantly prolonged the time to islet rejection. IS showed profound dose-dependent deleterious effects on islet cell engraftment. The MMF/FK506 combination proved the best balance with less toxicity at the time of engraftment and more efficacy in controlling graft rejection.

  1. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes.

    Science.gov (United States)

    Xue, Meilang; Jackson, Christopher J

    2014-01-01

    Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising. © 2014 Elsevier Inc. All rights reserved.

  2. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys.

    Science.gov (United States)

    Elliott, R B; Escobar, L; Calafiore, R; Basta, G; Garkavenko, O; Vasconcellos, A; Bambra, C

    2005-01-01

    Neonatal porcine islets within alginate microcapsules transplanted intraperitoneally (IP) or within semi-permeable macrocapsules (TheraCyte) and transplanted subcutaneously (SC) survive and reverse diabetes for up to 16 weeks in diabetic autoimmune nonobese diabetic (NOD) mice. The islets in microcapsules transplanted IP into nondiabetic cynomolgus monkeys survived for 8 weeks. Similar results were shown with islets transplanted in TheraCytes. Neither species showed adverse effects or evidence of infection with porcine endogenous retroviruses or other endemic pig viruses. Proof of principle is illustrated for successful xenotransplantation in humans.

  3. The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans.

    Science.gov (United States)

    Jensen, P B; Kristensen, P; Clausen, J T; Judge, M E; Hastrup, S; Thim, L; Wulff, B S; Foged, C; Jensen, J; Holst, J J; Madsen, O D

    1999-03-26

    The hypothalamic satiety peptide CART (cocaine and amphetamine regulated transcript) is expressed at high levels in anorectic rat glucagonomas but not in hypoglycemic insulinomas. However, a non-anorectic metastasis derived from the glucagonoma retained high CART expression levels and produced circulating CART levels comparable to that of the anorectic tumors. Moreover, distinct glucagonoma lines derived by stable HES-1 transfection of the insulinoma caused severe anorexia but retained low circulating levels of CART comparable to that of insulinoma bearing or control rats. Islet tumor associated anorexia and circulating CART levels are thus not correlated, and in line with this peripheral administration of CART (5-50 mg/kg) produced no effect on feeding behavior. In the rat two alternatively spliced forms of CART mRNA exist and quantitative PCR revealed expression of both forms in the hypothalamus, in the different islet tumors, and in the islets of Langerhans. Immunocytochemistry as well as in situ hybridization localized CART expression to the somatostatin producing islet D cell. A potential endocrine/paracrine role of islet CART remains to be clarified.

  4. Evaluation of MicroRNA375 as a Novel Biomarker for Graft Damage in Clinical Islet Transplantation.

    Science.gov (United States)

    Kanak, Mazhar A; Takita, Morihito; Shahbazov, Rauf; Lawrence, Michael C; Chung, Wen Yuan; Dennison, Ashley R; Levy, Marlon F; Naziruddin, Bashoo

    2015-08-01

    Early and sensitive detection of islet graft damage is essential for improving posttransplant outcomes. MicroRNA 375 (miR375) has been reported as a biomarker of pancreatic β-cell death in small animal models. The miR375 levels were measured in purified human islets, sera from patients with autologous and allogeneic islet transplantation as well as total pancreatectomy alone (nontransplanted group). The miR375 levels were also determined in a miniaturized in vitro tube model comprising human islets and autologous blood. The miR375 expression level in islets was dose-dependent (P islet damage in plasma in the in vitro model (P = 0.003). Clinical analysis revealed that circulating miR375 levels in both autologous and allogeneic islet recipients were significantly elevated for 7 days after islet infusion, compared with the nontransplanted group (P = 0.005 and islet graft damage among 3 different anti-inflammatory protocols for clinical autologous transplantation (P islet transplantation because serum C-peptide and proinsulin levels are difficult to interpret due to the influence of multiple factors, such as β-cell stress and physiological response.

  5. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation.

    Science.gov (United States)

    Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C

    2017-11-01

    Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.

  6. Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device.

    Science.gov (United States)

    Pepper, Andrew R; Pawlick, Rena; Gala-Lopez, Boris; MacGillivary, Amanda; Mazzuca, Delfina M; White, David J G; Toleikis, Philip M; Shapiro, A M James

    2015-11-01

    Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. Although high rates of early insulin independence are achieved routinely, long-term function wanes over time. Intraportal transplantation is associated with procedural risks, requires multiple donors, and does not afford routine biopsy. Stem cell technologies may require potential for retrievability, and graft removal by hepatectomy is impractical. There is a clear clinical need for an alternative, optimized transplantation site. The subcutaneous space is a potential substitute, but transplantation of islets into this site has routinely failed to reverse diabetes. However, an implanted device, which becomes prevascularized before transplantation, may alter this equation. Syngeneic mouse islets were transplanted subcutaneously within Sernova Corp's Cell Pouch (CP). All recipients were preimplanted with CPs 4 weeks before diabetes induction and transplantation. After transplantation, recipients were monitored for glycemic control and glucose tolerance. Mouse islets transplanted into the CP routinely restored glycemic control with modest delay and responded well to glucose challenge, comparable to renal subcapsular islet grafts, despite a marginal islet dose, and normoglycemia was maintained until graft explantation. In contrast, islets transplanted subcutaneously alone failed to engraft. Islets within CPs stained positively for insulin, glucagon, and microvessels. The CP is biocompatible, forms an environment suitable for islet engraftment, and offers a potential alternative to the intraportal site for islet and future stem cell therapies.

  7. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process

    Science.gov (United States)

    Lopes, D. H. J.; Smirnovas, V.; Winter, R.

    2008-07-01

    Type II Diabetes Mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet β-cell mass and the deposition of amyloid in the extracellular matrix of β-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR, CD, ThT fluorescence spectroscopic and AFM studies were carried out to reveal information on the aggregation pathway as well as the aggregate structure of IAPP. Our data indicate that IAPP pre-formed fibrils exhibit a strong polymorphism with heterogeneous structures very sensitive to high hydrostatic pressure, indicating a high percentage of ionic and hydrophobic interactions being responsible for the stability the IAPP fibrils.

  8. Effect of interleukin-1 on the biosynthesis of proinsulin and insulin in isolated rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, Birgit Sehested; Linde, S; Spinas, G A

    1988-01-01

    Insulin dependent diabetes mellitus (IDDM) is often preceded or associated with lymphocytic infiltration in the islets of Langerhans (insulitis). We recently demonstrated that interleukin-1 (IL-1) produced by activated macrophages exerts a bimodal effect on insulin release and biosynthesis...... in isolated rat islets. In the present study we have further analysed the effect of recombinant human interleukin-1 beta (rIL-1) on the biosynthesis and conversion of proinsulin 1 and 2 in rat islets. By RP-HPLC-analysis of islets labelled with [3H]leucine we found that exposure to 6 ng/ml of IL-1 for 24 h.......1 to 3.4 +/- 0.4, respectively. Pulse-chase experiments with [3H]leucine and [35S]methionine indicated a more marked reduction in the conversion rate of proinsulin-2 compared to that of proinsulin-1. In conclusion these experiments demonstrate that IL-1 inhibits insulin biosynthesis by preferential...

  9. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database

    DEFF Research Database (Denmark)

    Andersen, H U; Fey, S J; Larsen, Peter Mose

    1997-01-01

    as well as the intracellular mechanisms of action of interleukin 1-mediated beta-cell cytotoxicity are unknown. However, previous studies have found an association of beta-cell destruction with alterations in protein synthesis. Thus, two-dimensional (2-D) gel electrophoresis of pancreatic islet proteins...... may be an important tool facilitating studies of the molecular pathogenesis of insulin-dependent diabetes mellitus. 2-D gel electrophoresis of islet proteins may lead to (i) the determination of qualitative and quantitative changes in specific islet proteins induced by cytokines, (ii......) the determination of the effects of agents modulating cytokine action, and (iii) the identification of primary islet protein antigen(s) initiating the immune destruction of the beta-cells. Therefore, the aim of this study was to create databases (DB) of all reproducibly detectable protein spots on 10% and 15...

  10. Isolation, transplantation, and functional studies of adult porcine islets of Langerhans

    DEFF Research Database (Denmark)

    Nielsen, Thomas Buschmann; Yderstræde, Knud Bonnet; Beck-Nielsen, Henning

    2002-01-01

    that was only partially increased by additional challenge with arginine. More than 50% of DNA and 90% of the insulin content was lost during a one-week culture period. With some batch-to-batch variation, in 15 of 25 cases, 4,000 to 7,000 porcine islets cured streptozotocin diabetic nude mice within three weeks......Transplantation of islets of Langerhans is a possible treatment for type-I diabetes mellitus. However, there is a shortage of donors for such transplantations and the pig may be an alternative source of donor organs. The aims of the study reported here were to establish a method for adult porcine...... following transplantation. In conclusion, it is possible to isolate viable islets from adult pigs, using a semiautomatic set-up. With batch-to-batch variation, the islets are able to revert diabetes mellitus when transplanted to diabetic nude mice....

  11. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells

    Directory of Open Access Journals (Sweden)

    Shao-Yu Peng

    2017-06-01

    Conclusion: Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations.

  12. Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation

    Science.gov (United States)

    Kawahara, Toshiyasu; Kin, Tatsuya; Kashkoush, Samy; Gala-Lopez, Boris; Bigam, David L.; Kneteman, Norman M.; Koh, Angela; Senior, Peter A.; Shapiro, A.M. James

    2011-01-01

    Percutaneous transhepatic portal access avoids surgery, but is rarely associated with bleeding or portal venous thrombosis. We herein report our large, single-center experience of percutaneous islet implantation, and evaluate risk factors of portal vein thrombosis and graft function. Prospective data was collected on 268 intraportal islet transplants (122 subjects). A portal venous Doppler ultrasound was obtained on Days 1 and 7 days posttransplant. Therapeutic heparinization, complete ablation of the portal catheter tract with Avitene paste, and limiting packed cell volume to islet transplant procedures over the past 5 years. In the previous cumulative experience, partial thrombosis did not affect islet function. Standard liver volume correlated negatively (r=−0.257, Pislet transplantation, provided therapeutic anticoagulation is maintained, and packed cell volume is limited to <5 ml. PMID:21883914

  13. Amyloid Deposition in Transplanted Human Pancreatic Islets: A Conceivable Cause of Their Long-Term Failure

    Directory of Open Access Journals (Sweden)

    Arne Andersson

    2008-01-01

    Full Text Available Following the encouraging report of the Edmonton group, there was a rejuvenation of the islet transplantation field. After that, more pessimistic views spread when long-term results of the clinical outcome were published. A progressive loss of the β-cell function meant that almost all patients were back on insulin therapy after 5 years. More than 10 years ago, we demonstrated that amyloid deposits rapidly formed in human islets and in mouse islets transgenic for human IAPP when grafted into nude mice. It is, therefore, conceivable to consider amyloid formation as one potential candidate for the long-term failure. The present paper reviews attempts in our laboratories to elucidate the dynamics of and mechanisms behind the formation of amyloid in transplanted islets with special emphasis on the impact of long-term hyperglycemia.

  14. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Lechner, Andreas; Nolan, Anna L.; Blacken, Robyn A.; Habener, Joel F.

    2005-01-01

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  15. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  16. Intraocular in vivo imaging of pancreatic islet cell physiology/pathology

    Directory of Open Access Journals (Sweden)

    Ingo B. Leibiger

    2017-09-01

    Major conclusions: Data provided by us and others demonstrate the high versatility of this imaging platform. The use of ‘reporter islets’ engrafted in the eye, reporting on the status of in situ endogenous islets in the pancreas of the same animal, allows the identification of key-events in the development and progression of diabetes. This will not only serve as a versatile research tool but will also lay the foundation for a personalized medicine approach and will serve as a screening platform for new drugs and/or treatment protocols. ‘Metabolic’ islet transplantation, in which islets engrafted in the eye replace the endogenous beta cells, will allow for the establishment of islet-specific transgenic models and ‘humanized’ mouse models as well as serving as the basis for a new clinical transplantation site for the cure of diabetes.

  17. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1994-03-15

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on {sup 99m}Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  18. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    International Nuclear Information System (INIS)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W.

    1994-01-01

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on 99m Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  19. An 'alpha-beta' of pancreatic islet microribonucleotides

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Eliasson, Lena

    2017-01-01

    . Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress......, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding mi...

  20. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  1. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    Science.gov (United States)

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  2. Experimental evidence for the origin of ductal-type adenocarcinoma from the islets of Langerhans.

    OpenAIRE

    Pour, P. M.; Weide, L.; Liu, G.; Kazakoff, K.; Scheetz, M.; Toshkov, I.; Ikematsu, Y.; Fienhold, M. A.; Sanger, W.

    1997-01-01

    To investigate the role of the islets of Langerhans in pancreatic carcinogenesis, freshly isolated islets from male Syrian hamsters were transplanted into the right submandibular glands of 50 female hamsters that were or were not pre-treated with streptozotocin. Thyroid gland fragments, cellulose powder, and immortal hamster pancreatic ductal cells were injected into the left submandibular gland of the same hamsters. All recipient hamsters were then treated with the potent pancreatic carcinog...

  3. Human islet viability and function is maintained during high density shipment in silicone rubber membrane vessels

    Science.gov (United States)

    Kitzmann, Jennifer P; Pepper, Andrew R; Lopez, Boris G; Pawlick, Rena; Kin, Tatsuya; O’Gorman, Doug; Mueller, Kathryn R; Gruessner, Angelika C; Avgoustiniatos, Efstathios S; Karatzas, Theodore; Szot, Greg L; Posselt, Andrew M; Stock, Peter G; Wilson, John R; Shapiro, AM; Papas, Klearchos K

    2014-01-01

    The shipment of human islets from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Human islets(IE) were isolated from two manufacturing centers and shipped in 10cm2 surface area SRM vessels in temperature and pressure controlled containers to a distant center following at least two days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a micro centrifuge tube negative control (NC). LD was designed to mimic the standard culture density for human islet preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1–3 vessels. Upon receipt, islets were assessed for viability, measured by oxygen consumption rate normalized to DNA content (OCR/DNA), and quantity, measured by DNA, and, when possible, potency and function with dynamic glucose-stimulated insulin secretion (GSIS) measurements and transplants in immunodeficient B6 rag mice. Post-shipment OCR/DNA was not reduced in HD versus LD, and was substantially reduced in the NC condition. HD islets exhibited normal function post-shipment. Based on the data we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function. PMID:25131090

  4. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    Science.gov (United States)

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo

    International Nuclear Information System (INIS)

    Liu, Shuai; Pan, Yu; Lv, Jing; Wu, Haifei; Tian, Jingyan; Zhang, Yifan

    2014-01-01

    Objective: The objective of this study was to explore the feasibility of baculovirus vector-mediated sodium iodide symporter (NIS) gene delivery to monitor islet transplantation. Methods: Baculovirus vectors expressing green fluorescent protein (GFP) or NIS (Bac-GFP and Bac-NIS) were established using the Bac-to-Bac baculovirus expression system. The GFP expression of Bac-GFP-infected rat islets was observed in vitro by fluorescence microscopy. Iodine uptake and inhibition of iodine uptake by NaClO 4 in Bac-NIS-infected islets were dynamically monitored in vitro. Bac-GFP- or Bac-NIS-infected islets were implanted into the left axillary cavity of NOD-SCID mice, and fluorescence imaging and 125 I NanoSPECT/CT imaging were subsequently performed in vivo. Results: Bac-GFP efficiently infected rat islets (over 95% infected at MOI = 40), and the expression of GFP lasted approximately two weeks. NaClO 4 could inhibit iodine uptake by Bac-NIS-infected islets. In vivo imaging revealed that the fluorescence intensity of the transplant sites in Bac-GFP-infected groups was significantly higher than in the non-infected group. Grafts could be clearly observed by 125 I NanoSPECT/CT imaging for up to 8 h. Conclusion: Baculovirus vectors are powerful vehicles for studying rat islets in gene delivery. It is feasible to use a baculovirus vector to delivery an NIS gene for non-invasive monitoring transplanted islets in vivo by the expression of the target gene

  6. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance

    Czech Academy of Sciences Publication Activity Database

    Berková, Z.; Jirák, D.; Zacharovová, K.; Kříž, J.; Lodererová, A.; Girman, P.; Koblas, T.; Dovolilová, E.; Vancová, Marie; Hájek, M.; Saudek, F.

    2008-01-01

    Roč. 85, č. 1 (2008), s. 155-159 ISSN 0041-1337 R&D Projects: GA MŠk 2B06175; GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z60220518 Keywords : pancreatic islet s * islet s transplantation * iron nanoparticles Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.816, year: 2008

  7. Effect of total lymphoid irradiation (TLI) and donor bone marrow (BM) on islet transplantation in baboons

    International Nuclear Information System (INIS)

    Nash, J.R.; Smit, J.A.; Myburgh, M.A.; Bell, P.R.F.

    1981-01-01

    The susceptibility of isolated islet allografts to rejection and the limited success of established immunosuppressive technique in influencing it is well known. However, the recent demonstration of the efficacy of TLI and BM in the induction of transplantation tolerance has been a major advance. In this study, we investigated the efficacy of similar irradiation schedules on the prolongation of islet allograft survival in the same animal model

  8. Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation

    International Nuclear Information System (INIS)

    Eriksson, Olof; Carlsson, Fredrik; Blom, Elisabeth; Sundin, Anders; Långström, Bengt; Korsgren, Olle; Velikyan, Irina

    2012-01-01

    Introduction: Islet transplantation is a promising treatment for type 1 diabetes mellitus, but the fate of the cells after intraportal infusion is unclear. It is therefore imperative to develop novel techniques for noninvasive imaging and quantification of events following islet transplantation. Methods: Small islet-like microbeads, avidin-covered agarose resins (AARs), were used as a model system for islet transplantation. Capability for specific [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin uptake and retention for either AARs or human islets conjugated with avidin by means of a heparin scaffold was studied in vitro. Biodistribution of the novel positron emission tomography (PET) tracer [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin was evaluated in mice treated by intraportal transplantation of AARs by μPET/computed tomography and ex vivo organ distribution and compared with control mice. Results: AARs had high capability to bind [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin, close to 50% of administrated tracer/μl in vitro (>0.25 MBq/μl). Avidin-tagged human islets could bind on average 2.2% of administered tracer/μl. Specificity (>90%) and retention (>90% after 1 h) were high for both AARs and avidin-tagged islets. Hepatic tracer uptake and retention were increased in mice transplanted with AARs [standardized uptake value (SUV)=2.6] compared to the untreated group (SUV=1.4). In vivo uptake of tracer to AARs was blocked by preadministration of unlabeled biotin. Conclusions: Avidin-tagged islet-like objects can be tracked in hepatic volume after intraportal transplantation by using [ 68 Ga]Ga-DOTA-(PEG) 2 -biotin and PET.

  9. Single-donor islet transplantation in type 1 diabetes: patient selection and special considerations

    Directory of Open Access Journals (Sweden)

    Tatum JA

    2017-02-01

    Full Text Available Jacob A Tatum,* Max O Meneveau,* Kenneth L Brayman Department of Surgery, Division of Transplantation, The University of Virginia Health System, Charlottesville, VA, USA *These authors contributed equally to this work. Abstract: Type 1 diabetes mellitus is an autoimmune disorder of the endocrine pancreas that currently affects millions of people in the United States. Although the disease can be managed with exogenous insulin administration, the ultimate cure for the condition lies in restoring a patient’s ability to produce their own insulin. Islet cell allotransplantation provides a means of endogenous insulin production. Though far from perfected, islet transplants are now a proven treatment for type 1 diabetics. However, proper patient selection is critical for achieving optimal outcomes. Given the shortage of transplantable organs, selecting appropriate candidates for whom the procedure will be of greatest benefit is essential. Although many of those who receive islets do not retain insulin independence, grafts do play a significant role in preventing hypoglycemic episodes that can be quite detrimental to quality of life and potentially fatal. Additionally, islet transplant requires lifelong immunosuppression. Antibodies, both preformed and following islet infusion, may play important roles in graft outcomes. Finally, no procedure is without inherent risk and islet transfusions can have serious consequences for recipients’ livers in the form of both vascular and metabolic complications. Therefore, patient-specific factors that should be taken into account before islet transplantation include aims of therapy, sensitization, and potential increased risk for hepatic and portal-venous sequelae. Keywords: islet transplantation, diabetes mellitus type 1, brittle diabetes, single donor, patient

  10. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  11. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Wave forcing and morphological changes of New Caledonia lagoon islets: Insights on their possible relations

    Science.gov (United States)

    Aucan, Jérôme; Vendé-Leclerc, Myriam; Dumas, Pascal; Bricquir, Marianne

    2017-10-01

    In the present study, we examine how waves may contribute to the morphological changes of islets in the New Caledonia lagoon. We collected in situ wave data to investigate their characteristics. Three types of waves are identified and quantified: (1) high-frequency waves generated within the lagoon, (2) low-frequency waves originating from swells in the Tasman Sea, and (3) infragravity waves. We found out that high-frequency waves are the dominant forcing on the islets during typical wind events throughout the year, while infragravity waves, likely generated by the breaking of low-frequency waves, dominate during seasonal swell events. During swell events, low-frequency waves can also directly propagate to the islets through channels across the barrier reef, or be tidally modulated across the barrier reef before reaching the islets. Topographic surveys and beach profiles on one islet indicate areas with seasonal morphological changes and other areas with longer, interannual or decadal, erosion patterns. Although more data are needed to validate this hypothesis, we suspect that a relation exists between wave forcing and morphological changes of the islets.

  13. Pancreatic islet allograft in spleen with immunosuppression with cyclosporine. Experimental model in dogs.

    Science.gov (United States)

    Waisberg, Jaques; Neff, Charles Benjamin; Waisberg, Daniel Reis; Germini, Demetrius; Gonçalves, José Eduardo; Zanotto, Arnaldo; Speranzini, Manlio Basilio

    2011-01-01

    To study the functional behavior of the allograft with immunosuppression of pancreatic islets in the spleen. Five groups of 10 Mongrel dogs were used: Group A (control) underwent biochemical tests; Group B underwent total pancreatectomy; Group C underwent total pancreatectomy and pancreatic islet autotransplant in the spleen; Group D underwent pancreatic islet allograft in the spleen without immunosuppressive therapy; Group E underwent pancreatic islet allograft in the spleen and immunosuppression with cyclosporine. All of the animals with grafts received pancreatic islets prepared by the mechanical-enzymatic method - stationary collagenase digestion and purification with dextran discontinuous density gradient, implanted in the spleen. The animals with autotransplant and those with allografts with immunosuppression that became normoglycemic showed altered results of intravenous tolerance glucose (p < 0.001) and peripheral and splenic vein plasmatic insulin levels were significantly lower (p < 0.001) in animals that had allografts with immunosuppression than in those with just autotransplants. In the animals with immunosuppression with cyclosporine subjected to allograft of pancreatic islets prepared with the mechanical-enzymatic preparation method (stationary collagenase digestion and purification with dextran discontinuous density gradient), the production of insulin is decreased and the response to intravenous glucose is altered.

  14. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2018-05-01

    Full Text Available This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  15. Essential role of the small GTPase Ran in postnatal pancreatic islet development.

    Directory of Open Access Journals (Sweden)

    Fang Xia

    Full Text Available The small GTPase Ran orchestrates pleiotropic cellular responses of nucleo-cytoplasmic shuttling, mitosis and subcellular trafficking, but whether deregulation of these pathways contributes to disease pathogenesis has remained elusive. Here, we generated transgenic mice expressing wild type (WT Ran, loss-of-function Ran T24N mutant or constitutively active Ran G19V mutant in pancreatic islet β cells under the control of the rat insulin promoter. Embryonic pancreas and islet development, including emergence of insulin(+ β cells, was indistinguishable in control or transgenic mice. However, by one month after birth, transgenic mice expressing any of the three Ran variants exhibited overt diabetes, with hyperglycemia, reduced insulin production, and nearly complete loss of islet number and islet mass, in vivo. Deregulated Ran signaling in transgenic mice, adenoviral over-expression of WT or mutant Ran in isolated islets, or short hairpin RNA (shRNA silencing of endogenous Ran in model insulinoma INS-1 cells, all resulted in decreased expression of the pancreatic and duodenal homeobox transcription factor, PDX-1, and reduced β cell proliferation, in vivo. These data demonstrate that a finely-tuned balance of Ran GTPase signaling is essential for postnatal pancreatic islet development and glucose homeostasis, in vivo.

  16. The fractal spatial distribution of pancreatic islets in three dimensions: a self-avoiding growth model

    International Nuclear Information System (INIS)

    Jo, Junghyo; Periwal, Vipul; Hörnblad, Andreas; Ahlgren, Ulf; Kilimnik, German; Hara, Manami

    2013-01-01

    The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas. (paper)

  17. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study.

    Science.gov (United States)

    Rafael, E; Wu, G S; Hultenby, K; Tibell, A; Wernerson, A

    2003-01-01

    Encapsulation of cells in a semipermeable membrane may in the future provide an opportunity to treat a variety of endocrine and neurological disorders, without the need for lifelong immunosuppression. The physiological conditions in the device are crucial factors for graft survival. Previously, we have shown that the exchange across the immunoisolating membrane and the microcirculation around the TheraCyte device increase around 3 months after implantation. The aim of this study was to determine whether preimplantation of the TheraCyte device would improve the survival of a later transplanted islet graft. A TheraCyte device was implanted SC on one side of the back of a nondiabetic SD rat. After 3 months, 1500 islets isolated from SD rats were transplanted via the device port. At the same time, another device, loaded with the same number of islets, was implanted on the other side of the back. Both devices were explanted 2 weeks after islet transplantation (i.e., 3.5 months and 0.5 month after device implantation, respectively). Six pairs of devices were evaluated by morphometery. The volume densities of viable islets were 0.22 +/- 0.04 in the preimplanted device vs. 0.06 +/- 0.03 in the nonpreimplanted one (p TheraCyte device seems to improve the survival of an encapsulated islet graft and reduce fibroblast outgrowth in the device.

  18. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  19. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells.

    Science.gov (United States)

    Sakata, Naoaki; Yoshimatsu, Gumpei; Kodama, Shohta

    2018-05-07

    This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  20. Posttransplant Lymphoproliferative Disorder After Clinical Islet Transplantation: Report of the First Two Cases.

    Science.gov (United States)

    Peters, A; Olateju, T; Deschenes, J; Shankarnarayan, S H; Chua, N; Shapiro, A M J; Senior, P

    2017-09-01

    We report the first two cases of posttransplant lymphoproliferative disorder (PTLD) in recipients of islet transplants worldwide. First, a 44-year-old recipient of three islet infusions developed PTLD 80 months after his initial transplantation, presenting with abdominal pain and diffuse terminal ileum thickening on imaging. He was treated with surgical excision, reduction of immunosuppression, and rituximab. Seven months later, he developed central nervous system PTLD, presenting with vertigo and diplopia; immunosuppression was discontinued, resulting in graft loss, and he was given high-dose methotrexate and underwent consolidative autologous stem cell transplantation. He remains in remission 37 months after the initial diagnosis. Second, a 58-year-old female recipient of two islet infusions developed PTLD 24 months after initial islet infusion, presenting with pancytopenia secondary to extensive bone marrow involvement. Immunosuppression was discontinued, resulting in graft loss, and she received rituximab and chemotherapy, achieving complete remission. Both patients were monomorphic B cell PTLD subtype by histology and negative for Epstein-Barr virus in tissue or blood. These cases document the first occurrences of this rare complication in islet transplantation, likely secondary to prolonged, intensive immunosuppression, and highlight the varying clinical manifestations of PTLD. Further studies are needed to determine incidence rate and risk factors in islet transplantation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Delineation of glutamate pathways and secretory responses in pancreatic islets with ß-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurene; Carobbio, Stefania; Pournourmohammadi, Shirin

    2012-01-01

    isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α......-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response...... to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role...

  2. Laparoscopic Total Pancreatectomy With Islet Autotransplantation and Intraoperative Islet Separation as a Treatment for Patients With Chronic Pancreatitis.

    Science.gov (United States)

    Fan, Caleb J; Hirose, Kenzo; Walsh, Christi M; Quartuccio, Michael; Desai, Niraj M; Singh, Vikesh K; Kalyani, Rita R; Warren, Daniel S; Sun, Zhaoli; Hanna, Marie N; Makary, Martin A

    2017-06-01

    Pain management of patients with chronic pancreatitis (CP) can be challenging. Laparoscopy has been associated with markedly reduced postoperative pain but has not been widely applied to total pancreatectomy with islet autotransplantation (TPIAT). To examine the feasibility of using laparoscopic TPIAT (L-TPIAT) in the treatment of CP. Thirty-two patients with CP presented for TPIAT at a tertiary hospital from January 1, 2013, through December 31, 2015. Of the 22 patients who underwent L-TPIAT, 2 patients converted to an open procedure because of difficult anatomy and prior surgery. Pain and glycemic outcomes were recorded at follow-up visits every 3 to 6 months postoperatively. Operative outcomes included operative time, islet isolation time, warm ischemia time, islet equivalent (IE) counts, estimated blood loss, fluid resuscitation, and blood transfusions. Postoperative outcomes included length of stay, all-cause 30-day readmission rate, postoperative complications, mortality rate, subjective pain measurements, opioid use, random C-peptide levels, insulin requirements, and glycated hemoglobin level. Of the 32 patients who presented for TPIAT, 20 underwent L-TPIAT (8 men and 12 women; mean [SD] age, 39 [13] years; age range, 21-58 years). Indication for surgery was CP attributable to genetic mutation (n = 9), idiopathic pancreatitis (n = 6), idiopathic pancreatitis with pancreas divisum (n = 3), and alcohol abuse (n = 2). Mean (SD) operative time was 493 (78) minutes, islet isolation time was 185 (37) minutes, and warm ischemia time was 51 (62) minutes. The mean (SD) IE count was 1325 (1093) IE/kg. The mean (SD) length of stay was 11 (5) days, and the all-cause 30-day readmission rate was 35% (7 of 20 patients). None of the patients experienced postoperative surgical site infection, hernia, or small-bowel obstruction, and none died. Eighteen patients (90%) had a decrease or complete resolution of pain, and 12 patients (60%) no longer required opioid

  3. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug

    OpenAIRE

    Dang, Tram T.; Thai, Anh V.; Cohen, Joshua; Slosberg, Jeremy E.; Siniakowicz, Karolina; Doloff, Joshua C.; Ma, Minglin; Hollister-Lock, Jennifer; Tang, Katherine; Gu, Zhen; Cheng, Hao; Weir, Gordon C.; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Immuno-isolation of islets has the potential to enable the replacement of pancreatic function in diabetic patients. However, host response to the encapsulated islets frequently leads to fibrotic overgrowth with subsequent impairment of the transplanted grafts. Here, we identified and incorporated anti-inflammatory agents into islet-containing microcapsules to address this challenge. In vivo subcutaneous screening of 16 small molecule anti-inflammatory drugs was performed to identify promising...

  4. Effect of the Diabetic State on Islet Engraftment and Function in a Large Animal Model of Islet–Kidney Transplantation

    Science.gov (United States)

    Hirakata, Atsushi; Weiss, Matthew; Griesemer, Adam; Shimizu, Akira; Hong, Hanzhou; Habertheuer, Andreas; Tchipashvili, Vaja; Yamada, Kazuhiko; Sachs, David H.

    2018-01-01

    In islet transplantation, in addition to immunologic and ischemic factors, the diabetic/hyperglycemic state of the recipient has been proposed, although not yet validated, as a possible cause of islet toxicity, contributing to islet loss during the engraftment period. Using a miniature swine model of islet transplantation, we have now assessed the effect of a persistent state of hyperglycemia on islet engraftment and subsequent function. An islet–kidney (IK) model previously described by our laboratory was utilized. Three experimental donor animals underwent total pancreatectomy and autologous islet transplantation underneath the renal capsule to prepare an IK at a load of ≤1,000 islet equivalents (IE)/kg donor weight, leading to a chronic diabetic state during the engraftment period (fasting blood glucose >250 mg/dL). Three control donor animals underwent partial pancreatectomy (sufficient to maintain normoglycemia during islet engraftment period) and IK preparation. As in vivo functional readout for